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We present two new algorithms for generating integer partitions in the standard representation.
They generate partitions in lexicographic and anti-lexicographic order, respectively. We prove
that both algorithm generate partitions with constant average delay, exclusive of the output.
These are the first known algorithms to produce partitions in the standard representation and
with constant average delay. The performance of all known integer partition algorithms
is measured and compared. separately for the standard and multiplicity representation. An
empirical test shows that both new algorithms are several times faster than any of previously
known algorithms for generating unrestricted integer partitions in the standard representation.
Moreover, they are faster than any known algorithm for generating integer partition in the
multiplicity representation (exclusive of the output).
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1. INTRODUCTION

Given an integer n, it is possible to represent it as the sum of one or more

positive integers a;, i.e., f l  : xrl x2l . . .* x^.This representation is called

a partition if the order of the x; is of no consequence. Thus two partitions

of an integer ,? are distinct if they differ with respect to the x; they contain.
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320 A.  ZOCHBI  AND I .  STOJMENOVIC

For example, there are seven distinct partitions of the integer 5:

5 ,  4 + l ,  3 + 2 , 3 +  I  +  l , 2 + 2 - t 7 , 2 a I  +  I  +  l ,  I  +  I  +  1  +  1  +  L

The partitions of an integer have been the subject of extensive study for
over 300 years, since Leibniz asked Bernoulli if he had investigated P(n), the
number of partitions of an integer r. Details of the history and the state of
the art as of 1920 can be found in Chapter 3 of [7]. Additional details and
later results can be found in most combinatorics texts; in particular, see [4,
19, 291. This interest is partly motivated by the important role played by
partitions and compositions in many problems of combinatorics and
algebra. In general, a list of all combinatorial objects of a given type might
be used to search for a counter-example to some conjecture, or to test and
analyze an algorithm for its correctness or computational complexity. For
computational purposes one is often interested in generating all the parti-
tions of an integer, or sometimes just those satisfying various restrictive con-
ditions. Several such algorithms, dealing with both the unrestricted [3, 18, 20,
23,25,21 ,30,3 l ]  and restr ic ted f3,  18,24,3 I ,  41]  cases,  have appeared in the
literature.

This paper is organized as follows. Section 2 gives definitions and
relations between various kinds and representations of integer partitions.
Section 3 surveys known algorithms for generating integer partitions. We
describe two new algorithms for generating integer partitions in standard
representation in Section 4. Their average delay property (exclusive of the
output) is proved in Section 5. The major contribution of the paper is to
present the first known algorithms to produce partitions in the standard
representation and with constant average delay. Section 6 contains an
empirical analysis of all known algorithms for generating integer partitions.
The results show that both new algorithms are faster than any of the pre-
viously known algorithms, no matter what representation of the partitions
is used (if the time to output partitions is not counted in). Some open
problems are given in Conclusion section.

2. DEFINITIONS

Lexicographic order of combinatorial objects is defined as follows. If
A :  ( a t ,  e 2 ,  . . . ,  a " , )  a n d  B :  ( b r , b z , . . . , b r , )  a r e  r e p r e s e n t a t i o n s o f o b j e c t s ,
then A precedes ̂B lexicographically if and only if, for some j) l, ai: b;
when i <7, and alprecedes bl For example, partitions of 5 in lexicographic
order  are:  l  l  l  l  l ,  2111,  221,  311,  32,  41.  5 (note that '+ '  s ign is  omi t ted) .
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Lexicographic order is desirable as it is the natural (dictionary) order, and

can be easily characterized and traced manually. The anti-lexicographic

order is the reverse of lexicographic one. The next interesting order is Gray

code or minimal change order [35], and there exist other orders, mostly

directly related to objects under consideration.
In standard representation, a partition of r is given by a sequence

x t . . . x - , w h e r e x 1  )  x 2 > . . . . )  x m ;  a n d x l  *  x 2  1 . . -  *  x ^ :  n .  l n t h e s e q u e l

x will denote an arbitrary partition and m will denote the number of parts of

x (m is not fixed). It is sometimes more convenient to use a multiplicity

representation for partitions in terms of a list of the distinct parts of the
partit ion and their respective multiplicit ies. Letyl ,...ryo be all distinct
parts in a partit ions, ard c1, ...,c4 their respective (positive) multiplicit ies.

