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Ordered Kronecker Functional Decision
Diagrams—A Data Structure for Representation
and Manipulation of Boolean Functions

Rolf Drechsler,Member, IEEE and Bernd Beckernvember, IEEE

Abstract—Ordered Kronecker functional decision diagrams well and try to combine the advantages of both representations
(OKFDD's) are a data structure for efficient representation and by allowing the use of Shannon decompositions and (positive
manipulation of Boolean functions. OKFDD’s are a generaliza- and negative) Davio decompositions in one and the same
tion of ordered binary decision diagrams (OBDD’s) and ordered decision di Th the data struct has th tential
functional decision diagrams and thus combine the advantages ecision ; lagram. us, the data s.ruc ure has the po er." 1a
of both. In this paper, basic properties of OKFDD's and their 0 dynamically adapt the representation of a Boolean function
efficient representation and manipulation are given. to a given problem.

Starting with elementary manipulation algorithms, we present  From a (more) theoretical point of view, it has been shown
methods for the construction of small OKFDD’s. Our approach yhat there exist certain classes of Boolean functions whose
is based on dynamic variable ordering and decomposition-type OFEDD size i tiall ller than the OBDD
choice. For changing the decomposition type, we use an efficient™~" SIZ€ IS exponen _'a y Sma_ ernan e _rgpresen-
reordering-based method. We briefly discuss the implementation tation of the same function and vice versa [5]. Thus, it is useful
of PUMA, an OKFDD package, which was used in all our to consider a representation, like OKFDD's, that integrate both
experiments. These experiments demonstrate the quality of our OBDD’s and OFDD’s. Furthermore, it has been proved in [4]
methods in comparison to sifting and interleaving for OBDD's. 4+ 4 “restriction” of the OKFDD concept results in families
_ Index Terms—Binary decision diagram (BDD), Boolean func- of functions that lose their efficient representations. It follows
tion, decision diagram, dynamic minimization, logic synthesis, that OKFDD's in full generality should be considered. On the
verification. other hand, based on [1], OKFDD’s are the “most general

type” of ordered decision diagram (ODD’s). In this sense, it is
|. INTRODUCTION interesting and important to also devise effective practical al-
ECISION diagrams (DD's) are often used in CAD Sys\gl]y%rr:thénz:fgr[)r'(sepresentmg and manipulating Boolean functions
ms for efficient representation and manipulation . ‘
tems fo ericie t representation and manipu atp 9" As is well known for OBDD's [10] and OFDD’s [5],
Boolean functions. The most popular data structure in th , - . )
f’KFDD s are also very sensitive to the variable ordering [15],

context is ordered binary decision diagrams (OBDD'’s) [10 . ) . o
. . - nd the computation of an optimal variable ordering is NP-hard
which are used in many applications [11]. Nevertheless, so o " . . .
. In addition to the position of a variable in the ordering, a

relevant classes of Boolean functions cannot be represe L
P 0-called decomposition type has to be chosen for OKFDD’s.

efficiently by OBDD’s [5], [27]. As one alternative, ordere . - : .

: - - \ hus, there is a need for heuristics to choose a suitable variable
functional decision diagrams (OFDD’s) [16], [21] have been . . . ,
. . , . . —ordering and decomposition type list for OKFDD's.
introduced and in the meantime are used in various applica-

tions of xor-based logic synthesis (see, e.g., [13]). If ease In [14], first topology-based heuristics have been presented.

: . . . ese heuristics allow the fast construction of OKFDD’s
manipulation and canonicity is not a main concern, still other . o o - .
. : . - ' rom given circuit descriptions. But often these heuristics fail

types of decision diagrams, like ternary decision diagra

S . .
: - . 0 determine small graphs. In [15], it has been shown that
[28] and (free) Kronecker functional decision diagrams [2&; namic variable ordering methods for OBDD’s [19], [27]

have proven to be useful, especially in the area of technologg(n also be applied to OKFDD's. But the methods presented
mapping for multilevelxor-based circuitry. ‘

Recently, ordered Kronecker functional decision diagrarrtgere were rat.her t.|m'e consuming and thus are only applicable
small circuits within reasonable time bounds.

