
Memory Built-In Self-Repair 1

Memory Built-In Self-Repair

Volker Schöber, Olivier Picot

Infineon Technologies

Abstract

This article describes a word oriented memory test
methodology for Built-In Self-Repair (BISR). It contains
memory BIST logic, wrapper logic to replace defect words ,
fuse boxes to store the failing addresses. This allows to
use RAMs without spare rows and spare columns used in
classic redundancy concepts. Faulty addresses and its
expected data will be stored in the redundancy logic
immediately after its detection. The BISR simply adds
faulty words to the redundancy as long as spare words are
available. This avoids unnecessary external or internal
redundancy calculation. It is possible to add faulty
addresses to faults that have been detected during former
runs. The presented memory test allows a memory BISR
even if parts of the redundancy is already configured. The
fuse box can be connected to a scan register to stream in
and out data during test and redundancy configuration.
The BISR concept can be described in RTL code.
Standard MBIST RTL controllers can be used and adopted
to the redundancy wrapper logic. The redundancy and
BIST logic is fully synthesizable and can be prepared for
reuse. Therefore, it is highly flexible and can be used wit
various memory types.

Keywords

BIST, Built-In Self-Repair, BISR, memory test, fuse boxes

1. Introduction

Today’s deep submicron technologies allow the
implementation of multiple memories on a single chip. Due
to their high density memories are more prone to faults.
These faults impact the total chip Yield. One way to solve
this problem is to enhance the memory by redundant
memory locations. The address mapping of the fault free
working memory is programmable within certain limits. In
order to do so, a memory test is needed to identify the
faulty regions. There are basically different test solutions
available as you can see in chapter 6.

The memory is tested by external test hardware or by on
chip dedicated hardware (memory BIST). The second
testing strategy is the preferred method for embedded
memories. After memory testing the memory address map
is programmed by means of volatile or non-volatile storage
on or off chip. To provide the test pattern from a memory
BIST a multiplexer in front of the memory is widely used.
The redundant spare rows and spare columns are often
included into the memory. This impacts the performance
and area conditions of the memory.

The presented BIST concept prefers a redundancy logic
that is placed in parallel to a memory without spare rows
and spare columns. There will be no additional delay for
the word redundancy logic on top of a memory in the data
path of the memory. In addition, the memory layout

generation procedure must not be changed. This idea
discloses a new concept for a fuse box logic with test
features and a memory test method which computes the
address map of a memory with redundancy on the fly
without penalty on total test time because the
redundancies can be activated immediately within one
clock cycle after detecting a failure. The principle structure
is shown in Fig. 1.

RAMRedundancy
logic

Control

Data
Address

Mux
Data

Mux
Fuse Box

MBIST

Fig. 1: The memory BIST and Self-Repair (MBISR) concept

The memory is repaired during testing by storing faulty
addresses in registers. These addresses can be streamed
out after test completion. Furthermore, the application can
be started immediately after the memory BIST passes. The
redundancy logic calculation will not increase the test time
of the memory BIST.

The MBISR concept contains an interface between MBIST
logic and redundancy wrapper for storing faulty addresses.
This allows to use already existing MBIST solutions. The
MBIST controller output must provide three signals to the
wrapper logic during test.

• A fail signal to store data in the fuse register
• The expected data that is compared to the results of

RAM data
• The failing address

2. The Wrapper Redundancy Logic

The redundancy logic that are wrapping the memory
consists of two basic components. Spare memory
locations and a way to make the address decoding
programmable by disabling defective memory locations
and enabling spare memory locations. For the access to a
memory with redundancy two possibilities exist.

Usually, the access to memory locations is done as an
EXCLUSIVE OR operation. With one memory address
only one memory word is accessed. Hence, the address
comparison with faulty addresses has to be completed
before the access to the memory array starts by proper
address decoding.

In this approach a parallel access to the memory and the
redundancy logic is proposed. The address comparison is
done in the redundancy logic. The actual address is
compared to the addresses that are stored in the
redundancy word lines. A multiplexer at the output of the
memory and the redundancy logic decides where to take
the data from. More than one redundant word line can be
placed in the redundancy logic. With each new failing word
all redundancy information are shifted to the next word
line. The data comes from MBIST controller for each failing
word individually. An overflow bit identifies that there are
more failing addresses than possible repair cells. The
principle is shown in Fig. 2.

