
932 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

Multiple-Fault Diagnosis Based On Adaptive
Diagnostic Test Pattern Generation

Yung-Chieh Lin, Feng Lu, Member, IEEE, and Kwang-Ting Cheng, Fellow, IEEE

Abstract—In this paper, we propose two fault-diagnosis meth-
ods for improving multiple-fault diagnosis resolution. The first
method, based on the principle of single-fault activation and
single-output observation, employs a new circuit transformation
technique in conjunction with the use of a special type of diagnostic
test pattern, named single-observation single-location-at-a-time
(SO-SLAT) pattern. Given a list of candidate suspects (which
could be stuck-at, transition, bridging, or other faults obtained
by any existing diagnosis method), we generate a set of SO-SLAT
patterns, each of which attempts to activate only one fault in
the list and propagate its effects only to a specific observation
point. Observing the responses of the circuit under diagnosis to
the SO-SLAT patterns helps more precisely determine whether
each fault suspect is a true or false candidate. The method can
tolerate most of the timing hazards for a more accurate diagnosis
of failures caused by timing faults. The second method generates
and applies limited-cycle sequential tests, based on a Boolean
satisfiability solver, to identify multiple defective signals which can
jointly explain the circuit’s faulty behavior. These two methods
can be applied independently and/or jointly after any existing
state-of-the-art diagnosis process to further improve the diagnosis
resolution. The experimental results demonstrate the effectiveness
of the proposed methods for diagnosing multiple faults, including
timing faults.

Index Terms—Boolean satisfiability, diagnosis, testing, very
large scale integration (VLSI).

I. INTRODUCTION

D EFECTS CAN be modeled at the logic level by faults
that affect single or multiple circuit locations and produce

erroneous output responses for one or more input test vectors.
Fault diagnosis analyzes the observed failing responses and the
structure of the circuit under diagnosis (CUD) to search for
locations that are potentially faulty. This information is then
used in defect analysis, where the CUD is physically examined
to determine the failure mechanism. Because physical exami-
nation is inevitably slow due to the immense resources needed,
the efficiency of defect analysis depends, to a great extent, on
the resolution of fault diagnosis.

Single-fault diagnosis is a well-studied problem with various
linear-time solutions [1]. However, the single-fault model may
not be adequate for diagnosing defects in modern devices,
which tend to cluster and affect multiple lines in a failing
chip [2]. Recent experiments [3] confirm that more than 41%
of defects found in failing chips cannot be diagnosed using
the single stuck-at fault model. Moreover, due to aggressive

Manuscript received January 7, 2006; revised April 11, 2006. This paper was
recommended by Associate Editor A. Ivanov.

The authors are with the University of California, Santa Barbara, CA
93106 USA.

Digital Object Identifier 10.1109/TCAD.2006.884486

clocking strategies in both microprocessor and system-on-chip
designs, failures caused by timing defects become more com-
mon. Thus, accurately identifying timing defects becomes more
critical for rapid production volume ramp-up. Diagnosis of
circuits with multiple delay faults is a very challenging task
because of at least two factors: 1) The solution space grows
exponentially with the number of faults, and the interactions
between different fault effects further complicate the diagnosis
problem. 2) The timing defects behave unpredictably due to
various sources of timing uncertainty, including increasing
parametric variations.

Many fault-diagnosis approaches with promising results use
the idea of single location at a time (SLAT) [3]–[7]. A SLAT
pattern is a failing pattern which can be explained by a single-
location fault. SLAT patterns are used to determine the loca-
tions of faults and build up a composite picture of multiple
faults involving the fewest faulty locations. These approaches
attempt to find simple fault-activation patterns, each of which
activates one fault only, so that the diagnosis algorithms,
such as response matching and candidate scoring, could work
more effectively. However, most of the existing fault-diagnosis
methods deal with static faults only. When extending them to
diagnose delay faults, the assumption that the fault simulation
results will match the delay defect behavior in real silicon
becomes unrealistic. Therefore, their matching mechanisms are
likely to produce misleading results.

On the other hand, algorithms based on critical-path tracing
[8], [9] can alleviate the problem caused by the approaches
relying on fault simulation. Based on the single-fault assump-
tion, these algorithms back-trace the sensitized paths from each
failing observation point (a primary output or output of a scan
cell) and locate possible candidates through the intersection
of the fanin cones of failing observation points. This method
is conservative in terms of pruning false candidates and thus
will report a larger number of fault candidates. In addition, the
assumption that “faults must exist in the intersection of the fanin
cones of failing observation points” is no longer valid in the
presence of multiple faults.

We propose a diagnosis method which combines the ad-
vantages of the SLAT and the path-tracing techniques while
avoiding their drawbacks. The proposed method is compatible
with other state-of-the-art diagnosis methods and can be used
after the application of other diagnosis methods with lower
resolution. As shown in Fig. 1, the proposed approach starts
with a list of fault candidate locations produced by any existing
diagnosis method, which includes all true fault locations of the
multiple fault to be diagnosed. The multiple fault has an un-
known multiplicity with static and/or dynamic (e.g., delay) fault

0278-0070/$25.00 © 2007 IEEE

LIN et al.: MULTIPLE-FAULT DIAGNOSIS BASED ON ADAPTIVE DIAGNOSTIC TEST PATTERN GENERATION 933

Fig. 1. Proposed two-stage diagnosis procedure.

components. We further develop a diagnostic test-generation
procedure based on a transformed circuit model. A special
kind of test, called single-observation SLAT (SO-SLAT) test,
is generated and applied to identify true fault locations and
prune false candidates. For a given list of faults which contain
the target fault, a SO-SLAT test detects the target fault at a
single observation point and guarantees that the presence of
other faults in the given fault list will not mask the fault at
this observation point. This is achieved by ensuring that the test
for the target fault does not activate other faults which have
sensitizable paths to the specific observation point.

