
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998 965

Ordered Kronecker Functional Decision
Diagrams—A Data Structure for Representation

and Manipulation of Boolean Functions
Rolf Drechsler,Member, IEEE, and Bernd Becker,Member, IEEE

Abstract—Ordered Kronecker functional decision diagrams
(OKFDD’s) are a data structure for efficient representation and
manipulation of Boolean functions. OKFDD’s are a generaliza-
tion of ordered binary decision diagrams (OBDD’s) and ordered
functional decision diagrams and thus combine the advantages
of both. In this paper, basic properties of OKFDD’s and their
efficient representation and manipulation are given.

Starting with elementary manipulation algorithms, we present
methods for the construction of small OKFDD’s. Our approach
is based on dynamic variable ordering and decomposition-type
choice. For changing the decomposition type, we use an efficient
reordering-based method. We briefly discuss the implementation
of PUMA, an OKFDD package, which was used in all our
experiments. These experiments demonstrate the quality of our
methods in comparison to sifting and interleaving for OBDD’s.

Index Terms—Binary decision diagram (BDD), Boolean func-
tion, decision diagram, dynamic minimization, logic synthesis,
verification.

I. INTRODUCTION

DECISION diagrams (DD’s) are often used in CAD sys-
tems for efficient representation and manipulation of

Boolean functions. The most popular data structure in this
context is ordered binary decision diagrams (OBDD’s) [10],
which are used in many applications [11]. Nevertheless, some
relevant classes of Boolean functions cannot be represented
efficiently by OBDD’s [5], [27]. As one alternative, ordered
functional decision diagrams (OFDD’s) [16], [21] have been
introduced and in the meantime are used in various applica-
tions of XOR-based logic synthesis (see, e.g., [13]). If ease of
manipulation and canonicity is not a main concern, still other
types of decision diagrams, like ternary decision diagrams
[28] and (free) Kronecker functional decision diagrams [20],
have proven to be useful, especially in the area of technology
mapping for multilevelXOR-based circuitry.

Recently, ordered Kronecker functional decision diagrams
(OKFDD’s) have been introduced as a means for efficient
representation and manipulation of Boolean functions [15].
OKFDD’s are a generalization of OBDD’s and OFDD’s as

Manuscript received February 20, 1996; revised December 17, 1997. This
paper was recommended by Associate Editor M. Fujita.

R. Drechsler is with the Institute of Computer Science, Albert-Ludwigs
University, Freiburg 79110 Germany (e-mail: drechsle@informatik.uni-
freiburg.de).

B. Becker is with the University of Freiburg im Breisgau, Freiburg 79110
Germany (e-mail: becker@informatik.uni-freiburg.de).

Publisher Item Identifier S 0278-0070(98)08489-9.

well and try to combine the advantages of both representations
by allowing the use of Shannon decompositions and (positive
and negative) Davio decompositions in one and the same
decision diagram. Thus, the data structure has the potential
to dynamically adapt the representation of a Boolean function
to a given problem.

From a (more) theoretical point of view, it has been shown
that there exist certain classes of Boolean functions whose
OFDD size is exponentially smaller than the OBDD represen-
tation of the same function and vice versa [5]. Thus, it is useful
to consider a representation, like OKFDD’s, that integrate both
OBDD’s and OFDD’s. Furthermore, it has been proved in [4]
that a “restriction” of the OKFDD concept results in families
of functions that lose their efficient representations. It follows
that OKFDD’s in full generality should be considered. On the
other hand, based on [1], OKFDD’s are the “most general
type” of ordered decision diagram (ODD’s). In this sense, it is
interesting and important to also devise effective practical al-
gorithms for representing and manipulating Boolean functions
with OKFDD’s.

As is well known for OBDD’s [10] and OFDD’s [5],
OKFDD’s are also very sensitive to the variable ordering [15],
and the computation of an optimal variable ordering is NP-hard
[7]. In addition to the position of a variable in the ordering, a
so-called decomposition type has to be chosen for OKFDD’s.
Thus, there is a need for heuristics to choose a suitable variable
ordering and decomposition type list for OKFDD’s.

In [14], first topology-based heuristics have been presented.
These heuristics allow the fast construction of OKFDD’s
from given circuit descriptions. But often these heuristics fail
to determine small graphs. In [15], it has been shown that
dynamic variable ordering methods for OBDD’s [19], [27]
can also be applied to OKFDD’s. But the methods presented
there were rather time consuming and thus are only applicable
to small circuits within reasonable time bounds.