Clearly cJ r * . . . * ca ya: r. The choice between the standard and multi-
plicity representation depends on the application. For example, the

representation of B-trees in [2] requires the standard representation of

integer partitions. The standard representation is used to generate an integer
partition at random 125,261.

We refer to the case of partitions without any limitations as being

unrestricted partitions. Let restricted partitions be those partitions for which

xt S U is satisfied, i.e., partitions whose largest part is no greater than U. Let

RP(n, U) be the number of restricted partitions of n whose largest part is no

larger than U. Restricted partitions can be generated using an algorithm to
generate unrestricted ones in lexicographic order and stopping the algorithm

when the first part becomes greater than U (or starting with first partition

l t :  k ,  q :  L n l y r ) ,  l z :  n - c l r ,  c z :  I  i f  y 2 >  0 ,  c z : 0  o t h e r w i s e ,  i n  c a s e

of anti-lexicographic order).
The number of unrestricted partitions P(n) of n can be determined using

the following recurrence relation: RP(n,U) -- RP(n-U,U) + RP(n,U-l)
(n>  U  >  l ) ,  and  bounda ry  cond i t i on  RP(n , l ) :  RP( I , 1 )  :  nP ( r , 0 )  :

RP(O, l )  :  I  and P(n) :  RP(n,n) .
Doubly restricted partitions contain parts of size between L and U, i.e.,

L1x1 {U  fo r  i : 1 ,2 , . . . ,m .  Mu l t i p l y  res t r i c ted  pa r t i t i ons  o f  r  i s  a

common name for various kinds of special partitions. Examples are
partitions with prescribed part sizes (they have parts which are selected from

an array vr ,  i  -  7 ,2, . . . ; r ) .  Tournament  scores are studied in  [24]  whi le

graph degree sequences are studied in [6].
The case of partitions whose largest part is exactly U is given in [25]

as a special case of their general method for l isting, ranking and unran-

king combinatorial objects. Note that the case of partitions of r whose

largest part is no greater than U is, by adding one more part of size
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U, equivalent to the case of partitions of n -f U with largest part exac-

ily rJ.

Using the Ferrers graph (cf. l27l a one-to-one correspondence between

partitions of n into m parts and partitions of n whose largest part is m

is established. Let Zt...zm be a partit ion into ru nonincreasing parts,

z r ) . . . )  z ^  a n d  x . t . . .  x k , x r  ) . . .  ) x p ,  b e  a  p a r t i t i o n  o f  n  i n t o  a n y  n u m b e r

of nonincreasing parts (i.e., k varies) with largest part x1 : m.The following

Ferrers graph illustrates the relationship between the two kinds of partitions.
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The following relation follows from the Ferrers graph: zi: rrrzx

{j lxi>i}. Consider now the corresponding multiplicity representation of

partit ions with largest part m'. ct.. . .,ca are the multiplicit ies of lr,. . . ,!a,
wherc m: l r  > . . . )  ya,  and c1 / r  *  . .  .  I  caya:  n.  For  the par t i t ions in to

m par ts .  le t  e1, . . . ,ea be the mul t ip l ic i t ies of  wt , . . . ,w7 (c lear ly  the two

sequences have the same number d of different parts), where w1 , ' ' ' ) lrttt

€1w1 - f  . . .  *  e4w4:  n,  and et  *  . - .  *  eo:  m.  Then i t  easi ly  fo l lows that

