
An Efficient Rectilinear Steiner Minimum Tree
Algorithm Based on Ant Colony Optimization*

Yu Hu, Tong Jing, Xianlong Hong, Zhe Feng Xiaodong Hu, Guiying Yan

Tsinghua University Institute of Applied Mathematics, CAS
 Beijing 100084, P. R. China Beijing 100080, P. R. China

Email: matrix98@mails.tsinghua.edu.cn Email: xdhu@public.bta.net.cn

Abstract--The rectilinear Steiner minimum tree (RSMT)
problem is one of the fundamental problems in physical
design, especially in routing, which is known to be
NP-complete. This paper presents a practical heuristic for
RSMT construction based on ant colony optimization (ACO).
This algorithm has been implemented on a Sun workstation
with Unix operating system and the results have been
compared with the GeoSteiner 3.1 and a recent work using
batched greedy triple construction (BGTC). Experimental
results show that our algorithm, named ACO-Steiner, can get
a very short run time and keep the high performance.

Keywords: rectilinear Steiner minimum tree (RSMT),
routing, physical design, ant colony optimization (ACO)

I. INTRODUCTION
Routing plays an important role in very large scale

integrated circuit/ultra large scale integrated circuit
(VLSI/ULSI) physical design [1]. The rectilinear Steiner
minimum tree (RSMT) problem is one of the fundamental
problems in routing [2]. However, Garey and Johnson [3]
prove that the RSMT problem is NP-complete, indicating
that a polynomial-time algorithm to compute an optimal
RSMT is unlikely to exist. So, many helpful algorithms
continue to focus on the RSMT problem to get high
efficiency.

Ref. [4] gave an extensive survey of RSMT heuristics in
1992. Kahng and Robins [5] introduced the Batched
Iterated 1-Steiner (Bl1S) heuristic with an average
improvement over the minimum spanning tree (MST) on
terminals of almost 11%. Two good works appeared
recently. Kahng and Mandoiu et al [6] proposed a batched
greedy triple construction (BGTC) algorithm, which
speedups the run time of Zelikovsky’s algorithm [7] while
keeping its performance. Zhou [8] introduced the spanning
graph as a base for MST and then constructed the RSMT
from the MST. Another work is the O(nlogn) algorithms
proposed in [9], which is in octilinear plane instead of
rectilinear. Warme et al released the GeoSteiner [10, 17],
which is an exact algorithm. The shortcoming of
GeoSteiner is the long run time. So, There is room for

 * This work was partially supported by NSFC under Grant
No.60373012, Hi-Tech Research and Development (863)
Program of China under Grant 2002AA1Z1460, SRFDP of China
under Grant No.20020003008, and NSFC under Grant
60121120706.

obtaining high efficiency.
The main contribution of this paper is to propose a

practical heuristic, called ACO-Steiner, to construct a
RSMT, by which we can get a very short run time and
keep the high performance. When the number of terminals
is no more than 50, ACO-Steiner can achieve exact results
(better than BGTC) but keeping the fast speed. When the
number of terminals is more than 50, ACO-Steiner can
achieve near optimal results (within 1% wire length
increments compared with GeoSteiner) but keeping the
very short run time.

The rest of this paper is organized as follows. In Section
II, we introduce the ant colony optimization (ACO) and
some basic definitions of RSMT problem. In Section III,
the ACO-Steiner heuristic is described in detail. Section IV
gives performance improvements based on some special
strategies. Then, Section V shows the experiment results.
Finally, Section VI concludes the whole paper.

II. PRELIMINARIES

A. ACO algorithm
As we know, ants live in colonies and have evolved to

exhibit very complex patterns of social interaction. Besides
the simplistic behavior of individual ants, they can
communicate with one another through secretions called
pheromones, and this cooperative activity of the ants in a
nest gives rise to an emergent phenomenon known as
swarm intelligence. ACO algorithms are a class of
algorithms that mimic the cooperative behavior of real ant
behavior to achieve complex computations [11].

The ACO consists of multiple iterations. In the iteration
of the algorithm, one or more ants are allowed to execute a
move, leaving behind a pheromone trail for others to
follow. An ant traces out a single path, probabilistically
selecting only one edge at a time (in a graph), until an
entire solution is obtained. Each separate path can be
assigned a cost metric, and the sum of all the individual
costs defines the function to be minimized by ACO [12].

The main flow of ACO algorithm is shown in Fig.1.