(OKFDD’s) have been introduced as a means for efficieFﬂ X ) . . .
representation and manipulation of Boolean functions [1 _In this paper, we briefly discuss the implementation of
5tlasic synthesis operations on OKFDD’s and then present

KFDD’ lizati f OBDD’ FDD’ . . . . .
© s are a generalization of O s and O S aséffecnve algorithms to perform dynamic variable ordering and

decomposition-type choice for OKFDD’s. In particular, a new
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ments to clarify the relation between OBDD’s and OKFDD’s
with respect to size and run time. We also demonstrate that
our approach can be helpful for technology mapping, i.e., the @
minimized OKFDD’s can be mapped on field programmable
gate array (FPGA's), as has been proposed in [29]. Using o N
our dynamic methods, we can often reduce the OKFDD ﬂ

size by more than 50%. This simplifies the mapping process - ‘
tremendously. (=) ﬂ (=) R

This paper is structured as follows. OKFDD'’s are introduced
in Section Il. The basic manipulation algorithms are described
in Section IIl. Furthermore, the implementation of PUMAand / ¢ [ [ foog
the main features are discussed. Different methods for the type S type D
minimization of OKFDD’s by dynamic variable ordering and_ _
decomposition-type choice are given in Section V. Experi-9- 1+ Reduction types.
mental results are described in Section V. In Section VI, the
results are summarized. 1) If G consists of a single node labeled with(1), then

G is a KFDD for the constan (1) function.
2) If G has a rooty with label z;, thenG is a KFDD for

Il. ORDERED KRONECKERFUNCTIONAL DECISION DIAGRAMS

In the following, basic definitions of DD’s and OKFDD’s Ti flow(v) T Tifnign(v) © di =S
in particular are presented. Jiow(v) @fifmgh(v) : d; =pD

Definition 1: A DD over X,, := {1, &2, ---, ,} iS @ Jiow(v) @ Ti fuign(v) © di = ND
rooted directed acyclic grapy¥ = (V, E) with vertex set V

1 _ ) _ where fiow(v) (fuigh(v)) is the function represented by
containing two types of verticesionterminalandterminal A the KFDD rooted atow(w)(high(v)).

nonterrr_unal vert_em is labeled with a variable fronX,,, called Of course, a KFDD is an OKFDD iff the underlying DD
the decision variable for v and has exactly two successors,

) . Is ordered.
denoted by loyw), h'gh(v). € V. Al nodes with Iabgla:i a}‘re" A node in a KFDD is called an S-node if it is expanded
denoted as level. A terminal vertexv is labeled with a “O

or “1” and has no successors. The size of a DD, denoted @eihggggg S e?;?/?oozlgggnflz).s:ttiolssC[?g)e %ra(gl:))]_n%dee;;tgr
|DD], is given by its number of nonterminal nodes. b y P '

Further structural restrictions turn out to be important. being an nb-node and the former a pb-node. According to

Definition 2: A DD is freeif each variable is encountered atthe DTL, at every node of a.ﬂxed Igvelm fche .KFDDI the
same decomposition of typg is applied. This directly infers

most once on each path in the DD from the root to a terminﬁIat KFDD’s are a generalization of BDD's and FDD's: if in

vertex. A DD isorderedif it is free and the variables are P :
. . all levels only Shannon decomposition is applied, the KFDD
encountered in the same order on each path in the DD fro . o .
: will be a BDD. If only Davio decompositions are applied,
the root to a terminal vertex.

In the following, letter O will be used to denote 0rdere(i\i.élz;cfui@Dﬁ)I?éjlj}”sfozarnzllnzléDtrllj(?sg?eDze\?i/:Lge an FDD.