Memory Built-In Self-Repair 2

AddressF
RAM

Expected Data

fail Fail_address RAM Data

Address Write Data

AddressFA Data

AddressFA Data

AddressFA Data

FO

Control

Fail Overflow Data out

MBIST controller

Word Redundancy

Fig. 2: An array of redundant word lines

If an address is stored in a register the FA register is set to
“1” to activate the spare word. Then, the data register is
used to read and write instead of the memory array. The
programming of the faulty addresses are done during the
memory BIST or the fuse box. The failing addresses can
be read out after the memory test to program fuse boxes.
In addition, already identified failures can be write into the
FA and address register.

The structure for one redundancy word line is shown in
Fig. 3. During test the MBIST prepares the signals for Fail,
Fail_address, Expected_data. The R, WR, address (A) and
DI are accessed in parallel to the memory and the
redundancy logic during functional operation and test. TDI
and TDO are serial interfaces for the memory. A Read
signal controls the multiplexer of data DO of the memory
Data out bus.

AddressFA Data

Comparator

Write

&

TDO

DO

DIAFail_addressFail WR

Read&

TDI

R

Redundancy word
TDI

Fail Fail_address DIA WRR

TDO
DO
Read

Expected_data

Fig. 3: Redundancy word line

3. The Fuse Boxes

To store identified failures after memory test fuse boxes
can be used on and off chip. Fuses on chip are state of the
art. They are blown after production test. One fuse carries
one address bit. Feedback structure stores the fuse values
after probing the fuse (similar to a dynamic logic). The fuse
itself is nothing more than a polysilicon or metal resistor,
depending on technology. In normal chip operation the
fuses are probed at power on and their values are stored
in feedback structures, e.g., back to back inverters. From a
testing point of view three problems arise:

• The logic of the fuse box has to be tested before
packaging to reduce defect probability of fuse boxes.

• An easy way to set fuse values from external source
without blowing the fuse is helpful. This allows a pre
fuse test and proof of the determined faulty memory
locations for reliability tests, Yield improvements and
diagnosis capabilities.

• A possibility to read the fuse values directly after the
fuse blowing process to enhance observability of the
fuse process.

The proposed fuse box which is part of the redundancy
concept contains additional logic to the back to back
inverter. It contains a scan Flip Flop for controlling and
observing the fuse data. Therefore, two modes are added
to enhance the testability.

• Test update=0: The chain of inverters is closed. The
value of node B can be set to zero or one whether the
fuse is blown or not.

• Test update=1: It is possible to set the internal node
directly from the TDO of the scan Flip Flop. If test
update goes back to 0 then the value is latched in the
two inverters allowing a direct control of Fout, the
output of the fuse.

These two operations can be implemented by an inverting
multiplexer instead of an inverter. It is also possible to set
the value through a pass gate without opening the inverter
chain. The observability of internal nodes are assured if a
scan register is connected to the output Fout of the fuse
box. The ports TDI and TDO are part of a scan chain and
activated during scan mode. A principle structure of the
fuse box is shown in Fig. 4.

Scan
FF

TDI

Fout

FReset

FRead

FGND

Test_update

TDO

Fuse Bit (FB)

DI

B

A

C

Fig. 4: Fuse Box and scan flip-flop configuration

To read out the fuse values and store the data in the
inverter loop the control signals FReset, FRead and
FGND are processes as is shown in Fig. 5 which can be
derived from a reset signal and is shown in Fig.4.

FReset

FRead

FGND

t
Fig. 5: Reset cycle to read out the fuse information

To setup a fuse box multiple fuses and their register are
placed in parallel. There is one more fuse cell necessary to
activate a programmed address after the fuses for a faulty
address are blown. The scan Flips Flops are configured to
a serial scan chain that can be activated during scan
mode, as is shown in Fig. 6. The data out of the scan Flip
Flop is connected to the input DI of the fuse box.