w m  i + t  :  c l  r  c 2 t  "  ' *  c ; '  a n d  € m - i + r :  l i - l i + 1  w h e r e  l a + t : 0 '  T h e

sums for wi can be easily maintained during the execution of a program

for generating partitions of n with largest part m in the multiplicity

representation.
The delay between two partitions is the time required to generate the new

partition from the existing one. Delay is constant if the time is constant,

assuming that the time to ouput partit ions is not counted. Obviously, a

procedure for generating next partition from current one has constant delay

ifit is loop-free and recursion-free. The average delay is the ratio ofthe total

time to generate all partitions and the total number of partitions. An

algorithm has constant average delay property if the ratio is less than a

constant for any n, agatn exclusive of the output time.

3. ALGORITHMS FOR GENERATING INTEGER PARTITIONS

In this section we briefly describe all known algorithms for generating

integer partitions. Algorithms are divided according to the kind of partitions
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generated (unrestricted partitions, restricted partitions, doubly restricted
partitions, and multiply restricted partitions), representation (standard repre-
sentation, multiplicity representation, and combined representation), and the
order ofgenerating partitions (lexicographic order, anti-lexicographic order,
Gray code order, and part order, in which algorithm actually ge- nerates all
partitions containing exactly m parts, where m varies from I to n).

Clearly an algorithm for generating doubly restricted partitions can be
used to generate restricted or unrestricted partitions. Also, an algorithm
which generates restricted partitions can be used to produce unrestricted
ones.

Each algorithm is given name by the first letters of its authors. These
abbreviations are used later in comparison tables.

In anti-lexicographic order, a partition is derived from the previous one
by subtracting I from the rightmost part greater than l, and distributing the
remainder as quickly as possible. For example, the partitions following
9  + 7  + 6 +  I  +  I  +  1  +  I  +  I  +  I  i s  9 +  7  +  5 + 5 * 2 .  F i r s t  s u c h  a l g o -
rithm is reported by Stockmal [37] (algorithm S), and it generates restricted
partitions. In algorithm S, each partition is represented by the integers c[l]
through c[U], where c[7] is the number of parts of the partition equal to the
integer j. This combined representation contains zeros and does not have
constant delay property.

In standard representation and anti-lexicographic order, the next
partition is determined from current orr€ x1 x2. . .xm in the following way.
Let hbe the number of parts of x greater than l, i.e., xi > I for l<i<h,
and x;:  I  for h<i<m. I f  x- > I  (or h:m) then the next part i t ion
is x1,x2, ...,xm r, xm- l, L Otherwise (i.e., h < m), the next partition
i s  o b t a i n e d  b y  r e p l a c i n g  x h , x h + t  :  1 , .  . . , x ^ : 1  w i t h  ( x l , - l ) ,
(xr- l ) , . . . , (xn- l) ,  d,  containing c elements, where 0 < d<x1,- l  and
(xn-l)  (c- l )  *  d:  xn+ m- f t .  Based on the general  idea, several
algorithms were developed: Algorithms A [3], Ml [23], PWI 1271, PWz
1271. The delay between the generation of two consecutive partitions in the
algorithm is O(n) in the worst case (even exclusive of the output).

The same strategy can be used to generate partitions in the multiplicity
representation and anti-lexicographic order. The computation of the next
partition from current one affects at most two smallest different parts, and
creates at most two new different parts. It is possible to perform the update
in constant delay per partition (exclusive of the output). Algorithms based
on the description are the following: AS [2], FL3 [l], and NW [25].

