S WILEY

Network
Congestion
Control

Network Congestion Control
Managing Internet Traffic

Michael Welzl

Leopold Franzens
University of Innsbruck

John Wiley & Sons, Ltd

Network Congestion Control

Network Congestion Control
Managing Internet Traffic

Michael Welzl

Leopold Franzens
University of Innsbruck

John Wiley & Sons, Ltd

Copyright © 2005 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester,
West Sussex PO19 8SQ, England

Telephone (4-44) 1243 779777

Email (for orders and customer service enquiries): cs-books @wiley.co.uk
Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except
under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the
Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in
writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John
Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to
permreq@wiley.co.uk, or faxed to (444) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter
covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If
professional advice or other expert assistance is required, the services of a competent professional should be
sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809
John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada MOW 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Welzl, Michael, 1973—
Network congestion control : managing Internet traffic / Michael Welzl.
p. cm.
Includes bibliographical references and index.
ISBN-13: 978-0-470-02528-4 (cloth : alk. paper)
ISBN-10: 0-470-02528-X (cloth : alk. paper)
1. Internet. 2. Telecommunication-Traffic-Management. 1. Title.
TK5105.875.157W454 2005
004.67'8 — dc22
2005015429

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-02528-4
ISBN-10 0-470-02528-X

Typeset in 10/12pt Times by Laserwords Private Limited, Chennai, India

Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire

This book is printed on acid-free paper responsibly manufactured from sustainable forestry
in which at least two trees are planted for each one used for paper production.

All my life, I enjoyed (and am still enjoying) a lot of support from many
people — family, friends and colleagues alike, ranging from my grandmother
and my girlfriend to my Ph.D. thesis supervisors. I sincerely thank them all for
helping me along the way and dedicate this book to every one of them. This is
not balderdash, I really mean it!

Contents

Foreword

Preface

List of Tables

List of Figures

1 Introduction

1.1
1.2
1.3

2.1
2.2
23
24

25

2.6

2.7
2.8
29

2.10

Who should read this book?
Contents i e e e e e
Structure e e e e
1.3.1 Reader’sguide
2 Congestion control principles
What is congestion? Lo
2.1.1 Overprovisioning or control?
Congestion collapse L
Controlling congestion: design considerations
2.3.1 Closed-loop versus open-loop control
2.3.2 Congestion control and flow control
Implicit feedback
Source behaviour with binary feedback
2.5.1 MIMD, AIAD, AIMD and MIAD
Stability
2.6.1 Control theoretic modelling
2.6.2 Heterogeneous RTTs
2.6.3 The conservation of packets principle
Rate-based versus window-based control
RTT estimation ittt
Traffic phase effects
29.1 Phaseeffectsindaily life
Queue ManNagement e e e e
2.10.1 Choosing the right queue length
2.10.2 Active queue management e e e e
Scalability

2.11

2.11.1 The end-to-end argument

xi

xiii

viii

CONTENTS

2.11.2 Other scalability hazards 29

2.12 Explicit feedback 31
2.12.1 Explicit congestion notification 32
2.12.2 Precise feedback L 32

2.13 Special environments oL oL e e e 36
2.14 Congestion control and OSI layers 38
2.14.1 Circuits as a hindrance 39

2.15 Multicast congestion control oL 40
2.15.1 Problems 42
2.15.2 Sender- and receiver-based schemes 43

2.16 Incentive iSSUES v v it e e e e e e 44
2.16.1 Tragedy of the commons. 44
2,162 Game theory 44
2.16.3 Congestion pricing v vt 45

217 Fairness 47
2.17.1 Max—min fairness 48
2.17.2 Utility functions 49
2.17.3 Proportional fairness oo 51
2.17.4 TCP friendliness 51

2.18 Conclusion L 52
Present technology 55
3.1 Introducing TCP 56
3.1.1 Basicfunctions 57
3.1.2 Connection handling 59

3.1.3 Flow control: the sliding window 60
3.1.4 Reliability: timeouts and retransmission 61

3.2 TCP window management v v v v v 62
3.2.1 Silly window syndrome 62
322 SWSavoidanceo 62

323 Delayed ACKs e 64
3.2.4 The Nagle algorithm 64

33 TCPRTOcaleulation 65
3.3.1 Ignoring ACKs from retransmissions 66
3.3.2 Not ignoring ACKs from retransmissions 66
3.3.3 Updating RTO calculation 67

3.4 TCP congestion control and reliability 69
34.1 Slow start and congestion avoidance 69
3.4.2 Combining the algorithms 71

3.4.3 Design rationales and deployment considerations 73

3.4.4 Interactions with other window-management algorithms 74

3.4.5 Fast retransmit and fast recovery 75

3.4.6 Multiple losses from a single window 77

347 NewReno 79

3.4.8 Selective Acknowledgements (SACK) 81

3.4.9 Explicit Congestion Notification (ECN) 84

CONTENTS ix

3.5 Concluding remarks about TCP 88
3.6 The Stream Control Transmission Protocol (SCTP). 91
3.7 Random Early Detection RED) 93
3.8 The ATM ‘Available Bit Rate’ service 96
3.8.1 Explicit rate calculation 98

382 TCPover ATM 100

4 Experimental enhancements 103
4.1 Ensuring appropriate TCP behaviour 104
4.1.1 Appropriate byte counting 104
4.1.2 Limited slow start 106
4.1.3 Congestion window validation 107
4.1.4 Robust ECNsignalling 108

4.1.5 Spurious timeouts L. 109
4.1.6 Reordering 113

4.1.77 Corruption 115

4.2 Maintaining congestion state 119
4.2.1 TCP Control Block Interdependence 119
4.2.2 The Congestion Manager 119

423 MulTCP 121

4.3 Transparent TCP improvements 123
4.3.1 Performance Enhancing Proxies (PEPs) 123
432 Pacing. e 126
4.3.3 Tuning parametersonthe fly 128

4.4 Enhancing active queue management 129
44.1 Adaptive RED 130
442 Dynamic-RED (DRED) 131
443 Stabilized RED (SRED) 132
444 BLUE 133
4.4.5 Adaptive Virtual Queue (AVQ) 133
4.4.6 RED with Preferential Dropping (RED-PD) 134
447 Flow Random Early Drop (FRED) 135
448 CHOKe 135
449 Random Early Marking REM) 136
4.4.10 Concluding remarks about AQM 137

4.5 Congestion control for multimedia applications 139
4.5.1 TCP-friendly congestion control mechanisms 143
4.5.2 The Datagram Congestion Control Protocol (DCCP) 149

4.5.3 Multicast congestion control 155

4.6 Better-than-TCP congestion control 160
4.6.1 Changing the response function 161
4.6.2 Delay as a congestion measure 164
463 Packetpair e 167

4.6.4 Explicit feedback oo 169

4.6.5 Concluding remarks about better-than-TCP protocols 175

4.7 Congestion control in special environments 176

5 Internet traffic management — the ISP perspective

5.1 The nature of Internet traffic
5.2 Traffic engineering L.
52.1 Asimpleexample
5.2.2 Multi-Protocol Label Switching (MPLS)
5.3 Quality of Service (QoS)
5.3.1 QoS building blocks
532 ImtServ
533 RSVP
534 DiffServ.
5.3.5 IntServ over DiffServ
5.4 Putting it all together

6 The future of Internet congestion control

6.1 Small deltas or big ideas?
6.1.1 TCP-friendliness considerations
6.1.2 A more aggressive framework

6.2 Incentive issues
6.2.1 The congestion response of UDP-based applications
6.2.2 Will VoIP cause congestion collapse?
6.2.3 DCCP deployment considerations
6.24 Congestion controland QoS

6.3 Tailor-made congestion control
6.3.1 The Adaptation Layer
6.3.2 Implications

A Teaching congestion control with tools

Al CAVT . . .
A.l.l Writing scriptso
A.1.2 Teaching with CAVT
A13 Internals.,

A2 nS L
A.2.1 Using ns for teaching: the problem
A.2.2 Using ns for teaching: the solution
A23 NSBM
A.2.4 Example exercises

B Related IETF work

B.1 Overview
B.2 Working groups
B.3 Finding relevant documents

C List of abbreviations
Bibliography

Index

CONTENTS

235

....... 235
....... 236
....... 238

239

243

259

Foreword

The Internet is surely the second most extensive machine on the planet, after the public
switched telephone network (PSTN), and it is rapidly becoming as ubiquitous. In fact, the
distinction between the two is fast diminishing as the vision of the unified telecommunica-
tion network begins to be realized, and telecommunication operators deploy voice over IP
(VoIP) technology. One of the biggest issues involved in the transition from PSTN to VoIP
is ensuring that the customer sees (hears!) the best possible Quality of Service at all times.
This is a considerable challenge for the network’s designers and engineers.

Meanwhile, national governments — and also the European Commission — are implicitly
assuming the emergence of the ‘Information Society’, and even funding research in pursuit
of it. Critical applications including health, education, business and government are going
to be increasingly dependent on information networks, which will inevitably be based on
Internet (and Web) technologies. The penetration of broadband access into homes as well
as businesses is rapidly bringing Web (and Internet) into everyone’s lives and work.

The Internet was never foreseen as the more commercial network that it has now
become: an informal tool for researchers has become a cornerstone of business. It is crucial
that the underlying technology of the Internet is understood by those who plan to employ
it to support critical applications. These ‘enterprise owners’, whether they be governments
or companies, need to understand the principles of operation of the Internet, and along
with these principles, its shortcomings and even its vulnerabilities. It does have potential
shortcomings, principally its unproven ability to act as a critical support infrastructure; and
it does have vulnerabilities, including its inability to cope with distributed denial-of-service
attacks. These are arguably among the most pressing topics for Internet research.

It is particularly important that there are no unwarranted assumptions about the ability of
the Internet to support more commercial activities and various critical applications. People
involved in managing and operating Internet-based networks, and those who are considering
its potential, will be suitably educated by Michael Welzl’s book.

Congestion — the overloading of switches or routers with arriving traffic packets — is a
consequence of the design of the Internet. Many mechanisms have been proposed to deal
with it, though few have been deployed as yet. This book covers the theory and practical
considerations of congestion, and gives an in-depth treatment of the subject.

‘Network Congestion Control: Managing Internet Traffic’ is a welcome addition to the
Wiley Series in Communications Networking & Distributed Systems.

David Hutchison
Lancaster University
April 2005

Preface

Some people raised their eyebrows when I told them that I was writing a book on congestion
control, and said, ‘Is this topic really large enough for a book?” Well, it certainly is, and
I am sure that it is needed. For example, there are quite a number of Ph.D. students out
there who work in this field—yet, when they start out, they do not have a comprehensive
introductory book about the subject. This book is for them and, of course, for anyone
else with an interest in this fascinating topic—graduate students, teachers in academia and
network administrators alike.

While the original page estimate was only a little lower than the actual outcome, I
am now convinced that it would have been possible to write a book of twice this size
on congestion control—but this would have meant diverging from the original goals and
including things that are already nicely covered in other places. Instead of overloading
this book, I therefore choose to recommend two books that were published last year as
complementary material: (Hassan and Jain 2004) and (Srikant 2004).

