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Abstract. The real-time analyses of oscillatory EEG components during right and left hand movement 
imagination allows the control of an electric device. Such a system, called brain-computer interface (BCI), 
can be used e.g. by patients who are totally paralyzed (e.g. Amyotrophic Lateral Sclerosis) to communicate 
with their environment. 
The paper demonstrates a system that utilizes the EEG for the control of a hand prosthesis. 
 
1. Introduction 
 
There are different ways to control a prosthetic hand: with a shoulder harness, myo-
electrically or for example with a WILMER elbow [9]. A shoulder harness can simply be 
used to control a hand prosthesis by moving the upper arm or shoulder. Alternatively, a 
below-elbow prosthesis can be controlled myo-electrically. Therefore, some residual nerve 
functions or muscle activity in the amputated extremity of the amputee must be used in 
order to control the assistive limb. But the effectiveness is limited because the nerve 
endings can lose effectiveness due to amputation. Sometimes the nerve endings do not even 
exist. The WILMER elbow utilizes the motion of the elbow, instead of shoulder or upper 
arm movements, to control a hand. The opening width of the hand prosthesis is determined 
by the flexion angle of the elbow.  

All these commercial available prosthetic systems require some measure of 
voluntary motor control and, therefore, are not useful for patients who are totally paralyzed. 
But an Electroencephalogram-based brain-computer interface (EEG-based BCI) provides a 
new control channel to individuals with severe motor impairments (e.g. late stage of 
Amyotrophic Lateral Sclerosis) [3, 12, 13]. A possible application is e.g. to select letters or 
words by moving a cursor [13], to control a Functional Electrical Stimulation device for 
patients with spinal cord lesions [10] and also to control a prosthetic device. Such an 
approach was realized with a phase-locked loop (PLL), which detects motor actions of an 
amputee from the EEG in order to control an externally powered prosthesis device (EPPD) 
during grasping with the hand [6]. But the PLL caused a high amount of false alarms. 

BCI applications can be controlled by at least one binary output signal of the BCI, 
which is obtained, for example, by classification of EEG-patterns during imagination of left 
and right hand movements. It was shown recently that unilateral hand movement imagery 
results in a contralateral event-related desynchronization (ERD) close to primary motor 
areas and, in certain cases, in parallel to an ipsilateral event-related synchronization (ERS) 
of sensorimotor rhythms [7]. A minimum of EEG channels is therefore assembled close to 
primary hand areas (electrode positions C3 and C4) as an array of electrodes overlying 
motor and somatosensory areas. The use of oscillatory EEG components as input signals 
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for a BCI requires on-line analysis of EEG signals with the extraction of reliable 
parameters. The paper shows how to combine recent BCI developments with a modern 
prosthetic tool. 
 
2. Hardware and Software of the BCI System 
 
The BCI consists of an IBM compatible Pentium II PC operating at 233 MHz and an 
RTI800a data acquisition board (DAQ) from Analog Device (Analog Device, Norwood, 
USA) as shown in Figure 1. The digital input/output channels are used to control a remote 
control (transmitter and receiver) which is connected to a microcontroller to control the 
prosthesis (see Figure 2). The microcontroller receives commands from the remote control 
and regulates the grip speed. 
 

Figure 1: Software and hardware architecture of the BCI system, for details see [1, 2]. Simulink (MathWorks, 
Inc., Natick, USA) is used for the calculation of different parameters, which describe the current state of the 

EEG in real-time (after real-time code generation), while Matlab (MathWorks, Inc., Natick, USA) handles the 
data acquisition, timing and presentation of the experimental paradigm. 

Figure 2: Hand prosthesis and control unit. 
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3. Parameter Estimation and Classification 
 
An appropriate parameter estimation method for an EEG-based BCI is e.g. the adaptive 
autoregressive (AAR) model. An AAR model describes a signal in the following form: 

kpkkpkkk xaxax ε=−−− −− ,1,1 ...   

The EEG sample xk is predicted from a number of samples in the past with a resulting error 

εk for every iteration k. The model is of order p and a1,k...ap,k are the time varying AR-
coefficients, which are estimated with the recursive least square (RLS) algorithm. For a 
detailed description see [8, 11].  

A linear classifier is used to differentiate between EEG patterns associated with left 
and right movement imagery (see next section). The on-line classification result is used to 
control the movement of the prosthesis.  
 The AAR-model was implemented with Simulink as shown in Figure 3. The 
algorithm was initialized at the beginning of every trial to avoid instabilities [2].  