All known algorithms for generating partitions in lexicographic order use
the multiplicity representation. If ca > | then one of parts y7 is increased by

J Z J
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I and y1(c1- l) - I parts of size I are added. Otherwise one of parts la - r is

increased by I and ya-r(ca: - l) + y7- I parts of size I are added. In both
cases the part which is increased by I may happen to be same as the previous
part(s), in which case the multiplicities are corrected. For example, the next
part i t ion for 5 x 3 + 4x3 * 2x3 is 5 x 3 - f  4x3 + 3 x 1+l x 5 whi le the
next part i t ion for 5 x3 * 4x3 + 2x I  is 5 x4 + lx 9. This method is due

to Ehrlich (c/. t301) and is referred to as Algorithm E [30]. Algorithm FLl [9]
also belongs to this group. Since the changes are done only on last few parts,

the method has constant delay property.
Algorithms M2l20l and W [41] make use of a procedure that maps an

integer between 0 to P(n) - I into an integer partition. Using the map, which
is a bijection (or one to one), it is possible to generate all partitions in
various orders. For example, if the mapping is applied from 0 to P(n) - |

one gets partitions in lexicographic order while the application from P(n) - I

to 0 gives anti-lexicographic order. The method is not effective since the
mapping uses very large counters O(P(n)).

There exist several algorithms that generate partitions of n into exactly m
parts. Algorithm GLW [2] generate restricted partitions in the multiplicity
representation, in lexicographic order. Algorithm RJI [31]generates doubly
restricted partitions while Algorithm RJ2 [31] generates multiply restricted
partitions (Algorithm RJ2 allows also to limit the number of occurrences of
each part), both in antiJexicographic order and in standard representation.

There exists another solution for the case of partitions of r into exactly rn
parts in the standard representation. In [8, 30] algorithms are presented for
generating unrestricted partitions in lexicographic order for each fixed m,

but considering the parts of the partition in non-decreasing rather than
non-increasing order. In fact, this algorithm was discovered by K. F.

Hindenburg in 1778 (cf. [30]), and we refer to it as Algorithm H. To obtain
the next partition from the current one, the elements are scanned from right

to left, stopping at the rightmost x; such that x^'xi)2. Replace xr'by
x; * 1 forT : i,i -l 1,...,ffi- I and then replace x- by the remainder, to get

the sum n. For example, in the partition I1334, i : 2 and the next partition

is 12225.If the multiplicity representation is used, the algorithm is loop free

and works on the last indices only, thus having constant delay property.

Note that the parts in Algorithm H can easily be reversely indexed to

correspond to our conventional notation; however the order will be neither

lexicographic nor anti-lexicographic. This algorithm is coded in the
multiplicity representation in [44] (Algorithm Z).

When z varies from I to n, all mentioned algorithms generate all
partitions of given kind.
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We mention two more algorithms. Algorithm FL2 [9] generates unrest-
ricted partitions in the multiplicity representation in so called M-order
(defined in [9]) while Algorithm Sa [35] generates all partitions in a minimal
change (or Gray code) order.

4. NEW ALGORITHMS FOR GENERATING
PARTITIONS IN STANDARD REPRESENTATION

In this section we describe two new algorithms for generating integer
partitions in standard representation and prove that they have constant
average delay property. The first algorithm, named ZSl, generates partitions
in anti-lexicographic order while the second, named ZS2, uses lexicographic
order.

Recall that ft is the index of the last part of partition which is greater than
I while la is the number of parts. The major idea in Algorithm ZS1 is
coming from the observation on the distribution of x7,. An empirical and
theoretical study shows that x1,:2 has growing frequency; it appears in
66oh of cases for n : 30 and in 78oh of partitions for n : 90 and appears to
be increasing with re. Each partition of n containing a part of size 2 becomes,
after deleting the part, a partition of n-2 (and vice versa). Therefore the
number of partitions of n containing at least one part of size 2 is P(n - 2). By
using asymptotic formulae [3]for P(n),it is possible to proof that the ratio
P(n-2)lP(n) approaches I with increasing n. Thus almost all partitions
contain at least one part of size 2. This special case is treated separately,
and we will prove that it suffices to argue the constant average delay
of Algorithm ZSl. Moreover, since more than 15 instructions in known
algorithms which were used for all cases are replaced by 4 instructions in
cases of at least one part of size 2 (which happens almost always), the spced
up of about four times is expected even before experimental measurements.
The case xn > 2 is coded in a similar manner as earlier algorithm, except that
assignments of parts which are supposed to receive value I is avoided by an
initialization step that assigns I to each part and observation that inactive
parts (these with index > m) are always left at value l. The new algorithm is
obtained when the above observation is applied to known algorithms, and
can be coded as follows.