Due to the huge set of possible multiple-fault candidates, it
is not feasible to explicitly try all the possible combinations of
multiple faults by traditional approaches. A SAT-based diagno-
sis approach [10], [11] leverages the advances in SAT solving
engines and cleverly transforms the multiple-fault diagnosis
problem into a SAT problem. This approach is capable of
identifying fault multiplets. A multiplet is a collection of faults
which can jointly explain all the failing patterns. However,
this approach suffers from huge memory requirements. These
requirements arise from the need for duplicate copies of the
circuit model for each of the applied test vectors. Thus, to
reduce the memory requirement while maintaining the diag-
nostic capability of identifying fault multiplets, in the second
part of this paper, we further propose an intelligent diagnostic
test-generation method which can: 1) reduce the number of
test vectors and 2) avoid the circuit duplication to improve
the performance of SAT-based diagnosis method. We propose
the use of a special kind of test called the multiple-capture
antidetecting (MC–AD) test. Given a set of faults containing
a target fault, the MC–AD tests are a set of limited-cycle
sequential test vectors that, while detecting other faults in the
fault list, do not detect the target fault. The MC–AD tests are
particularly useful for SAT-based diagnosis which can identify
multiplets. We employ an efficient sequential SAT solver [12]
which utilizes the MC–AD tests to improve the performance of
SAT-based diagnosis.

The rest of the paper is organized as follows. In Section II,
we explain the background of diagnostic test generation and
fault diagnosis, especially the SAT-based diagnosis approach.
In addition, the motivation for using observation point infor-
mation and MC–AD tests is described. Section III gives the

definition of the SO-SLAT tests and the flow of the proposed
diagnosis method using SO-SLAT tests. Section IV presents the
definitions the MC–AD tests, the advantages of using these tests
for diagnosis, and the corresponding diagnostic flow. Section V
shows the experimental results, and Section VI presents the
conclusion.

II. BACKGROUND AND MOTIVATION

A. Diagnostic Test Generation

Manufacturing tests generated by standard automatic test
pattern generation (ATPG) tools have low diagnosability be-
cause each of the tests often detects multiple faults [2] and prop-
agates the fault effects to only one or few observation points, for
which the ATPG tools can easily generate a test pattern [13].
Therefore, to improve the diagnosability, special patterns with
higher diagnosability are needed in addition to the detection
test set [14]–[18]. The goal of diagnostic test generation is to
find a test such that the circuit produces different responses
for different faults. Diagnostic test-generation methods in [14]–
[16] are based on various circuit modification techniques that
allow a standard test-generation algorithm for fault detection
to be directly used for diagnostic test generation. The diag-
nostic test-generation procedure proposed in [17] starts with
a complete fault-detection test set. For any pair of faults that
cannot be distinguished by the test set, the procedure eliminates
some patterns from the original tests, so that the remaining
tests detect only one of the two undistinguished faults. In [18],
a special type of fault, called the fault distinguishing pattern
fault, is modeled for an existing ATPG program to effectively
generate fault-distinguishing patterns.

Existing diagnostic test-generation methods focus on gener-
ating patterns to distinguish a pair of faults. In the presence
of multiple faults, it is not sufficient merely to differentiate
faults in pairs because the activation of other faults beyond the
pair being distinguished might result in masking or unexpected
circuit behavior.

B. Deterministic SLAT Patterns for SLAT-Based Diagnosis

SLAT-based diagnosis approaches make the assumption that,
if the observed failures match with the simulation result of a
fault, then, the fault is present in the CUD. These approaches
attempt to find SLAT patterns from the manufacturing detection
test set [3]. However, SLAT patterns might not be available in
the set for some faults in the fault candidate list. Thus, it would
be necessary to generate and apply additional deterministic
SLAT patterns for those faults and observe the responses of the
CUD. Existing ATPG algorithms are developed to detect a fault
without considering whether other faults could be detected.
Thus, proper constraints need to be imposed upon ATPG tools
for SLAT pattern generation. These constraints would ensure
that only the target fault is activated and that its fault effect can
be uniquely observed.

In [19], a concept of Z-set is presented. A Z-set of fault fi,
Z(fi), is a collection of observation points (O1, O2, . . . , ON).
A directed path in the circuit leads from the location of fi to
each of the N observation points. Fault pairs with different

934 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

Fig. 2. Example illustrating the use of observation point information.

Z-sets are always distinguishable because their fault effects can
be propagated to different observation points. This research also
reported that public benchmark circuits, as well as industrial
circuits that they have used for experiments, contain a large
percentage of faults having unique Z-sets. This inspired us to
consider generating a SLAT pattern which propagates the fault
effect of the target fault only to selected observation points.
These chosen observation points are in the Z-set of the target
fault, but not in other faults’ Z-sets. In particular, choosing
only one observation point seems to be an easy and reasonable
heuristic.

Fig. 2 illustrates the above idea of using observation point
information. Assume fault A has Z-set (O1, O2), fault B has
Z-set (O2, O3), and fault C has Z-set (O1, O3). We generate
and apply a pattern that detects fault C at O3 while fault B is
not activated. Because fault B is not activated and fault A has no
sensitizable path to O3, fault C is the only fault that can affect
the response at O3 for this pattern. Fault C is present if and only
if the CUD’s response at O3 is faulty.

The path-tracing technique can be used to reduce the number
of faults to be explicitly considered for inactivation, and, in
turn, to reduce the number of ATPG constraints during the
diagnostic test generation. Suppose we restrict the response
observation at a specific observation point Ox. By tracing
back the fanin cone of Ox, we can easily identify faults whose
Z-sets do not contain Ox. During ATPG, we do not need
to explicitly avoid activating those faults because their fault
effects can never be observed at Ox.

Restricting the number of observation points has another
advantage—it is more tolerant to timing uncertainties for di-
agnosing delay faults. Timing defects and timing uncertainty
resulting from parametric variations, hazards, and pattern-
dependence are too complicated to be modeled in logic/timing
simulation. Thus, the mismatches between the responses to at-
speed tests and the simulation results have presented a major
obstacle for delay fault diagnosis. By applying a SLAT test,
observing the target fault response at only one observation
point, and ignoring responses at all other observation points,
the probability of being misled by the mismatches would be
significantly reduced.