B. Basic definitions of RSMT problem
The RSMT problem is described as follows [13].
Given a set T of n points called terminals in the plane,

find a set S of additional points called Steiner points such
that the length of a rectilinear minimum spanning tree of

T ∪ S is minimized.

ACO_Algorithm()
1. Initialization;
1.1 Place all ants in the initial positions;
1.2 Set the intensity of trails as a initial value;
2. While loopNum < MAXLOOP;
3. Construct a complete solution by ants moving;
3.1 Select an ant by some rule;
3.2 Make decision based on trail intensity and some

greedy rules;
4. Update the intensity of trails based on the solution;
5. loopNum ++;

Fig.1 The ACO algorithm

In the rest of this paper, T always denotes the terminal

set and S always denotes the Steiner point set. The cost
between vertex i and vertex j is c(i, j), which is the
Manhattan distance between vertex i and j.

Hanan [14] has shown that there always exists an RSMT
with Steiner points chosen from the intersections (i.e.,
vertices) of all the horizontal and vertical lines, which is
called Hanan grid, passing through all the points in
terminal set T [15]. So, we can design our ACO-Steiner in
the graph based on Hanan grid.

III. OUR ACO-STEINER ALGORITHM
In this section, we use ant colony to construct the RSMT.

Firstly, we draw the Hanan graph of the terminal set T.
Then, we place the ants in each terminal that needs to be
connected. An ant will determine a new vertex by some
rule and move to that vertex via an edge in Hanan graph.
Each ant maintains its own tabu-list, which records the
vertices already visited to avoid revisiting it. When ant A
meets ant B, ant A dies, and add the vertices in the A’s
tabu-list into B’s. After every movement, an ant will leave
some trail in the edge just passed, and the trail will
evaporate in a constant rate.

An ant determines its next vertex it wants to move
stochastically, but biased on a higher value pi,j , which is a
trade-off between the desirability and the trail intensity.

Given an ant m in vertex i, and the desirability of vertex
j (j must be the neighbor of i in Hanan graph) is defined as

m
j

m
j jic ψγ

η
⋅+

=
),(

1
 (1)

where γ is a constant, and m
jψ is the shortest distance

from vertex i to all the vertices in the tabu-list of other ants,
which makes the current ant join into others as quickly as
possible.

The updating of the trail intensity in Hanan edge (i, j) is
defined as

jijiji ,,,)1(τρτρτ ∆⋅+⋅−= (2)
where ρ is a constant, called the trail evaporation rate,
which measures how rapidly the trails evolve. The
increments of updating is given by the following formula.

 ∈

=∆
otherwise

Ejiif
Sc
Q

t
tji

,0

),(,
)(,τ (3)

where c(St)is the total cost of the current result tree St, Et is
edge set of it, and Q is a constant which matches the
quantity of the tree cost.

The probability of an ant using edge (i, j) to move is
defined as follows.

∈

= ∑
−∉

otherwise

Aj
p

mlisttabuk

m
kki

m
jji

ji

,0

,
][][

][][

)(
,

,

,
βα

βα

ητ
ητ

 (4)

where A is the set making up of all vertices which is
connected with i and is not in the tabu-list of ant m. It’s
obvious that an ant has at most three possible vertices to
move in the Hanan graph when it has set off. That is, the
four neighbor vertices except of the vertex that the ant
comes from.

The pseudo-code of our ACO-Steiner algorithm is
shown is Fig.2.

ACO_Steiner_Algorithm()
1. Initialization();
2. While loopNum < MAXLOOP;
3. Construct_Steiner_Tree_By_ACO();
4. loopNum ++;

Fig.2 ACO-Steiner Algorithm

The MAXLOOP in Fig.2 is the maximum loop number.

The Initialization() sub-procedure does some initial work
for the algorithm and the pseudo-code is shown in Fig3.

Initialization()
1. Create Hanan graph G based on T;
2. Set the intensity in each edge in G to be p0;

Fig.3 The Initialization() sub-procedure

The sub-procedure Construct_Steiner_Tree_By_ACO()

is to construct a Steiner tree using ant colony. The
pseudo-code is shown in Fig.4.

Construct_Steiner_Tree_By_ACO()
1. Place an ant on each vertex in the terminal set T and put

the vertex into its tabu-list;
2. While ant number > 1
3. Select an ant m randomly;
4. AntMove(m);
5. If m meets m’ then
6. Add vertices in tabu-list of m into that of m’;
7. m died;
8. Update the trail intensity in every edge by equation (2);
Fig.4 The Construct_Steiner_Tree_By_ACO() sub-procedure

The sub-procedure AntMove(m) decides the next vertex

that the current ant will move to. The input of this
procedure is the ant’s current position. The pseudo-code is
shown in Fig.5.

