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Abstract—Inserting dummy (area fill) metals is necessary to
reduce the pattern-dependent variation of dielectric thickness in
the chemical–mechanical polishing (CMP) process. Such float-
ing dummy metals affect interconnect capacitance and, there-
fore, signal delay and crosstalk significantly. To take the floating
dummies into account, an efficient method for three-dimensional
(3-D) capacitance extraction based on boundary element method
is proposed. By introducing a floating condition into the direct
boundary integral equation (BIE) and adopting an efficient pre-
conditioning technique, and the quasi-multiple medium (QMM)
acceleration, the method achieves very high computational speed.
For some typical structures of area fill, the presented algorithm
has shown over 1000× speedup over the industry-standard
Raphael while preserving high accuracy. Compared with the re-
cently proposed PASCAL in the work of Park et al. (2000), the pro-
posed method also has about ten times speedup. Since the dummies
are not regarded as normal electrodes in capacitance extraction,
the proposed method is much more efficient than the conven-
tional method, especially in cases with a large number of floating
dummies.

Index Terms—Boundary-element method (BEM), design
for manufacturability, dummy fill, interconnect capacitance
extraction.

I. INTRODUCTION

FOR current very-large-scale integration (VLSI) circuit,
chemical–mechanical polishing (CMP) is a necessary

manufacturing step by which the wafer is polished with a
rotating pad and slurry to achieve the planarized surfaces
[1], [2]. Because the dielectric thickness strongly depends on
the pattern density of underlying metal layer, a widely used
method for reducing the variation of dielectric thickness in the
CMP process is to insert dummy metals (this procedure is also
called “area fill”) [1]–[4]. These dummies are situated between
signal lines to increase the pattern density and, at the same
time, influence the electrical characteristics of interconnects
in different ways depending on whether they are grounded
or on the floating state. In the application-specific integrated
circuit (ASIC) design, the floating dummy fills are preferred
due to the short design period and considerable area to be filled.
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Such floating dummy fills have a strong impact on interconnect
capacitance and, therefore, signal delay and crosstalk [1]–[3].

Nowadays, the area fill synthesis considering the impact on
circuit performance has become an important problem of the
design for manufacturability (DFM) [4]. For the electrical char-
acterization or optimization of design rules for the dummy fills,
a huge number of simulations are required for the structures
involving floating dummy fills. However, most of the available
parasitic extraction tools do not have specific treatment for
floating dummies. For the case with floating conductors, a
conventional field solver (such as SYNOPSYS Raphael) treats
them as normal electrodes and extracts the full capacitance
matrix. Then, the capacitance matrix is reduced by considering
that the total charge on each floating conductor is equal to zero
[5]. Obviously, the cost of central processing unit (CPU) time
for extracting the full capacitance matrix is prohibitive while
including a lot of floating dummies.

On the other hand, three-dimensional (3-D) interconnect
capacitance extraction with the boundary element method
(BEM) has drawn much attention recently, because of its ad-
vantage of dimensionality reduction over the finite difference
method and finite element method. Many fast algorithms based
on BEM have been proposed, including the fast multipole
approach [6], hierarchical approach [7], the precorrected fast
Fourier transform (FFT) algorithm [8], and the quasi-multiple
medium (QMM) method [9], [10]. Different from other kinds of
BEM, the QMM-accelerated BEM employs the direct boundary
integral equation (BIE) [13], which has the property of resulting
in a sparse coefficient matrix for a multiregion problem. By
exploiting this character to enlarge the matrix sparsity and
efficient techniques of equation organization and solution, the
QMM–BEM solver has shown ten times speedup and memory
saving over the multipole-accelerated method (FastCap 2.0) [6],
for 3-D capacitance extraction [10].

In this paper, the QMM-accelerated BEM is extended to
efficiently handle the structure with floating dummy fills. An
equation corresponding to the floating condition is added into
the discretized BEM equations, for each floating conduc-
tor. Then, with a new preconditioning technique for iterative
equation solution, the interconnect capacitances are directly
obtained. Since the floating conductor is not considered as
normal electrode and no redundant capacitance entries need
to be solved and reduced, the proposed method is much more
efficient than the conventional method, particularly in the case
of a great number of dummy fills in modern ASIC design.
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Some typical structures of area fill are calculated to demonstrate
the efficiency of the proposed method. Compared with Raphael
(RC3), which is the finite difference solver with advanced
nonuniform meshing, the proposed method has a speedup ratio
above several hundreds.