C. Non-SLAT Patterns for SAT-Based Diagnosis

A Boolean-satisfiability-based (SAT-based) fault diagnosis
approach for multiple faults was proposed in [10] and [11]. This
approach formulates the fault diagnosis task as a SAT problem
and utilizes a SAT solver to find fault multiplets which could

Fig. 3. Circuit construction for SAT-based diagnosis.

correct the given diagnostic vectors. The approach introduces a
multiplexer (MUX) at each potential faulty line. The zero input
of the MUX is connected to the original signal, and the one
input is an extra input. Therefore, at the beginning when all N
signals in the given candidate list are candidate faulty signals,
this model introduces N MUXs and 2N extra primary inputs
(N inputs for the one inputs and N inputs for the select lines of
the MUXs). By properly assigning values at the select lines and
the one-inputs of the MUXs, the augmented circuit can emulate
a circuit behavior matching the observed test responses. A SAT
solver is used to find such proper value assignments for the
modified circuit which is typically represented in a conjunctive
normal form (CNF). This approach is able to identify solutions
consisting of fault multiplets.

Given a circuit netlist and a set of k test vectors V , the
SAT-based diagnosis algorithm builds a CNF formula

Φs =
k∏

j=1

mj∏

m=1

Cj,m(Lj,m,W j,m,Xj,m, QI , Y
j,m, S). (1)

The Φs is the conjunction of the number of k × mj CNF
formulas Cj,m(Lj,m,W j,m,Xj,m, QI , Y

j,m, S), where 1 �
j � k, 1 � m � mj , k is the number of vectors, and mj is
the length of test sequence Vj . As shown in Fig. 3, each
Cj,m encodes constraints from test sequence Vj on the logic
netlist Cj consisting of Lj,m, W j,m, Xj,m, Y j,m, and S,
where capital letters L, W , X , and Y represent a set of
signals. As in the case where k = 2 and mj = 3, X2,3 rep-
resents {x1,1

1 , x1,2
1 , x1,3

1 , x2,1
1 , x2,2

1 , x2,3
1 , x1,1

2 , x1,2
2 , x1,3

2 , x2,1
2 ,

x2,2
2 , x2,3

2 }. S represents the set of select lines of the added
MUXs in the logic netlist. Note that, for each select line s
in S, the value must be the same for all vectors. QI is the
initial state variables for all vectors. It is shown that Φs is
satisfied if and only if there is a set of faulty values that can
be injected into the circuit, so that the circuit responses match
the observed failing responses at the primary outputs Y for all
vectors in V . In other words, the conjunction requires that every
candidate set of faults satisfy all constraints imposed from all
vectors, similar to the intersection of solutions in traditional
effect–cause diagnosis.

For SAT-based diagnosis, each input test vector (corresponds
to a set of constraints) results in a unique copy of the CUD.
Thus, this approach needs to limit the number of applied
test vectors to keep memory requirement within a reasonable

LIN et al.: MULTIPLE-FAULT DIAGNOSIS BASED ON ADAPTIVE DIAGNOSTIC TEST PATTERN GENERATION 935

range. In the implementation of [11], a total of 20 vectors are
divided into four sections, which then are applied sequentially.
In addition, because it is impractical to consider the whole
diagnosis space (#ckt line)(#of errors), the authors employ a
second component EN (S) to (1) to encode constraints on
the cardinality of injected faults as a user-specified parameter.
Thus, the approach can report multiplets with a limit on the
number of faulty signals specified by the user.

To reduce the memory requirement while maintaining the
diagnostic capability of identifying fault multiplets, we propose
an enhanced method with the following goals: 1) reducing
the number of test vectors without comprising resolution and
2) avoiding circuit duplication.

Two observations lead to our proposed SAT-based diagnosis
procedure.
1) Observation 1: While SLAT patterns are good for tra-

ditional effect–cause diagnosis, non-SLAT patterns are better
for SAT-based diagnosis. The reason is that, in SAT-based
approaches, a SLAT pattern, which only activates and sensitizes
one fault location, will result in only one MUX select line with
value assignment and leave all other MUX select lines as free
(i.e., unassigned) variables. Consequently, there will be far too
many solutions reported by a SAT solver for such patterns.
Therefore, the SAT solver would need a large number of SLAT
patterns in order to restrict its search space. On the other hand,
non-SLAT patterns which could activate and sensitize multiple
faults would likely result in significantly fewer solutions.
2) Observation 2: Fault candidates identified by existing

diagnosis methods are often indistinguishable by the man-
ufacturing tests used for the diagnosis process. These fault
candidates tend to cluster, and among them, there are functional
equivalence and dominance relationships with respect to the
patterns used for diagnosis.

Based on the first observation, we would prefer to select non-
SLAT patterns for SAT-based diagnosis. It has been observed,
however, that the majority of the manufacturing failing test
patterns of scan designs can be attributed to a single faulty
location [3], [6], i.e., the majority of the manufacturing scan
patterns that detect actual defects are SLAT patterns. However,
as reported by the study in [3], sequential tests usually do
not have the SLAT property. That is, the failing responses
produced by the sequential tests designed for a set of target
faults are unlikely to be explained by a single faulty location.
In other words, the failing sequential tests are more likely to be
non-SLAT patterns. Based on this observation, we propose to
generate a special type of non-SLAT limited-cycle sequential
patterns, named MC tests, which maximize the number of
faults activated and increase the sequential reconvergence
(interaction between fault effects). The experimental results
reported in [20] indicate that activating multiple faults will
increase the probability of fault convergence and fault masking.
A similar experiment, reported in [21], for correcting design
errors also confirms that the presence of error effect interaction
grows with the number of activated errors.

The second observation indicates the need for generating
additional distinguishing patterns for diagnosis. However, gen-
erating distinguishing patterns is computationally expensive if
multiple faults are present. The procedure must exhaust all pairs

Fig. 4. Circuit model for slow-to-rise transition fault.

of faults in the fault-candidate list, each of which requires a
distinguishing pattern. To reduce the computational complexity
and take multiple faults into account, we propose to generate
a special type of distinguishing patterns called AD tests. We
further combine the characteristics of both MC and AD tests
and generate diagnostic test patterns called MC–AD tests,
which are particularly suitable for SAT-based diagnosis.