In this paper, we briefly discuss the implementation of
basic synthesis operations on OKFDD’s and then present
effective algorithms to perform dynamic variable ordering and
decomposition-type choice for OKFDD’s. In particular, a new
method for exchanging the decomposition type of a variable
is introduced. Taken together, we succeeded in the application
of dynamic methods also to larger examples without spending
too much time.

We briefly describe the features of our OKFDD package,
PUMA. Using this package, we present a large set of experi-

0278–0070/98$10.00 1998 IEEE



966 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

ments to clarify the relation between OBDD’s and OKFDD’s
with respect to size and run time. We also demonstrate that
our approach can be helpful for technology mapping, i.e., the
minimized OKFDD’s can be mapped on field programmable
gate array (FPGA’s), as has been proposed in [29]. Using
our dynamic methods, we can often reduce the OKFDD
size by more than 50%. This simplifies the mapping process
tremendously.

This paper is structured as follows. OKFDD’s are introduced
in Section II. The basic manipulation algorithms are described
in Section III. Furthermore, the implementation of PUMA and
the main features are discussed. Different methods for the
minimization of OKFDD’s by dynamic variable ordering and
decomposition-type choice are given in Section IV. Experi-
mental results are described in Section V. In Section VI, the
results are summarized.

II. ORDERED KRONECKERFUNCTIONAL DECISION DIAGRAMS

In the following, basic definitions of DD’s and OKFDD’s
in particular are presented.

Definition 1: A DD over is a
rooted directed acyclic graph with vertex set V
containing two types of vertices:nonterminaland terminal. A
nonterminal vertex is labeled with a variable from , called
the decision variable,for and has exactly two successors,
denoted by low , high . All nodes with label are
denoted as level. A terminal vertex is labeled with a “0”
or “1” and has no successors. The size of a DD, denoted by

, is given by its number of nonterminal nodes.
Further structural restrictions turn out to be important.
Definition 2: A DD is free if each variable is encountered at

most once on each path in the DD from the root to a terminal
vertex. A DD is ordered if it is free and the variables are
encountered in the same order on each path in the DD from
the root to a terminal vertex.

In the following, letter O will be used to denote ordered
DD’s.

DD’s can be related to Boolean functions by using the
following well-known decomposition types (given here for an
arbitrary Boolean function over the variable set

):

Shannon (S) (1)

positive Davio (pD) (2)

negative Davio (nD) (3)

where denotes thecofactorof with respect to
, and is defined as , being the

exclusiveOR operation.
Decomposition types are associated to the variables in

with the help of a decomposition-type list (DTL)
where .

Now, KFDD’s can formally be defined as follows:
Definition 3: A KFDD over is given by a DD over

together with a fixed DTL, . The function
represented by a KFDD over with DTL

is defined as follows.

Fig. 1. Reduction types.

1) If consists of a single node labeled with , then
is a KFDD for the constant function.

2) If has a root with label , then is a KFDD for

S
pD
nD

where is the function represented by
the KFDD rooted atlow (high ).

Of course, a KFDD is an OKFDD iff the underlying DD
is ordered.

A node in a KFDD is called an S-node if it is expanded
by Shannon decomposition (1). It is called a D-node if it
is expanded by Davio decompositions [(2) or (3)], the latter
being an nD-node and the former a pD-node. According to
the DTL, at every node of a fixed levelin the KFDD, the
same decomposition of type is applied. This directly infers
that KFDD’s are a generalization of BDD’s and FDD’s: if in
all levels only Shannon decomposition is applied, the KFDD
will be a BDD. If only Davio decompositions are applied,
i.e., for all , the KFDD will be an FDD.
Analogously, pFDD’s and nFDD’s are defined.

Reductions of three different types are used to reduce the
size of KFDD’s.

Type I) Delete a node whose label is identical to
the label of a node and whose successors are
identical to the successors ofand redirect the
edges pointing to to point to .

Type S) Delete a node whose two outgoing edges
point to the same node and connect the
incoming edges of to .

Type D) Delete a node whose successorhigh points
to the terminal 0 and connect the incoming
edges of the deleted node tolow .

