
CBR-Works
A State-of-the-Art Shell for

 Case-Based Application Building

Stefan Schulz
TECINNO GmbH, Sauerwiesen 2,
D-67661 Kaiserslautern, Germany

schulz@tecinno.com

Abstract. Nowadays, a proper tool for Case-Based Reasoning has to fulfill a
wide range of tasks beyond simple retrieval. This paper gives a brief overview of
the abilities and features of the tool CBR-Works which provides support for the
design process of a Case-Based application as well as for maintenance and
retrieval. CBR-Works also provides the ability to reuse existing data from com-
mon database systems and may act as server for distributed access to a case base,
including retrieval and case base management.

1 Introduction

Case-Based Reasoning (CBR) becomes more and more popular for companies,
improving and enhancing their customer and sales support by introducing “intelligent
applications” [5]. Using a Case-Based application not only provides stored product
catalogs or experience knowledge (the cases) to customers of a company. But also, by
capturing problems and solutions a corporate memory is built, so the knowledge is no
longer distributed in the workers minds but accessible to everyone in a company.

Besides collecting cases, applying Case-Based Reasoning necessitates a CBR-Tool
supporting retrieval of matching cases as well as modeling and maintaining of the case
base. Companies store information about their products in common database systems.
Hence, as the amount of stored data is rather large, the CBR-Tool’s ability of easy
(re)using those information is important.

Another fundamental characteristic of a CBR-Tool is to cover the complete cycle of
Case-Based Reasoning ([1], [4]), i.e., retrieving cases similar to a user’s specification,
reusing a retrieved case as proposed solution, testing a solved case for success during
the revisioning process, and retaining a new solution given in form of the revised case
by including the experiences (the case) into the existing case base.

CBR-Works is a shell for Case-Based application building. Besides the retrieval of
cases, it supports modeling the cases’ structure and maintaining the case base. Its con-
sultation mechanism also covers the whole CBR-Cycle from retrieving to revising.



Though CBR-Works is designed as a complete environment, it may also act as a CBR-
Server for several clients by the use of CQL (Case Query Language [9]). Last but not
least, CBR-Works offers an open interface to build a Case-Based application from
existing data stored in common database systems.

This paper gives a brief overview of the abilities and features of CBR-Works. It will
introduce the tool’s elements that are used for building an application. To illustrate the
building process, a simplified PC-Domain is used as depicted in fig. 1. This example
will be used in the following chapters.

Fig. 1. Structure of a simplified PC-Domain’s case

The following two sections describe the common elements used for building a case
base in CBR-Works. Section 3 gives a concise description on maintenance in CBR-
Works. In chapter 4 the interface for reusing data is tersely discussed. This is followed
by an overview on how to consult a case base in section 5. Finally, perspectives are
given in chapter 6 on further enhancements of CBR-Works.

2 Structure Modeling

CBR-Works is suited for intelligent solutions in a variety of domains and environ-
ments. Its graphical editors support the user to design complex knowledge models. An
object-oriented approach (see [6], [7]) is used in CBR-Works to design the underlying
structure of cases. This structure can be edited and maintained in an easy and intuitive
way.

2.1 Concepts

In CBR-Works, concepts define the structure of the cases. They are defined in hierar-
chy similar to a class-model hierarchy including inheritance. Each concept consists of
attributes which can be either atomic (defined by a type) or complex (has-part relation-
ship to another concept).

For retrieval purposes, attributes have three additional, functional properties: one
for defining its weight, i.e., its importance in respect to the other attributes of the con-
cept, a property for defining whether an attribute is discriminant for retrieval or will be

Usage

Mainboard

Multimedia

Storage

PC-System

Games
Internet
Office
Processor
Memory

Graphics Card
Sound Card

Controller

Medium

Bus-Type

Capacity
Bus-Type

has-part
has-attribute



ignored, and another property defining if an attribute is mandatory for a case to be
valid. Moreover, for every attribute a question and an annotation may be given that can
be used by clients when asking for the value and to refer to further information about
an attribute.

In fig. 1 each rectangle may be seen as a concept. For example, Storage consists of
the two complex attributes Controller and Medium, and again the latter consists of the
two atomic attributes Capacity and Bus-Type.

Concept Similarity. Beside attributes, the type of similarity can be specified for every
concept. The concept’s similarity consists of two parts: the similarity of a concept’s
contents (contents-based similarity) and the similarity between concepts (structure-
based similarity) (see [2] for detailed information on similarities).

The contents-based similarity of a concept is computed based on the attributes
defined in the concept. It may be one of the following:

- Average: All attribute similarities contribute to the contents-based similarity by
computing their average.