III. SLAT-BASED DIAGNOSIS USING SO-SLAT PATTERNS

We assume that the proposed diagnosis method starts from
a fault candidate list, which can be provided by any existing
diagnosis technique. In this section, we describe the procedure
for generating a special type of SLAT pattern, called SO-SLAT
pattern, which detects a fault at a specific observation point.
We use transition faults as an example for illustrating the test-
generation process.

There are functional equivalence and dominance relation-
ships between the fault candidates in the given fault list.
Therefore, before performing the SO-SLAT test generation, we
preprocess the fault candidate list to identify both equivalent
fault classes and fault-dominance relationships among the faults
in the candidate list. After this checking process, only one
representative fault for each equivalent class is considered as
a candidate. The fault-dominance relationships are used for
pruning false candidates at the end of the diagnosis process.

A. Circuit Model for SO-SLAT Pattern Generation
for Transition Faults

To detect a transition fault, it is necessary to apply a two-
pattern test. The first pattern initializes the circuit, and the
second pattern activates the fault and propagates the fault effect
to observation points. We first transform a sequential circuit
into a two time-frame combinational model with a four-to-one
MUX inserted at the location of each fault candidate. Fig. 4
shows the circuit model for a slow-to-rise transition fault. The
model for a slow-to-fall fault can be constructed in a similar
fashion. This model can detect the transition fault activation
condition and inject the fault when the condition occurs.

Assume a signal g is a slow-to-rise transition fault candidate.
Then, port-0, port-2, and port-3 of the MUX’s data inputs are
connected to the faulty signal at time-frame one (g1), and
port-1 is connected to the faulty signal at time-frame zero (g0).
The select line port-0 is connected to an extra primary input

936 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

Fig. 5. Circuit model for checking fault equivalence.

SELg, and select line port-1 is connected to g0. It can be
verified that, when the extra primary input SELg is set to zero,
the model represents the fault-free circuit. On the other hand,
when SELg is set to one, if an input pattern activates g slow-
to-rise fault (g0 = 0 and g1 = 1), the output of the MUX (Z)
is forced to be the value of g0 (i.e., from port-1 of the MUX’s
data inputs). If the g slow-to-rise fault is not activated (either
g0 = g1 = 0 or g0 = 1), the Z remains the value of g1. That is,
while SELg is set to one, the g slow-to-rise fault will be injected
when it is activated, and this model represents the faulty circuit.

This model can be used for various purposes: 1) Under this
model, the task of generating a test for the g slow-to-rise fault
is equivalent to that of generating a test for the SELg stuck-
at-0 (or s-a-1) fault. This is because the model with SELg = 0
represents the fault-free circuit, and SELg = 1 represents the
faulty circuit with the g slow-to-rise transition fault. 2) Setting
constraints on the signals at timeframe 0 and timeframe 1 can
constrain a transition fault to be activated or not. For example,
constraining (g0, g1) = (0, 1) will activate the g slow-to-rise
transition fault, whereas other value combinations of (g0, g1)
will not. 3) As shown in Fig. 5, by complementing the extra
input (SEL) which is connected to port-1 of the select lines of
an inserted MUX for a fault at x and connecting it to that for
another fault at y, this model can be used for checking fault
equivalence between these two transition faults. For Fig. 5, if a
test cannot be generated for the select line SEL s-a-1 fault, then
those two faults (x and y) are equivalent.

B. Fault Equivalence and Dominance Identification

A fault fi is said to dominate fault fj if the set of tests that
detect fault fj is a subset of all tests that detect fault fi. In other
words, by the contra-positive law, if under the condition of not
detecting fi no tests exist for fj , then fi dominates fj .

By employing the methods proposed in [22] and [24], we
use a standard ATPG tool to preprocess the fault candidate
list to identify fault-equivalence classes and fault-dominance
relationships. Fig. 6 illustrates the circuit model for deriving
the fault-dominance relationship. It is a combinational circuit
consisting of two miter circuits [25]. One is the miter circuit
connecting (through an XOR gate) the fault-free circuit C and
the faulty circuit Cf1, where fault f1 is injected by setting the
corresponding MUX select line (SELf1) to one. The other is a
miter circuit of the fault-free circuit and the faulty circuit Cf2

with fault f2 injected. We include fault candidates in C, except
f1, into the target fault list and run ATPG to generate tests

Fig. 6. Circuit model for checking fault dominance.

with an additional constraint imposed: setting P , the output of
the bottom miter circuit, to zero. Because of the miter circuit
structure and the imposed constraints, f1 is untestable. Any
fault dominated by f1 will be untestable as well. By targeting
other faults for ATPG using this model, we can identify faults
dominated by f1.

For some faults, the ATPG complexity under this model
might be too high, so the search could be aborted. If the ATPG
process is aborted for, say, fault f2, a SAT-based technique
is invoked to further verify the dominance relationship be-
tween f1 and f2. As illustrated in Fig. 6, under the conditions
that SELf1 = 1 and SELf2 = 1, we check the satisfiability
of objectives P = 0 (i.e., fault f1 is not detected) and S = 1
(i.e., fault f2 is detected). If the objectives cannot be satisfied
simultaneously, then f1 dominates f2. For each fault candidate,
the dominance relationship can be derived and expressed in
a dominance matrix D, in which an entry D(i, j) = 1 if fi

dominates fj . If two faults dominate each other, then they are
functionally equivalent.

C. Procedure of Generation and Application
of SO-SLAT Patterns

The following describes the procedure of generating
SO-SLAT patterns using a standard ATPG tool based on the
circuit model depicted in Fig. 4.

Step 1) Identify fault-equivalence classes and fault-
dominance relationships, as described in
Section III-B. Select only one representative
fault for each equivalence class to form a unique
fault candidate list F .

Step 2) For a set of unique fault candidates F =
{f1, f2, . . . , fn}, collect all of their reachable
observation points Z = ∪{z1, z2, . . . , zn} =
{O1, O2, . . . , Om}, where zi is the Z-set of
fault fi and Oi is an observation point. Build a
fault-observation matrix M , in which an entry
M(i, j) = 1 if the fault effect of fi can be
propagated to observation point Oj . The set of
faults, whose fault effects can be propagated to Oj ,
is denoted as F (Oj), and |F (Oj)| is the number of
1s in the jth column of the M matrix.