DD’s. ; )
DD's can be related to Boolean functions by using the Reductions 'of three different types are used to reduce the
Size of KFDD's.

following well-known decomposition types (given here for an , o .
arbitrary Boolean functiory: B" — B over the variable set 1YP€ 1)~ Delete a node/ whose label is identical to

X,): the label of a noder and whose successors are
e identical to the successors ofand redirect the
f=Tf) + i f! Shannon (S) (1) edges pointing ta’ to point tow.
f=f2@®zf? positive Davio (pD) (2 TypeS) Delete a node whose two outgoing edges

point to the same node’ and connect the
incoming edges of to v'.

wheref0(f}) denotes theofactorof f with respectta;; =0  Type D) Delete a node whose successbigh(v) points

f=ftez f? negative Davio (nD) ()

(z; = 1), and f? is defined asf? := f? @ f}, @ being the to the terminal 0 and connect the incoming
exclusive orR operation. edges of the deleted node fmw(v).
Decomposition types are associated to the variables inln Fig. 1, the graphical representation of reductions of type
X,, with the help of a decomposition-type list (DTld := S and D are shown. While each node in a KFDD is a candidate
(di, -~ -, d,) whered; € {S, pD, nD}. for the application of the reduction type I, only S-nodes (D-
Now, KFDD’s can formally be defined as follows: nodes) are candidates for the application of the reduction type

Definition 3: A KFDD over X,, is given by a DD ovetX,, S (reduction type D). A KFDD igeducediff no reductions
together with a fixed DTLd = (dy, ---, d,,). The function can be applied to the KFDD. Two KFDD'&; and G (with
f&: B™ — B represented by a KFDE¥ over X,, with DTL the same DTL’s) are calledquivalentiff G5 results fromG,
d is defined as follows. by repeated applications of reductions and inverse reductions.
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Empty nodes denote S-nodes
+ denotes pD-nodes
— denotes nD-nodes PN o
}K 6 /é\ /é\ - }5\
Fig. 4. Identification for canonical form for S-nodes.

Erupty nodes denote S-nodes
+ denotes pD-nodes
— denotes nD-nodes e <~ < @
L2
A i ) A
(nD,nD,S)

Fig. 3. Example for OKFDD's with different DTL's. Fig. 5. Identification for canonical form for D-nodes.

A KFDD G5 is called thereductionof a KFDD G iff G, and discussed. Last, we present the main features of our OKFDD
G, are equivalent andy, itself is reduced. package PUMA.

From [15], it is known that reductions can be used to define
canonical representations for not only OBDD’s and OFDD’g  gasic Algorithms
but also for OKFDD’s. )

Example 1: An OKFDD is shown in Fig. 2, where the left 1) Complement EdgesThe size of an OKFDD can be fur-
outgoing edge at each node points figyy)- The OKFDD ther reduc,ed if complement edges (CE’s) are used_analogogsly
represents the fUNCion o4 @1 22T+ ®x1 T3 BT 2oz, The to OBDD’s [8]. Then a node represents a function and its

S-node decomposes the function intar, andasz @ zoTs @ complement at the same time. The_ representation can be
T3, respectively. The latter is in turn decomposed imgoand chosen in a way that it further remains canonical [15]. For
T3 @ x4 through a pD-node labeled with,. The nD-nodex; this, different pairs that represent the same function have to
on the right-hand side results in, and 1. be identified. The corresponding pairs for S- and D-nodes are
In contrast to OBDD's, in OKFDD's, the choice of decomdiven in Figs. 4 and 5, respectively. A dpt ona line symbolizes
position type also influences the size of the representation.2 CE- I—(|)ere, always the left representative is used, i.elpthe
Example 2: Two OKFDD's of size three and four, respec8d9e ("~ edge) must be a regular uncomplemented edge.

tively, are shown in Fig. 3. [The left outgoing edge at each For the storage of the additional information, 1 bit is needed.

node denotesfiyy(y).] Both OKFDD's represent the samePs suggested in [8] and [12], the overhead can be saved if the

function f = x, 29 + 7, 25. The OKFDD on the left-hand side lowest bit of each pointer is used on machines where this is

has the DTL (S, S, pD), and the OKFDD on the right-han@llowed: . '
side has the DTL (nD, nD, S). 2) Boolean Operations on OKFDD’sIn the following, al-

Thus. the choice of the DTL influences the size of the r&orithms for OKFDD’s with fixed variable ordering and a fixed

sulting graph. In [3] and [5], it has been shown that OKFDD'PTL are given. o _ _ .
may have polynomial size if good DTL is chosen, but they First, thexo_R—operat|on is presepted, asit prowdes the b_aS|s
may also have exponential size if the DTLbad for construction of other operations used in the following.