Even if there is only one author, no book is the work of a single person. In my case,
there are many people who provided help in one way or another — Anil Agarwal, Simon
Bailey, Sven Hessler and Murtaza Yousaf proofread the text; this was sometimes a hectic
task, especially towards the end of the process, but they all just kept on providing me with
valuable input and constructive criticism. Neither you nor I would be happy with the result
if it was not for these people. I would like to point out that I never personally met Anil-we
got in touch via a technical discussion in the end-to-end interest mailing list of the IRTF,
and he just volunteered to proofread my book. This certainly ranks high in the list of ‘nicest
things that ever happened to me’, and deserves a big thanks.

I would like to thank Craig Partridge for providing me with information regarding
the history of congestion control and allowing me to use his description of the ‘global
congestion collapse’ incident. Further thanks go to Martin Zwicknagl for his Zillertaler
Bauernkrapfen example, Stefan Hainzer for bringing an interesting article about fairness
to my attention, and Stefan Podlipnig for numerous discussions which helped to shape the
book into its present form. Two tools are described in Appendix A, where it is stated that
they ‘were developed at our University’. Actually, they were implemented by the following
students under my supervision: Christian Sternagel wrote CAVT, and Wolfgang Gassler,
Robert Binna and Thomas Gatterer wrote NSBM. The congestion control behaviour analyses
of various applications described in Chapter 6 were carried out by Muhlis Akdag, Thomas
Rammer, Roland Wallnofer, Andreas Radinger and Marcus Fischer under my supervision.
I would like to mention Michael Trawoger because he insisted that he be named here; he
had a ‘cool cover idea’ that may or may not have made it onto the final book’s front page.
While the right people to thank for this are normally the members of the Wiley graphics

Xiv PREFACE

department, if the cover of this book is the best that you have ever seen, it surely was his
influence.

I would like to thank two people whom I have never been in touch with but the work that
they have done had such a major influence on this book: Raj Jain and Grenville Armitage.
Like nobody else, Raj Jain is able to explain seemingly complex things in a simple manner;
reading his papers assured me that it would indeed be possible to write a book that is easily
comprehensible yet covers the whole range of congestion control issues. I had the writing
style of his early papers in mind when I wrote certain sections of this book, especially
Chapter 2. Grenville Armitage had a somewhat similar influence, as he impressed me with
his book ‘Quality of Service in IP Networks’ (Armitage 2000). It is easily readable and
introductory, but it still manages to cover all the important topics. I used this book as some
sort of a ‘role model’—Grenville Armitage basically did with QoS what I tried to do with
congestion control.

I should not forget to thank the people who helped me at the publisher’s side of the
table—David Hutchison, Birgit Gruber, Joanna Tootill and Julie Ward. These are of course
not the only people at John Wiley & Sons who were involved in the production of this
book—while I do not know the names of the others, I thank them all! Figures 3.13, 4.11,
6.1 and A.5 were taken from (Welzl 2003) with kind permission of Springer Science and
Business Media (Kluwer Academic Publishers at the time the permission was granted).

Finally, I would like to name the people whom I already mentioned in the ‘dedica-
tion’: my Ph.D. thesis supervisors, who really did a lot for me, were Max Miihlhduser and
Jon Crowcroft. My grandmother, Gertrud Welzl, provided me with an immense amount
of support throughout my life, and I also enjoy a lot of support from my girlfriend, Petra
Ratzenbock; 1 really strained her patience during the final stages of book writing. As I
write this, it strikes me as odd to thank my girlfriend, while most other authors thank their
wives—perhaps the time has come to change this situation.

List of tables

2.1 Possible combinations for using explicit feedback 33
4.1 Active queue management schemes 138
4.2 Differences between CADPC/PTP and XCP 175
4.3 Applicability of mechanisms in this section for special environments 178

A.1 Common abstraction levels for network analysis and design 222

List of figures

2.1
2.2
23
24

2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15
2.16

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

4.1
4.2
43
4.4

Congestion collapse scenario 11
Throughput before (a) and after (b) upgrading the access links 12
Dataflowinnode 2 12
Vector diagrams showing trajectories of AIAD, MIMD, MIAD (a) and

AIMD (b) e 17
Rate evolvement with MIAD (a) and AIMD (b) 18
Simple feedback control loop 20
AIMD trajectory with RT Toystomer 0 = 2 X RT Teustomer 1« « « « « « v« o v - 20
(a) The full window of six packets is sent. (b) The receiver ACKs 22
Three CBR flows — separate (a) and interacting (b) 25
Topology used to simulate burstiness with CBR flows 25
Choke packets 33
Explicit rate feedback L o 35
Hop-by-hop congestion control 35
Unicast, broadcast, overlay multicast and multicast 41
Scenario for illustrating fairness (a); zooming in on resource A (b) 48
Utility functions of several types of applications 50
The TCP header 56
Connection setup (a) and teardown (b) procedure in TCP 59
The buffer of a TCP sender 60
Silly window syndrome avoidance 63
Slow start (a) and congestion avoidance (b) 71
Evolution of cwnd with TCP Tahoe and TCP Reno 72
A sequence of events leading to Fast Retransmit/Fast Recovery 78
The TCP SACK option format 81
How TCPuses ECN 87
Standards track TCP specifications that influence when a packet is sent . . 88
The marking function of RED 94
The marking function of RED in ‘gentle’ mode 96
Proportional rate adaptation as in CAPC. 100
A Spurious timeout 110
The congestion manager it 120
Connection splitting oL 124
Pacing 127

Xviii

4.5

4.6

4.7

4.8
4.9
4.10
4.11

5.1
52
53
54

6.1
6.2
6.3
6.4
6.5
6.6

A.l
A2

A3
A4
A5
A6
A
A8
A9

LIST OF FIGURES

Matching a fluctuating application stream onto a fluctuating congestion con-

trol mechanism L 141
Matching a constant application stream onto a constant congestion control

mechaniSm L. 142
Matching an adaptive application stream onto a fluctuating congestion con-

trol mechanism o 143
The DCCP generic header (both variants) 153
TCP congestion avoidance with different link capacities 160
Packetpair 168
CADPC/PTP in action.o i ittt 173
A traffic engineering problem oo oL 185
A generic QoS router 188
Leaky bucket and token bucket L. 189
IntServ over DiffServ Lo 193
A vector diagram of TCP Reno. 203
The test bed that was used for our measurements 206
Sender rate and throughput of streaming media tools 208
Average packet length of interactive multiplayer games 209
The Adaptation Layer 215
Four different ways to realize congestion control 216
Screenshot of CAVT showing an AIMD trajectory 221
Screenshot of the CAVT time line window (user 1 = AIAD, user 2 = MIMD,

equal RTTs) o 222
Some CADPC trajectoriesot 224
Class structure of CAVT 226
A typical ns usage scenario. e e e e e 228
Ascreenshot of NSBM 230
A screenshotof nam L 231
A screenshot of xgraph e 232

The congestion collapse scenario with 1 Mbps from source 1 to router 2 . . 233

Introduction

Congestion control is a topic that has been dealt with for a long time, and it has also become
a facet of daily life for Internet users. Most of us know the effect: downloading, say, a movie
trailer can take five minutes today and ten minutes tomorrow. When it takes ten minutes,
we say that the network is congested. Those of us who have attended a basic networking
course or read a general networking book know some things about how congestion comes
about and how it is resolved in the Internet — but this is often just the tip of the iceberg.

On the other hand, we have researchers who spend many years of their lives with
computer networks. These are the people who read research papers, take the time to study
the underlying math, and write papers of their own. Some of them develop protocols and
services and contribute to standardization bodies; congestion control is their daily bread
and butter. But what about the people in between — those of us who would like to know
a little more about congestion control without having to read complicated research papers,
and those of us who are in the process of becoming researchers?

Interestingly, there seems to be no comprehensive and easily readable book on the
market that fills this gap. While some general introductory networking books do have quite
detailed and well-written parts on congestion control — a notable example is (Kurose and
Ross 2004) — it is clearly an important and broad enough topic to deserve an introductory
book of its own.

1.1 Who should read this book?

This book is the result of an attempt to describe a seemingly complex domain in simple
words. In the literature, all kinds of methods are applied to solve problems in congestion
control, often depending on the background of authors — from fuzzy logic to game theory
and from control theory to utility functions and linear programming, it seems that quite
a diverse range of mathematical tools can be applied. In order to understand all of these
papers, one needs to have a thorough understanding of the underlying theory. This may
be a little too much for someone who would just like to become acquainted with the field

Network Congestion Control: Managing Internet Traffic Michael Welzl
© 2005 John Wiley & Sons, Ltd

2 INTRODUCTION

(e.g. a network administrator who is merely interested in some specifics about the dynamic
behaviour of network traffic).

In my opinion, starting with these research papers is also inefficient. It is a waste of
time for Ph.D. students, who typically should finalize a thesis within three or four years;
rather, what they would need at the very beginning of their endeavour is a book that gives
them an overview without becoming too involved in the more sophisticated mathematical
aspects. As an example, consider a Ph.D. student who has to develop a new mechanism
that builds upon the notion that Internet users should be cooperative for their own good (as
with most common peer-to-peer file sharing tools). In some introductory papers, she might
read about how different controls influence fairness — which might lead her to become lost
in the depths of control theory, whereas a game-theoretic viewpoint could have pointed to
an easy solution of the problem.

One could argue that learning some details about control theory is not the worst idea
for somebody who wants to become involved in congestion control. I agree, but this is also
a question of time — one can only learn so many things in a day, and getting on the right
track fast is arguably desirable. This is where this book can help: it could be used as a
roadmap for the land of congestion control. The Ph.D. student in our example could read
it, go ‘hey, game theory is what I need!” and then proceed with the bibliography. This way,
she is on the right track from the beginning.

By providing an easily comprehensible overview of congestion control issues and prin-
ciples, this book can also help graduate students to broaden their knowledge of how the
Internet works. Usually, students attain a very rough idea of this during their first net-
working course; follow-up courses are often held, which add some in-depth information.
Together with other books on special topics such as ‘Routing in the Internet’ (Huitema
2000) and ‘Quality of Service in IP Networks’ (Armitage 2000), this book could form the
basis for such a specialized course. To summarize, this book is written for:

Ph.D. students who need to get on track at the beginning of their thesis.
Graduate students who need to broaden their knowledge of how the Internet works.
Teachers who develop a follow-up networking course on special topics.

Network administrators who are interested in details about the dynamic behaviour of net-
work traffic.

1.2 Contents

In computer networks literature, there is often a tendency to present what exists and how
it works. The intention behind this book, on the other hand, is to explain why things work
the way they do. It begins with an explanation of fundamental issues that will be helpful
for understanding the design rationales of the existing and envisioned mechanisms, which
are explained afterwards. The focus is on principles; here are some of the things that you
will not find in it:

Mathematical models: While the ideas behind some mathematical models are explained in
Chapter 2, going deeply into such things would just have complicated the book and

1.2. CONTENTS 3

would have shifted it away from the fundamental goal of being easy to read.
Recommended alternative: Rayadurgam Srikant, “The Mathematics of Internet Con-
gestion Control’, Springer Verlag 2004 (Srikant 2004).