Step 3) For each fault fi in F , which has not been identified
as a true fault location or a false candidate, find
an observation point Oj with the smallest |F (Oj)|

LIN et al.: MULTIPLE-FAULT DIAGNOSIS BASED ON ADAPTIVE DIAGNOSTIC TEST PATTERN GENERATION 937

in zi. Impose ATPG constraints using the method
mentioned in Section III-A to inactivate all faults in
F (Oj), except fi. Run ATPG targeting SELi s-a-1
fault for detection only at observation point Oj (i.e.,
the appearance of fault effects at observation points
other than Oj is not considered detection). If a test
is successfully generated, it is a SO-SLAT pattern
for fault fi, denoted by SST(fi). If the ATPG tool
fails to generate a test, then find the next observation
Ok, where k �= j and |F (Oj)| � |F (Ok)|, and try
to generate a SO-SLAT pattern with respect to Ok.
This process iterates until an SST(fi) is generated,
or until all observation points have been exhausted.
If no SO-SLAT pattern can be generated for any of
the unidentified faults in the fault list, go to Step 4)
skipping Step 3).

For each fault candidate, Step 2) searches for an
observation point to which fewer faults can reach
(i.e., having a smaller |F (Oj)|); thus, fewer ATPG
constraints need to be imposed to inactivate some of
the faults. Consequently, the chance of successfully
generating a SO-SLAT pattern is higher.

Step 4) Apply generated SO-SLAT patterns to the CUD.
Based on the test response of each SO-SLAT pattern,
classify each of the faults, which have SO-SLAT
patterns, as either a true fault location or a false
candidate. Go to Step 2) and repeat.

For instance, if SST(fi) is a failing SO-SLAT
pattern, then fi is a true fault location; otherwise,
fault fi does not exist in the CUD. However, due
to the imposed ATPG constraints (not to activate
other faults which have not yet been processed for
classification as true or false candidates), it might
not be possible to generate a SO-SLAT pattern
for every fault in a single pattern-generation pass.
Therefore, this SO-SLAT-based diagnosis procedure
is an iterative process that requires access to the
tester multiple times. Step 3) collects data to classify
the fault candidates (as true or false) and impose
corresponding constraints on the MUX select lines
for the future runs. The port-0 of the corresponding
MUXs select lines of the false faults will be set
to zero and the true faults will be set to one. In
addition, the ATPG constraints with respect to the
activation conditions of the identified false faults can
be removed.

Note that some delay faults may show pattern-
dependent behavior because of the transitions on
other lines. To cope with pattern-dependent transi-
tion faults, it might be beneficial to generate n dif-
ferent SO-SLAT patterns for a target fault candidate.
Based on the analysis in [26], pattern-dependent ef-
fects can cause faulty values to disappear but cannot
create new faulty values. Thus, any failing pattern
among the applied n SO-SLAT patterns would indi-
cate a true fault. Applying an n-detection SO-SLAT
test set can avoid misclassifying fault candidates due
to the pattern-dependent timing behavior.

Fig. 7. MC tests.

Step 5) Collapse fault candidates, using identified fault-
dominance relationships.

IV. SAT-BASED DIAGNOSIS USING MC–AD PATTERNS

In the following, we give the definitions and the test-
generation procedure for the MC–AD tests. The test application
and implementation details of the proposed diagnosis procedure
will be explained later in this section.

A. MC–AD Test

Fig. 7 illustrates the test application scheme of test patterns
having MC property and how these patterns benefit SAT-based
diagnosis. We use the following definitions.

Scan cycle A scan cycle is the period during which a
test pattern is shifted into (or the response is
shifted out of) the scan chains. If the length
of the longest scan chain is N , then one scan
cycle corresponds to N clock cycles.

Functional cycle A functional cycle is the period during
which the circuit is in the functional (i.e.,
capture) mode. A functional cycle may con-
sist of one to several capture cycles. A func-
tional cycle is between two adjacent scan
cycles.

Test cycle A test cycle consists of one scan cycle im-
mediately followed by a functional cycle.

As shown in Fig. 7(a), a test pattern with MC property (MC
test) for a scan-based design is a sequence of input vectors
which have specified values at primary inputs in every cycle.
Test vectors for the scan cells are shifted into the scan chains
only during scan cycles. The values in the scan cells during
the functional cycle are derived by the system functional logic.
Most commercial ATPG tools have the capability of generating
MC tests for a scan-based design.

A fault detected by an MC test must be activated and propa-
gated through multiple timeframes that represent the operation
of the circuit in MC cycles. Performing test generation on
this multiple-timeframes circuit model creates complex fault
activation and propagation conditions, as shown in Fig. 7(b).

938 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

Fig. 8. MC test versus MC–AD tests.

The shaded areas depict the fault effect propagation zone across
three timeframes of two faults. The MC tests are generated,
in some sense, to detect faults multiple times. That is, if we
could observe the values at both primary outputs and the scan
cells in every cycle, we could observe erroneous responses
in every cycle. Therefore, we can view an MC test as a
collection of multiple-detection tests. Multiple-detection tests
have been shown to be effective for fault diagnosis [27]. In
addition to the benefits to multiple-fault diagnosis, MC tests
are particularly useful for SAT-based diagnosis. The sequential
reconvergence and multiple-detection properties of the MC
tests impose stricter constraints on the SAT solver, limit its
search space, and thus reduce the number of possible candidate
locations reported by the SAT solver.

Test patterns with AD property are intended to differentiate
one fault from the others. Let a set of faults F contain N faults.
AD tests for fault fi in F is a collection of patterns that do not
detect fi but do detect the rest N − 1 faults fj , where j �= i.
The circuit model shown in Fig. 6 can be used in generating
AD tests for fault fi by setting the corresponding MUX select
line (SELf1) to one, i.e., injecting fault fi. A standard ATPG
tool can be used to generate tests for the rest N − 1 faults in
C with an additional constraint that the output P of the miter
circuit has to be zero. Because of the miter circuit structure
and the constraint, the ATPG tool will not be able to generate
any test detecting fi, whereas it can generate tests for all other
faults. AD tests may consist of several patterns. Also, it might
not always be possible to detect all other faults. If there are
undetectable faults under the AD constraint, there must exist
some equivalence or dominance relationships among the fault
candidates.