Algorithm ZSI
for i <- I to r do x;<- l;
x t ? n ;  m - l ;  f t -  l ;  o u t p u t  x r ;

325
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while x1l I do {

if x1, : 2 then {m * m * l; x1,+- l; h <- h - l}

e l s e  { r  + x h  l ;  t + m - h +  l ;  x h < - r

whi le  l )  r  do {h-  h *  1;  x6+ r ;  t  <-  t  -  r }

i f l : 0 t h e n m + - h

e l s e { r r + h + l :

i f  t  >  I  then { l  *  h  + l ;  4+7}}

OUtpUt  X t ,Xz , . . . ,X^ j

We now describe the method for generating partitions in lexicographic

order and standard representation of partitions. Each partition of n

containing two parts of size | (i.e., m -h > l) becomes, after deleting these

parts, a partition of n-2 (and vice versa). Therefore the number of integer

partitions containing at least two parts of size I is P(n - 2), as in the case of

previous algorithm. The coding in this case is made simpler, in fact with

constant delay, by replacing first two parts of size I by one part of size 2.

The position I of last part > I is always maintained. Otherwise, to find the

next partition in lexicographic order, an algorithm will do a backward

search to find the first part that can be increased. The last part x* cannot be

increased. The next to last part xm-t can be increased only if x^-z) x^-1.

The e lement  which wi l l  be increased is  x i  where x j - t  > x ;  and

xi: xi+ : xm,t.The 7'-11 part becomes x;*1, fr receives value j,

and appropriate number of parts equal to 1 is added to complete the sum to

n.Forexample,  in  the par t i t ion 5 - |  5  + 5 + 4 + 4 + 4 + I  thelef tmost4 is

increased, andthenextpartit ion is 5 + 5 + 5 + 5 + I + I + I + I + I + I

+ I + 1. The following is a code of appropriate Algorithm ZS2.

Algorithm ZS2
fo r  i -  1  to  re  do  x ;+  l ;  ou tpu t  x ; ,  i :1 ,2 , . . . , f r ;
xs  +  - l ;  x r  *2 ;  fu  +  l ;  m *  n - l ;  ou tpu t  x ; ,  i  :

whife x1 I n do I

i f  m - h  >  I  t h e n  { h < * h  * ' l 1 '  x 1 , * 2 ;  m * m - l }

else {7 <- m - 2;

whife x; : xm I do {4* l; j  *. i - l};

h  n. j  *  l ;  x1*  x , , -1 *  l ;
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r < - x m l  x ^  t ( * - h - 1 ) ;  x ^ < - 1 ;

i f  m-h  >  l  t hen  x^ - t+1 ,

m * h  * r - l ;

outpu t  x r ,xz , .  . . , x^ )

5. CONSTANT AVERAGE DELAY PROPERTY OF

NEW ALGORITHMS

The output size of each of P(n) partitions is O(n). This means that the total

output size is O(nP(Lr)). However, in some applications the objects which are

generated do not need to be printed out, for they merely serve as the source

of information for other procedures that work on combinatorial objects and

check some criteria which may be verified without always looking at the

whole new object. It makes sense then to consider generating combinatorial

object without outputing them. Optimal algorithms in this sense work in

O(P(n)) time, i.e., in constant time per object. Algorithms that generate the

next object from current one with constant average delay (exclusive of the

output time) exist for various kinds of combinatorial objects 16, 4, 33, 15,

39,40,43]. To the best of our knowledge, none of existing algorithms for

generating integer partitions in standard representation is known to have

constant average delay property. In this section we prove that Algorithms

ZSI and ZS2have constant delay property. We need the following lemma

in our proof.