Performance evaluations: You will not find results of simulations or real-life measurements

that show that mechanism X performs better than mechanism Y. There are several
reasons for this: first, it is not the intention to prove that some things work better than
others — it is not even intended to judge the quality of mechanisms here. Rather, the
goal is to show what has been developed, and why things were designed the way they
are. Second, such results often depend on aspects of X and Y that are not relevant
for the explanation, but they would have to be explained in order to make it clear
why X and Y behave the way they do. This would only distract the reader, and it
would therefore also deviate from the original goal of being an easily comprehensible
introduction. Third, the performance of practically every mechanism that is presented
in this book was evaluated in the paper where it was first described, and this paper
can be found in the bibliography.

Recommended alternative: Mahbub Hassan and Raj Jain, ‘High Performance TCP/IP
Networking’, Pearson Education International 2004 (Hassan and Jain 2004).

Exhaustive descriptions: Since the focus is on principles (and their application), you will

not find complete coverage of each and every detail of, say, TCP (which nevertheless
makes up quite a part of this book). This is to say that there are, for example, no
descriptions of ‘tcpdump’ traces.

Recommended alternative: W. Richard Stevens, ‘TCP/IP Illustrated, Volume 1: The
Protocols’, Addison-Wesley Publishing Company 1994 (Stevens 1994).

Since this book is of an introductory nature, it is not necessary to have an immense

amount of background knowledge for reading it; in particular, one does not have to be a
mathematics genius in order to understand even the more complicated parts, as equations
were avoided wherever possible. It is however assumed that the reader knows some general

networking fundamentals, such as

o the distinction between connection oriented and connectionless communication;
e what network layers are and why we have them;

e how basic Internet mechanisms like HTTP requests and routing roughly work;
e how checksums work and what ‘Forward Error Correction’ (FEC) is all about;

e the meaning of terms such as ‘bandwidth’, ‘latency’ and ‘end-to-end delay’.

All these things can be learned from general introductory books about computer networks,
such as (Kurose and Ross 2004), (Tanenbaum 2003) and (Peterson and Davie 2003), and
they are also often covered in a first university course on networking. A thorough intro-

duction to concepts of performance is given in (Sterbenz et al. 2001).

4 INTRODUCTION

1.3 Structure

While this book is mostly about the Internet, congestion control applies to all packet-oriented
networks. Therefore, Chapter 2 is written in a somewhat general manner and explains the
underlying principles in a broad way even though they were mainly applied to (or brought
up in the context of) Internet protocols. This book does not simply say ‘TCP works like
this’ — rather, it says ‘mechanism a has this underlying reasoning and works as follows’ in
Chapter 2 and ‘this is how TCP uses mechanism @’ in Chapter 3.

In this book, there is a clear distinction between things that are standardized and
deployed as opposed to things that should be regarded as research efforts. Chapter 3 presents
technology that you can expect to encounter in the Internet of today. It consists of two parts:
first, congestion control in end systems is explained. In the present Internet, this is syn-
onymous with the word ‘TCP’. The second part focuses on congestion control — related
mechanisms within the network. Currently, there is not much going on here, and therefore,
this part is short: we have an active queue management mechanism called ‘RED’, and we
may still have the ATM ‘Available Bit Rate (ABR)’ service operational in some places.
The latter is worth looking at because of its highly sophisticated structure, but its explana-
tion will be kept short because the importance (and deployment) of ATM ABR is rapidly
declining.

Chapter 4 goes into details about research endeavours that may or may not become
widely deployed in the future. Some of them are already deployed in some places (for
example, there are mechanisms that transparently enhance the performance of TCP without
requiring any changes to the standard), but they have not gone through the IETF procedure
for specification and should probably not be regarded as parts of the TCP/IP standard. Top-
ics include enhancements that make TCP more robust against adverse network effects such
as link noise, mechanisms that perform better than TCP in high-speed networks, mecha-
nisms that are a better fit for real-time multimedia applications, and RED improvements.
Throughout this chapter, there is a focus on practical, rather than theoretical works, which
either have a certain chance of becoming widely deployed one day or are well known
enough to be regarded as representatives for a certain approach.

The book is all about efficient use of network capacities; on a longer time scale, this
is ‘traffic management’. While traffic management is not the main focus of this book, it is
included because issues of congestion control and traffic management are indeed related.
The main differences are that traffic management occurs on a longer time scale, often relies
on human intervention, and control is typically executed in a different place (not at connec-
tion endpoints, which are the most commonly involved elements for congestion control).
Traffic management tools typically fall into one of two categories: ‘traffic engineering’,
which is a means to influence routing, and ‘Quality of Service’ (QoS) — the idea of provid-
ing users with differentiated and appropriately priced network services. Both these topics
are covered in Chapter 5, but this part of the book is very brief in order not to stray too far
from the main subject. After all, while traffic engineering and QoS are related, they simply
do not fall in the ‘congestion control’ category.

Chapter 6 is specifically written for researchers (Ph.D. students in particular) who are
looking for ideas to work on. It is quite different from anything else in the book: while
the goal of the rest is to inform the reader about specific technology and its underlying
ideas and principles, the intention of this chapter is to show that things are still far from

1.3. STRUCTURE 5

perfect in practice and to point out potential research avenues. As such, this chapter is also
extremely biased — it could be seen as a collection of my own thoughts and views about the
future of congestion control. You may agree with some of them and completely disagree
with others; like a good technical discussion, going through such potentially controversial
material should be thought provoking rather than informative. Ideally, you would read this
chapter and perhaps even disagree with my views but you would be stimulated to come up
with better ideas of your own.

The book ends with two appendices: first, the problem of teaching congestion control
is discussed. Personally, I found it quite hard to come up with practical congestion control
exercises that a large number of students can individually solve within a week. There
appeared to be an inevitable trade-off between exposure to the underlying dynamics (the
‘look and feel’ of things) on the one hand and restraining the additional effort for learning
how to use certain things (which does not relate to the problem itself) on the other. As
a solution that turned out to work really well, two small and simple Java tools were
developed. These applications are explained in Appendix A, and they are available from
the accompanying website of this book, http://www.welzl.at/congestion.

Appendix B provides an overview of related IETF work. The IETF, the standardization
body of the Internet, plays a major role in the area of congestion control; its decisions
have a large influence on the architecture of the TCP/IP stacks in the operating systems of
our home PCs and mechanisms that are implemented in routers alike. Historically, Internet
congestion control has also evolved from work in the IETF, and quite a large number of the
citations in the bibliography of this book are taken from there. Note that this appendix does
not contain a thorough description of the standardization process — rather, it is a roadmap
to the things that have been written.

1.3.1 Reader’s guide

It is probably every author’s dream that readers would go through the book from the begin-
ning to the end, without ever losing attention in the fascinating material that is presented.
In reality, this is quite rare, and it may be better to assume that most people will only use a
book to look up certain details or read some chapters or sections that are relevant for them.
If you are one of them, this section is for you — it is a list of what to read, depending on
the type of reader you are:

The interested reader without a strong background in networks
should read Chapters 2 and 3, and perhaps also Chapter 5.

The knowledgeable reader who is only interested in research efforts
should browse Chapters 4 and 6.

The hurried reader should read the specific parts of choice (e.g. if the goal is to gain an
understanding of TCP, Chapter 3 should be read), use Chapters 2 and 5 only to look
up information and avoid Chapter 6, which does not provide any essential congestion
control information.

Appendix A is for teachers, and Appendix B is for anybody who is not well acquainted
with the IETF and wants to find related information fast.

6 INTRODUCTION

I tried hard to make this book not only informative but also an enjoyable read. I know
that this is not easily achieved, and a joke here and there does not really make a book more
pleasant to use. For me, the structure of a book largely dictates whether I enjoy working
with it or not — if I am in a hurry, I do certainly nor enjoy reading poorly organized
books — thus, this is something I tried hard to avoid. Equipped with the information from
this introductory chapter, Appendix B, the index and bibliography of this book, you should
be able to efficiently use it and not waste your time. Have fun!

2

Congestion control principles

2.1 What is congestion?

Unless you are a very special privileged user, the Internet provides you with a service that
is called best effort; this means that the network simply does its best to deliver your data
as efficiently as possible. There are no guarantees: if I do my best to become a movie star,
I might actually succeed — but then again, I might not (some people will tell you that you
will succeed if you just keep trying, but that is a different story). The same is true of the
packets that carry your data across the Internet: they might reach the other end very quickly,
they might reach somewhat slower or they might never even make it. Downloading a file
today could take twice as long as it took yesterday; a streaming movie that had intolerable
quality fluctuations last night could look fine tomorrow morning. Most of us are used to
this behaviour — but where does it come from?

There are several reasons, especially when the timescale we are looking at is as long as in
these examples: when Internet links become unavailable, paths are recalculated and packets
traverse different inner network nodes (‘routers’). It is well known that even the weather
may have an influence if a wireless link is involved (actually, a friend of mine who accesses
the Internet via a wireless connection frequently complains about bandwidth problems that
seem to correspond with rainfall); another reason is — you guessed it — congestion.

Congestion occurs when resource demands exceed the capacity. As users come and go,
so do the packets they send; Internet performance is therefore largely governed by these
inevitable natural fluctuations. Consider an ISP that would allow up to 1000 simultaneous
data flows (customers), each of which would have a maximum rate of 1 Mbps but an
average rate of only 300 kbps. Would it make sense to connect their Internet gateway to a
1 Gbps link (which means that all of them could be accommodated at all times), or would,
say, 600 Mbps be enough? For simplicity, let us assume that the ISP chooses the 600 Mbps
option for now because this link is cheaper and suffices most of the time.

In this case, the gateway would see occasional traffic spikes that go beyond the capacity
limit as a certain number of customers use their maximum rate at the same time. Since
these excess packets cannot be transferred across the link, there are only two things that
this device can do: buffer the packets or drop them. Since such traffic spikes are typically

Network Congestion Control: Managing Internet Traffic Michael Welzl
© 2005 John Wiley & Sons, Ltd

8 CONGESTION CONTROL PRINCIPLES

limited in time, standard Internet routers usually place excess packets in a buffer, which
roughly works like a basic FIFO (‘First In, First Out’) queue and only drop packets if the
queue is full. The underlying assumption of this design is that a subsequent traffic reduction
would eventually drain the queue, thus making it an ample device to compensate for short
traffic bursts. Also, it would seem that reserving enough buffer for a long queue is a good
choice because it increases the chance of accommodating traffic spikes. There are however
two basic problems with this:

1. Storing packets in a queue adds significant delay, depending on the length of the
queue.

2. Internet traffic does not strictly follow a Poisson distribution, that is, the assumption
that there are as many upward fluctuations as there are downward fluctuations may
be wrong.

The consequence of the first problem is that packet loss can occur no matter how long the
maximum queue is; moreover, because of the second problem, queues should generally be
kept short, which makes it clear that not even defining the upper limit is a trivial task. Let
me repeat this important point here before we continue:

Queues should generally be kept short.

When queues grow, the network is said to be congested; this effect will manifest itself in
increasing delay and, at worst, packet loss.