The fault candidates reported by conventional diagnosis
methods often have fault-dominance relationships among them,
which causes challenges for further improvement to diagnosis
resolution. However, the AD tests can best be used for such
situations. Fig. 8 illustrates an example which consists of three
faults, f1, f2, and f3. As shown in the figure, fault f1 is
dominated by fault f2, and faults f1 and f2 are dominated by
fault f3. If we generate an MC test by a traditional ATPG
tool, after test compression, the generated test would likely
detect all three faults (as the objective of traditional ATPG
and test compression is to detect as many faults with as few
tests as possible). This pattern would not be effective for SAT-
based diagnosis because, although it activates three faults, their
fault effects cannot be distinguished. On the other hand, if we
generate an MC test with the additional AD requirement for f1,
the patterns would be in the middle set, as shown in the figure.
This pattern will then be useful for distinguishing f1 from the
others, and thus, the SAT solver would report fewer solutions.

Fig. 9. SAT-based diagnosis procedure.

B. Procedure of Generation and Application
of MC–AD Patterns

The second diagnosis procedure described in the following
combines the benefits of MC tests (which maximize non-SLAT
property with a small number of patterns) and AD tests (which
distinguish one fault from the others). The procedure first
generates MC–AD tests for fault candidates in the suspect list
and then applies an efficient sequential SAT solver [12] with
performance-enhancement heuristics specific to this applica-
tion. The proposed SAT-based diagnosis flow is summarized
in Fig. 9.

Step 1) Identify fault-equivalence classes and fault-
dominance relationships, as described in
Section III-B.

Step 2) Construct a modified CUD with additional MUXs
inserted at locations of all fault candidates, de-
noted as CUDM (the insertion was discussed in
Section II-C). For every fault fi in the fault candi-
date list F containing N faults, generate a set of AD
tests, each of which is a k-cycle MC test as well.
The set is denoted as MC-AD(i), where 1 � i � N .
In our experiment, we set k to three.

Step 3) For each fault candidate, simulate its MC-AD(i) on
the CUD and record the circuit output responses.
The MC-AD(i) and its corresponding circuit output
responses are then converted into a set of con-
straints, denoted as SAT_CON(i). Start from the
first constraint; impose it upon CUDM and apply
a SAT solver to find a solution which satisfies the
constraint. A solution is a set of value assignments
at the select lines of the inserted MUXs that makes
the CUDM’s behaviors match the observed faulty
responses at the CUD outputs. Derive all SAT so-
lutions, denoted as SAT_SOL(i).

We use an efficient circuit-based sequential
SAT solver [12]. It does not explicitly expand the
circuit into multiple timeframes. Instead, it works

LIN et al.: MULTIPLE-FAULT DIAGNOSIS BASED ON ADAPTIVE DIAGNOSTIC TEST PATTERN GENERATION 939

on a single copy of the CUDM while imposing
different sets of constraints (from the pattern in
the corresponding timeframe) in different cycles.
Therefore, it is highly memory-efficient and more
scalable to larger circuits. In addition, it is capable
of deriving multiple solutions per run and can
accumulate previous solutions as conflict clauses to
prevent producing the same solutions; thus, it can
derive all solutions in a relatively short time.

Step 4) Perform the intersection of all derived solutions.
Based on the intersection results, identify invariants
at MUXs’ select lines and false solutions.

Set the initial intersection of solutions Int_SOL
to SAT_SOL(1) which is the SAT solution for the
first set of MC–AD tests. After finishing applying
the MC-AD(j), intersect the solutions SAT_SOL(j)
with the previous solutions SAT_SOL(i), where 1 �
i < j and store the intersected solutions [which are
the same solutions appearing in both SAT_SOL(i)
and SAT_SOL(j)] as Int_SOL(j). Because the true
solution must be in each of the SAT_SOLs, it would
be in the intersection of SAT_SOLs as well. There-
fore, if the select line of a specific inserted MUX
has the same value for all solutions in Int_SOL(j),
then the fault corresponding to the MUX can be
determined as present or absent (a present fault if
the select line is always one and absent if it is
always zero). Moreover, during the solving process,
a solution not in the Int_SOLs must be a false solu-
tion. The identified invariants at select lines and the
false solutions can then be imposed upon the circuit
model as constraints in the later runs of SAT solving,
such that the overall SAT solving process becomes
more and more efficient toward the later runs.

Step 5) Check the dominance relationship for undetermined
fault candidates and simulate the original manufac-
turing detection tests (which identify the defective
part under diagnosis) to validate each fault multiplet.

After all MC–AD tests are applied, there might
be more than one solution. This is because the SAT-
based diagnosis might not be able to distinguish
fault candidates with a limited number of MC–AD
tests (each of which is limited to a certain number
of capture cycles) due to the functional equivalence
and dominance relationships among candidates
of fault multiplets. At this moment, the fault-
dominance matrix D can be used to determine
whether the remaining multiplets are equivalent or
have dominance relationships. After we collapse
all possible equivalent and dominated solutions, the
original manufacturing tests, including both passing
and failing patterns, are simulated to validate
each of the remaining possible fault multiplets. A
multiplet is considered a false candidate and thus
eliminated from the candidate list if the simulation
results for the corresponding faulty circuit model
(which contains the fault multiplet) do not produce
the same response as that of the faulty chip.

In the above discussion, we use the transition
fault model to illustrate the concept, model, and
procedures. However, the proposed method can be
used for other fault models with minor circuit model
modification [23]. For example, for stuck-at fault
diagnosis, we can construct a one-time-frame com-
binational model. A two-to-one MUX is inserted at
the location of each stuck-at fault candidate. The
port-0 of the multiplier is connected to the original
signal, and the port-1 is tied to the stuck-at-value
(s-a-v) of the fault candidate. In practice, we can
first operate the tester at lower speed and identify
static faults using the stuck-at fault model. Then,
the identified static fault information can be carried
to the next phase, which runs the tester at-speed to
perform transition fault diagnosis. Because bridge
faults often behave either like static (low bridging
resistance) or dynamic faults (high bridging resis-
tance), the fault candidate list contains most nets
involved in bridge faults.