AntMove(m)
1. Compute the pj of m by equation (1) and (4);
2. If pi == 0 (i = 1, 2, 3, 4) then
3. deconfuse();
4. Ant m moves to j under the probability of pj;
5. Add vertex j into m’s tabu-list;

Fig.5 The AntMove(m) sub-procedure

The sub-procedure deconfuse() solves the following

problem.
Sometimes, an ant may have no available vertices to

move (see Fig.6). We solve this problem by moving this
ant to some other vertex in its own tabu-list. But this new
location should be closest to one of other ants. We can see
an example in Fig.6. There are two ants (m and m’) left
after some iterations. The bold line denotes the tabu-list of
ant m, and the black solid vertices denote terminals. The
current ant m is in vertex C whose only two neighbor
vertices (A and B) are both in its tabu-list, which makes the
ant m can’t move any more but to stay in the current
position. So, we must find a new position for ant m. We
should find this new position in the tabu-list of ant m and
make the new position be the closest one to the other ants.
Following this rule, we find vertex D as the new position
of ant m, which is closest to ant m’.

Fig.6 An instance for confused situation

Since ACO-Steiner algorithm is performed based on

Hanan graph, we can reduce the Hanan graph so as to
reduce the searching space, which bases on the following
theorem.

Theorem 1: Let G’(V’, E’) be a sub-graph of G(V, E),
where T⊂V′ is the set of terminals. Let TVq −∈ ' such
that the degree of q is equal to two with respect to G, and

', 21 Vvv ∈ are its two adjacent vertices. If edges (v1, q)
and (v2, q) belong to the solution of the Steiner problem in
G(V, E), then there exists another solution such that (v1, q)
and (v2, q) are not in it if a vertex '3 Vv ∈ exists which is
adjacent to both v1 and v2.

Theorem 1 has been proved by Yang and Wing in [16].
From theorem 1, we know that any non-terminal vertex
that is adjacent to exactly two orthogonal edges e1 and e2
can be deleted if the other two edges forming a rectangle
with e1 and e2 are present. The vertices remaining after
this reduction (see Fig.7(b)) has been performed are
precisely those that lie within the rectilinear convex hull of
the terminals.

In pathological cases the convex-hull reduction may

have no effects, but for small, randomly generated sets of
terminals it is typically quite effective. The convex-hull
reduction often leaves many terminals of degree 1. Such
terminals can be deleted (along with their adjacent edge)
and their neighbor made a terminal, and the appropriate
edge added back into the final solution.

We call this the terminal reduction (see Fig.7(c)). The
most striking effect of the terminal reduction is not the
non-terminals it removes, but rather the fact that often two
or more terminals collapse into a single new terminal [13].

 (a) (b) (c)

Fig.7 (a) The Hanan graph, (b) The Convex-hull reduction,
(c) The terminal reduction

By using this reduction approach, we can speedup our

algorithm to some extent. However, the ACO-Steiner
algorithm is still much time consuming because the ants
must move based on the Hanan grid and move only small
segment in the iteration. So, we will shorten the run time
to get high efficiency by means of some strategies, which
will be introduced in the next section.

IV. PERFORMANCE IMPROVEMENTS
We extend the tabu-list of each ant to record the edges

instead of the vertices that this ant has visited. Every
movement does not be constrained by Hanan grid. Each
time, an ant will choose the closest edge (here consider the
vertex as a degenerate edge) out of its tabu-list, and move
to this edge with the shortest path. If the shortest path is a
line, there is only one way to move. However, if the
shortest path is a L-shape, there are two possible way to
move, which are TOP_ORIENT and BOTTOM_ORIENT.
We choose one orient to move based on both the trail
intensity and the topology.

Here, the trail will deposit in the four directions of each
terminal vertices instead of edges. Thus, we can decide
which way to move by comparing the trail intensity in
different directions of the current vertex. The updating rule
of trail intensity is still based on equation (2). Here, τi,j
denotes the trail intensity in direction i → j.

The topology is another factor of deciding the moving
orient. We compute the gains for each of the two possible
orients based on the following rules.

Firstly, for a given edge orient we find the closest vertex
(out of the current ant’s tabu-list) to the edge only in the
phrase shown in Fig.8.

Then, compute the distance Dc between this vertex to
the edge in this orient. Compute the distance Df between
this vertex to the edge in the opposed orient. The gain in
this orient is Df - Dc. We can see this rule from the

following instance shown in Fig.9.