In Fig. 1, the graphical representation of reductions of type
S and D are shown. While each node in a KFDD is a candidate
for the application of the reduction type I, only S-nodes (D-
nodes) are candidates for the application of the reduction type
S (reduction type D). A KFDD isreducediff no reductions
can be applied to the KFDD. Two KFDD’s and (with
the same DTL’s) are calledequivalentiff results from
by repeated applications of reductions and inverse reductions.



DRECHSLER AND BECKER: ORDERED KRONECKER FUNCTIONAL DECISION DIAGRAMS 967

Fig. 2. Example for OKFDD.

Fig. 3. Example for OKFDD’s with different DTL’s.

A KFDD is called thereductionof a KFDD iff and
are equivalent and itself is reduced.

From [15], it is known that reductions can be used to define
canonical representations for not only OBDD’s and OFDD’s
but also for OKFDD’s.

Example 1: An OKFDD is shown in Fig. 2, where the left
outgoing edge at each node points to . The OKFDD
represents the function . The
S-node decomposes the function into and

, respectively. The latter is in turn decomposed intoand
through a pD-node labeled with . The nD-node

on the right-hand side results in and 1.
In contrast to OBDD’s, in OKFDD’s, the choice of decom-

position type also influences the size of the representation.
Example 2: Two OKFDD’s of size three and four, respec-

tively, are shown in Fig. 3. [The left outgoing edge at each
node denotes .] Both OKFDD’s represent the same
function . The OKFDD on the left-hand side
has the DTL (S, S, pD), and the OKFDD on the right-hand
side has the DTL (nD, nD, S).

Thus, the choice of the DTL influences the size of the re-
sulting graph. In [3] and [5], it has been shown that OKFDD’s
may have polynomial size if agoodDTL is chosen, but they
may also have exponential size if the DTL isbad.

III. B ASIC ALGORITHMS AND THEIR

INTEGRATION IN AN OKFDD PACKAGE

In this section, basic OKFDD manipulation algorithms,
their implementation, and their computational complexity are

Fig. 4. Identification for canonical form for S-nodes.

Fig. 5. Identification for canonical form for D-nodes.

discussed. Last, we present the main features of our OKFDD
package PUMA.

A. Basic Algorithms

1) Complement Edges:The size of an OKFDD can be fur-
ther reduced if complement edges (CE’s) are used analogously
to OBDD’s [8]. Then a node represents a function and its
complement at the same time. The representation can be
chosen in a way that it further remains canonical [15]. For
this, different pairs that represent the same function have to
be identified. The corresponding pairs for S- and D-nodes are
given in Figs. 4 and 5, respectively. A dot on a line symbolizes
a CE. Here, always the left representative is used, i.e., thelow
edge ( edge) must be a regular uncomplemented edge.

For the storage of the additional information, 1 bit is needed.
As suggested in [8] and [12], the overhead can be saved if the
lowest bit of each pointer is used on machines where this is
allowed.

2) Boolean Operations on OKFDD’s:In the following, al-
gorithms for OKFDD’s with fixed variable ordering and a fixed
DTL are given.

First, theXOR-operation is presented, as it provides the basis
for construction of other operations used in the following.
Notice that for two functions and , decomposed by positive
Davio expansion, one has



968 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

Fig. 6. Algorithm for XOR-operation.

This equation makes it possible to split up a positive
Davio node recursively into its left and right subgraphs. The
algorithm for negative Davio nodes is performed analogously.
Altogether, this provides an efficient algorithm for Davio
nodes. The basicXOR-operation for Shannon nodes is based
on the following equation:

The resulting algorithm forXOR-operation on two OKFDD’s
and is sketched in Fig. 6. Analogously to [10], it follows

that the algorithm has an asymptotic worst case behavior that
is bounded from above by the product of the OKFDD sizes
of and .

The realization of theAND-operation turns out to be more
complicated for Davio nodes in comparison to theXOR-
operation. The following recursive equation holds for positive
Davio nodes:

This equation again defines a recursive algorithm similar
to the one from Fig. 6, which has exponential worst case
running time [5]. The same result holds for negative Davio
nodes. However, for OKFDD’s with a constant number of
levels, where the Davio expansion is performed, the operation
is polynomial since in these cases, the efficient synthesis
operations on Shannon nodes can be carried out in the rest
of the graph.