- Euclidean: Geometric interpretation of the contents-based similarity (distance
between two concepts, based on its contents).

- Minimum: The lowest attribute similarity defines the contents-based similarity.
- Maximum: The highest attribute similarity defines the contents-based similarity.

An example for a contents-based similarity is given in fig. 2. Here, the similarity
between the usage parts of two PC-Domain cases is computed using Average. The
numbers are the computed similarities between two objects which are connected by a
corresponding arc. The upper similarity computes as average of the lower ones.

Fig. 2. Example of contents-based similarity using Average

The structure-based similarity defines similarities between concepts independent of
their contents. Inside a concept-hierarchy, the similarity of concepts to each other may
be explicitly or implicitly defined by using a taxonomic view of the hierarchy.

In the PC-Domain a concept-hierarchy could be defined like in fig. 3a. Assuming
the initial taxonomic view of the hierarchy as base for the structure-based similarity, it

computes to . An example for a two-level taxonomy is shown in

fig. 3b.

Usage-1 Usage-2

0.6 0.4 0.2

0.4

 level of common father
number of levels

--------------------------------------------------------------



Fig. 3. Example for structure-based similarity: a) concept-hierarchy for Medium b) structure-
based similarity between two PC-Domain cases where Medium is the common father

The concept’s similarity computes as a weighted sum of structure-based and con-
tents-based similarities.

Rules. Additionally, rules may be specified for each concept, either being completion
or adaptation rules. Completion rules apply to cases of a case base as well as to a
query whenever a new value is given for an attribute. If some attribute values depend
on each other, completion rules ease handling by automatically setting appropriate val-
ues. Adaptation rules get activated only after retrieval and they are used to combine
attribute values of the query and retrieved cases and to apply the result to a target case.
That way, slightly modified cases are created which may fit the customers need better
than the retrieved case.

Each rule, for adaptation as well as completion, consists of two parts: a condition

part and a conclusion part. The condition part defines a conjunction of conditions. A
condition may either be a predicate or a simple calculation over attributes (of the
according concept), constants (defined using concepts or types), or local variables
(computed by previous conditions). The conclusion part consists of actions being exe-
cuted if all conditions of the condition part are fulfilled. An action may be an assign-
ment of values to attributes (atomic as well as complex), a command to open a notifier
(e.g., to report inconsistencies due to a given value), or changes to retrieval-influenc-
ing values (e.g., filters and weights) (see [3], [8]).

For example, to keep consistency for the Storage component of a PC-System, a
completion rule may be defined to ensure that a Medium will fit to a specified Control-

ler. If a Medium gets defined having a Bus-Type different to an already specified Con-

troller, a notifier will open to inform the customer about this inconsistency. More
complex, an adaptation rule may be defined choosing a, e.g, different, fitting Controller

replacing the previously specified one.

2.2 Types

Similar to concepts, types are defined hierarchically. New types are defined by build-
ing subtypes of the existing elementary types shown in table 1. They differ in their
usability: a type may be used immediate or derived. While immediate types cover the

CD-ROM Hard Disk

PC-1 PC-2

0.5

(b)

Medium

Hard Disk CD-ROM TAPE

(a)



whole range of possible values of a type, derived types get restricted in their range by
defining an enumeration of elements of its elementary type or, in case of numeric
types, by specifying an interval.

Additional to the type Symbol, Ordered Symbol provides a total and Taxonomy a
partial order over a given enumeration of values. For example, Hard Disk being
defined using Taxonomy introduces a partial order of the values compatibility regard-
ing Bus-Types as shown in fig. 4.

Fig. 4. Taxonomy over selected Processors

Furthermore, constructional types are available for defining intervals and sets using
defined, elementary types. Here, intervals are restricted to ordered types where sets
may be defined over any elementary type or one of its derivatives (see table 2 for
restrictions).

Type Similarity. For each type derived from elementary types, similarities may be
defined describing major parts of the experts knowledge which is necessary for intelli-
gent retrieval. The definition ranges from value-to-value specifications in form of a
table over special, type-depending similarities (e.g., for string types) to functional
specification by graphs [2]. Furthermore, an interface is given to define a program-
matic similarity for any derived type. An example of functional similarity is given in

Table 1. Elementary Types in CBR-Works

Type Usability Type Usability
Integer immediate and derived String immediate and derived
Real immediate and derived Symbol immediate and derived
Date immediate and derived Ordered Symbol derived only
Time immediate and derived Taxonomy derived only
Boolean immediate only Reference derived only

Table 2. Constructional Types in CBR-Works

Type Value-Type Restrictions
Set All but Boolean
Interval Ordered Types (e.g., Ordered Symbol, Integer, Real)



fig. 5 regarding a customers “feeling of an acceptable price” being different in a
retrieved case to a specified value in the query. A higher price only is accepted up to a
specific limit quickly dropping the higher it is. The situation is similar offering prod-
ucts with lower prices, as a customer usually thinks of lower quality by a lower price
once the negative limit is passed.