 (a) (b)

 (c) (d)

Fig.8 The different phrase in different orient
(a) and (b) are two types of BOTTOM_ORIENT,

(c) and (d) are two types of TOP_ORIENT

Fig.9 Two orients of edge connect the vertex B and C

The suffix of the vertex label is just to distinguish the two
orients. For example, A1 and A2 are the same vertex only in
different situation.

In Fig.9, the current position of an ant is in vertex B, and

the closest vertex out of its tabu-list is vertex C. However,
the path between B and C has two possible shapes, which
are shown in Fig.9(a) and Fig.9(b). The path between B
and C in Fig.9(a) is BOTTOM_ORIENT, and the one in
Fig.9(b) is TOP_ORIENT. Now the ant wants to decide the
orient of edge (B, C). The closest vertex to edge (B1, C1)
is A1 with the distance |A1A1’| (see Fig.9(a)) and the
distance between A2 and edge (B2, C2) is |A2A2’| (see
Fig.9(b)). So, the gain in BOTTOM_ORIENT is |A2’A2| -
|A1A1’| and the gain in TOP_ORIENT is |D1C1| - |D2D2’|.

When we compute the gain of one orient we rewrite
equation (1) as following.

d

d
d dist

gain λ

η][
= (5)

where d is the two orient (BOTTOM_ORIENT and
TOP_ORIENT), the gaind is the gain in orient d, the distd
is the distance from the closest vertex out of its tabu-list to
the edge in orient d, and λ is a constant that is the trade-off
between the closest distance and gain.

Now, an ant can decide the orient with the value given
in the formula (4). We can find that it’s much greedy in
each movement.

We keep the main flow of ACO-Steiner algorithm given
in Fig.2 and Fig.4, but improve the following two
sub-procedures (shown in Fig.10 and Fig.11) to get a
higher performance.

Initialization()
1. Set the intensity in each direction of every terminal to be

p0;
Fig.10 The improved Initialization() sub-procedure

AntMove(m)
1. Compute the pj of m by equation (5) and (4);
2. Ant m moves to j based on pi;
3. Add the path from m to j into m’s tabu-list;

Fig.11 The improved AntMove(m) sub-procedure

V. EXPERIMENTAL RESULTS AND
DISCUSSIONS

We have implemented ACO-Steiner algorithm in C++,
and generated testing cases by using a sub-program
provided by GeoSteiner 3.1. Then, perform GeoSteiner,
BGTC, and ACO-Steiner on a Sun V880 fire workstation
with Unix operating system, respectively. We set α = 5, β =
1, γ = 1, λ = 3, and Q = 10000 in our experiments.

In the experiment, we find that our improvement
method described in Section IV is efficient. An ant decides
the next node or the edge orient greedily instead of
stochastically with the possibility p. By using this “greedy
approach”, we can maintain a quick convergence to
satisfactory solutions while keeping a good performance.
Fig.12 shows the performance improvements in a 200
terminal RSMT instance. It shows that the algorithm get
the most improvement in the first 10 iterations, and
improve little after 50 iterations.

Fig.12 Performance improvement in a 200 terminal RSMT

instance

Table 1: Wire length
ACO-Steiner Terminal

Number BGTC Best Ave Worst GeoSteiner

9 19913 19799 19799 19799 19799
10 21259 21143 21143 21143 21143
20 34767 34767 34778 34878 34767
30 40226 40037 40072 40215 40037
50 51878 51674 51800 52094 51595
70 59564 59531 59701 60093 59503
100 73289 73356 73751 73929 72979
200 104750 105277 105567 105701 104178
500 161875 164440 164484 164565 160844

Table1 shows the experiment results of three algorithms.

We set the MAXLOOP = 10.
Table2 shows the runtime of the three algorithms. Each

algorithm has performed ten times.

Table 2: Run time

Terminal Number BGTC ACO-Steiner GeoSteiner
9 < 0.001 < 0.001 < 0.001

10 < 0.001 < 0.001 < 0.001
20 < 0.001 < 0.001 < 0.001
30 < 0.001 < 0.001 < 0.001
50 < 0.001 < 0.001 < 0.001
70 < 0.001 0.004 0.020
100 < 0.001 0.018 0.050
200 0.01 0.387 0.880
500 0.050 3.380 38.880

From Table1 and Table2, we can see that ACO-Steiner

performs well when the number of the terminal is no more
than 50. It can always achieve the optimal results and keep
short runtime. When the number of the terminal increases,
our algorithm can keep the performance within 1% worse
than the optimal (GeoSteiner) with a very short runtime.