The negation of a function can be computed by observing
that . Thus, the operation requires anXOR-operation
with the constant “1.” Since our package uses complemented

edges, negation can be performed even more efficiently, simply
by setting a complement edge.

Now, using the algorithms for theXOR-, AND-, and NOT-
operations, any binary operation can be realized.

3) Change of Decomposition Type by Using theXOR-
Operation: As an example, we demonstrate how a Shannon
node can be transformed into a positive Davio node. All other
transformations can be performed analogously.

Let be a Shannon node (labeled with) that is to be
transformed into a positive Davio node. Then the following
is done: the successorlow can be directly used forlow
since it already represents the cofactor with respect to
. For the successorhigh , an XOR-operation has to be

performed on the successors ofto compute theXOR of the
two cofactors. This operation can be performed efficiently for
OKFDD’s as shown before. It follows directly that also the
transformation of all nodes of levelfrom Shannon to positive
Davio can be performed in time quadratic in the size of the
OKFDD.

4) Restriction of Variables:For an OKFDD , the restric-
tion for variable and constant can be computed
by traversing the graph and performing the corresponding
substitutions. The case for Shannon nodes is given by [8].
For the case of positive Davio nodes, the following is done.
If , then at each node with label , the edge to
high has to be deleted. All edges ending inare redirected
to point to low . If nodes within degree zero result, they
and their outgoing edges are also deleted. Clearly, all this can
be done in linear time. If , then at each node, with
label and subfunctions and , the following has to be
done. As before, thehigh edge has to be deleted; at thelow
edge, an OKFDD for is rooted, i.e., anXOR-operation
is executed; and all edges ending inare redirected to point
to low . If nodes within degree zero result, they and their
outgoing edges are also deleted. Altogether, this can be done
in quadratic time.

For negative Davio nodes, a similar procedure is required.
We summarize the results of this subsection in the following

theorem.
Theorem 1: Let and be two OKFDD’s (with the

same variable ordering and the same DTL) for the functions
and . Then the following hold.

1) The negation of an OKFDD can be performed in con-
stant time.

2) An OKFDD for can be computed in time and
space .

3) An algorithm for the computation of and
, respectively, has exponential worst case run time

(independent of the implementation). If the number of
Davio levels is constant, the run time of the algorithm
becomes polynomial.

4) Changing the decomposition type of one variable in the
OKFDD has time and space complexity .
Changing all decomposition types in an OKFDD needs
an algorithm with exponential worst case behavior.

5) The restriction for a variable and a constant
can be performed efficiently for OKFDD’s.



DRECHSLER AND BECKER: ORDERED KRONECKER FUNCTIONAL DECISION DIAGRAMS 969

a) For Shannon nodes, the algorithm has complexity
.

b) For positive (negative) Davio nodes and
( ), the algorithm has complexity .

c) For positive (negative) Davio nodes and
( ), the algorithm has complexity .

Proof: From the above list, 1), 2), the first part of 4),
and 5) follow from the discussion above.

In [5], an example has been constructed where theAND-
synthesis of two polynomial OFDD’s results in an OFDD of
exponential size. Since OKFDD’s are a superset of OFDD’s,
this implies the result for theAND-synthesis. (The result for
the OR-synthesis easily follows from 1) and the application of
DeMorgan.)

A trivial method to show that theAND-synthesis remains
polynomial if the number of Davio levels remains constant
is to transform the OKFDD to an OBDD. (Because only a
constant number of operations has to be performed and each
transformation requires only polynomial time [see 4)], this
can be done efficiently.) TheAND-operation on OBDD’s has
polynomial worst case behavior, and after theAND-operation,
the OBDD is transformed back in an OKFDD (again in
polynomial time).

The second part of 4) again follows from an example given
in [5].

This proves the assertions of the theorem.

B. Implementation of an OKFDD Package

1) Technical Details:First, programming techniques and
methods of implementation used to speed up the package are
described. The methods are similar to other packages used for
representation and manipulation of OBDD’s and OFDD’s [2],
[8], [23]. Hence, these techniques are only briefly reviewed.

For the fast availability of the functions, ahash-based
unique tableis used to store the nodes. Acomputed tableis
implemented for the optimization of the synthesis algorithms.