Now that we know the origin and some of the technical implications of congestion,
let us find a way to describe it. There is no ‘official’, universally accepted definition of
network congestion; this being said, the most elaborate attempt was probably made in
(Keshav 1991a). Here is a slightly simplified form of this definition, which acknowledges
that the truly important aspect of network performance is not some technical parameter but
user experience:

A network is said to be congested from the perspective of a user if the service
quality noticed by the user decreases because of an increase in network load.

2.1.1 Overprovisioning or control?

Nowadays, the common choice of ISPs is to serve the aforementioned 1000 flows with
1 Gbps or even more in order to avoid congestion within their network. This method
is called overprovisioning, or, more jovially, ‘throwing bandwidth at the problem’. The
Internet has made a transition from a state of core overload to a state of core underload;
congestion has, in general, moved into the access links. The reasons for this are of a purely
financial nature:

e Bandwidth has become cheap. It pays off to overprovision a network if the excess
bandwidth costs significantly less than the amount of money that an ISP could expect
to lose in case a customer complains.

e It is more difficult to control a network that has just enough bandwidth than an
overprovisioned one. Network administrators will require more time to do their task

2.1. WHAT IS CONGESTION? 9

and perhaps need special training, which means that these networks cost more money.
Moreover, there is an increased risk of network failures, which once again leads to
customer complaints.

e With an overprovisioned network, an ISP is prepared for the future — there is some
headroom that allows the accommodation of an increasing number of customers with
increasing bandwidth demands for a while.

The goal of congestion control mechanisms is simply to use the network as efficiently
as possible, that is, attain the highest possible throughput while maintaining a low loss ratio
and small delay. Congestion must be avoided because it leads to queue growth and queue
growth leads to delay and loss; therefore, the term ‘congestion avoidance’ is sometimes
used. In today’s mostly uncongested networks, the goal remains the same — but while it
appears that existing congestion control methods have amply dealt with overloaded links
in the Internet over the years, the problem has now shifted from ‘How can we get rid of
congestion?’ to ‘How can we make use of all this bandwidth?’. Most efforts revolve around
the latter issue these days; while researchers are still pursuing the same goal of efficient
network usage, it has become somewhat fashionable to replace ‘congestion control’ with
terms such as ‘high performance networking’, ‘high speed communication’ and so on over
the last couple of years. Do not let this confuse you — it is the same goal with slightly
different environment conditions. This is a very important point, as it explains why we
need congestion control at all nowadays. Here it is again:

Congestion control is about using the network as efficiently as possible. These
days, networks are often overprovisioned, and the underlying question has
shifted from ‘how to eliminate congestion’ to ‘how to efficiently use all the
available capacity’. Efficiently using the network means answering both these
questions at the same time; this is what good congestion control mechanisms do.

The statement ‘these days, networks are often overprovisioned’ appears to imply that it
has not always been this way. As a matter of fact, it has not, and things may even change in
the future. The authors of (Crowcroft et al. 2003) describe how the ratio of core to access
bandwidth has changed over time; roughly, they state that excess capacity shifts from the
core to access links within 10 years and swings back over the next 10 years, leading to
repetitive 20-year cycles. As an example, access speeds were higher than the core capacity
in the late 1970s, which changed in the 1980s, when ISDN (56 kbps) technology came
about and the core was often based upon a 2 Mbps Frame Relay network. The 1990s were
the days of ATM, with 622 Mbps, but this was also the time of more and more 100 Mbps
Ethernet connections.

As mentioned before, we are typically facing a massively overprovisioned core nowa-
days (thanks to optical networks which are built upon technologies such as Dense Wave-
length Division Multiplexing (DWDM)), but the growing success of Gigabit and, more
recently, 10 Gigabit Ethernet as well as other novel high-bandwidth access technologies
(e.g. UMTS) seems to point out that we are already moving towards a change. Whether it
will come or not, the underlying mechanisms of the Internet should be (and, in fact, are)
prepared for such an event; while 10 years may seem to be a long time for the telecommu-
nications economy, this is not the case for TCP/IP technology, which has already managed

10 CONGESTION CONTROL PRINCIPLES

to survive several decades and should clearly remain operational as a binding element for
the years to come.

On a side note, moving congestion to the access link does not mean that it will vanish;
if the network is used in a careless manner, queues can still grow, and increased delay
and packet loss can still occur. One reason why most ISPs see an uncongested core these
days is that the network is, in fact, not used carelessly by the majority of end nodes — and
when it is, these events often make the news (‘A virus/worm has struck again!’). An amply
provisioned network that can cope with such scenarios may not be affordable. Moreover,
as we will see in the next section, the heterogeneity of link speeds along an end-to-end
path that traverses several ISP boundaries can also be a source of congestion.

2.2 Congestion collapse

The Internet first experienced a problem called congestion collapse in the 1980s. Here is
a recollection of the event by Craig Partridge, Research Director for the Internet Research
Department at BBN Technologies (Reproduced by permission of Craig Partridge):

Bits of the network would fade in and out, but usually only for TCP. You could
ping. You could get a UDP packet through. Telnet and FTP would fail after a
while. And it depended on where you were going (some hosts were just fine,
others flaky) and time of day (I did a lot of work on weekends in the late 1980s
and the network was wonderfully free then). Around 1pm was bad (I was on
the East Coast of the US and you could tell when those pesky folks on the
West Coast decided to start work. . .).

Another experience was that things broke in unexpected ways — we spent a lot
of time making sure applications were bullet-proof against failures. One case
I remember is that lots of folks decided the idea of having two distinct DNS
primary servers for their subdomain was silly — so they’d make one primary
and have the other one do zone transfers regularly. Well, in periods of conges-
tion, sometimes the zone transfers would repeatedly fail — and voila, a primary
server would timeout the zone file (but know it was primary and thus start
authoritatively rejecting names in the domain as unknown).

Finally, I remember being startled when Van Jacobson first described how truly
awful network performance was in parts of the Berkeley campus. It was far
worse than I was generally seeing. In some sense, I felt we were lucky that the
really bad stuff hit just where Van was there to see it.!

One of the earliest documents that mention the term ‘congestion collapse’ is (Nagle
1984) by John Nagle; here, it is described as a stable condition of degraded performance that
stems from unnecessary packet retransmissions. Nowadays, it is, however, more common
to refer to ‘congestion collapse’ when a condition occurs where increasing sender rates
reduces the total throughput of a network. The existence of such a condition was already
acknowledged in (Gerla and Kleinrock 1980) (which even uses the word ‘collapse’ once to
describe the behaviour of a throughput curve) and probably earlier — but how does it arise?

! Author’s note: Van Jacobson brought congestion control to the Internet; a significant portion of this book is
based upon his work.

2.2. CONGESTION COLLAPSE 11

ISP 1

100 kbps
100 kbps

@ 300 kbps

2

100 kbps

Figure 2.1 Congestion collapse scenario

Consider the following example: Figure 2.1 shows two service providers (ISP 1 and
ISP 2) with two customers each; they are interconnected with a 300 kbps link? and do
not know each other’s network configuration. Customer 0 sends data to customer 4, while
customer 1 sends data to customer 5, and both sources always send as much as possible
(100 kbps); there is no congestion control in place. Quite obviously, ISP 1 will notice that
its outgoing link is not fully utilized (2 * 100 kbps is only 2/3 of the link capacity); thus,
a decision is made to upgrade one of the links. The link from customer O to the access
router (router number 2) is upgraded to 1 Mbps (giving customers too much bandwidth
cannot hurt, can it?). At this point, you may already notice that it would have been a better
decision to upgrade the link to router 2 because the link that connects the corresponding
sink to router 3 has a higher capacity — but this is unknown to ISP 1.

Figure 2.2 shows the throughput that the receivers (customers 4 and 5) will see
before (a) and after (b) the link upgrade. These results were obtained with the ‘ns’ net-
work simulator® (see A.2): each source started with a rate of 64 kbps and increased it by
3 kbps every second. In the original scenario, throughput increases until both senders reach
the capacity limit of their access links. This result is not surprising — but what happens
when the bandwidth of the 0-2 link is increased? The throughput at 4 remains the same
because it is always limited to 100 kbps by the connection between nodes 3 and 4. For the
connection from 1 to 5, however, things are a little different. It goes up to 100 kbps (its
maximum rate — it is still constrained to this limit by the link that connects customer 1 to
router 2); as the rate approaches the capacity limit, the throughput curve becomes smoother

2If you think that this number is unrealistic, feel free to multiply all the link bandwidth values in this example
with a constant factor x — the effect remains the same.

3The simulation script is available from the accompanying web page of the book,
http://www.welzl.at/congestion

12 CONGESTION CONTROL PRINCIPLES

T T T
100 - Throughput at 4 —+—
110 - Throughput at 5 ---x--- b
"Knee"
80 8 100 | AN B
= =z dox
g g \
< e0f] £ g} i |
5 E ;
a a2
IS £
H ER X
<] o I~
£ 40) < X
= = %
X
70 b
20 | B o
Throughput at 4 —+— Y
Throughput at 5 ---x--- 60 | W
0 L L L 3
0 10 20 30 40 50 60 0 10 20 30 40 50 60
(a) Time (s) (b) Time (s)

Figure 2.2 Throughput before (a) and after (b) upgrading the access links

0 Max.

length

1
Queue

% g 01810605 0o

! ¥ Send
! >
22222 Drop

Figure 2.3 Data flow in node 2

(this is called the knee), and beyond a certain point, it suddenly drops (the so-called cliff)
and then decreases further.

The explanation for this strange phenomenon is congestion: since both sources keep
increasing their rates no matter what the capacities beyond their access links are, there
will be congestion at node 2 — a queue will grow, and this queue will have more packets
that stem from customer O. This is shown in Figure 2.3; roughly, for every packet from
customer 1, there are 10 packets from customer 0. Basically, this means that the packets
from customer O unnecessarily occupy bandwidth of the bottleneck link that could be used
by the data flow (just ‘flow’ from now on) coming from customer 1 — the rate will be
narrowed down to 100 kbps at the 3—4 link anyway. The more the customer O sends, the
greater this problem.

2.3. CONTROLLING CONGESTION: DESIGN CONSIDERATIONS 13

If customer O knew that it would never attain more throughput than 100 kbps and would
therefore refrain from increasing the rate beyond this point, customer 1 could stay at its
limit of 100 kbps. A technical solution is required for appropriately reducing the rate of
customer 0; this is what congestion control is all about. In (Jain and Ramakrishnan 1988),
the term ‘congestion control’ is distinguished from the term ‘congestion avoidance’ via its
operational range (as seen in Figure 2.2 (b)): schemes that allow the network to operate at
the knee are called congestion avoidance schemes, whereas congestion control just tries to
keep the network to the left of the cliff. In practice, it is hard to differentiate mechanisms like
this as they all share the common goal of maximizing network throughput while keeping
queues short. Throughout this book, the two terms will therefore be used synonymously.

2.3 Controlling congestion: design considerations

How could one design a mechanism that automatically and ideally tunes the rate of the flow
from customer O in our example? In order to find an answer to this question, we should
take a closer look at the elements involved:

e Traffic originates from a sender; this is where the first decisions are made (when to
send how many packets). For simplicity, we assume that there is only a single sender
at this point.

e Depending on the specific network scenario, each packet usually traverses a certain
number of intermediate nodes. These nodes typically have a queue that grows in the
presence of congestion; packets are dropped when it exceeds a limit.

e Eventually, traffic reaches a receiver. This is where the final (and most relevant)
performance is seen — the ultimate goal of almost any network communication code
is to maximize the satisfaction of a user at this network node. Once again, we assume
that there is only one receiver at this point, in order to keep things simple.