Memory Built-In Self-Repair 3

Scan
FF

FB

Scan
FF

FB

Scan
FF

FB

Scan
FF

FB

TDOTDI

Fail A[2] A[1] A[0]

Reset Fuse Box

Update

Fig. 6: 4 bit fuse box for a 3 bit address including serial load of the fuse
information

Fuse boxes can be placed inside or outside the
redundancy logic. If the boxes are placed outside two
configurations are possible. Parallel buses are connected
the fuse boxes to the address registers of the redundancy
word lines. This is shown is Fig. 7. Within one clock cycle
the redundancy logic can be initialized from fuse boxes.

Fuse AddressFA

Address RegisterFA

Address RegisterFA

Address to be fuse

Fuse AddressFA

Address RegisterFA

Fuse AddressFA

Fuse activation
MBIST

Redundancy
logic

Fuse boxes

Fig. 7: Parallel access of the fuse information

Instead of parallel access it is also possible to implement
serial shift logic between the fuse boxes and the
redundancy word lines, as is shown in Fig. 8. This
implementation avoids large busses on the chip but
requires a number of additional clock cycles to shift the
data. The additional Flip Flops for the serial shift operation
is already implemented due to a scan based ATPG
approach that is commonly used in modern designs.
Therefore, a test mode to scan in and out data can be
used to initialize the redundancy logic. The number of
cycles will be C=K*(N+1), while K is number of redundant
words and N is the size of the address bus.

Fuse AddressFA

Address RegisterFA

Address RegisterFA

Address to be fuse

Fuse AddressFA

Address RegisterFA

Fuse AddressFA Fuse activation

TDO

TDI MBIST

Fig. 8: Serial access of the fuse information

The memory BIST controller is able to activate additional
redundant word lines after the fused values are shifted into
the wrapper logic. This will be explained in a following
chapter.

4. Memory BIST Redundancy Principle

The memory BIST including redundancies is divided into a
memory BIST controller part and the redundancy logic.
The redundancy logic can be used with a standard
memory BIST controller. The presented concept is
independent to other implementation strategies of the
memory BIST and its algorithm. Therefore, the concept
can be adopted to company wide BIST flows or memory
BIST generators. The MBIST controller had to provide only
the following internal signals for the redundancy logic.

• The expected data that is used to compare the test
results from the memory inside the MBIST controller.

• The failing address of the faulty word need to be
provided.

• A fail signal that can be used as a write enable for the
redundancy wrapper.

Fig. 9 shows these signals that enables the programming
of the redundancy logic.

Address

F

RAM

Comparator

Expected Data

fail Fail_address RAM Data

Address Write Data

Controller
MBIST controller

Data out

Data in

Fig. 9: MBIST structure with its interface to the redundancy logic

An on chip memory test runs through the address space of
the memory and does write and read operations in a given
order (depending on test algorithm). The memory output is
compared with the expected data. If both words are not
equal parts of the respective memory word is faulty. In this
case, the faulty address must be stored in the redundancy
logic. In addition, the redundancy wrapper needs an
activation signal and the expected data to activate a word
line redundancy with one cycle. This allows an at speed
redundancy calculation. It is possible to store the faulty
address immediately after detecting an error.

MBISR with reset: The failing address is stored in the
redundancy wrapper and is therefore activated. By doing
so, the faulty address is fixed immediately to proceed. In
the next step, the MBIST starts again from the beginning. It
runs until the next failures is found or the test is finished.
This concept can also be used when the test control is
placed in a CPU or in a tester while the redundancy
wrapper is implemented in the chip closed to the memory.
This approach is a more time consuming including a reset
after each failure procedure than the following description.

MBISR without reset: To proceed the test without
interruption the expected data are also stored into the
redundancy wrapper logic. Then, the redundancy logic
contains the faulty address and the correct data of the
failing memory address. This avoids a restart of the
memory test algorithm. To validate that the redundancy
logic does not contain any failures a scan based ATPG
test is proposed before the memory test. Depending on the
implementation a few clock cycles might be needed for
storing the faulty address and the expected data.

The test program flow to activate the redundancy is shown
in Fig. 10. Three different results are possible.