In [11] and [15], two algorithms of capacitance extrac-
tion were proposed with specific consideration of the floating
dummy fills. The algorithm in [15] is based on a so-called
fictitious domain method, which uses the Lagrange multiplier
λ to consider the conductor boundary and replaces the com-
plex shape domain of potential computation with a simple one.
However, no other algorithm was compared with the algorithm
based on fictitious domain method, and the computational
results in [15] did not show high efficiency (it costs 1 h for
a structure including 130 floatings). The basic idea of [11] is
similar to the authors, but the algorithm (called PASCAL) is
implemented based on the finite difference method. Further
work on electrical characterization of metal fills using the
PASCAL can be found in [12]. Since the authors are not able
to obtain the PASCAL for direct comparison in the same com-
putational environment, an indirect comparison is carried out
based on the speedup ratios to Raphael. For similar structures,
the proposed method finally shows about ten times speedup
over PASCAL.

The remainder of this paper is organized as follows. In
Section II, the QMM-based capacitance extraction for struc-
ture without floating conductors is briefly reviewed. Efficient
techniques handling the structure with floating dummies are
presented in Section III. Experimental results are reported in
Section IV, and conclusions are drawn in Section V.

II. THREE-DIMENSIONAL CAPACITANCE EXTRACTION

WITH THE QMM-ACCELERATED BEM

In direct BEM, the Laplace equation fulfilled by the elec-
trical potential u in each homogenous dielectric region can be
transformed into the following direct BIEs [9], [10], [13]

cu +
∫
Γi

q∗udΓ =
∫
Γi

u∗qdΓ i = 1, . . . ,M (1)

where c is a constant depending on the boundary geometry
and Γi is the boundary of dielectric region i (assuming there
are totally M regions). q is the normal electrical field intensity
and q = ∂u/∂n where n means the vector outward normal to
boundary. For 3-D space, the fundamental solution u∗ is 1/4πr
and q∗ = ∂u∗/∂n. Employing constant quadrilateral elements
to make boundary discretization and evaluating the direct BIE
at collocation points (one for each element), the discretized
BIEs are obtained from (1) for each dielectric region. After
evaluating two types of boundary integral, a set of linear
equations with unknowns of u and q is obtained [9].

Moreover, u and q fulfill the compatibility equations along
the interface of two adjacent dielectrics a and b

{
εa

∂ua
∂na

= −εb
∂ub
∂nb

ua = ub

(2)

Fig. 1. Typical 3-D interconnect capacitor with five dielectric layers is cut into
a 3 × 2 structure.

where εa and εb stand for the permittivities of dielectrics a
and b, respectively. With (2) the u and q unknowns on the
same interfacial element for both adjacent dielectric regions
can be united, respectively. Therefore, the discretized BIEs for
all dielectric regions can be put together. By substituting the
boundary conditions (u is known on conductor surfaces as bias
voltage, and q is supposed to be zero on the Neumann boundary
as shown in Fig. 1), and preserving only the items of unknown
variables to the left side of the equal sign, an overall linear
system is obtained

Ax = f (3)

where x is a vector comprising all discretized unknowns of u
and q. Theoretically, any arrangement of the discretized BIEs
in (3) is correct. However, without careful consideration, the
population of the coefficient matrix A would be too chaotic
to solve the equation efficiently. In [9], Yu et al. present an
effective arrangement of the unknowns and collocation points,
as well as the storage scheme for the resulting sparse matrix A,
which facilitates the matrix–vector multiplication in GMRES
[14] equation solution for problem involving a large number
of regions.