Notice that for two functiong” andg, decomposed by positive

Davio expansion, one has
Ill. BASIC ALGORITHMS AND THEIR P

INTEGRATION IN AN OKFDD PACKAGE

In this section, basic OKFDD manipulation algorithms, F&9="{fo®zif2)® (90 & zi)
their implementation, and their computational complexity are = (fo ® 90) ® zi(f2 ® g2)-
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kfdd zor_kfdd(F,G) { edges, negation can be performed even more efficiently, simply
by setting a complement edge.
Now, using the algorithms for thgor-, AND-, and NOT-
return result; operations, any binary operation can be realized.
} clse if (computed-table has entry (F, G)) { 3) Change of Decomposition Type by Using tker
Operation: As an example, we demonstrate how a Shannon
node can be transformed into a positive Davio node. All other

if (terminal case) {

return result;

else { transformations can be performed analogously.
let v be the top node of (F, G); Let v be a Shannon node (labeled with) that is to be
low(v) = kfdd zor kfdd(Fim) Glowts)); transformed into a positive Davio nodé Then the following

high(v) = kfdd.zor_k fdd(Fragnte); Greahin)): i; dong: the successtmw(v) can be directly .used fdow(v')
) since it already represents the cofactor with respect;te-

if Shannon(v) { 0. For the successanigh(v’), an Xor-operation has to be
if (high(v) == low(v)) return low(v); performed on the successorswto compute thexor of the

} else { two cofactors. This operation can be performed efficiently for
OKFDD'’s as shown before. It follows directly that also the

if (high(v) == t low(v); . . .
if (high(v) ) return low(v); transformation of all nodes of levéfrom Shannon to positive

} Davio can be performed in time quadratic in the size of the
R = find_or_add_unique table(v, low(v), high(v)); OKFDD.
inser_computed_table(F, G, R); _ 4) Restriction of_VariabIes:For an OKFDDG, the restric-
tion G|, =. for variablez; and constant can be computed
return by traversing the graph and performing the corresponding
} substitutions. The case for Shannon nodes is given by [8].
} For the case of positive Davio nodes, the following is done.

If z; = 0, then at each node with label z;, the edge to
high(v) has to be deleted. All edges endinguvimre redirected
to point to low(v). If nodes within degree zero result, they
This equation makes it possible to split up a positivand their outgoing edges are also deleted. Clearly, all this can
Davio node recursively into its left and right subgraphs. Thee done in linear time. If;; = 1, then at each node, with
algorithm for negative Davio nodes is performed analogoushabel z; and subfunctiong, and g;, the following has to be
Altogether, this provides an efficient algorithm for Daviadone. As before, théigh edge has to be deleted; at thsv
nodes. The basigor-operation for Shannon nodes is baseddge, an OKFDD fog ¢ ¢ is rooted, i.e., axor-operation
on the following equation: is executed; and all edges endingrirare redirected to point
_ to low(v). If nodes within degree zero result, they and their
F&9=7(fo®g0)+zilfr & 0)- outgoi(ng) edges are also deleted. Altogether, this can be done
The resulting algorithm foxor-operation on two OKFDD's in quadratic time.
F and@ is sketched in Fig. 6. Analogously to [10], it follows For negative Davio nodes, a similar procedure is required.
that the algorithm has an asymptotic worst case behavior thatVe summarize the results of this subsection in the following
is bounded from above by the product of the OKFDD sizéeorem.
of F and G. Theorem 1:Let G; and GG» be two OKFDD’s (with the
The realization of thexnp-operation turns out to be moresame variable ordering and the same DiLfor the functions
complicated for Davio nodes in comparison to tker- i and fo. Then the following hold.
operation. The following recursive equation holds for positive 1) The negation of an OKFDD can be performed in con-

Fig. 6. Algorithm for xor-operation.

