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Abstract--The rectilinear Steiner minimum tree (RSMT) 
problem is one of the fundamental problems in physical 
design, especially in routing, which is known to be 
NP-complete. This paper presents a practical heuristic for 
RSMT construction based on ant colony optimization (ACO). 
This algorithm has been implemented on a Sun workstation 
with Unix operating system and the results have been 
compared with the GeoSteiner 3.1 and a recent work using 
batched greedy triple construction (BGTC). Experimental 
results show that our algorithm, named ACO-Steiner, can get 
a very short run time and keep the high performance.  

Keywords: rectilinear Steiner minimum tree (RSMT), 
routing, physical design, ant colony optimization (ACO) 

I. INTRODUCTION  
Routing plays an important role in very large scale 

integrated circuit/ultra large scale integrated circuit 
(VLSI/ULSI) physical design [1]. The rectilinear Steiner 
minimum tree (RSMT) problem is one of the fundamental 
problems in routing [2]. However, Garey and Johnson [3] 
prove that the RSMT problem is NP-complete, indicating 
that a polynomial-time algorithm to compute an optimal 
RSMT is unlikely to exist. So, many helpful algorithms 
continue to focus on the RSMT problem to get high 
efficiency.  

Ref. [4] gave an extensive survey of RSMT heuristics in 
1992. Kahng and Robins [5] introduced the Batched 
Iterated 1-Steiner (Bl1S) heuristic with an average 
improvement over the minimum spanning tree (MST) on 
terminals of almost 11%. Two good works appeared 
recently. Kahng and Mandoiu et al [6] proposed a batched 
greedy triple construction (BGTC) algorithm, which 
speedups the run time of Zelikovsky’s algorithm [7] while 
keeping its performance. Zhou [8] introduced the spanning 
graph as a base for MST and then constructed the RSMT 
from the MST. Another work is the O(nlogn) algorithms 
proposed in [9], which is in octilinear plane instead of 
rectilinear. Warme et al released the GeoSteiner [10, 17], 
which is an exact algorithm. The shortcoming of 
GeoSteiner is the long run time. So, There is room for 
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obtaining high efficiency. 
The main contribution of this paper is to propose a 

practical heuristic, called ACO-Steiner, to construct a 
RSMT, by which we can get a very short run time and 
keep the high performance. When the number of terminals 
is no more than 50, ACO-Steiner can achieve exact results 
(better than BGTC) but keeping the fast speed. When the 
number of terminals is more than 50, ACO-Steiner can 
achieve near optimal results (within 1% wire length 
increments compared with GeoSteiner) but keeping the 
very short run time. 

The rest of this paper is organized as follows. In Section 
II, we introduce the ant colony optimization (ACO) and 
some basic definitions of RSMT problem. In Section III, 
the ACO-Steiner heuristic is described in detail. Section IV 
gives performance improvements based on some special 
strategies. Then, Section V shows the experiment results. 
Finally, Section VI concludes the whole paper. 

II. PRELIMINARIES 

A. ACO algorithm 
As we know, ants live in colonies and have evolved to 

exhibit very complex patterns of social interaction. Besides 
the simplistic behavior of individual ants, they can 
communicate with one another through secretions called 
pheromones, and this cooperative activity of the ants in a 
nest gives rise to an emergent phenomenon known as 
swarm intelligence. ACO algorithms are a class of 
algorithms that mimic the cooperative behavior of real ant 
behavior to achieve complex computations [11]. 

The ACO consists of multiple iterations. In the iteration 
of the algorithm, one or more ants are allowed to execute a 
move, leaving behind a pheromone trail for others to 
follow. An ant traces out a single path, probabilistically 
selecting only one edge at a time (in a graph), until an 
entire solution is obtained. Each separate path can be 
assigned a cost metric, and the sum of all the individual 
costs defines the function to be minimized by ACO [12]. 

The main flow of ACO algorithm is shown in Fig.1. 

B. Basic definitions of RSMT problem 
The RSMT problem is described as follows [13]. 
Given a set T of n points called terminals in the plane, 

find a set S of additional points called Steiner points such 
that the length of a rectilinear minimum spanning tree of  



T ∪ S is minimized.  
 

ACO_Algorithm() 
1.   Initialization; 
1.1    Place all ants in the initial positions; 
1.2    Set the intensity of trails as a initial value; 
2.   While loopNum < MAXLOOP; 
3.     Construct a complete solution by ants moving; 
3.1      Select an ant by some rule; 
3.2      Make decision based on trail intensity and some 

greedy rules; 
4.     Update the intensity of trails based on the solution; 
5.     loopNum ++; 

Fig.1 The ACO algorithm 
 
In the rest of this paper, T always denotes the terminal 

set and S always denotes the Steiner point set. The cost 
between vertex i and vertex j is c(i, j), which is the 
Manhattan distance between vertex i and j. 