The above process can be regarded as the conventional direct
BEM for a multiregion problem. A localization character is
revealed by formula (1), where the variables in each BIE
are within the same dielectric region. This character of direct
BEM results in a blocked sparse coefficient matrix A for a
multidielectric problem. For example, a typical capacitor with
three dielectrics is shown in Fig. 2, and the corresponding
sparse matrix A is shown in Fig. 3 (the effective equation
arrangement is used). In the QMM method, every actual
dielectric is decomposed into some fictitious medium blocks,
whose permittivities are all the same as the original dielectric,
to increase the sparsity of matrix A. With the storage technique
of sparse blocked matrix and efficient iterative equation solver
such as the preconditioned GMRES algorithm, the computing
time and memory usage for the original problem will be greatly
reduced. In practice, each layer of an actual multilayered inter-
connect structure is decomposed into m × n fictitious medium
blocks, perpendicular to the bottom substrate plane (see Fig. 1).
In order to decrease the additional efforts brought by the QMM
decomposition, the cutting planes are also dispersed along the
x-axis or y-axis uniformly.
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Fig. 2. Structure with three dielectrics (cross-sectional view).

Fig. 3. Matrix population corresponding to the structure in Fig. 2 and the
regions with dashed-line contour represent the added entries when considering
the floating conductors.

In [10], an efficient approach to automatically determine
the QMM cutting was proposed to maximize the sparsity of
the overall coefficient matrix. Moreover, an efficient precon-
ditioning technique was proposed for the GMRES solution,
which resulted in about 30% less solution time than that using
the Jacobi preconditioner. Finally, the enhanced QMM–BEM
solver showed over ten times speedup and memory saving over
the multipole approach with comparable accuracy [10].

III. EFFICIENT TECHNIQUES CONSIDERING

THE FLOATING DUMMIES

In this section, first, the basic idea of the proposed method
is given, which introduces the floating condition. The details of
equation organization and preconditioning are then discussed.
Finally, the proposed method is compared with the straight-
forward method for handling floating dummies.

A. Basic Idea

For a structure including Nc interconnect conductors, an
approach of setting the jth conductor to 1 V and the rest to 0 V
is usually used to determine the self and coupling capacitances
of the jth conductor (it is also called master conductor). This
procedure can be repeated Nc times to get the capacitance
matrix, which includes all self and coupling capacitances
among the interconnects. If there is no floating dummy in the

structure, the potential u is known on all conductor surfaces.
This boundary condition is utilized to form (3) in Section II.
After solving (3), the self-capacitances and coupling capaci-
tances can be evaluated by the integral of the normal electrical
field intensity q on the conductor surfaces [6]–[10].

If some conductors in the simulated structure are changed
to be floating (without setting known voltage), (3) cannot be
solved because there are more unknowns (potential u on these
floating conductors) than equations. So, the task at hand here
is to supply additional equations about the floating dummies
and make the enlarged system of linear equations solvable. The
proposed method of capacitance extraction for the structure
involving floating dummies includes six steps.

1) Set the jth interconnect conductor to 1 V and the rest
interconnects to 0.

2) For each dielectric region, discretize its boundary (includ-
ing dummy surface, since it is also a part of boundary)
and formulate the discretized BIEs as in Section II.

3) Put the discretized BIEs for all regions together with
(2), and substitute the known conditions on intercon-
nect conductor surface and the Neumann boundary, as
in Section II.

4) Supply some equations about the floating dummies so
that the total number of equations is equal to the number
of unknowns (including the additional u unknowns of
dummies).

5) Solve the generated system of linear equations and get
the charges on interconnect conductors that equal the
capacitances.

6) Repeat steps 1)–5) with different voltage settings to get
all capacitances among the interconnects.

Now, methods on how to supply the equations about the
floating dummies are discussed. The following equation is
used to calculate the total charge of a floating dummy

∫
Γf

σdΓ =
∫
Γf

εqdΓ = Qf (4)

where Γf is the surface of the dummy conductor, and σ is the
surface charge density. ε is the permittivity of the dielectric
surrounding surface Γf , and q is the normal electrical field
intensity. Here, the charge Qf is usually zero for each dummy
as its initial electrical state. Since the dummy surface is discre-
tized into elements, (4) is actually used as its discretized form,
which involves discretized q unknowns on a dummy surface.