Traffic can be controlled at the sender and at the intermediate nodes; performance
measurements can be taken by intermediate nodes and by the receiver. Let us call members
of the first group controllers and members of the second group measuring points. Then,
at least one controller and one measuring point must participate in any congestion control
scheme that involves feedback.

2.3.1 Closed-loop versus open-loop control

In control theoretic terms, systems that use feedback are called closed-loop control as
opposed to open-loop control systems, which have no feedback. Systems with nothing but
open-loop control have some value in real life; as an example, consider a light switch
that will automatically turn off the light after one minute. On the other hand, neglecting
feedback is clearly not a good choice when it comes to dissolving network congestion,
where the dynamics of the system — the presence or absence of other flows — dictate the
ideal behaviour.

In a computer network, applying open-loop control would mean using a priori knowl-
edge about the network — for example, the bottleneck bandwidth (Sterbenz et al. 2001).
Since, as explained at the beginning of this chapter, the access link is typically the bottleneck

14 CONGESTION CONTROL PRINCIPLES

nowadays, this property is in fact often known to the end user. Therefore, applications that
ask us for our network link bandwidth during the installation process or allow us to adjust
this value in the system preferences probably apply perfectly reasonable open-loop conges-
tion control (one may hope that this is not all they do to avoid congestion). A network that
is solely based on open-loop control would use resource reservation, that is, a new flow
would only enter if the admission control entity allows it to do so. As a matter of fact, this
is how congestion has always been dealt with in the traditional telephone network: when
a user wants to call somebody but the network is overloaded, the call is simply rejected.
Historically speaking, admission control in connection-oriented networks could therefore
be regarded as a predecessor of congestion control in packet networks.

Things are relatively simple in the telephone network: a call is assumed to have fixed
bandwidth requirements, and so the link capacity can be divided by a pre-defined value in
order to calculate the number of calls that can be admitted. In a multi-service network like
the Internet however, where a diverse range of different applications should be supported,
neither bandwidth requirements nor application behaviour may be known in advance. Thus,
in order to efficiently utilize the available resources, it might be necessary for the admission
control entity to measure the actual bandwidth usage, thereby adding feedback to the control
and deviating from its strictly open character. Open-loop control was called proactive (as
opposed to reactive control) in (Keshav 1991a). Keshav also pointed out what we have just
seen: that these two control modes are not mutually exclusive.

2.3.2 Congestion control and flow control

Since intermediate nodes can act as controllers and measuring points at the same time,
a congestion control scheme could theoretically exist where neither the sender nor the
receiver is involved. This is, however, not a practical choice as most network technologies
are designed to operate in a wide range of environment conditions, including the smallest
possible setup: a sender and a receiver, interconnected via a single link. While congestion
collapse is less of a problem in this scenario, the receiver should still have some means
to slow down the sender if it is busy doing more pressing things than receiving network
packets or if it is simply not fast enough. In this case, the function of informing the sender
to reduce its rate is normally called flow control.

The goal of flow control is to protect the receiver from overload, whereas the goal of
congestion control is to protect the network. The two functions lend themselves to combined
implementations because the underlying mechanism is similar: feedback is used to tune the
rate of a flow. Since it may be reasonable to protect both the receiver and the network
from overload at the same time, such implementations should be such that the sender uses
a rate that is the minimum of the results obtained with flow control and congestion control
calculations. Owing to these resemblances, the terms ‘flow control’ and ‘congestion control’
are sometimes used synonymously, or one is regarded as a special case of the other (Jain
and Ramakrishnan 1988).

2.4 Implicit feedback

Now that we know that a general-purpose congestion control scheme will normally have
the sender tune its rate on the basis of feedback from the receiver, it remains to be seen

2.4. IMPLICIT FEEDBACK 15

whether control and/or measurement actions from within the network should be included.
Since it seems obvious that adding these functions will complicate things significantly, we
postpone such considerations and start with the simpler case of implicit feedback, that is,
measurements that are taken at the receiver and can be used to deduce what happens within
the network.

In order to determine what such feedback can look like, we must ask the question,
What can happen to a packet as it travels from source to destination? From an end-node
perspective, there are basically three possibilities:

1. It can be delayed.
2. It can be dropped.
3. It can be changed.

Delay can have several reasons: distance (sending a signal to a satellite and back
again takes longer than sending it across an undersea cable), queuing, processing in the
involved nodes, or retransmissions at the link layer. Similarly, packets can be dropped
because a queue length is exceeded, a user is not admitted, equipment malfunctions, or
link noise causes a checksum of relevance to intermediate systems to fail. Changing a
packet could mean altering its header or its content (payload). If the content changed but
the service provided by the end-to-end protocol includes assurance of data integrity, the
data carried by the packet become useless, and the conclusion to be made is that some link
technology in between introduced errors (and no intermediate node dropped the packet due
to a checksum failure). Such errors usually stem from link noise, but they may also be
caused by malicious users or broken equipment. If the header changed, we have some form
of explicit communication between end nodes and inner network nodes — but at this point,
we just decided to ignore such behaviour for the sake of simplicity. We do not regard the
inevitable function of placing packets in a queue and dropping them if it overflows as such
active participation in a congestion control scheme.

The good news is that the word ‘queue’ was mentioned twice at the beginning of the
last paragraph — at least the factors ‘delay’ and ‘packet dropped’ can indicate congestion.
The bad news is that each of the three things that can happen to a packet can have quite
a variety of reasons, depending on the specific usage scenario. Relying on these factors
therefore means that implicit assumptions are made about the network (e.g. assuming that
increased delay always indicates queue growth could mean that it is assumed that a series
of packets will be routed along the same path). They should be used with care.

Note that we do not have to restrict our observations to a single packet only: there are
quite a number of possibilities to deduce network properties from end-to-end performance
measurements of series of packets. The so-called packet pair approach is a prominent
example (Keshav 1991a). With this method, two packets are sent back-to-back: a large
packet immediately followed by a small packet. Since it is reasonable to assume that there
is a high chance for these packets to be serviced one after another at the bottleneck, the
interspacing of these packets can be used to derive the capacity of the bottleneck link. While
this method clearly makes several assumptions about the behaviour of routers along the
path, it yields a metric that could be valuable for a congestion control mechanism (Keshav
1991b). For the sake of simplicity, we do not discuss such schemes further at this point
and reserve additional observations for later (Section 4.6.3).

16 CONGESTION CONTROL PRINCIPLES
2.5 Source behaviour with binary feedback

Now that we have narrowed down our considerations to implicit feedback only, let us once
again focus on the simplest case: a notification that tells the source ‘there was congestion’.
Packet loss is the implicit feedback that could be interpreted in such a manner, provided
that packets are mainly dropped when queues overflow; this kind of feedback was used
(and this assumption was made) when congestion control was introduced in the Internet. As
you may have already guessed, the growing use of wireless (and therefore noisy) Internet
connections poses a problem because it leads to a misinterpretation of packet loss; we will
discuss this issue in greater detail later.

What can a sender do in response to a notification that simply informs it that the network
is congested? Obviously, in order to avoid congestion collapse, it should reduce its rate. Since
it does not make much sense to start with a fixed rate and only reduce it in a network where
users could come and go at any time, it would also be useful to find a rule that allows the
sender to increase the rate when the situation within the network has enhanced. The relevant
information in this case would therefore be ‘there was no congestion’ — a message from the
receiver in response to a packet that was received. So, we end up with a sender that keeps
sending, a receiver that keeps submitting binary yes/no feedback, and a rule for the sender that
says ‘increase the rate if the receiver says that there was no congestion, decrease otherwise’.
What we have not discussed yet is how to increase or decrease the rate.

Let us stick with the simple congestion collapse scenario depicted in Figure 2.1 — two
senders, two receivers, a single bottleneck link — and assume that both flows operate in a
strictly synchronous fashion, that is, the senders receive feedback and update their rate at
the same time. The goal of our rate control rules is to efficiently use the available capacity,
that is, let the system operate at the ‘knee’, thereby reducing queue growth and loss. This
state should obviously be reached as soon as possible, and it is also clear that we want
the system to maintain this state and avoid oscillations. Another goal that we have not yet
taken into consideration is fairness — clearly, if all link capacities were equal in Figure 2.1,
we would not want one user to fully utilize the available bandwidth while the other user
obtains nothing. Fairness is in fact a somewhat more complex issue, which we will further
examine towards the end of this chapter; for now, it suffices to stay with our simple model.

2.5.1 MIMD, AIAD, AIMD and MIAD

If the rate of a sender at time ¢ is denoted by x(#), y(¢) represents the binary feedback
with values 0 meaning ‘no congestion’ and 1 meaning ‘congestion’ and we restrict our
observations to linear controls, the rate update function can be expressed as

ai +bix(t) if y(t) =0

ag +bax(t) if y(t) =1 2.1

xt+1)= {
where a;, b;, a; and b, are constants (Chiu and Jain 1989). This linear control has both
an additive (a) and a multiplicative component (b); if we allow the influence of only one
component at a time, this leaves us with the following possibilities:

e 0, =0,a;,=0,b; >1;0<b; <1
Multiplicative Increase, Multiplicative Decrease (MIMD)

2.5. SOURCE BEHAVIOUR WITH BINARY FEEDBACK 17

1 1
Fairness line
1] 1]
£ €
2 2
@ %
3 3
o o
k) k]
o o
© © .
= > Efficiency line
Desirable
0 - 0
0 1 0 1

(a) x: rate of customer 0 (b) x: rate of customer 0

Figure 2.4 Vector diagrams showing trajectories of AIAD, MIMD, MIAD (a) and
AIMD (b)

e a,>0,a;,<0;b;=1;,b;=1
Additive Increase, Additive Decrease (AIAD)

e a;>0,a;,=0,b;=1,0<b; <1
Additive Increase, Multiplicative Decrease (AIMD)

e a;=0a;,<0;b; >1; by =1
Multiplicative Increase, Additive Decrease (MIAD)

While these are by no means all the possible controls as we have restricted our observa-
tions to quite a simple case, it may be worth asking which ones out of these four are a
good choice.

The system state transitions given by these controls can be regarded as a trajectory
through an n-dimensional vector space — in the case of two controls (which represent two
synchronous users in a computer network), this vector space is two dimensional and can
be drawn and analysed easily. Figure 2.4 shows two vector diagrams with the four controls
as above. Each axis in the diagrams represents a customer in our network. Therefore, any
point (x, y) represents a two-user allocation. The sum of the system load must not exceed
a certain limit, which is represented by the ‘Efficiency line’; the load is equal for all points
on lines that are parallel to this line. One goal of the distributed control is to bring the
system as close as possible to this line.