Hanan [14] has shown that there always exists an RSMT 
with Steiner points chosen from the intersections (i.e., 
vertices) of all the horizontal and vertical lines, which is 
called Hanan grid, passing through all the points in 
terminal set T [15]. So, we can design our ACO-Steiner in 
the graph based on Hanan grid. 

III. OUR ACO-STEINER ALGORITHM 
In this section, we use ant colony to construct the RSMT. 

Firstly, we draw the Hanan graph of the terminal set T. 
Then, we place the ants in each terminal that needs to be 
connected. An ant will determine a new vertex by some 
rule and move to that vertex via an edge in Hanan graph. 
Each ant maintains its own tabu-list, which records the 
vertices already visited to avoid revisiting it. When ant A 
meets ant B, ant A dies, and add the vertices in the A’s 
tabu-list into B’s. After every movement, an ant will leave 
some trail in the edge just passed, and the trail will 
evaporate in a constant rate.  

An ant determines its next vertex it wants to move 
stochastically, but biased on a higher value pi,j , which is a 
trade-off between the desirability and the trail intensity.  

Given an ant m in vertex i, and the desirability of vertex 
j (j must be the neighbor of i in Hanan graph) is defined as 
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where γ is a constant, and m
jψ is the shortest distance 

from vertex i to all the vertices in the tabu-list of other ants, 
which makes the current ant join into others as quickly as 
possible. 

The updating of the trail intensity in Hanan edge (i, j) is 
defined as 

jijiji ,,, )1( τρτρτ ∆⋅+⋅−=     (2) 
where ρ is a constant, called the trail evaporation rate, 
which measures how rapidly the trails evolve. The 
increments of updating is given by the following formula. 
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where c(St)is the total cost of the current result tree St, Et is 
edge set of it, and Q is a constant which matches the 
quantity of the tree cost.  

The probability of an ant using edge (i, j) to move is 
defined as follows. 
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where A is the set making up of all vertices which is 
connected with i and is not in the tabu-list of ant m. It’s 
obvious that an ant has at most three possible vertices to 
move in the Hanan graph when it has set off. That is, the 
four neighbor vertices except of the vertex that the ant 
comes from.  

The pseudo-code of our ACO-Steiner algorithm is 
shown is Fig.2. 

 
ACO_Steiner_Algorithm() 
1. Initialization(); 
2. While loopNum < MAXLOOP; 
3.   Construct_Steiner_Tree_By_ACO(); 
4.   loopNum ++; 

Fig.2 ACO-Steiner Algorithm 
 
The MAXLOOP in Fig.2 is the maximum loop number. 

The Initialization() sub-procedure does some initial work 
for the algorithm and the pseudo-code is shown in Fig3.  

 
Initialization() 
1. Create Hanan graph G based on T; 
2. Set the intensity in each edge in G to be p0; 

Fig.3 The Initialization() sub-procedure 
 
The sub-procedure Construct_Steiner_Tree_By_ACO() 

is to construct a Steiner tree using ant colony. The 
pseudo-code is shown in Fig.4. 

 
Construct_Steiner_Tree_By_ACO() 
1. Place an ant on each vertex in the terminal set T and put 

the vertex into its tabu-list;  
2. While ant number > 1 
3.   Select an ant m randomly; 
4.   AntMove(m); 
5.   If m meets m’ then 
6.     Add vertices in tabu-list of m into that of m’; 
7.     m died; 
8. Update the trail intensity in every edge by equation (2); 
Fig.4 The Construct_Steiner_Tree_By_ACO() sub-procedure 
 
The sub-procedure AntMove(m) decides the next vertex 

that the current ant will move to. The input of this 
procedure is the ant’s current position. The pseudo-code is 
shown in Fig.5. 

 
 



AntMove(m) 
1. Compute the pj of m by equation (1) and (4);  
2. If pi == 0 (i = 1, 2, 3, 4) then 
3.   deconfuse(); 
4. Ant m moves to j under the probability of pj; 
5. Add vertex j into m’s tabu-list; 

Fig.5 The AntMove(m) sub-procedure 
 
The sub-procedure deconfuse() solves the following 

problem. 
Sometimes, an ant may have no available vertices to 

move (see Fig.6). We solve this problem by moving this 
ant to some other vertex in its own tabu-list. But this new 
location should be closest to one of other ants. We can see 
an example in Fig.6. There are two ants (m and m’) left 
after some iterations. The bold line denotes the tabu-list of 
ant m, and the black solid vertices denote terminals. The 
current ant m is in vertex C whose only two neighbor 
vertices (A and B) are both in its tabu-list, which makes the 
ant m can’t move any more but to stay in the current 
position. So, we must find a new position for ant m. We 
should find this new position in the tabu-list of ant m and 
make the new position be the closest one to the other ants. 
Following this rule, we find vertex D as the new position 
of ant m, which is closest to ant m’.  