If there are Nf floating dummies, Nf new equations of (4)
are derived, one for each dummy. On the other hand, as has
been discussed, there are also Nf additional u unknowns of
dummies, one for each dummy (because of the equipotential
property). Hence, the extended equation system from (3) can
be solved and the interconnect capacitances are then obtained.

B. Equation Organization and Preconditioning

As discussed above, more unknowns and equations are in-
troduced for the case involving floating dummy fills. They are
organized together with the initial discretized BEM equations
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in (3) to form a new overall linear system. Putting (4) and the
unknowns of potential on floating dummies at the end, the new
linear system is derived with the form

[
A C1
C2 0

]
·
[

x
uf

]
=

[
f
q

]
, i.e., A′x′ = f ′ (5)

where A, x, and f are obtained from the linear system (3)
where the floating character of dummies is not considered. uf is
the vector consisting of the unknown potential of dummies, and
q is made up of the right-hand side of (4) (actually a zero vector
in the context of this paper). C1 and C2 are corresponding
submatrices of coefficients. For the problem with three di-
electrics in Fig. 2, if some conductors are changed to be
floating, the modification of the overall coefficient matrix can
be illustrated as the regions with dashed-line contour in Fig. 3.

Below, details of calculating the submatrices C1 and C2
with discretizing the direct boundary integrals (1) and (4) are
given for a problem involving multiple dielectric regions and
multiple floating dummies. C1 corresponds to the coefficients
of the new unknowns uf and can be expressed as

(C1)ij =
∫

∂Ω
(i)
f, j

q∗i dΓ (6)

where q∗(i) means the normal derivative of u∗ in (1), which is
related with the ith collocation point. ∂Ω(i)

f, j represents the part
of surface of the jth floating dummy, which is within the same
dielectric region with the collocation point i. C2 corresponds
to the coefficients in (4), and can be expressed as

(C2)ij =




∫
Γj

εdΓ, when column j corresponds
to a q unknown on dummy i

0, otherwise
(7)

where Γj stands for the jth boundary element, and ε is the
permittivity of the surrounding dielectric.

For capacitance extraction without floating dummies, a so-
called extended Jacobi (EJ) preconditioner for GMRES algo-
rithm was proposed in [10]. It is an approximation to A−1,
and makes the convergence rate at least 30% faster than using
the Jacobi preconditioner, while introducing little overhead
[10]. However, since there is a zero diagonal block in A′,
the EJ preconditioner cannot be used here directly. Assume
an EJ preconditioning matrix P is constructed for the original
coefficient matrix A, then the new preconditioner is cons-
tructed as follows:

P′ =
[
P 0
0 I

]
(8)

where I stands for the identity matrix. Since the dimension of
I (equal to the number of dummies) is much smaller than the
total number of discretized unknowns, P′ still approximates
(A′)−1 to some extent. Therefore, the new preconditioner

Fig. 4. Straightforward method of capacitance extraction for structure involv-
ing floating dummies. (a) Network of capacitances to be extracted. (b) Desired
capacitance network after eliminating the floating nodes.

should also improve the rate of convergence for the GMRE
equation solver. Numerical experiments verified this analysis.

C. Comparison With the Straightforward Method

The straightforward method in conventional field solvers
treats the floating dummies as normal electrodes, extracts the
capacitances related with these dummies, and reduces them
to get capacitances of interconnect. To illustrate this, a prob-
lem involving three interconnect conductors and two floating
dummies is taken for example (see Fig. 4). If the coupling
capacitances between conductor 1 and other interconnect con-
ductors (2 and 3) ought to be calculated, i.e., conductor 1 is
master conductor, all capacitances related with floating dum-
mies [f1 and f2 in Fig. 4(a)] are first calculated. This invokes
computing twice, with a floating dummy set to 1 V and the
rest to 0 V. Then, conductor 1 is set to 1 V to calculate its
capacitances. After that the capacitance network shown in
Fig. 4(a) is obtained. Since f1 and f2 are floating, the network
can be reduced to the one shown in Fig. 4(b) by eliminating the
nodes of f1 and f2. Finally, the equivalent capacitance between
conductor 1 and conductor 2 (or 3) is obtained, as if dummies
do not exist. In fact, these equivalent capacitances are what the
authors are concerned about.