Additionally, the system load consumed by customer O should be equal to the load
consumed by customer 1. This is true for all points on the ‘Fairness line’ (note that the
fairness is equal for all points on all lines that pass through the origin. Following (Chiu and
Jain 1989), we therefore call any such line ‘Equi-fairness line’). The optimal point is the
point of intersection of the efficiency line and the fairness line. The ‘Desirable’ arrow in
Figure 2.4 (b) represents the optimal control: it quickly moves to the optimal point and stays
there (is stable). It is easy to see that this control is unrealistic for binary feedback: provided

18 CONGESTION CONTROL PRINCIPLES

that both flows obtain the same feedback at any time, there is no way for one flow to
interpret the information ‘there is congestion’ or ‘there is no congestion’ differently than the
other — but the ‘Desirable’ vector has a negative x component and a positive y component.
This means that the two flows make a different control decision at the same time.

Adding a constant positive or negative factor to a value at the same time corresponds to
moving along at a 45° angle. This effect is produced by AIAD: both flows start at a point
underneath the efficiency line and move upwards at an angle of 45°. The system ends up
in an overloaded state (the state transition vector passes the efficiency line), which means
that it now sends the feedback ‘there is congestion’ to the sources. Next, both customers
decrease their load by a constant factor, moving back along the same line. With AIAD,
there is no way for the system to leave this line.

The same is true for MIMD, but here, a multiplication by a constant factor corresponds
with moving along an equi-fairness line. By moving upwards along an equi-fairness line and
downwards at an angle of 45°, MIAD converges towards a totally unfair rate allocation, the
customer in favour being the one who already had the greater rate at the beginning. AIMD
actually approaches perfect fairness and efficiency, but because of the binary nature of the
feedback, the system can only converge to an equilibrium instead of a stable point — it
will eventually fluctuate around the optimum. MIAD and AIMD are also depicted in the
‘traditional’ (time = x-axis, rate = y-axis) manner in Figure 2.5 — these diagrams clearly
show how the gap between the two lines grows in case of MIAD, which means that fairness
is degraded, and shrinks in case of AIMD, which means that the allocation becomes fair.

The vector diagrams in Figure 2.4 (which show trajectories that were created with the
‘Congestion Avoidance Visualization Tool’ (CAVTool) — see Section A.1 for further details)
are a simple means to illustrate the dynamic behaviour of a congestion control scheme.
However, since they can only show how the rates evolve from a single starting point, they
cannot be seen as a means to prove that a control behaves in a certain manner. In (Chiu and
Jain 1989), an algebraic proof can be found, which states that the linear decrease policy
should be multiplicative, and the linear increase policy should always have an additive
component, and optionally may have a multiplicative component with the coefficient no
less than one if the control is to converge to efficiency and fairness in a distributed manner.

Note that these are by no means all the possible controls: the rate update function
could also be nonlinear, and we should not forget that we restricted our observations to

0.8 T T T

Rate of customer 0 —+—
Rate of customer 1 ---x---

0.9 - Rate of customer 0 —+—
Rate of customer 1 ---x---

0.8
0.7
0.6

|
Rate

0.5

Rate

04 X N ?‘ i

A \x/)(X
03 X TN X .
X’ N,
02 | 5 8
X,

0.1 N

e

0 L L L L L L L L 0.2 L L L L L
0 2 4 6 8 10 12 14 16 18 0 5 10 15 20 25 30
(a) Time (b) Time

Figure 2.5 Rate evolvement with MIAD (a) and AIMD (b)

2.6. STABILITY 19

implicit binary feedback, which is not necessarily all the information that is available. Many
variations have been proposed over the years; however, to this day, the source rate control
rule that is implemented in the Internet basically is an AIMD variant, and its design can
be traced back to the reasoning in this section.

2.6 Stability

It is worth taking another look at MIAD: as shown for an example in Figure 2.4, this
mechanism converges to unfairness with a bias towards the customer that had a greater
rate in the beginning. What if there is no such customer, that is, the trajectory starts at the
fairness line? Since moving upwards along a line that passes through the origin and moving
downwards at an angle of 45° means that the trajectory will never leave the fairness line,
this control will eventually fluctuate around the optimum just like AIMD. The fairness of
MIAD is, however, unstable: a slight deviation from the optimum will lead the control
away from this point. This is critical because our ultimate goal is to use the mechanism in
a rather uncontrolled environment, where users come and go at will. What if one customer
would simply decide to stop sending for a while? All of a sudden, MIAD would leave
the fairness line and allow the other customer to fully use the available capacity, leaving
nothing for the first customer.

It is therefore clear that any control that is designed for use in a real environment
(perhaps even with human intervention) should be stable, that is, it should not exhibit the
behaviour of MIAD. This fact is true for all kinds of technical systems; as an example,
we certainly do not want the autopilot of an aeroplane to abandon a landing procedure just
because of strong winds. Issues of control and stability are much broader in scope than our
area of interest (congestion control in computer networks). In engineering and mathematics,
control theory generally deals with the behaviour of dynamic systems — systems that can
be described with a set of functions (rules, equations) that specify how variables change
over time. In this context, stability means that for any bounded input over any amount of
time the output will also be bounded.

2.6.1 Control theoretic modelling

Figure 2.6 shows a simple closed-loop (or feedback) control loop. Its behaviour depends
upon the difference between a reference value r and the output y of the system, the error
e. The controller C takes this value as its input and uses it to change the inputs u to P,
the system under control. A standard example for a real-life system that can be modelled
with such a feedback control loop is a shower: when I slowly turn up the hot water tap
from a starting point r, I execute control (my hand is C) and thereby change the input u
(a certain amount of hot/cold water flowing through the pipes) to the system under control
P (the water in the shower). The output y is the temperature — I feel it and use it to adjust
the tap again (this is the feedback to the control).

This example comes in handy for explaining an important point of control theory: a
controller should only be fed a system state that reflects its output. In other words, if I
keep turning up the tap bit by bit and do not wait until the water temperature reaches a
new level and stays there, I might end up turning up the hot water too quickly and burn
myself (impatient as I am, this actually happens to me once in a while). This also applies to

20 CONGESTION CONTROL PRINCIPLES

ro+ e u y

C P

A 4
v

Figure 2.6 Simple feedback control loop

0.9

T T
Rate of customer 0 —+—
0.8 |- Rateof customer 1 ------ *x

y: rate of customer 1

Rate

: I I I I I
0 1 0 5 10 15 20 25 30
(a) x: rate of customer 0 (b) Time

Figure 2.7 AIMD trajectory with RT Teystomer 0 = 2 X RT Teustomer 1

congestion control — a (low-pass) filter function should be used in order to pass only states
to the controller that are expected to last long enough for its action to be meaningful (Jain
and Ramakrishnan 1988). Action should be carried out whenever such feedback arrives,
as it is a fundamental principle of control that the control frequency should be equal to
the feedback frequency. Reacting faster leads to oscillations and instability while reacting
slower makes the system tardy (Jain 1990).

2.6.2 Heterogeneous RTTs

The simple case of n synchronous flows sharing a single resource can be modelled with
a feedback loop like the one in Figure 2.6; then, with such a model and the mathematical
tools provided by control theory, the stability of the controller can be proven. Doing this is
worthwhile: if it turns out that a mechanism is instable in this rather simple case, it is certainly
useless. However, the opposite assumption is not valid because the scenario is too simplistic.
In reality, senders hardly update their rate at exactly the same time — rather, there is usually
an arbitrary number of asynchronously operating control loops that influence one another.
Figure 2.7 illustrates that even the stability of AIMD is questionable when control loops
are not in sync. Here, the Round-trip Time (RTT) of customer 0 was chosen to be twice as
long as the RTT of customer 1, which means that for every rate update of customer O there
are two updates of customer 1. Convergence to fairness does not seem to occur with this
example trajectory, and modelling it is mathematically sophisticated, potentially leading
to somewhat unrealistic assumptions. For example, it is common to consider a ‘fluid-flow

2.7. RATE-BASED VERSUS WINDOW-BASED CONTROL 21

model’, where packets have a theoretical size of one bit and the rate of a data stream is
therefore arbitrarily scalable; in practice, a packet of, say, 1000 bytes is either received
as a whole or it is unusable. Often, network researchers rely on simulations for a deeper
study of such scenarios. This being said, some authors have taken on the challenge of
mathematically analysing stability of network congestion control in both the synchronous
and the asynchronous case — two notable works in this area are (Johari and Tan 2001) and
(Massoulie 2002); (Luenberger 1979) is a recommendable general introduction to dynamic
systems and the notion of stability.

2.6.3 The conservation of packets principle

The seminal work that introduced congestion control to the Internet was ‘Congestion Avoid-
ance and Control’, published by Van Jacobson at the ACM SIGCOMM 1988 conference
(Jacobson 1988). In this paper, he suggested the execution of congestion control at the
sources via a change to the ‘Transmission Control Protocol’ (TCP); as in our model,
feedback is binary and implicit — packet loss is detected via a timeout and interpreted
as congestion, and the control law is (roughly) AIMD. How did Van Jacobson take care of
stability? The following quotes from his work shed some light on this matter:

The flow on a TCP connection (..) should obey a ‘conservation of packets’
principle.

By ‘conservation of packets’, we mean that for a connection ‘in equilibrium’,
i.e. running stably with a full window of data in transit, the packet flow is what
a physicist would call ‘conservative’: A new packet isn’t put into the network
until an old packet leaves. The physics of flow predicts that systems with this
property should be robust in the face of congestion.

A conservative flow means that for any given time, the integral of the packet
density around the sender-receiver-sender loop is a constant. Since packets
have to ‘diffuse’ around this loop, the integral is sufficiently continuous to be
a Lyapunov function for the system. A constant function trivially meets the
conditions for Lyapunov stability so the system is stable and any superposition
of such systems is stable.

Two factors are crucial for this scheme to work:
1. Window-based (as opposed to rate-based) control

2. precise knowledge of the RTT.

2.7 Rate-based versus window-based control

There are two basic methods to throttle the rate of a sender (for simplicity, we assume only
a single sender and receiver and no explicit help from intermediate routers): rate based
and window based. Both methods have their advantages and disadvantages. They work as
follows:

Rate-based control means that a sender is aware of a specific data rate (bits per second),
and the receiver or a router informs the sender of a new rate that it must not exceed.

22 CONGESTION CONTROL PRINCIPLES

Window-based control has the sender keep track of a so-called window — a certain number
of packets or bytes that it is allowed to send before new feedback arrives. With each
packet sent, the window is decreased until it reaches 0. As an example, if the window
is 6, the unit is packets, and no feedback arrives, the sender is allowed to send exactly
six packets; then it must stop. The receiver accepts and counts incoming packets and
informs the sender that it is allowed to increase the window by a certain amount.
Since the sender’s behaviour is very strictly dictated by the presence or absence of
incoming feedback, window-based control is said to be self-clocking.

Rate-based control is simpler, and it is said to be more suitable for streaming media
applications because it does not stop if no feedback arrives. In general, we want such
applications to keep on sending no matter what happens as the data source often does the
same. If, say, audio from a radio station is transmitted across the Internet, the moderator
will normally not stop talking if the network is congested. Window-based control can show
a certain stop-and-go behaviour, which is unwanted for such applications.

There is also an advantage to window-based control: it is a better match for the conser-
vation of packets principle, as the ‘you may now increase your window because I received
a packet’ feedback from the receiver is semantically equivalent to what the principle says:
a new packet is not put into the network until an old packet leaves. From a network per-
spective, window-based flow control is perhaps generally less harmful because the sender
will automatically stop sending when there is a massive problem in the network and no
more feedback arrives.