Figure 3: A device driver for the RTI800a board (DAQ board from Analog Device) realizes the connection to 
the real world. In this case the input block represents analog input channel 1 to 3 (bipolar EEG channel C3, 

bipolar EEG channel C4, Trigger) and reads the data into the Simulink environment with a sampling 
frequency at 128 Hz. Channel 1 and 2 are connected to the 'RLS+LDA' algorithm blocks and channel 3 is the 
trigger signal used to initialize the RLS-algorithms at the beginning of every trial. ‘RLS+LDA’  calculate the 
RLS-algorithm with a sampling rate inherited from the blocks driving them (128 Hz). The output of the RLS-
algorithms consists of six (p=6) time varying AR-coefficients for each EEG channel and is classified with a 

weight vector previously obtained from a linear discriminant analysis (LDA). The on-line classification result 
is gained and displayed with the Scope block 'Classification Result' and controls also the movement of the 

prosthesis. Either outcome of this real-time process (greater or lower than zero) will close or open the 
prosthesis a little bit more. The complete closing or opening time was set to 1 second. This means if the 
classification output was greater than zero for at least 1 second, then the prosthesis was closed for sure. 

 
4. Experimental Paradigm 
 

 Figure 4: Timing of one trial of the experiment with feedback.  
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The experiment started with the display of a fixation cross that was shown in the center of a 
monitor (see Figure 4). After two seconds a warning stimulus was given in form of a 
"beep“. From second 3 until 4.25 an arrow (cue stimulus), pointing to the left or right, was 
shown on the screen. The subject was instructed to imagine a left or right hand movement, 
depending on the direction of  the arrow. Between second 4.25 and 8 the EEG was 
classified on-line and the classification result was used to control the prosthesis. If the 
person imagined a left movement, then the prosthesis was closed a little bit more and vice 
versa (correct classification assumed). One session consisted of 160 trials. Three sessions 
were made with subject i6. 
 
 
5. Results 
 
Classification results obtained with one healthy subject are graphically presented in Figure 
5. Session 1 and 3 were performed with a weight vector obtained from an earlier session, 
where the feedback was given in form of a moving horizontal bar [2, 5]. For session 2 the 
data of session 1 was used to set up a weight vector. The AAR-coefficients of the 
classification time points with the lowest classification error were used to set up the weight 
vector with the LDA for the following sessions. The weight vector that was used for session 
1 and 3 was calculated from the data at second 6, the vector for session 2 at second 6.5. 
 The lowest error rate in session 1 (10 %) was observed at second 6, in session 2 
(17.5 %) at second 6.5 and in session 3 (11.25 %) at second 6. Therefore, the best 
classification time point always corresponded to the weight vector calculation time point. 

Figure 5: The error rate (100 % minus correct classification) is displayed over classification time points and 
different sessions for one subject. 

 
 

6. Discussion 
 
For the first time it was shown that an EEG-based BCI system allows to control a hand 
prosthesis by imagination of left and right hand movement. The subject was able to achieve 
an accuracy of about 82.5, 88.75 and 90 %. The best classification time point always 
corresponded to the calculation time point of the linear classifier. The accuracy is in the 
same range as achieved with other studies made with the same subject [2]. The subject 
needed approximately 3 to 3.5 seconds after cue onset to reach the minimum error rate. A 
difference is the increasing error rate at the end of the sessions. The error increased from 10 
to 43.8 % (session 1), 17.5 to 33.8 % (session 2) and from 11.25 to 41.3 % (session 3). An 
explanation might be, that most of the time the prosthesis was already in the expected 
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position (closed or opened) at second 6 or 6.5, respectively, and therefore the subject 
stopped to imagine the movement. After seeing the prosthesis moving in the wrong 
direction the subject was not able to react fast enough. This caused a problem when trying 
to grasp an object. The object would fall down at the end of the trial with the increasing 
error of classification. A solution would be to lock the prosthesis at the reached position at 
second 6 or 6.5, respectively. 

The most consistent complaint about non-EEG-based control of a prosthesis is that 
it requires a high amount of attention of the subject [6]. Therefore, the most suitable way of 
controlling a hand prosthesis would be to detect signals from the sensorimotor area of the 
brain to close or open the hand. Ideally, the control signal would be the same as if there 
would be no movement disorder. Just by attempting to close or open the hand, the 
prosthesis should be controlled. In order to use this approach for our system it is necessary 
to increase the spatial resolution by implanting electrodes over the sensorimotor areas [4]. 
Such an electrode array would allow to record data from a small neuronal population and 
this would allow to discriminate between the attempt of closing or opening the hand.  
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