The memory management is done bygarbage collection.
The nodes are only deleted if the storage place is needed for
other nodes. Thus, the results need not be recomputed each
time if they were used earlier on. By the unique table, differ-
ent OKFDD’s canshare the same sub-OKFDD’s. Therefore,
several functions can efficiently be represented at the same
time.

2) Features of the Package PUMA:The methods de-
scribed above have been implemented as the OKFDD package
PUMA.1 The most important features of the package are the
following.

1) The package supports Berkeley Logic Interchange For-
mat (BLIF) as standard input format.

2) Several methods for finding good variable orderings and
decomposition types can be used.

a) Exact minimization:The algorithm for exact mini-
mization of OKFDD’s computes an OKFDD with a
minimal number of internal nodes (including CE’s).

1PUMA is available by ftp. For more details, contact the authors at
hnamei@informatik.uni-freiburg.de.

The algorithm can be restricted to a single fixed
DTL. (For only Shannon nodes, this results in the
exact algorithm for OBDD minimization presented
in [17].)

b) Heuristic minimization: For the construction of
OKFDD’s from standard BLIF-files, the package
uses variable interleaving [18]. This method has
been developed for OBDD’s but has proven also to
work well for OKFDD’s [14].

Several methods for dynamic variable ordering
are supported, likesifting and window permutation
(see also Sections IV and V). Additionally, oper-
ations to set an arbitrary variable ordering and/or
decomposition type can be used. This allows one to
integrate problem-specific ordering methods.

The package allows dynamic variable ordering
not only with an upper node limit in the package
but also with respect to a growing factor.

3) Zero-suppressed OBDD’s [22] are integrated.

4) The package supports an interactive interface (see
Fig. 7). A noncomplete list of features is given in the
following.

a) It can print a profile of the considered graph. This
profile distinguishes between different node types.

b) It can also easily be run on alphanumerical termi-
nals.

c) Several heuristic methods for dynamic variable
ordering with various parameters can be chosen.

d) The exact algorithm can be applied to a subset
of all variables. Thus, large graphs can locally be
optimized.

IV. DYNAMIC VARIABLE ORDERING METHODS

While the variable ordering plays a dominant role in the
identification of the minimal OBDD representation of the func-
tions, in OKFDD’s, both the ordering and the decomposition
type are important. Depending on the order of the variables
and the particular decomposition among the possible three, the
size of the OKFDD can vary from linear to exponential [3],
[5].

A. Exchange of Neighboring Variables

It is well known that in the case of OFDD’s and OBDD’s,
the size of the decision diagram can be minimized by exchange
of adjacent variables. In [15], it has been proven that this idea
can be extended to OKFDD’s. Therefore, it is also possible to
use all techniques based on exchanging of adjacent variables
for OKFDD’s. The general case for the exchange of a variable

and an adjacent variable is shown in Fig. 8. Notice that
the exchange pattern is independent of the decomposition type
of the nodes. The exchange is performed very quickly since
only edges must be redirected. In this approach, complemented
edges are also used.



970 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

Fig. 7. Interactive interface.

Fig. 8. Exchange ofith and adjacent variable.

B. Change of Decomposition Type by Reordering

In the following, we discuss a method that is based on
reordering: variable is moved to the bottom level of
the OKFDD by exchange of neighboring variables. In the
bottom level, there exists exactly one node (due to CE’s).
The different cases for Shannon and positive and negative
Davio nodes are shown in Fig. 9 for the function. Then
the decomposition type of this single node can easily be
changed as follows: the type of the node is changed and the
corresponding modifications on the CE’s have to be performed.
In some cases, an additional depth first search (DFS) run
must be used to restore the canonicity of the OKFDD, i.e.,
the labels at the edges have to be changed. This DFS is
needed if a transformation from (or to) negative Davio is
performed, since in this case, the incoming edges are affected.
The transformation between Shannon and positive Davio, in
contrast, is a local operation.

Fig. 9. Different cases for bottom level.

Experiments have shown that this method is superior to the
simple method based onXOR-operations of the successors. On
average, the new method is two times faster.

C. DTL Sifting

In the last few years, several methods for dynamic variable
ordering for OBDD’s have been presented and intensively
studied [19], [27]. The most promising approach is thesifting
algorithm [27]. By the sifting algorithm, the variables are
sorted into decreasing order based on the number of nodes
at each level, and then each variable is traversed through the
directed acyclic graph in order to locate its locally optimal
position while all other variables remain fixed.