For capacitance extraction of a structure involving Nc in-
terconnect (signal) conductors and Nf floating dummies, the
straightforward method is compared with the proposed method
as follows.

1) To calculate the capacitances related with one master
conductor (usually for the analysis of critical path), a 3-D
field solver must be invoked for (Nf + 1) times in the
straightforward method, and then network reduction is
performed to eliminate the floating nodes. In contrast,
the 3-D field solver is invoked only once in the proposed
method, although the degree of the linear system to be
solved increases for Nf due to the additional unknowns
of dummy potential. Usually in the field solution, the
number of discretized unknowns is much larger than Nf .
So the increased computational expense of the proposed
method in the once field solution is very little. Ignor-
ing both the increased expense of the proposed method
and the time of network reduction in straightforward
method, the speedup of the proposed method can be ex-
pected to be (Nf + 1) for capacitance extraction with one
master conductor.
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Fig. 5. Two conductor lines surrounded with 24 square floating dummies
located at two layers.

2) To calculate the whole capacitance matrix of the inter-
connects, the 3-D field solver needs to be invoked for
(Nf + Nc) times in the straightforward method, while in
the proposed method only Nc times are needed. Similarly,
the proposed method has about (Nc + Nf )/Nc times
speedup over the straightforward one when extracting
the whole capacitance matrix. This is also remarkable
since Nf is usually much larger than Nc.

Therefore, for both the one-master extraction and the whole-
matrix extraction, the proposed method has large speedup over
the straightforward one. When there are a lot of dummies (Nf

or Nf/Nc is large), the proposed method is particularly efficient
compared with the straightforward method.

IV. NUMERICAL RESULTS

The proposed algorithm has been implemented in QBEM
[10], a software prototype for 3-D capacitance extraction using
the QMM-accelerated BEM. Some typical structures of float-
ing dummy fills have been calculated to verify the efficiency of
the proposed algorithm. All experiments are run on a Sun Ultra
V880 with frequency of 750 MHz.

Three examples are shown in Figs. 5–7, respectively. The
first one involves two parallel conductor lines surrounded with
24 square floating dummies located at two layers. The size of
each conductor lines is 1 × 23 × 0.6; the size of each dummy
metal is 1 × 1 × 0.6, and they all are within a window of
size 9 × 23 × 4, above the grounded substrate. The second
one is a typical structure of floating dummy fills, which are
arranged as a dot array in the oblique alignment and is often
adopted for minimizing changes in the coupling capacitances
and maximizing the uniformity of the pattern density [2], [11].
The size of each parallel conductor line is 6 × 0.5 × 0.5; the
size of each dummy metal is 0.5 × 0.5 × 0.5, and they are all
within a window of size 6 × 9 × 1.5. In example 3 (Fig. 7), the
dummy insertion rule is similar to that in the second example
(Fig. 6), as dot array in the oblique alignment. Different from
example 2, the conductor lines and dummies are located at
two layers and the former constructs a 1 × 2 crossover. In
this example, two conductor lines in the same layer are of
size 6.5 × 0.5 × 0.5, while the third one is of 0.5 × 6.25 × 0.5.
The size of each dummy is 0.5 × 0.5 × 0.5, and all are within

Fig. 6. Three conductor lines and 34 floating dummies of the dot-array type.

Fig. 7. Three conductor lines and 53 floating dummies of the dot-array type
located at two layers.

a window of size 6.5 × 6.25 × 2.5. All length parameters
above are in micrometer. The relative permittivities of layers in
the same case are different, with values 1.9, 2.9, and 3.9.

In each of the three structures, conductor 1 is set to be a
master (see Figs. 5–7), and its self-capacitance and coupling
capacitances with other conductors are computed using
Raphael and the proposed method. In the computation with
Raphael, the dummy-related capacitances are calculated by
setting each dummy as master conductor one after another, and
the wanted capacitances are outputted after performing circuit
reduction [5]. In the computations with the proposed method,
2 × 1, 1 × 3, and 4 × 2 QMM cutting are applied, respectively,
for the three structures to achieve high speed. The capacitance
results and other detailed data for these three examples are
listed in Table I.