Fig. 5. Example of a similarity-function for the price of a computer

For derivatives of constructional types, predefined similarity functions are given
based on intersection and inclusion of sets or intervals.

In CBR-Works, it is possible to define more than one similarity for each type as the
decision which similarity to use may depend on values selected for retrieval. This deci-
sion may be formulated using completion rules for concepts.

3 Case Base Building and Maintenance

The heart of a CBR-System is the case base containing the active knowledge of the
domain to be represented. Each case’s structure is defined by the underlying concept
and its data represents exactly one information entity.

Cases in the Case Base. In CBR-Works, the case base consists of a number of virtual
case bases each of which is founded on one of the concepts being marked as case-con-
cept, i.e., concepts which are specified for being the structure of cases. These virtual
case bases may not be seen stand-alone, but the complete set of virtual case bases is
united into the CBR-Works’ case base.

In the PC-Domain, several virtual case bases may be useful, e.g., not only storing
complete PC-Systems as cases but also monitor exchangeable components like Hard

Disk and Mainboard cases. Hence, PC-System cases having the same Mainboard refer
to the same case instead of having the same data twice in the case base (see fig. 6). As
a side-effect, the effort on keeping the consistency of the case base according to
changes in the specification of referred information is reduced.

A case in CBR-Works has four possible states: unconfirmed, confirmed, protected,
and obsolete. Usually, new cases become unconfirmed being unrevised or uncomplete
cases not valid for retrieval. Revised cases become either confirmed which allows for
retrieval or protected which additionally protects the case from changes. Old cases, no
longer valid for retrieval but probably useful for further statistics, become obsolete.



Fig. 6. Example for cases of multiple, virtual case bases. The Storage of each PC-System is
defined as complex attribute belonging to the PC-System case while the Mainboard is defined
as reference pointing to the according Mainboard case

Case Base Maintenance. Important for a consistent case base is the maintenance of its
cases concerning validity of values and changes to the underlying model of the
domain.

Therefore, CBR-Works provides several mechanisms ensuring that each case which
is confirmed or protected to be valid regarding modeled type-ranges after inserting or
modifying a case in the case base as well as changing the structure of the model, e.g.,
changing the range of a type. In the latter and similar operations, appropriate actions to
the case base are selectable, being necessary to keep consistency and prevent data loss
due to changes in the model, e.g., remapping values of cases when changing the type
of attributes.

4 Reusing Data

Building a CBR-System from scratch is necessary and appropriate for domains that are
not available in electronic form. For information being stored in, e.g., a database, a
CBR-Tool must be able to reuse such data rather than having the user to remodel the
domain and manually add all information to the case base.

CBR-Works supports connections to electronic information via the open database
connection (ODBC) system. Hence, any source (e.g., sheet or database) which con-
tains the domain-data can be connected to CBR-Works for import of structure and data
to build up the CBR-System. Here, concepts are build from tables or views being
defined by the source, and types may be generated from the contents of each column.
Relations between tables are modeled by either using references or aggregation. In
case of aggregation, the information given in related tables becomes part of a case.
Using references necessitates the referenced concept also being marked as concept for
building cases.

After building the domain model that bases on the source information, the cases are

PC-1

Storage Mainboard

PC-2

Storage Mainboard

ASUS P2-F

Memory Processor



imported into the case base using the same interface served by ODBC. Each row of a
table becomes one case, including aggregated concepts built of rows from related
tables and references to cases built from related table-rows (see fig. 7).

Fig. 7. Creation of a PC-System case out of a database

5 Consulting the Case Base

For querying the case base and retrieving cases from it, CBR-Works offers several
interfaces for console using as well as for clients using CBR-Works as server. The so
called consultation of the case base covers the whole Case-Based Reasoning Cycl. Not
only providing retrieval-mechanisms but also the possibility to revise and to retain
suggested or confirmed solutions in form of cases. In CBR-Works, the revision step
also includes adaptation of cases using the appropriate rules.

5.1 Common Consultation

Generally, consultation happens either by using firsthand access to CBR-Works as a
CBR-Console or by remotely accessing the case base with CBR-Works acting as a
Server.