V. EXPERIMENTAL RESULTS

Our experiments first employ the two proposed techniques
separately and then evaluate their combined effectiveness on
several circuits from ISCAS-89 benchmark set. Ten faulty
instances were randomly generated for each case. Table I shows
the diagnosis results of multiple stuck-at faults averaged from
ten faulty instances, and Table II shows those for the transition
faults. The subcolumns under the column labeled “circuit” are
the statistics of fault diagnosis results reported by an existing
diagnosis method [6]. They include the number of reported fault
candidates, which are around 2–3.5 times the number of the
injected defects, and the number of initial multiplets candidates
which are 2(#of initial fault candidates). We use those candidates
as the starting point of our method.

The column labeled “SO-SLAT (a)” shows the results after
applying the proposed SO-SLAT-based diagnosis procedure.
The first subcolumn shows the number of final fault candidates
and the second subcolumn shows the number of required iter-
ations, each of which requires tester access for applying and
observing a set of SO-SLAT patterns until no new fault can
be identified. The average numbers of all cases for different
circuits are also listed. Note that, for each fault candidate, we
attempt to generate a corresponding SO-SLAT pattern. Thus,
the number of SO-SLAT patterns is the same as or smaller than
the number of fault candidates. Numbers in the column labeled
“MC–AD (b)” are the results of applying the MC–AD-based
diagnosis method. The first subcolumn under “MC–AD (b)”
shows the number of multiplets after applying the MC–AD-
based diagnosis procedure. The second subcolumn shows the
number of MC–AD tests generated. The third subcolumn lists
the CPU time consumed. In all cases, the proposed SO-SLAT-
based method is able to either accurately identify the exact
set of injected faults or reduce the original fault candidate list
to a much smaller set of faults that include the true faults.
In some cases, the number of final fault candidates was even
smaller than that of the injected faults. This is because there are

940 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

TABLE I
MULTIPLE STUCK-AT FAULTS DIAGNOSIS

TABLE II
MULTIPLE TRANSITION FAULTS DIAGNOSIS

LIN et al.: MULTIPLE-FAULT DIAGNOSIS BASED ON ADAPTIVE DIAGNOSTIC TEST PATTERN GENERATION 941

equivalence and/or dominance relationships among the original
set of injected faults. For those cases, we record the number just
as we did with the injected faults. Note that the listed number
is the average number. In a few cases, a poor performance
can be attributed to a few faulty instances which are difficult
to diagnose using the SO-SLAT-based approach. The worst
case among our experiments improves the original diagnosis
resolution from 12 to 8 fault candidates. The count of tester
accesses is smaller than three in all cases. Similarly, for all cases
diagnosed by the MC–AD approach, the proposed technique is
able to either accurately identify the true multiplet or report a
very small set of multiplets which includes the true one.

Applying the MC–AD-based approach following the SO-
SLAT-based technique can leverage the smaller list of fault can-
didates derived by the SO-SLAT-based technique. Thus, it can
improve the performance of SAT-based technique—resulting in
fewer MC–AD patterns, less CPU time, and most importantly,
higher resolution for identifying true multiplets as indicated in
the (a) + (b) column.

VI. CONCLUSION

We have proposed two new diagnosis methods which offer
better diagnosis resolution and can be used to enhance any
existing state-of-the-art diagnosis processes. Through novel
circuit modeling techniques, our method first uses a standard
ATPG tool to efficiently identify nontrivial fault equivalence
and dominance relationships among the faults in the initial
candidate fault list obtained by the existing methods. Then,
special diagnostic tests are adaptively generated and applied in
incrementally filtering out false candidates and in identifying
true fault locations. The first method generates deterministic
SLAT patterns to isolate fault candidates by observing re-
sponses at a selected output for each fault candidate. The second
method relies on a special type of test, namely, limited-cycle
sequential MC–AD test for accurate multifault diagnosis. The
approach analyzes the device under diagnosis responses to the
MC–AD tests using a sequential SAT solver to prune false fault
multiplets and identify the true one. Both approaches work for
both static (such as stuck-at) and dynamic (such as transition)
faults. The experimental results indicate that the combined
method offers very high diagnosis resolution for multiple faults.

REFERENCES

[1] N. Jha and S. Gupta, Testing of Digital Systems. Cambridge, U.K.:
Cambridge Univ. Press, 2003.

[2] R. C. Aitken, “Modeling the unmodelable: Algorithmic fault diagnosis,”
IEEE Des. Test. Comput., vol. 14, no. 3, pp. 98–103, Jul.–Sep. 1997.

[3] L. M. Huisman, “Diagnosing arbitrary defects in logic designs using
single location at a time (SLAT),” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 23, no. 1, pp. 91–101, Jan. 2004.

[4] A. Waicukauski and E. Lindbloom, “Failure diagnosis of structured
VLSI,” IEEE Des. Test. Comput., vol. 6, no. 4, pp. 49–60, Aug. 1989.

[5] D. B. Lavo, I. Hartanto, and T. Larrabee, “Multiplets, model, and the
search for meaning: Improving per-test fault diagnosis,” in Proc. Int. Test
Conf., 2002, pp. 250–259.

[6] Z. Wang, K.-H. Tsai, M. Marek-Sadowska, and J. Rajski, “An efficient
and effective methodology on the multiple fault diagnosis,” in Proc. Int.
Test Conf., 2003, pp. 329–338.

[7] S. Venkataraman and S. B. Drummonds, “Poirot: Applications of a logic
fault diagnosis tool,” IEEE Des. Test. Comput., vol. 18, no. 1, pp. 19–30,
Jan./Feb. 2001.

[8] M. Abramovici, P. R. Memon, and D. T. Miller, “Critical path tracing—
An alternative to fault simulation,” in Proc. Des. Autom. Conf., 1983,
pp. 214–220.

[9] P. Girard, C. Landrault, and S. Pravossoudovitch, “Delay fault
diagnosis by critical-path tracing,” IEEE Des. Test. Comput., vol. 9, no. 4,
pp. 27–32, Dec. 1992.