 
 

 
Fig.6 An instance for confused situation 

 
Since ACO-Steiner algorithm is performed based on 

Hanan graph, we can reduce the Hanan graph so as to 
reduce the searching space, which bases on the following 
theorem. 

Theorem 1: Let G’(V’, E’) be a sub-graph of G(V, E), 
where T⊂V′ is the set of terminals. Let TVq −∈ '  such 
that the degree of q is equal to two with respect to G, and 

', 21 Vvv ∈  are its two adjacent vertices. If edges (v1, q) 
and (v2, q) belong to the solution of the Steiner problem in 
G(V, E), then there exists another solution such that (v1, q) 
and (v2, q) are not in it if a vertex '3 Vv ∈  exists which is 
adjacent to both v1 and v2. 

Theorem 1 has been proved by Yang and Wing in [16]. 
From theorem 1, we know that any non-terminal vertex 
that is adjacent to exactly two orthogonal edges e1 and e2 
can be deleted if the other two edges forming a rectangle 
with e1 and e2 are present. The vertices remaining after 
this reduction (see Fig.7(b)) has been performed are 
precisely those that lie within the rectilinear convex hull of 
the terminals. 

In pathological cases the convex-hull reduction may 

have no effects, but for small, randomly generated sets of 
terminals it is typically quite effective. The convex-hull 
reduction often leaves many terminals of degree 1. Such 
terminals can be deleted (along with their adjacent edge) 
and their neighbor made a terminal, and the appropriate 
edge added back into the final solution. 

We call this the terminal reduction (see Fig.7(c)). The 
most striking effect of the terminal reduction is not the 
non-terminals it removes, but rather the fact that often two 
or more terminals collapse into a single new terminal [13]. 

 

 
          (a)               (b)            (c) 

Fig.7 (a) The Hanan graph, (b) The Convex-hull reduction,  
(c) The terminal reduction 

 
By using this reduction approach, we can speedup our 

algorithm to some extent. However, the ACO-Steiner 
algorithm is still much time consuming because the ants 
must move based on the Hanan grid and move only small 
segment in the iteration. So, we will shorten the run time 
to get high efficiency by means of some strategies, which 
will be introduced in the next section. 

IV. PERFORMANCE IMPROVEMENTS 
We extend the tabu-list of each ant to record the edges 

instead of the vertices that this ant has visited. Every 
movement does not be constrained by Hanan grid. Each 
time, an ant will choose the closest edge (here consider the 
vertex as a degenerate edge) out of its tabu-list, and move 
to this edge with the shortest path. If the shortest path is a 
line, there is only one way to move. However, if the 
shortest path is a L-shape, there are two possible way to 
move, which are TOP_ORIENT and BOTTOM_ORIENT. 
We choose one orient to move based on both the trail 
intensity and the topology. 

Here, the trail will deposit in the four directions of each 
terminal vertices instead of edges. Thus, we can decide 
which way to move by comparing the trail intensity in 
different directions of the current vertex. The updating rule 
of trail intensity is still based on equation (2). Here, τi,j 
denotes the trail intensity in direction i → j. 

The topology is another factor of deciding the moving 
orient. We compute the gains for each of the two possible 
orients based on the following rules.  

Firstly, for a given edge orient we find the closest vertex 
(out of the current ant’s tabu-list) to the edge only in the 
phrase shown in Fig.8. 

Then, compute the distance Dc between this vertex to 
the edge in this orient. Compute the distance Df between 
this vertex to the edge in the opposed orient. The gain in 
this orient is Df - Dc. We can see this rule from the 



following instance shown in Fig.9. 
 

 
                 (a)               (b) 

 
                 (c)               (d) 

Fig.8 The different phrase in different orient 
(a) and (b) are two types of BOTTOM_ORIENT,  

(c) and (d) are two types of TOP_ORIENT 
 

 
Fig.9 Two orients of edge connect the vertex B and C 

The suffix of the vertex label is just to distinguish the two 
orients. For example, A1 and A2 are the same vertex only in 
different situation. 

 
In Fig.9, the current position of an ant is in vertex B, and 

the closest vertex out of its tabu-list is vertex C. However, 
the path between B and C has two possible shapes, which 
are shown in Fig.9(a) and Fig.9(b). The path between B 
and C in Fig.9(a) is BOTTOM_ORIENT, and the one in 
Fig.9(b) is TOP_ORIENT. Now the ant wants to decide the 
orient of edge (B, C). The closest vertex to edge (B1, C1) 
is A1 with the distance |A1A1’| (see Fig.9(a)) and the 
distance between A2 and edge (B2, C2) is |A2A2’| (see 
Fig.9(b)). So, the gain in BOTTOM_ORIENT is |A2’A2| - 
|A1A1’| and the gain in TOP_ORIENT is |D1C1| - |D2D2’|. 