Davio nodes: stant time.
f-9=(fo®zif2) (g0 D z:92) 2) An OKFDD for f; @ f» can be computed in time and
= (fo- 90) ®i((f2- 92) ® (fo - 92) ® (90 - fo)- spaceO(|Gy] - |Gz|).

3) An algorithm for the computation of; - f» and f; +
f2, respectively, has exponential worst case run time
(independent of the implementation). If the number of

This equation again defines a recursive algorithm similar
to the one from Fig. 6, which has exponential worst case
running time [5]. The same r('asult. holds for negative Davio Davio levels is constant, the run time of the algorithm
nodes. However, for OKFDD’s with a constant number of .

. o : becomes polynomial.
levels, where the Davio expansion is performed, the operation _ N ) _
is polynomial since in these cases, the efficient synthesis?) Changing the decomposition type of one v.arlabIeQm the
operations on Shannon nodes can be carried out in the rest OKFDD & has time and space complexiy(|G|%).
of the graph. Changing all decomposition types in an OKFDD needs
that f = 14 f. Thus, the operation requires &oRrR-operation 5) The restriction|,,=. for a variablez; and a constant
with the constant “1.” Since our package uses complemented ¢ can be performed efficiently for OKFDD's.
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a) For Shannon nodes, the algorithm has complexity
o(Gl).

b) For positive (negative) Davio nodes amd= 0
(¢ = 1), the algorithm has complexit@(|G|).

c) For positive (negative) Davio nodes amd= 1
(c = 0), the algorithm has complexit®(|G|?).

Proof: From the above list, 1), 2), the first part of 4),
and 5) follow from the discussion above.

In [5], an example has been constructed where Ake-
synthesis of two polynomial OFDD’s results in an OFDD of
exponential size. Since OKFDD’s are a superset of OFDD’s,
this implies the result for thenD-synthesis. (The result for
the or-synthesis easily follows from 1) and the application of
DeMorgan.)

A trivial method to show that thenD-synthesis remains
polynomial if the number of Davio levels remains constant
is to transform the OKFDD to an OBDD. (Because only a
constant number of operations has to be performed and each

b)

969

The algorithm can be restricted to a single fixed
DTL. (For only Shannon nodes, this results in the
exact algorithm for OBDD minimization presented
in [17].)

Heuristic minimization: For the construction of
OKFDD’s from standard BLIF-files, the package
usesvariable interleaving[18]. This method has
been developed for OBDD'’s but has proven also to
work well for OKFDD'’s [14].

Several methods for dynamic variable ordering
are supported, likesifting and window permutation
(see also Sections IV and V). Additionally, oper-
ations to set an arbitrary variable ordering and/or
decomposition type can be used. This allows one to
integrate problem-specific ordering methods.

The package allows dynamic variable ordering
not only with an upper node limit in the package
but also with respect to a growing factor.

transformation requires only polynomial time [see 4)], this 3) Zero-suppressed OBDD's [22] are integrated.

can be done efficiently.) ThenD-operation on OBDD’s has
polynomial worst case behavior, and after the-operation,

4) The package supports an interactive interface (see
Fig. 7). A noncomplete list of features is given in the

the OBDD is transformed back in an OKFDD (again in following.
polynomial time).
The second part of 4) again follows from an example given a) It can print a profile of the considered graph. This

in [5].