A disadvantage of window-based control is that it can lead to traffic bursts. Consider
Figure 2.8 (a), which shows the simple example case of a sender sending a full initial
window of six (unacknowledged) packets and then waiting for feedback. As of yet, no
packets have reached the receiver. While the sender transmitted the packets at a regular
spacing (i.e. exactly one packet every x seconds), three of the six packets are enqueued at
the bottleneck due to congestion in the network. Immediately after the snapshot shown in
the figure, congestion is resolved and the three packets are sent on with regular spacing
that depends on the bottleneck service rate.

Queue
== 0 o<y O
- > |-

Congestion

Receiver

Figure 2.8 (a) The full window of six packets is sent. (b) The receiver ACKs

2.8. RTT ESTIMATION 23

If this rate is higher than the sender rate (i.e. the flow does not fully saturate the capacity)
and the receiver immediately sends an acknowledgement (ACK) upon reception of a packet,
the network will look as shown in Figure 2.8 (b) after a while: the reduced spacing between
the three packets that were enqueued is reflected by the spacing of ACKs. If the sender
immediately increases its window by 1 when an ACK arrives and always sends packets
as soon as it is allowed to do so, the reduced spacing between the three ACKs will lead
to reduced spacing between the corresponding three data packets, and so forth. This effect
also occurs when the ACKs (and not the data packets) experience congestion.

What we have here is a data burst, and there is no way to alleviate this effect unless either
the sender or the receiver deliberately delays its reaction; this is called pacing (Sterbenz
et al. 2001). On a side note, the reduced spacing between packets that were enqueued at
the bottleneck is exploited by the packet pair approach (see Sections 2.4 and 4.6.3) in order
to deduce information about the network.

Figure 2.8 shows another problem in addition to the effect of congestion: the window
is too small. It is clearly undesirable to have the sender send six packets, then stop, wait
for a while and then transmit the next six packets as the series of ACKs arrives. Rather,
the sender should fully saturate the link, that is, also transmit packets during the second
phase that is shown in Figure 2.8 (b). As a matter of fact, there should be no ‘first’ and
‘second’ phase — unless a problem occurs, packets should be transmitted continuously and
ACKSs should just keep arriving all the time.

In order to reach such a state, the sender must be able to increase its rate — hence, simply
increasing the window by one packet in response to an ACK is not enough. Increasing the
rate means to have the window grow by more than one packet per ACK, and decreasing
it means reducing the window size. The ideal window size (which has the sender saturate
the link) in bytes is the product of the bottleneck capacity and the RTT. Thus, in addition
to the necessity of precise RTT estimation for the sake of self-clocking (i.e. adherence to
the conservation of packets principle), the RTT can also be valuable for determining the
ideal maximum window.

2.8 RTT estimation

The RTT is an important component of various functions:

e If reliable transmission is desired, a sender must retransmit packets if they are dropped
somewhere in the network. The common way to realize this is to number packets
consecutively and have the receiver acknowledge each of them; if an ACK is missing
for a long time, the sender must assume that the packet was dropped and retransmit it.
This mechanism, which is called Automatic Repeat Request (ARQ), normally requires a
timer that is initialized with a certain timeout value when a packet is sent. If this value is
too large, it can take an unnecessarily long time until a packet is retransmitted — butif it is
too small, a spurious retransmission could be caused (a packet that reached the receiver
is sent a second time), thereby wasting network capacity and perhaps causing errors
at the receiver side. Neglecting delay fluctuations from queuing and other interfering
factors, the ideal timeout value seems to be one RTT, or at least a function thereof.

e Finding the right timeout value is also important in the context of congestion control
with implicit binary packet loss feedback, that is, when packet loss is interpreted as a

24 CONGESTION CONTROL PRINCIPLES

sign of congestion. Here, detecting loss unnecessarily late (because of a large timeout
value) can cause harm: clearly, in the face of congestion, sources should reduce their
rates as soon as possible. Once again, a timeout value that is too small is also a
disadvantage, as it can lead to spurious congestion detection and therefore cause an
unnecessary rate reduction, and the ideal value is most probably a function of an RTT.

e As we have seen in the previous section, the ‘conservation of packets’ principle
mandates that in equilibrium a new packet is only sent into the network when an old
packet leaves. This can only be realized if the sender has an idea of when packets
leave the network. In a reliable protocol based on ARQ, they do so when the receiver
generates the corresponding ACK; thus, the sender can be sure that it may send a
new packet when it receives an ACK. Since the time from sending a packet to receiv-
ing the corresponding ACK is an RTT, this value has to play a role when changing
the rate (which is in fact a bit more sophisticated than ‘send and wait for ACK’
based transmission — this mode, which is called Stop-and-wait ARQ does not allow
to increase the rate beyond one acknowledged data unit (typically a packet) per RTT).

Measuring the duration between sending a packet and receiving the corresponding ACK
yields the time it took for the packet to reach the receiver and for the ACK to come back;
it is the most recent RTT measurement. Normally, the RTT of interest is in the future:
the system is controlled on the basis of a state that it is assumed to have when the next
packets will be sent. Since the RTT is dictated by things that happen within the network
(delay in queues, path changes and so on), it depends on the state of the system and is not
necessarily equal to the most recent measurement — solely relying on this value is a too
simplistic approach. Rather, a prediction must be made using the history of RTT samples.
This is not necessarily a simple process, as it should ideally reflect the environment (range
of variations in queues, etc.). It is also essential to ensure that an ACK yields a true RTT
and not, say, the time interval between the first transmission of a packet that was later
dropped and the ACK that belongs to its retransmitted copy (Karn and Partridge 1995).

As a common rule of thumb, RTT prediction should be conservative: generally, it can
be said that overestimating the RTT causes less harm than underestimating it. An RTT
estimator should be fairly robust against short dips while ensuring appropriate reaction to
significant peaks.

2.9 Traffic phase effects

In real networks, where there is no fluid-flow model but there are only fixed packets that
either reach a node as a whole or fail completely (this is the essence of the so-called
‘store and forward’ switching deployed in most computer networks today), and where no
two flows can transmit their packets across a single FIFO queue at exactly the same time,
some ugly phenomena occur. Let us take a closer look at some of them — a study of these
problems will show us that even RTT estimation and self-clocking have their downsides.
As a start, consider Figure 2.9 (a). Here, the throughput of three Constant Bit Rate
(CBR) flows is shown. The diagram was obtained by simulation: three sources (nodes 0, 1
and 2) transmitted 1000 byte packets to three sinks (nodes 5, 6 and 7, respectively) across
a single bottleneck. The topology is depicted in Figure 2.10; all links had a capacity of
1 Mbps and a link delay of 1 s. Note that the intention was not to model a realistic scenario

2.9. TRAFFIC PHASE EFFECTS 25

T T T T 3000 T T T T
Throughput 0 —+— Throughput 0 —+—
5000 - Throughput 1 ---x--- - Throughput 1 ---x---

Throughput 2 ---3--- 2500 Throughput 2 ---%--- |

4000 -
2000

i

T
SR
-x

3000 -
1500 -

2000 -

Throughput (kbps)
Throughput (kbps)

1000 -

1000 | {3

10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
(a) Time (s) (b) Time (s)

0
L
AN v
1 % @; Sottensckink :@\%
s s

7

6

Figure 2.10 Topology used to simulate burstiness with CBR flows

(otherwise, 1 s would probably be too much) but merely to illustrate an effect. Source 0
sent a packet to destination 5 every 500 ms, source 1 sent a packet to destination 6 every
300 ms and source 2 sent a packet to destination 7 every 900 ms, which corresponds with
rate values of 16, 26.6 and 8.8 kbps, respectively. Throughput was measured at the receiving
nodes every second.

Since the network is clearly overprovisioned and all link bandwidths are equal, there
is no congestion; therefore, one might expect all the lines in Figure 2.9 to be constant, but
this is only true for the line corresponding with source 1. What this diagram shows is that,
in reality, even a CBR flow does not exhibit constant behaviour when the sampling interval
is not a multiple of its rate (as in the case of flow 1). At first sight, this may merely seem
a bit surprising when creating plots, but it is, in fact, a serious issue that plays a significant
role when any kind of control is executed at time instances that do not appropriately relate
to the control intervals of the involved flows.

A FIFO queue is one such example. In order to make this control come into play, the
same simulation as before was carried out, but this time, the bottleneck link capacity was
set to 16 kbps — clearly, this is not enough to accommodate all flows at the same time. The
throughput plots from this simulation (Figure 2.9 (b)) show that the impact of the FIFO
queue distorted the output even more; the bandwidth is by no means fairly or proportionally

26 CONGESTION CONTROL PRINCIPLES

divided among the flows. Flow 1, for instance, was unable to transmit a single packet to
the receiver after 38 s. It seems that of the 170 packets that were dropped in this simulation
quite a significant fraction belonged to this flow — but it is neither the flow with the highest
nor the one with the lowest rate. Apparently, flow 1 just had the bad luck of transmitting
packets at the wrong time instances (i.e. when the queue was full). This problem is called
a phase effect (Floyd and Jacobson 1991).

2.9.1 Phase effects in daily life

The following real-life example may help you grasp this problem: in some places in Tyrol,
when there is a reason to celebrate, the famous ‘Zillertaler Bauernkrapfen’ (a local dish)
are sold. They only taste good when they are hot, and they are not easy to prepare (Drewes
and Haid 2000); thus, they are not sold all the time. Instead, a dozen become available,
are sold right away, and then it takes a while until the next dozen are ready. Now let us
assume that you are eager for such a dish. You stand in line, wait and it turns out that the
dozen are sold before it is your turn. Since it takes quite a while before the next dozen are
ready and simply standing there means that you miss the rest of the celebration, you leave
the booth and decide to return in half an hour.

Nobody told you that Bauernkrapfen become available exactly every 30 minutes, and so
you end up being among the last people in the line, and once again the dozen are sold before
you can have yours. This phase effect could occur this way forever unless you communicate
with the controlling entity (the cook at the booth) or change your strategy. One possibility
would be to add some randomness and return approximately after 30 minutes. Similarly,
the cook could alleviate the problem by waiting for a certain random time interval before
beginning to cook Zillertaler Bauernkrapfen again. As we will see in the next section, the
latter strategy (adding randomness to servers) was chosen in order to solve this problem in the
Internet (Floyd and Jacobson 1993); interestingly, the other variant (adding randomness to
sources) was also suggested in order to further improve the situation (Diederich et al. 2000).

Note that congestion controlled flows which react on the basis of the RTT are by no
means a better match for this problem than are CBR flows — in fact, things may look even
worse: if, for example, a routing change suddenly causes 10 flows that roughly have the
same RTT to transmit their packets across a saturated link at the same time, and the queue
at the bottleneck can only hold nine packets, one of these 10 flows will experience a packet
drop. This will lead to a sudden rate reduction, thereby making room for the other nine flows
until each of them loses a packet, which means that there is now some headroom for the
single flow to increase its rate again. Chances are that the flows will remain synchronized
like this, and the single flow that experienced packet loss first will eventually obtain a
significantly different network performance than each of the nine other flows. This effect
is also called global synchronization.