In [15], a first dynamic method has been proposed, but
it is infeasible for practical applications since it is too time
consuming.



DRECHSLER AND BECKER: ORDERED KRONECKER FUNCTIONAL DECISION DIAGRAMS 971

TABLE I
COMPARISON OF SIFTED OKFDD’S AND OBDD’S

Based on the methods described in the last two subsections,
we use a new method for dynamic variable ordering. (Its prac-
ticability will be shown later by experiments in Section V.)

Our method works similar to the sifting algorithm on
OBDD’s, but for each variable, we try each of the three
different decompositions. (The variable is tested at all positions
with a fixed decomposition type; then the decomposition type
is changed and the variable again is tested at all positions,
and so on.) Thus, our method takes approximately three times
longer than “normal” sifting.

V. EXPERIMENTAL RESULTS

In this section, we present experimental results for bench-
mark functions. All experiments were carried out on the
package PUMA. All run times are given in CPU seconds on
an HP 9000/710 workstation.

First, we compare construction algorithms based on our
OKFDD sifting (presented in the last section) with construc-
tion using sifting for OBDD’s [27] and variable interleaving
for OBDD’s [18]. The results for some of the benchmarks
from [9] are given in Table I. (We list only the circuits
for which interleaving could also construct the OBDD.) The
names of the corresponding benchmarks are given in the first
column. ColumnOKFDD sifting (OBDD sifting, interleaving)
gives the results for graph construction based on OKFDD
sifting (OBDD sifting, variable interleaving). For OKFDD’s,
the initial DTL consisted of type S only, i.e., we started with a
pure OBDD. Davio nodes were introduced by OKFDD sifting.
In columnmax,the maximum number of nodes needed during
the construction is given. Sifting was performed if the number
of nodes became larger than 10 000, and again after each
doubling of the graph size. Columnsizedenotes the number
of nodes needed for the representation of the outputs of the
benchmark after the construction. (Notice that we didnot try
to minimize the size by dynamic variable ordering.) Column
time denotes the overall run time needed for the construction.
As can easily be seen, the construction algorithm that makes
use of OKFDD sifting never needs more than twice the time
of the one using OBDD sifting. For benchmarks C3540 and
C1908, the construction based on OKFDD sifting is even
faster.

For all considered circuits, the numbermax is smaller or
equal for OKFDD sifting, i.e., the graphs remain small during
the construction. The increase in size during construction is
one major drawback of variable interleaving. Although very

TABLE II
COMPARISON OF SIFTED OKFDD’S AND OBDD’S

fast on average, the resulting graphs are very large, and
the method also needs a large number of nodes during the
construction.

In a second series of experiments, we applied DTL sifting
until no further improvement could be obtained. In this exper-
iment, we only consider the graph sizes to give an impression
of the savings that can be obtained by OKFDD’s. Our results
in comparison to the OBDD results obtained in [27] are given
in Table II. (The sizes are given in units of thousand nodes.)
Column in (out) denotes the number of inputs (outputs) of
circuit name.

Notice that we used a very simple strategy for our sifting
algorithm. In the meantime, more clever heuristics have been
developed that, e.g., make use of symmetry [24]–[26]. These
ideas can be applied directly to OKFDD’s. But already, the
simple strategies turn out to be very helpful: The integration
of only a few D-nodes in an OBDD can tremendously reduce
the size of the representation. For example, the best OBDD
size for C1355 known so far is 25 866 nodes [6], [25]. Starting
from a nonoptimized OBDD and applying DTL sifting, only
one pD- and one nD-level is integrated, and the size is reduced
to only 17 577 nodes (see Fig. 10).

Last, we considered technology mapping for FPGA’s.
In [29], a method for FPGA design using OKFDD’s has
been presented. We compare our results for larger circuits
with the most powerful heuristic from [29] (see Table III).
The results from [29] measured in number of nodes are
given in column SPW. The results obtained by dynamic
variable ordering and the execution times are given in the last
two columns. As can easily be seen, our approach obtains
much better results in all considered cases in negligible
time. For some benchmarks, more than 50% improvement
is obtained. Obviously, this simplifies the mapping process
tremendously.

VI. CONCLUSIONS

In this paper, the efficiency of Kronecker functional decision
diagrams as a more compact decision diagram than BDD’s or



972 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 17, NO. 10, OCTOBER 1998

Fig. 10. OKFDD representation for C1355.