This proves the assertions of the theorem. O

profile distinguishes between different node types.

b) It can also easily be run on alphanumerical termi-
nals.
B. Implementation of an OKFDD Package c) Several heuristic methods for dynamic variable
1) Technical Details:First, programming techniques and ordering with various parameters can be chosen.
methods of implementation used to speed up the package are d) The exact algorithm can be applied to a subset
described. The methods are similar to other packages used for of all variables. Thus, large graphs can locally be
representation and manipulation of OBDD’s and OFDD’s [2], optimized.
[8], [23]. Hence, these techniques are only briefly reviewed.
For the fast availability of the functions, hash-based
unique tableis used to store the nodes. domputed tablés
IV. DYNAMIC VARIABLE ORDERING METHODS

implemented for the optimization of the synthesis algorithms.
The memory management is done garbage collection

While the variable ordering plays a dominant role in the

The nodes are only deleted if the storage place is needed iti#ntification of the minimal OBDD representation of the func-
other nodes. Thus, the results need not be recomputed egohs, in OKFDD's, both the ordering and the decomposition
time if they were used earlier on. By the unique table, diffetype are important. Depending on the order of the variables
ent OKFDD'’s cansharethe same sub-OKFDD’s. Therefore,and the particular decomposition among the possible three, the
several functions can efficiently be represented at the sagige of the OKFDD can vary from linear to exponential [3],

time. [5].
2) Features of the Package PUMAThe methods  de-
scribed above have been implemented as the OKFDD package

PUMA.! The most important features of the package are tAe EXchange of Neighboring Variables

following.

It is well known that in the case of OFDD’s and OBDD'’s,

1) The package supports Berkeley Logic Interchange Fdhe size of the decision diagram can be minimized by exchange

mat (BLIF) as standard input format.

2) Several methods for finding good variable orderings al
decomposition types can be used.

a) Exact minimization:The algorithm for exact mini-

mization of OKFDD’s computes an OKFDD with a

of adjacent variables. In [15], it has been proven that this idea
e be extended to OKFDD'’s. Therefore, it is also possible to
use all techniques based on exchanging of adjacent variables
for OKFDD's. The general case for the exchange of a variable
¢ and an adjacent variablgis shown in Fig. 8. Notice that

the exchange pattern is independent of the decomposition type
of the nodes. The exchange is performed very quickly since

1PUMA is available by ftp. For more details, contact the authors iny edges must be redirected. In this approach, complemented
(name @informatik.uni-freiburg.de. edges are also used.

minimal number of internal nodes (including CE’s)
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Command > S
DTL-Sifting

DD-SIZE : 308 =>

6{N} 12{N} 11{N} 1{S} 7{S} 2{s} 8{s} 3{s} 9{s} 4{s} 10{N} 5{N}
DD-SIZE : 52

SHELL-time : 0.89 sec
Command > 0O

All: PROFILE_LIST:

<06_I> with label 6 has 2 nodes NNNNNNNNNNN

<12_I> with label 12 has 2 nodes NNNNNNNNNNN

<11_I> with label 11 has 2 nodes NNNNNNNNNNN

<01_I> with label 1 has 6 nodes 555SSSSSSS5SSSSSSSS8SSSSSSSSSSSSSS
<07_I> with label 7 has 6 nodes 5555SSSSSS5555SSSSSSSSSSSSSSSSSSSS
<02_I> with label 2 has 9 nodes SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS55555SS5SSSSSSSS
<08_I> with label 8 has 5 nodes SSSSSSS8SSSSSSSSSSSSSSSSSSSS
<03_I> with label 3 has 7 nodes SSS5S55S5555S555555S55SS55S555S5SSS8SSSS8S
<09_I> with label 9 has 4 nodes SSSSSSSS5S58SSSSSSSSSSSS

<04_I> with label 4 has 5 nodes SSSSSSSSSSS8SSSSSSSSSSSSSSSS
<10_I> with label 10 has 3 nodes NNNNNNNNNNNNNNNNN

<05_I> with label 5 has 1 nodes NNNNNN

Number of supported vars: 12

Vars: 12

Quts: 7

Size: b2

SHELL-time : 0.09 sec

Fig. 7. Interactive interface.

) > ® @ ®
i ol
O, ©, (=) ()
h fa /3 Ja h f3 f fs

S vD nD

) . . Fig. 9. Different cases for bottom level.
Fig. 8. Exchange ofth and adjacent variable.

B. Change of Decomposition Type by Reordering Experiments have shown that this method is superior to the
In the following, we discuss a method that is based gHimple method based oror-operations of the successors. On

reordering: variablex; is moved to the bottom level of aV€rage, the new method is two times faster.

the OKFDD by exchange of neighboring variables. In the

bottom level, there exists exactly one node (due to CE’s). .