2.10 Queue management

As we have seen, traffic phase effects occur when different flows see different performances.
In our previous example, the fact that only nine out of ten flows could fit their first packet
in the queue could be solved by simply increasing the buffer size in the router. It seems that
these effects would not occur or could at least be significantly diminished by increasing

2.10. QUEUE MANAGEMENT 27

the maximum queue length. Since a queue is only meant to compensate for sudden traffic
bursts, one may wonder what would happen if the queue length was endless. Of course,
there is no such thing as an endless buffer, but it could be quite long. Could such a buffer,
together with well-chosen link capacities, prevent packet loss altogether?

2.10.1 Choosing the right queue length

As you may expect, the short and simple answer is ‘no’. There are two reasons for this:
first, the source behaviour that we have so far taken into consideration relies on packet loss
as a congestion indicator — thus, the rate of sources will keep increasing until the queue
length grows beyond its limit, no matter how high that limit is. Second, a queue can always
overflow because of the very nature of network traffic, which usually shows at least some
degree of self-similarity. Without going into further details at this point, we can explain
this effect by looking at rainfall, which shares this property: since there is no guarantee
for an equal number of sunny days and rainy days, you can never have a guarantee that a
dam is large enough. Personally, I believe this to be the reason why we keep hearing about
floods that occur in areas that are already known to be endangered.

There is another reason why just picking a very large number for the maximum queue
length is not a good idea: queuing delay is a significant portion in the overall end-
to-end delay, which should be as small as possible for obvious reasons (just consider
telephony — delay is quite bothersome to users in this application). Remember what I said
on page 8: Queues should generally be kept short. The added delay from queues also nega-
tively influences a congestion control algorithm, which should obtain feedback that reflects
the current state in the network and should not lag behind in time. As we have seen in
Section 2.8, estimation of the RTT plays a major role for proper source behaviour — long
queues distort the RTT samples and render any RTT-based mechanism inefficient.

After this discussion, we still do not know what the ideal maximum queue length is;
it turns out that the proper tuning of this parameter is indeed a tricky issue. Let us look
at a single flow and a single link for a moment. In order to perfectly saturate the link, it
must have ¢ x d bits in transit, where c is the capacity (in bits per second) and d is the
delay of the link (in seconds). Thus, from an end-system performance perspective, links
are best characterized by their bandwidth x delay product.* On the basis of this fact and
the nature of congestion control algorithms deployed in the Internet, a common rule of
thumb says that the queue limit of a router should be set to the bandwidth x delay product,
where ‘bandwidth’ is the link capacity and ‘delay’ is the average RTT of flows that traverse
it. Recently, it has been shown that this rule, which leads to quite a large buffer space in
common Internet backbone routers (e.g. with the common average RTT choice of 250 ms, a
10 Gbps router requires a buffer space of 2.5 Gbits), is actually outdated, and that it would
in fact be better to divide the bandwidth x delay product by the square root of the number
of flows in the network (Appenzeller et al. 2004).

2.10.2 Active queue management

However, even if we use these research results to ideally tune the maximum queue length,
the phase effect from the previous section will not vanish because control is still executed

4This is related to our finding in Section 2.7 that the ideal window size is the bandwidth x RTT product.

28 CONGESTION CONTROL PRINCIPLES

independent of the individual RTTs of flows; in other words, relying on only one such
metric, the average RTT of all flows in the network, does not suffice. What needs to be
done? As already mentioned in the previous section, introducing randomness in one of
the controlling entities is a possible solution. In the case of the Internet, the chosen entity
was the router; (Floyd and Jacobson 1993) describes a mechanism called Random Early
Detection (RED), which is now widely deployed and makes a decision to drop a packet on
the basis of the average queue length and a random function as well as some parameters that
are somewhat hard to tune. RED is a popular example of a class of so-called active queue
management (AQM) mechanisms (Braden et al. 1998). In addition to alleviating traffic
phase effects, a scheme like RED has the advantage of generally keeping the queue size
(and hence end-to-end delay) low while allowing occasional bursts of packets in the queue.
What makes the design of such a scheme a difficult task is the range of possibilities to
choose from: packets can be dropped from the front or the end of the queue, or they can
be picked from the middle (which is usually inefficient because it leads to time-consuming
memory management operations). There is a large variety of possible methods to monitor the
queue size and use it in combination with some randomness to make a decision — functions
that are applied in this context usually have their advantages as well as corresponding disad-
vantages. Perhaps the most-important design goal is scalability: if a mechanism that works
perfectly with, say, ten flows, but ceases to work in the presence of thousands of flows because
router resources do not suffice any longer in such a scenario (e.g. the available memory is
exceeded), it cannot be used as a core element of a network that is as large as the Internet.

2.11 Scalability

Systems can scale in several dimensions — depending on the context, ‘scalability’ could
mean that something works with a small or large amount of traffic, or that it will not cease
to work if link capacities grow. In the context of computer networks, the most common
is related to the number of users, or communication flows, in the system. If something
scales, it is expected to work no matter how many users there are. Quite obviously, Internet
technology turned out to scale very well, as is illustrated by the continuous growth of the
network itself. Therefore, the Internet community has become quite religious about ensuring
scalability at all times — and it appears that they are doing the right thing.

2.11.1 The end-to-end argument

When we are talking about the Internet, the key element of scalability is most certainly
the end-to-end argument. This rule (or rather set of arguments with a common theme) was
originally described in (Saltzer et al. 1984). It is often quoted to say that one should move
complexities ‘out of the network’ (towards endpoints, upwards in the protocol stack) and
keep the network itself as ‘simple as possible’. This interpretation is actually incorrect
because it is a little more restrictive than it should be. Still, it is reasonable to consider it as
a first hint: if a system is designed in such a manner, the argument is clearly not violated.
This is a good thing because strict adherence to the end-to-end argument is regarded as the
primary reason for the immense scalability — and thus, success — of the Internet (Carpenter
1996). Here is the original wording from (Saltzer et al. 1984):

2.11. SCALABILITY 29

The function in question can completely and correctly be implemented only
with the knowledge and help of the application standing at the end points of
the communication system. Therefore, providing that questioned function as
a feature of the communication system itself is not possible. (Sometimes an
incomplete version of the function provided by the communication system may
be useful as a performance enhancement.)

The difference between the original end-to-end argument and their stricter interpretation is
that the argument is focused on application requirements. In other words, while application-
specific functions should not be placed inside the communication system but rather left up
to the applications themselves, strictly communication-specific functions can be arbitrarily
complex. For instance, the end-to-end argument does not prohibit implementing complex
routing algorithms within the network.

The underlying reasoning is applicable to not only computer networks but also to
systems design in general; for example, the design choices upon which the RISC architecture
was built are very similar. When interpreting the last part of the argument (‘Sometimes
an incomplete version...”), the authors of (Sterbenz et al. 2001) concluded that functions
should not be redundantly located in the network, but rather replicated where necessary
only to improve performance. The end-to-end argument has several facets, and, according
to (Saltzer et al. 1998), two complementary goals:

e Higher-level layers, more specific to an application, are free to (and
thus expected to) organize lower-level network resources to achieve
application-specific design goals efficiently (application autonomy).

Lower-level layers, which support many independent applications, should
provide only resources of broad utility across applications, while provid-
ing to applications usable means for effective sharing of resources and
resolution of resource conflicts (network transparency).

If we put this reasoning in the context of some inner network function design (e.g.
AQM), we are still left with a plethora of design choices — all we need to do is ensure
that our mechanism remains broadly applicable and does not fulfil its purpose for a certain
application (or class of applications) only.

2.11.2 Other scalability hazards

Scalability is quite a broad issue; sadly, the end-to-end argument is not all there is to it.
Here are some additional scalability hazards:

e Per-flow state: This is a major hurdle for making any mechanism scale. If a router
needs to identify individual end-to-end flows for any reason (e.g. in order to reserve
bandwidth for the flow), it must maintain a table of such flows. In a connectionless
network, nodes can normally generate packets at any time and also stop doing so
without having to notify routers — thus, the table must be maintained by adding a
timer to each entry, refreshing it when a new packet that belongs to this flow is seen,
and removing extinct entries when the timer expires. This effort grows linearly with
the number of flows in the network, and capacity (processing power or memory)

30 CONGESTION CONTROL PRINCIPLES

constraints therefore impose an upper limit on the maximum number of flows that
can be supported.

As we discussed earlier, traffic phase effects occur because control in routers is
executed on a timescale that is not directly related to the RTT of the end-to-end
flows in the system. In order to eliminate this problem, a router would need to
detect and appropriately treat these individual flows, which requires per-flow state.
This explains why it would be hard to come up with a solution for AQM that is
significantly better than the currently deployed idea of introducing randomness.

e Too much traffic: Even if we assume that the effort of forwarding a packet is fixed and
does not depend on the number of flows in the network, router capacity constraints
still impose an upper limit on the amount of traffic that can be supported. Hence, traffic
that grows significantly with the number of flows can become a scalability hazard. As
an example, consider a peer-to-peer application (like the file-sharing tools we have
all heard of) that requires each involved node to send a lengthy message to all other
nodes every second. With two nodes, we have two packets per second. With three
nodes, we have six packets per second, and with four nodes, we already have twelve
packets per second! Generally, the number of packets per second in the system will
be n(n — 1), where n is the number of nodes; in the common notation of algorithm
runtime complexity, the total traffic therefore scales like O (n?), which is clearly less
scalable than, say, O (n).

It is even possible to eliminate the direct relationship between the amount of network
traffic and the number of nodes. This was done, for example, in the case of RTCP,
which adds signalling of control information to the functionality of the Real-time
Transport Protocol (RTP) by recommending an upper limit for this type of traffic as
a fraction of RTP traffic in the specification (Schulzrinne et al. 2003). The reasoning
behind this is that, if RTCP traffic from every node is, say, not more than 5% of
RTP traffic, then the whole RTCP traffic in the network will never exceed 5% of the
RTP traffic.

e Poorly distributed traffic: No matter how the amount of traffic scales with the number
of flows, if all the traffic is directed towards a single node, it will be overloaded
beyond a certain number of packets (or bytes) per second. Therefore, the traditional
client—server communication model — a dedicated server entity that provides some
service to a multitude of client entities — is limited in scalability; it has been found
that peer-to-peer networks, where each involved entity has an equally important role,
and traffic is hence accordingly distributed among several nodes and not directed to a
single one, are more scalable. Moreover, having a central point of failure is generally
not a good idea.

The potential problem of the client—server model in the last point is frequently exploited
in the Internet by the so-called Distributed Denial-of-Service (DDoS) attacks. Here, the idea
is to flood a server with an enormous amount of traffic from a large number of sources at
the same time. The infamous ‘“TCP SYN’ attack takes this idea a step further by additionally
exploiting the first scalability hazard in the list: TCP SYN packets, which request a new
TCP connection to be opened and therefore lead to per-flow state at the server, are used to
flood the node.

2.12. EXPLICIT FEEDBACK 31

To make things worse, the immense scale of the network and the massive amount
of traffic in its inner parts renders CPU power costly in Internet backbone rou