TABLE III
RESULTS FOR FPGA DESIGN

FDD’s was shown. KFDD’s as a generalization of BDD’s and
FDD’s always will be more compact than the two, and this
was confirmed through experimental results.

Furthermore, the package PUMA for efficient representation
and manipulation of Boolean functions by this data structure
was introduced. Efficient algorithms were presented that make
fast construction and manipulation of OKFDD’s possible. Ad-
ditionally, the complexity of the algorithms has been analyzed.
We investigated dynamic methods for finding good variable
orderings and decomposition-type lists of OKFDD’s.

The canonicity of the OKFDD’s and efficient construction
and manipulation techniques presented here make OKFDD’s a
prime candidate for utilization in applications where OBDD’s
as a data structure for Boolean functions have been the main
construct. Applications in synthesis and verification as well as
technology mapping to various FPGA architectures are among
those where OKFDD’s can be utilized.



DRECHSLER AND BECKER: ORDERED KRONECKER FUNCTIONAL DECISION DIAGRAMS 973

ACKNOWLEDGMENT

The authors would like to thank A. Hett and K. Nowak for
their help with the realization of the methods discussed in this
paper. They also acknowledge the helpful discussions with M.
Theobald, A. Sarabi, and M. A. Perkowski.

REFERENCES

[1] B. Becker and R. Drechsler, “How many decomposition types do we
need?” inProc. Eur. Design & Test Conf.,Mar. 1995, pp. 438–443.

[2] B. Becker, R. Drechsler, and M. Theobald, “On the implementation
of a package for efficient representation and manipulation of functional
decision diagrams,” inProc. IFIP WG 10.5 Workshop Applications of the
Reed–Muller Expansion in Circuit Design,, Sept. 1993, pp. 162–169.

[3] , “OKFDD’s versus OBDD’s and OFDD’s,” inProc. ICALP,
LNCS 944,Apr. 1995, pp. 475–486.

[4] , “On the expressive power of OKFDD’s,”Formal Methods Syst.
Design,vol. 11, no. 1, pp. 5–21, May 1997.

[5] B. Becker, R. Drechsler, and R. Werchner, “On the relation between
BDD’s and FDD’s,” Inform. Comput.,vol. 123, no. 2, pp. 185–197,
Dec. 1995.

[6] B. Bollig, M. L öbbing, and I. Wegener, “Simulated annealing to improve
variable orderings for OBDD’s,” inProc. Int. Workshop Logic Synthesis,
May 1995, pp. 5b:5.1–5.10.

[7] B. Bollig, P. Savicky, and I. Wegener, “On the improvement of variable
orderings for OBDD’s,” inProc. IFIP Workshop Logic and Architecture
Synthesis,Grenoble, France, Dec. 1994, pp. 71–80.

[8] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation
of a BDD package,” inProc. Design Automation Conf.,June 1990, pp.
40–45.

[9] F. Brglez and H. Fujiwara, “A neutral netlist of 10 combinational circuits
and a target translator in Fortran,” inProc. Int. Symp. Circuits and
Systems,May 1985, pp. 663–698.

[10] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput.,vol. C-35, pp. 677–691, Aug. 1986.

[11] , “Symbolic Boolean manipulation with ordered binary decision
diagrams,”AC, Comp. Surveys,vol. 24, pp. 293–318, 1992.

[12] R. Drechsler and B. Becker, “Dynamic minimization of OKFDD’s,” in
Proc. Int. Conf. Comp. Design,Oct. 1995, pp. 602–607.

[13] , “Sympathy: Fast exact minimization of fixed polarity Reed-
Muller expressions for symmetric functions,” inProc. Eur. Design &
Test Conf.,Mar. 1995, pp. 91–97.

[14] R. Drechsler, B. Becker, and A. Jahnke, “On variable ordering and
decomposition type choice in OKFDD’s,” inProc. IFIP Int. Conf.
VLSI’95, Aug. 1995, pp. 805–810.

[15] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski,
“Efficient representation and manipulation of switching functions based
on ordered Kronecker functional decision diagrams,” inProc. Design
Automation Conf.,June 1994, pp. 415–419.