The different cases for Shannon and positive and negative DTL Sifting

Davio nodes are shown in Fig. 9 for the functien. Then In the last few years, several methods for dynamic variable
the decomposition type of this single node can easily lmedering for OBDD’s have been presented and intensively
changed as follows: the type of the node is changed and #stadied [19], [27]. The most promising approach is #iféing
corresponding modifications on the CE’s have to be performedgorithm [27]. By the sifting algorithm, the variables are

In some cases, an additional depth first search (DFS) rsorted into decreasing order based on the number of nodes
must be used to restore the canonicity of the OKFDD, i.eaf each level, and then each variable is traversed through the
the labels at the edges have to be changed. This DFSdigected acyclic graph in order to locate its locally optimal
needed if a transformation from (or to) negative Davio iposition while all other variables remain fixed.

performed, since in this case, the incoming edges are affectedn [15], a first dynamic method has been proposed, but
The transformation between Shannon and positive Davio, itnis infeasible for practical applications since it is too time
contrast, is a local operation. consuming.
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TABLE | TABLE 1
ComPARISON OF SIFTED OKFDD's anp OBDD’s ComPARISON OF SIFTED OKFDD's anp OBDD’s

name ) OKFDD-sifting OBDD-sifting [ interleaving name in | out | OBDD | OKFDD
time size max | time size max  time size max C439 36 7 1.9 11

€432 8| 1852 | 10000 | 4| 1331 | 10000 8 31177 | 210000
€880 37| 8907 | 20000 | 23| 9118 | 25000 11 8634 | 35000 Ca99 | 4ar 32 18 134
C1355 668 | 19217 | 110000 | 341 | 37960 | 155000 | 2370 . 40657 . 180000 880 | 60 26 9.1 4.0
Cl1o08 40| 5523 | 20000 | 49 9411 | 30000 | 8| L7121 90000 CL355 | AL} 32 362 13.4
C2670 . 82| 5200 | 23000 | 58| 6749 | 25000 1| 26303| 40000 C1908 | 33| 25 124 3.8
C3540 647 | 57300 | 270000 | 827 | 59911 | 310000 | 63 | 153388 | 1100000 C2670 | 233 | 140 6.6 1.4
C5315 22| 2284 | 10000 | 16| 2024 | 20000 5| 51777 | 145000 3540 1 501 922 279 22.4
C5315 | 178 | 123 3.1 1.3
Based on the methods described in the last two subsections, 7552 | 207 | 108 82 30
we use a new method for dynamic variable ordering. (Its prac- st23 ) 91 T 8T 13
ticability will be shown later by experiments in Section V.) pair 173 | 1371 45 19
Our method works similar to the sifting algorithm on rot 137 | 107 5.0 3.2
OBDD'’s, but for each variable, we try each of the three total 164.0 70.2

different decompositions. (The variable is tested at all positions
with a fixed decomposition type; then the decomposition type
is changed and the variable again is tested at all positiofsst on average, the resulting graphs are very large, and
and so on.) Thus, our method takes approximately three tintae method also needs a large number of nodes during the

longer than “normal” sifting. construction.
In a second series of experiments, we applied DTL sifting
V. EXPERIMENTAL RESULTS until no further improvement could be obtained. In this exper-

Cilg;nent, we only consider the graph sizes to give an impression

In this se_ctlon, we prese_nt experimental r(_esults for ben of the savings that can be obtained by OKFDD's. Our results
mark functions. All experiments were carried out on the . : : ;
. . ) In comparison to the OBDD results obtained in [27] are given
package PUMA. All run times are given in CPU seconds an . . . :
. In Table Il. (The sizes are given in units of thousand nodes.)

an HP 9000/710 workstation.