When we compute the gain of one orient we rewrite 
equation (1) as following. 

d
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where d is the two orient (BOTTOM_ORIENT and 
TOP_ORIENT), the gaind is the gain in orient d, the distd 
is the distance from the closest vertex out of its tabu-list to 
the edge in orient d, and λ is a constant that is the trade-off 
between the closest distance and gain.  

Now, an ant can decide the orient with the value given 
in the formula (4). We can find that it’s much greedy in 
each movement. 

We keep the main flow of ACO-Steiner algorithm given 
in Fig.2 and Fig.4, but improve the following two 
sub-procedures (shown in Fig.10 and Fig.11) to get a 
higher performance. 

Initialization() 
1. Set the intensity in each direction of every terminal to be 

p0; 
Fig.10 The improved Initialization() sub-procedure 

 
AntMove(m) 
1. Compute the pj of m by equation (5) and (4); 
2. Ant m moves to j based on pi; 
3. Add the path from m to j into m’s tabu-list; 

Fig.11 The improved AntMove(m) sub-procedure 

V. EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

We have implemented ACO-Steiner algorithm in C++, 
and generated testing cases by using a sub-program 
provided by GeoSteiner 3.1. Then, perform GeoSteiner, 
BGTC, and ACO-Steiner on a Sun V880 fire workstation 
with Unix operating system, respectively. We set α = 5, β = 
1, γ = 1, λ = 3, and Q = 10000 in our experiments. 

In the experiment, we find that our improvement 
method described in Section IV is efficient. An ant decides 
the next node or the edge orient greedily instead of 
stochastically with the possibility p. By using this “greedy 
approach”, we can maintain a quick convergence to 
satisfactory solutions while keeping a good performance. 
Fig.12 shows the performance improvements in a 200 
terminal RSMT instance. It shows that the algorithm get 
the most improvement in the first 10 iterations, and 
improve little after 50 iterations. 

 
Fig.12 Performance improvement in a 200 terminal RSMT 

instance 

Table 1: Wire length  
ACO-Steiner Terminal 

Number BGTC Best Ave Worst GeoSteiner

9 19913 19799 19799 19799 19799 
10 21259 21143 21143 21143 21143 
20 34767 34767 34778 34878 34767 
30 40226 40037 40072 40215 40037 
50 51878 51674 51800 52094 51595 
70 59564 59531 59701 60093 59503 
100 73289 73356 73751 73929 72979 
200 104750 105277 105567 105701 104178 
500 161875 164440 164484 164565 160844 
 
Table1 shows the experiment results of three algorithms. 

We set the MAXLOOP = 10.  
Table2 shows the runtime of the three algorithms. Each 

algorithm has performed ten times. 



Table 2: Run time  

Terminal Number BGTC ACO-Steiner GeoSteiner
9 < 0.001 < 0.001 < 0.001 

10 < 0.001 < 0.001 < 0.001 
20 < 0.001 < 0.001 < 0.001 
30 < 0.001 < 0.001 < 0.001 
50 < 0.001 < 0.001 < 0.001 
70 < 0.001 0.004 0.020 
100 < 0.001 0.018 0.050 
200 0.01 0.387 0.880 
500 0.050 3.380 38.880 

 
From Table1 and Table2, we can see that ACO-Steiner 

performs well when the number of the terminal is no more 
than 50. It can always achieve the optimal results and keep 
short runtime. When the number of the terminal increases, 
our algorithm can keep the performance within 1% worse 
than the optimal (GeoSteiner) with a very short runtime. 

The Fig.13 shows the result of ACO-Steiner for a 500 
terminals tree. 

 
Fig.13 The result of ACO-Steiner for a 500 terminals tree 

 
The Fig.14 shows the result of BGTC vs. ACO-Steiner 

in a case with 30 terminals. Fig.14(a) shows the result of 
BGTC with the wire length of 40226 and Fig.14(b) shows 
the result of ACO-Steiner with the wire length of 40037. 

 
Fig.14 BGTC vs. ACO-Steiner for a 30 terminal tree 

VI. CONCLUSIONS 
In this paper, we propose a practical heuristic for RSMT 

construction based on ACO. Then, we use a fast-ant 
strategy to speedup the algorithm. The experimental results 
show that our heuristic ACO-Steiner keeps the high 

performance with a very short run time.  
Meanwhile, we find that there is room for improvement 

in our work. We will continue to improve performance in 
wire length of ACO-Steiner while keeping short run time, 
which is regarded as our future work.  
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