The Fig.13 shows the result of ACO-Steiner for a 500
terminals tree.

Fig.13 The result of ACO-Steiner for a 500 terminals tree

The Fig.14 shows the result of BGTC vs. ACO-Steiner

in a case with 30 terminals. Fig.14(a) shows the result of
BGTC with the wire length of 40226 and Fig.14(b) shows
the result of ACO-Steiner with the wire length of 40037.

Fig.14 BGTC vs. ACO-Steiner for a 30 terminal tree

VI. CONCLUSIONS
In this paper, we propose a practical heuristic for RSMT

construction based on ACO. Then, we use a fast-ant
strategy to speedup the algorithm. The experimental results
show that our heuristic ACO-Steiner keeps the high

performance with a very short run time.
Meanwhile, we find that there is room for improvement

in our work. We will continue to improve performance in
wire length of ACO-Steiner while keeping short run time,
which is regarded as our future work.

REFERENCES
[1] T. Jing, X. L. Hong, Y. C. Cai, H. Y. Bao, J. Y. Xu, “The Key

Technologies and Related Research Work of
Performance-Driven Global Routing”, J. of Software, 12(5),
pp.677-688, 2001.

[2] T. Jing, X. L. Hong, “The Key Technologies of Performance
Optimization for Nanometer Routing”, In: Proc. of IEEE
ASICON, Beijing, China, 2003, pp.118-123.

[3] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree
problem is NP-complete”, SIAM Journal on Applied
Mathematics, 32: pp.826-834, 1977.

[4] F. K. Hwang, D. S. Richards, and P. Winter, “The Steiner
Tree Problem, Annals of Discrete Mathematics.” Amsterdam,
The Netherlands: North-Holland, 1992.

[5] A. B. Kahng and G. Robins, “A new class of iterative Steiner
tree heuristics with good performance,” IEEE Trans.
Computer-Aided Design, vol. 11, pp. 893–902, July 1992.

[6] A. B. Kahng, I. I. Mandoiu, A. Z. Zelikovsky, et al, “Highly
Scalable Algorithms for Rectilinear and Octilinear Steiner
Trees”, In: Proc. of Asia and South Pacific Design
Automation Conference (ASP-DAC), 2003: pp.827-833.

[7] A. Zelikovsky. An 11/6-approximation for the network
Steiner tree prob-lem, Algorithmica 9: pp.463-470, 1993.

[8] H. Zhou, “Efficient Steiner Tree Construction Based on
Spanning Graphs”, In: Proc. of ACM ISPD, Monterey, CA,
USA, 2003: pp.152-157.

[9] Q. Zhu, H. Zhou, T. Jing, X. L. Hong, and Y. Yang.
“Efficient Octilinear Steiner Tree Construction Based on
Spanning Graphs”, In: Proc. of IEEE/ACM ASP-DAC, 2004,
Yokohama, Japan, pp.687-690.

[10] D. M. Warme, P. Winter, and M. Zachariasen, “Exact
Algorithms for Plane Steiner Tree Problems: A
Computational Study”, Technical Report DIKU-TR-98/11,
Department of Computer Science, University of Copenhagen,
April 1998

[11] M. Dorigo, V. Maniezzo, and A. Colorni, “The Ant System:
Optimization by a colony of cooperating agents”, IEEE
Transactions on Systems, Man, and Cybernetics–Part B,
26(1): 1996: pp.1-13

[12] S. Das, S. V. Gosavi, W. H. Hsu, and S. A. Vaze, “An Ant
Colony Approach for the Steiner Tree Problem”, In: Proc. of
Genetic and Evolutionary Computing Conference, New York
City, New York, 2002.

[13] J. L. Ganley. “Computing optimal rectilinear Steiner trees: A
survey and experimental evaluation”, Discrete Applied
Mathematics, 89: pp.161-171, 1998.

[14] M. Hanan, “On Steiner's problem with rectilinear distance”,
SIAM Journal on Applied Mathematics, 1966, 14:
pp.255-265.

[15] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang. “Closing
the gap: Near-optimal steiner trees in polynomial time”,
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 13(11): pp.1351-1365, 1994.

[16] Y. Y. Yang and O. Wing, “Suboptimal Algorithm for a Wire
Routing Problem”, IEEE Trans. on Circuit Theory,
September 1972: pp.508-510.

[17] http://www.diku.dk/geosteiner/