In Table I, it can be seen that the errors of capacitances
computed with the proposed method are all within 3% (us-
ing Raphael’s result as criterion), while the speedup ratio
to Raphael ranges from 300 to several thousands. The pro-
posed method uses less than one-tenth of the memory used
by Raphael. It should also be pointed out that the electrical
potential of dummy metal is also calculated, and it is very close
to Raphael’s result as well (with discrepancy within 5%). The
number of dummies and number of unknowns in the proposed
method are also listed in Table I, noting that the latter is larger
than the element number because each interfacial element has
two unknowns. From these data, it can be seen that the dummy
number is much larger than the number of signal conductors,
while the number of discretized unknowns is much larger than
the number of dummies. They support some assumption for
analysis in Section III.
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TABLE I
COMPARISON OF COMPUTATIONAL RESULTS WITH OUR METHOD AND RAPHAEL (CAPACITANCE IN 10−18 F)

TABLE II
COMPARISON OF COMPUTATIONAL TIME OF THE PROPOSED METHOD AND THE CONVENTIONAL METHOD FOR EXAMPLE 1

To demonstrate the efficiency of the new preconditioner
proposed in Section III-B, the problem is also solved without a
preconditioner and with a modified Jacobi preconditioner. Ex-
periment results show that without preconditioner the GMRES
algorithm cannot converge within 300 steps for the last two
problems and converges with 230 steps for the first problem.
While using the modified Jacobi preconditioner, the iterative
numbers for the three examples are 39, 62, and 62, respectively.
Here, the modified Jacobi preconditioner is constructed also
as (8). So, it is clear that the modified EJ preconditioner
performs very well for the capacitance extraction involving
floating dummies.

To demonstrate the advantage of our method over the con-
ventional one, the whole capacitance matrix of example 1 is
calculated using both methods. With the proposed method,
QBEM ran twice, setting the two signal lines as master, res-
pectively. With the conventional method, QBEM without the
presented modification ran totally 26 times setting all con-
ductors including dummies as master: one for each time. The
details of computational time are listed in Table II. With-
out considering the time to eliminate the floating nodes, the
speedup ratio of the proposed method is found to be 22.9 and
11.8, for single-master extraction and whole-matrix extraction,
respectively. This is consistent with the theoretic analysis in
Section III-C, which expects the speedup ratio to be 25 and 13.
Because no more source of error is induced by the proposed
method, it has the same accuracy with the conventional one.

In [11], a fast method to extract interconnect capacitance
considering the floating dummy fills was implemented as soft-
ware PASCAL, whose performance was also compared with
Raphael. They used several cases of dummies located as dot
arrays in the oblique alignment (similar to those in Fig. 6 and
Fig. 7) to make a comparison, which showed that PASCAL has
a speedup ratio varying from 11 to 290 (see [11, Table 2]) as
the number of dummy metals increases. Since the PASCAL
for direct comparison in the same computational environment

Fig. 8. Speedup ratio of PASCAL and the proposed method to Raphael for
structures involving different numbers of dummies.

cannot be obtained, only a relative comparison is carried out
based on the information provided by [11]. Fig. 8 shows the
speedup ratios of two methods to Raphael for similar structures
involving oblique alignment of dot dummies. From this, it can
be expected that the method in this paper is about ten times as
fast as the PASCAL.

V. CONCLUSION

Based on the QMM-accelerated BEM [9], [10], an efficient
method is proposed for the interconnect capacitance extraction
involving dummy fills. By introducing the floating condition
directly, only unknowns with quantity of dummy metals are
added to the linear system corresponding to the same extrac-
tion problem except that the dummies are not floating. Since
no redundant capacitances related with the dummies need to
be solved and reduced, the proposed method is particularly
efficient in the case of a great number of floating dummies.
With the quasi-multiple medium technology and efficient pre-
conditioned GMRES solver, the proposed method finally shows
several thousand times speedup to Raphael while preserving
high accuracy, for typical filling structures. Besides, the pro-
posed method also shows about ten times speedup to the fast
PASCAL in [11] for similar structures.
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