First, we compare construction algorithms based on oﬁféﬂ??];?n(eouo denotes the number of inputs (outputs) of

OKFDD sifting (presented in the last section) with construc- : : i
: ; e , : . . Notice that we used a very simple strategy for our sifting
tion using sifting for OBDD’s [27] and variable interleaving . . .

algorithm. In the meantime, more clever heuristics have been

for OBDD’s [18]. The results for some of the benChmarkaeveloped that, e.g., make use of symmetry [24]-[26]. These

from [.9] are given in Table |. (We list only the CIrCUItsideas can be applied directly to OKFDD’s. But already, the
for which interleaving could also construct the OBDD.) The. ) ; : .

; . : Simple strategies turn out to be very helpful: The integration
names of the corresponding benchmarks are given in the fir

column. ColumnOKFDD sifting (OBDD sifting, interleaviny of only a few D-nodes in an OBDD can tremendously reduce

gives the results for graph construction based on OKFDtBe size of the representatpn. For example, the best OB.DD
sifting (OBDD sifting, variable interleaving). For OKFDD’s size for C1355 known so far is 25866 nodes [6], [25]. Starting

the initial DTL consisted of type S only, i.e., we started with gom a nonoptimized OBDD and applying DTL sifting, only

pure OBDD. Davio nodes were introduced by OKFDD sifting?onirﬁ)lD'le;ng;;nﬁon d[;—slezlseielés;?tegiroe;ted, and the size is reduced
In columnmax,the maximum number of nodes needed during Lasi/ we considered techgn.ologil mapping for FPGA's

the construction is given. Sifting was performed if the number . ; ,
of nodes became larger than 10000, and again after e%r(]:h[zg]’ a method for FPGA design using OKFDD's has

. . . éen presented. We compare our results for larger circuits
doubling of the graph size. Colunsize denotes the number " g
. ith the most powerful heuristic from [29] (see Table IlI).
of nodes needed for the representation of the outputs of the

benchmark after the construction. (Notice that we wlid try fie results from [29] measured in number of nodes are

to minimize the size by dynamic variable ordering.) Columf V" N column SPW The results obtained by dynamic

. . . variable ordering and the execution times are given in the last
time denotes the overall run time needed for the construction. ] .
. . . two columns. As can easily be seen, our approach obtains

As can easily be seen, the construction algorithm that makes . . . -
o . . much better results in all considered cases in negligible
use of OKFDD sifting never needs more than twice the tm}(Ia

o
of the one using OBDD sifting. For benchmarks C3540 anlén gt.)ta':iaredsoggvi%igtlzhnlﬁirgséinr?c?irf?e;h?hne ?gf 'irr?pm\rlggirs‘t
C1908, the construction based on OKFDD sifting is even ' Y, b pping p
f tremendously.
aster.
For all considered circuits, the numberax is smaller or
equal for OKFDD sifting, i.e., the graphs remain small during
the construction. The increase in size during construction isIn this paper, the efficiency of Kronecker functional decision

one major drawback of variable interleaving. Although vergliagrams as a more compact decision diagram than BDD's or

VI. CONCLUSIONS
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Fig. 10. OKFDD representation for C1355.

TABLE 111
ResuLTs FOR FPGA DESIGN

32
64
124
240
232
448
432
832
800
1536
1472
1408
1344
865
833
801
769
465
769
737
705
256
128
353
337
321
305
64
145
193
177
161
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Furthermore, the package PUMA for efficient representation
and manipulation of Boolean functions by this data structure
was introduced. Efficient algorithms were presented that make
fast construction and manipulation of OKFDD’s possible. Ad-
ditionally, the complexity of the algorithms has been analyzed.
We investigated dynamic methods for finding good variable
orderings and decomposition-type lists of OKFDD'’s.

The canonicity of the OKFDD’s and efficient construction
and manipulation techniques presented here make OKFDD’s a
prime candidate for utilization in applications where OBDD'’s
as a data structure for Boolean functions have been the main

FDD’s was shown. KFDD's as a generalization of BDD’s angonstruct. Applications in synthesis and verification as well as
FDD’s always will be more compact than the two, and thitechnology mapping to various FPGA architectures are among
was confirmed through experimental results.

those where OKFDD'’s can be utilized.
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