[16] R. Drechsler, M. Theobald, and B. Becker, “Fast OFDD based minimiza-
tion of fixed polarity Reed–Muller expressions,” inProc. Eur. Design
Automation Conf.,Sept. 1994, pp. 2–7.

[17] S. J. Friedman and K. J. Supowit, “Finding the optimal variable ordering
for binary decision diagrams,” inProc. Design Automation Conf.,June
1987, pp. 348–356.

[18] H. Fujii, G. Ootomo, and C. Hori, “Interleaving based variable ordering
methods for ordered binary decision diagrams,” inProc. Int. Conf. CAD,
Nov. 1993, pp. 38–41.

[19] M. Fujita, Y. Matsunaga, and T. Kakuda, “On variable ordering of binary
decision diagrams for the application of multi-level synthesis,” inProc.
Eur. Conf. Design Automation,Mar. 1991, pp. 50–54.

[20] P. Ho and M. A. Perkowski, “Free Kronecker decision diagrams and
their application to Atmel 6000 FPGA mapping,” inProc. Eur. Design
Automation Conf.,Sept. 1994, pp. 8–13.

[21] U. Kebschull, E. Schubert, and W. Rosenstiel, “Multilevel logic synthe-
sis based on functional decision diagrams,” inProc. Eur. Conf. Design
Automation,Mar. 1992, pp. 43–47.

[22] S. Minato, “Zero-suppressed BDD’s for set manipulation in combina-
tional problems,” inProc. Design Automation Conf.,June 1993, pp.
272–277.

[23] S. Minato, N. Ishiura, and S. Yajima, “Shared binary decision diagrams
with attributed edges for efficient Boolean function manipulation,” in
Proc. Design Automation Conf.,June 1990, pp. 52–57.

[24] D. Möller, P. Molitor, and R. Drechsler, “Symmetry based variable
ordering for ROBDD’s,” in IFIP Workshop Logic and Architecture
Synthesis,Dec. 1994, pp. 47–53.

[25] S. Panda and F. Somenzi, “Who are the variables in your neighborhood,”
in Proc. Int. Conf. CAD,Nov. 1995, pp. 74–77.

[26] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and
dynamic variable ordering of decision diagrams,” inProc. Int. Conf.
CAD, Nov. 1994, pp. 628–631.

[27] R. Rudell, “Dynamic variable ordering for ordered binary decision
diagrams,” inProc. Int. Conf. CAD,Nov. 1993, pp. 42–47.

[28] T. Sasao,Logic Synthesis and Optimization.Norwell, MA: Kluwer
Academic, 1993.

[29] I. Schaefer, M. A. Perkowski, and H. Wu, “Multilevel logic synthesis
for cellular FPGA’s based on orthogonal expansions,” inProc. IFIP WG
10.5 Workshop Applications of the Reed–Muller Expansion in Circuit
Design,Sept. 1993, pp. 42–51.

Rolf Drechsler (M’94) received the diploma and
the Ph.D. degree in computer science from the J. W.
Goethe University, Frankfurt am Main, Germany, in
1992 and 1995, respectively.

He currently is with the Institute of Computer
Science at the Albert-Ludwigs University, Freiburg
im Breisgau, Germany. He recently published two
books with Kluwer Academic, one on BDD tech-
niques (coauthored by B. Becker) and one on using
evolutionary algorithms for VLSI CAD. His re-
search interests include verification, logic synthesis,

and evolutionary algorithms.
Dr. Drechsler is the Symposium’s Chair of the IEEE International Sympo-

sium on Multiple-Valued Logic 1999 in Freiburg.

Bernd Becker (M’86) received the Dipl.-Math.,
Dr.rer.nat., and the Dr.habil. degrees from the
University of Saarland, Germany, in 1979, 1982,
and 1988, respectively.

Between 1979 and 1988, he was with Sonder-
forschungsbereich “Electronic Speech Recognition”
(1979–1981), Institute for Computer Science
and Applied Mathematics (1981–1983), and
Sonderforschungsbereich “VLSI Design Methods
and Parallelism,” (1984–1988), all at the University
of Saarland. He was an Associate Professor for

complexity theory and efficient algorithms at the J. W. Goethe University,
Frankfurt am Main, during 1989–1995. Presently, he is with the University
of Freiburg im Breisgau as a Full Professor. His research interests include
data structures and efficient algorithms (for circuit design), design, test, and
verification of VLSI circuits.