In addition to requested values, a query consists of further information like filters
and weights for attribute-values, being hard constraints in opposition to the rather soft
constraints provided by similarity-measures. Other additional information is: a thresh-
old to lay down the minimal similarity a case may have to be valid as solution, options
for completion of the query’s values and adaptation of retrieved cases, and options for
defining the virtual case bases to be considered.

5.2 Strategic Questioning

Besides the common consultation, strategic questioning of attribute-values interac-
tively leads to suggested solutions. Here, algorithmic mechanisms ask for values in
order to quickly reduce the number of possible solutions.

The predefined strategy of information gain operates on retrieved cases and com-

Concept
Type

Table:PC-System

Table:Mainboard

references

PC-1

Mainboard

ASUS P2-F

Memory Processor



putes the gain of information for every undefined attribute of the query according to its
ability to partition the space of solutions.

A second strategy bases on modeled importance ranking, where the modeler deter-
mines the order of selected questions. Questions not explicitly ordered by this ranking
are handled using the strategy of information gain which is normalized to the range
between zero and the lowest ranking given.

6 Perspectives

By now, CBR-Works can be seen as a CBR-Shell providing all necessary tools to
model, maintain and consult a case base. Moreover, CBR-Works is able to reuse infor-
mation already stored in electronic form. For simple representation of the added value
and power brought in by CBR, an integrated WWW-Server with adapted generic inter-
face supports online retrieval without additional programming.

Forthcoming versions of CBR-Works may be enhanced by including additional
modules, e.g., a configuration component, which allows for adapting and combining
retrieved cases automatically and interactively with a consultant until his requirements
are fulfilled. This is highly interesting for the domain of electronic commerce, where
products often consist of exchangeable components and therefore may be suited to a
customers need. In the PC-Domain, configuration would allow to build new cases, i.e.,
PC-Systems, communicating with a customer as if it were a salesclerk.

In some cases, strategic questioning, as been described previously, is not adequate
to lead a customer to appropriate products. Both mechanisms given by CBR-Works
only allow questioning for reachable attributes. Sometimes, it might be practical to ask
for information being defined lower in the hierarchy of the case structure and automat-
ically fill in complex attributes which build the path to the questioned attribute. Fur-
thermore, mechanisms like decision trees may be needed to establish a suitable process
modeling which, also, eases to set up a proper query.

Other than enhancing CBR-Works, future approaches for building a successor to the
current monolithic CBR-Shell may lead to a smart and slim solution. It will consist of
various services (in its center a retrieval kernel module) using a database as storage
system. This not only allows import, but direct access to existing information. That
way, case base and data source automatically stay consistent. In contrast to the current
mechanism, where new information, either in source or in case base, have to be
updated manually by the operator.

Another aspect of this approach on slim solutions is to simplify the addition of
CBR-Technology to existing software, e.g., internet shops, in form of a stand-alone
library which is built for a specific domain. As a result, not only thin clients but also
thin servers will be available without carrying all CBR-System information but those
needed for consultation and management of the case base.



7 References

1. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Varia-
tions and System Approaches, AICom - Artificial Intelligence Communications, IOS Press,
Vol. 7: 1 (March 1994) 39-59

2. Bergmann, R., Stahl, A.: Similarity Measures for Object-Oriented Case Representations, Pro-
ceedings of the European Workshop on Case-Based Reasoning, EWCBR’98

3. Bergmann, R., Wess, S., Traphöner, R., Breen, S.: Using Background Knowledge in the Inte-
grated System: Specification and Approach, ESPRIT project 6322, Deliverable, Kaiserslaut-
ern (1994)

4. Kolodner, J.: Case-Based Reasoning, Morgan Kaufmann Publishers, San Mateo (1993)
5. Lenz, M., Bartsch-Spörl, B., Burkhard, H.-D., Wess, S. (eds.): Case-Based Reasoning Tech-

nology, From Foundations to Applications, Springer-Verlag, Berlin/Heidelberg (1998)
6. Wess, S.: Fallbasiertes Problemlösen in wissensbasierten Systemen zur Entscheidungsunter-

stützung und Diagnostik, Ph.D. Dissertation, University of Kaiserslautern (1995)
7. Wilke, W.: Knowledge Management for Intelligent Sales Support in Electronic Commerce,

Ph.D. Dissertation, University of Kaiserslautern (1998)
8. CBR-Works 3 - Reference Manual, TecInno GmbH, Kaiserslautern (1999)
9. Introduction to the Case-Query-Language, TecInno GmbH, Kaiserslautern (1998)