Memory Built-In Self-Repair 4

• A software repair is done before or after a hardware
repair. This degree of freedom allows a flexible usage
during fabrication test and system test during the
debugging phase and in field applications.

• A hardware repair is done including the process to
blow the fuses. This is normally done a wafer level
test because most of the fuses are activated with
laser before packaging.

• An repair overflow when too many failures can been
encountered. This allows the test to identify failures
that cannot be repaired.

Initialization
Load faulty addresses

Access memory

Write expected data
Write address
Write Fail flag

increment address

Fail?
Test

finished?

Free
register?

Fuse to
be blown?

yes

no

yes

no

yes

no

Stream out
faulty

addresses

Hardware repair
No repair
possibleSoftware repair

no

yes

Increment
address

Fig. 10: Test flow to activate the redundancy

5. Conclusion

A new memory Built-In Self-Repair concept has been
presented that uses spare words instead of spare columns
and rows. It allows to proceed a software repair before and
after the fuses of a redundancy wrapper are blown. In
addition, the results of a software repair can be used to
blow on-chip fuses. This allows to use the MBISR during
wafer and package test. Because of its open architecture it
is capable to read out all necessary diagnostic information.
In addition, it allows to repair memories during field
application as long as spare words are available when a
MBISR test finds failures.

The word redundancy can be programmed at speed of the
memory BIST. There will be no additional delay for the
redundancy wrapper because the redundancy is
implemented in logic that is faster than the memory
access. The redundancy and MBIST logic can be tested
with a traditional scan based ATPG approach together with
the embedded logic of the chip.

The implementation of the BIST is based on RTL code and
can be used together with standard memories that do not
have any redundancy capabilities. The number of the
spare words for the redundancy wrapper is scalable in the
RTL code.

6. Literature
[85Day] J. R. Day, „A Fault-Driven Comprehensive Redundancy
Algorithm“, IEEE Design & Test of Computers, pp.35-44, June 1985.

[92ChenS] T. Chen, G. Sunada: “A Self-testing and Self-Repairing
Structure for Ultra-Large Capacity Memories”, International Test
Conference, pp. 623-631,1992.

[92TanaTK] A. Tanabe, T. Takeshima, H. Koike, Y. Aimoto, M. Takada, et.
al.: “A 30 ns 64-Mb DRAM with Built-In Self-Test and a Self-Repair
Function”, IEEE Journal on Solid-State Circuits, Vol. 27, November 1992.

[93TreuA] R. Treuer, V. Agarwal: “Built-In Self-Diagnosis for Repairable
Embedded RAMs”, IEEE Design & Test of Computers, pp.24-33, June 1993.

[96NordON] P. Nordholz, J. Otterstedt, D. Niggemeyer: “A Defect-Tolerant
Word-Oriented Static RAM with Built-In Self-Test and Self-
Reconfiguration”, Innovative Systems in Silicon, pp. 124-132, October 1996.

[97YounP] L. Youngs, S. Paramanandam: “Mapping and Repairing
Embedded Memory Defects ”, IEEE Design & Test, pp. 18-24, January,1997.

[98KimZK] I. Kim, Y. Zorian, G. Komoriya, H. Pham, F. Higgins, J.
Lewandowski: “Built-In Self-Repair for Embedded High Density SRAM”,
International Test Conference, pp. 1112- 1119,1998.

[99Day] D. K. Bhavsar, „An Algorithm for Row-Column Self-Repair of
RAMs and its Implementation in the Alpha 21264“, International Test
Conference, pp. 311- 318,1999.

[99NakaHK] S. Nakahara, K. Higeta, M. Kohno, T. Kawamura, and K.
Kakitani, „Built-In Self-Test for GHz Embedded SRAMs Using Flexible
Pattern Generator and New Repair Algorithm", International Test
Conference, pp. 301- 310,1999.

[00KawaON]T. Kawagoe*, J. Ohtani, M. Niiro, T. Ooisih, M. Hamada, H.
Hidaka: „A Built-in Self-Repair Analyzer (CRESTA) for Embedded
DRAMs“, International Test Conference, pp. 567-574, 2000.