[10] A. Smith, A. Veneris, and A. Viglas, “Design diagnosis using Boolean
satisfiability,” in Proc. Asia and South Pacific Des. Autom. Conf., 2004,
pp. 218–223.

[11] M. Fahim Ali, A. Veneris, A. Smith, S. Safarpour, R. Drechsler, and
M. Abadir, “Debugging sequential circuits using Boolean satisfiability,”
in Proc. Int. Conf. Comput.-Aided Des., 2004, pp. 204–209.

[12] F. Lu, G. Parthasarathy, M. K. Iyer, L.-C. Wang, K.-T. Cheng, and
K. C. Chen, “An efficient sequential SAT solver with improved search
strategies,” in Proc. Des. Autom. and Test Eur., 2005, pp. 1102–1107.

[13] I. Park, A. AL-Yamani, and E. McCluskey, “Effective TARO pattern
generation,” in Proc. VLSI Test Symp., 2005, pp. 161–166.

[14] I. Hartanto, V. Boppana, J. H. Patel, and W. K. Fuchs, “Diagnostic
test generation for sequential circuits,” in Proc. VLSI Test Symp., 1997,
pp. 196–202.

[15] A. Veneris, R. Chang, M. S. Abadir, and M. Amir, “Fault equivalence and
diagnostic test generation using ATPG,” in Proc. Int. Symp. Circuits and
Syst., 2004, pp. 221–224.

[16] V. D. Agrawal, D. H. Baik, Y. C. Kim, and K. K. Saluja, “Exclusive test
and it’s application to fault diagnosis,” in Proc. Int. Conf. VLSI Des., 2003,
pp. 143–148.

[17] I. Pomeranz and S. M. Reddy, “A diagnostic test generation procedure for
synchronous sequential circuits based on test elimination,” in Proc. Int.
Test Conf., 1998, pp. 1074–1083.

[18] T. Bartenstein, “Fault distinguishing pattern generation,” in Proc. Int. Test
Conf., 2000, pp. 820–828.

[19] I. Pomeranz, S. Venkataraman, S. M. Reddy, and B. Seshadri, “Z-sets
and Z-detections: Circuit characteristics that simplify fault diagnosis,” in
Proc. Des. Autom. and Test Eur., 2004, pp. 68–73.

[20] J. B. Liu and A. Veneris, “Incremental fault diagnosis,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 2, pp. 240–251,
Feb. 2005.

[21] I. Pomeranz and S. M. Reddy, “On correction of multiple design errors,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 2,
pp. 255–264, Feb. 1995.

[22] Y.-C. Lin, F. Lu, and K.-T. Cheng, “Accurate diagnosis of multiple faults,”
in Proc. Int. Conf. Comput. Des., 2005, pp. 153–156.

[23] Y.-C. Lin and K.-T. Cheng, “Multiple-fault diagnosis based on single-fault
activation and single-output observation,” in Proc. Des. Autom. and Test
Eur., 2006, pp. 424–429.

[24] R. K. K. R. Sandireddy and V. D. Agrawal, “Diagnostic and detection
fault collapsing for multiple output circuits,” in Proc. Des. Autom. and
Test Eur., 2005, pp. 1014–1019.

[25] D. Brand, “Verification of large synthesized designs,” in Proc. Int. Conf.
Comput.-Aided Des., 1993, pp. 534–537.

[26] I. Pomeranz and S. M. Reddy, “On diagnosis of pattern-dependent delay
faults,” in Proc. Des. Autom. Conf., 2000, pp. 59–62.

[27] Z. Wang, M. Marek-Sadowska, K.-H. Tsai, and J. Rajski, “Multiple fault
diagnosis using n-detection tests,” in Proc. Int. Conf. Comput. Des., 2003,
pp. 198–201.

Yung-Chieh Lin received the B.S. degree in elec-
trical engineering from National Taiwan University,
Taipei, Taiwan, R.O.C., in 1991, and the M.S. and
Ph.D. degrees in electrical and computer engineer-
ing from University of California, Santa Barbara, in
1994 and 2006, respectively.

He is currently with the Hon-Hai Precision Indus-
try Company, Ltd., Taiwan.

942 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, NO. 5, MAY 2007

Feng Lu (M’02) received the B.S. degree in com-
puter science from Civil Aviation Institute, Tenjing,
China, in 1993, and the M.S. degree in computer
science from Tsinghua University, Beijing, China,
in 1996. He is currently working toward the Ph.D.
degree at the University of California, Santa Barbara.

His research interests include SAT algorithm,
formal verification, and testing.

Kwang-Ting Cheng (S’88–M’88–SM’98–F’00)
received the B.S. degree in electrical engineering
from National Taiwan University, Taipei, Taiwan,
R.O.C., in 1983, and the Ph.D. degree in electrical
engineering and computer science from University
of California, Berkeley, in 1988.

He worked with the Bell Laboratories, Murray
Hill, NJ, from 1988 to 1993 and joined the faculty at
the University of California, Santa Barbara, in 1993,
where he is currently a Professor and Chair of elec-
trical and computer engineering. His current research

interests include very large scale integration testing, design verification, and
multimedia computing. He has published over 250 technical papers, coauthored
three books, and holds ten U.S. patents in these areas. He has also been working
closely with the U.S. industry for projects in these areas.

Dr. Cheng received the Best Paper Awards at the 1994 and 1999 Design
Automation Conferences, 2001 Annual Best Paper Award in Journal of In-
formation Science and Engineering, Best Paper Award in 2003 Conference
of Design Automation and Test in Europe (DATE 2003), and the Best Paper
award at 1987 AT&T Conference on Electronic Testing. He currently serves
as the Associate Editor-in-Chief for IEEE Design and Test of Computers,
Associate Editor for ACM Transactions on Design Automation of Electronic
Systems, Editor for Journal of Electronic Testing: Theory and Applications, and
Editor for Foundations and Trends in Electronic Design Automation. He has
also served on the Editorial Boards of IEEE TRANSACTIONS ON COMPUTER-
AIDED DESIGN. He has been the General Chair and Program Chair of IEEE
International Test Synthesis Workshop and Program Co-Chair of International
Mixed-Signal Test Workshop and served on the technical program commit-
tees for a number of international conferences on design, design automation,
and test.