L E v v n  1  R P ( n . t l 7 >  n 2 l l Z f o r  I J / 3 .

Proof Since RP(n,U))RP(n,3) for U > 3, it is sufficient to prove

RP(n,3)>n'112. In the multiplicity representation, the partit ions in

RP(n,3)  are of  the fo l lowing k ind:  n:  3c1 - r  2c2 - r  lca( i .e . ,  l r :  3 ,

!z:2,y2: 1). The number of such partit ions is equal to the number of

solutions of the above equation. Clearly, 0 ( c1 ( ln/3.J . For each c1 in the

interval we solve the equation 2c2* ca: n-3cr. This equation has unique

solut ion ca for  each c2,01cz<l@-3c)12) .  Therefore,  for  f ixed c1,  the

number of solutions is l(n-3c)l2l + I > (n - 3 c)12. Taking all values of c1

into account, the number of solutions is ) nl2 + (n-3)12 + (n-6)l

2  +  . . .  +  ( n - 3 l n l 3 l ) 1 2 :  ( 1 " 1 3 )  +  r ) n l 2 - l n l 3 ) ( l n l 3 )  +  r ) 3 1 4 :  ( l n l 3 )
+  t ) (n l2 - l rp )3 \2 (n l3 )  +  r ) (n l2 -n l4 )>n '1 r2 .  I
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THponnu 7 Algorithms ZSI and ZS2 generate unrestricted integer
partitions in standard representation with constant qverage dealy, exclusive
of the output.

Proof Consider part xi> 3 in the current partition. It received its value
after a backtracking search (starting from last part) was performed to find
an index j < i, called the turning point, that should change its value by I
(increaseidecrease for lexicographic/anti-lexicographic order) and to update
values x;for j{i. The time to perform both backtracking searches is O(r;)
where r ; :n-xr-x2-- . . -x i  is  the remainder to d is t r ibute af ter  f i rs t7
parts are fixed. We decide to charge the cost of the backtrack search evenly
to all "swept" parts, such that each of them receives constant O(l) time. Part
x; will be changed only after a similar backtracking step "swept" over f-th
part or recognized l-th part as the turning point (note that ith part is the
turning point in at least one of the two backtracking step). There are
RP(r;, x) such partitions which all keep xi intact. For x; ) 3 the number of
such partitions, according to Lemma l, is ) rllt2. Therefore the average
number of operations that are performed by such part i during the "run" of
RP(r;,x), including the change of its value, is O(l)/RP(r;, x;) <O(l)l
r! : o1t1rl) < qtlr? where 4; is a constant. Thus the average number of
operat ions for  a l l  par ts  of  s ize )  3 is  < q l r? + Szl r?+ . . . - t  q , l r?

< q O l r ? + . . . +  r l r l J  <  q Q l n 2  + t l @ -  t ) '  + . - .  + t l t z ) <  2 4  ( t h e  l a s t
inequality can be obtained easily by applying integral operation on the
last sum), which is a constant. The case which was not counted in is when
x;(2. However, in this case both Algorithms ZSI and ZS2 perform
constant number of steps altogether on all such parts. Therefore the
algorithm has overall constant time average delay. I

6. EMPIRICAL ANALYSIS

In this section we present the results of the performance evaluation of
known integer partition generation methods. To the best of our knowledge,
this is the first comparison of algorithms for generating integer partitions.
Similar analysis exist for permutations [36], combinations [] and set
partitions [8]. The comparison includes our newly proposed algorithms.
All algorithms are divided into two groups according to representation-
multiplicity or standard. Major comparison is done for unrestricted
partitions (algorithms that generate restricted or doubly restricted partitions
are also compared here for l, : I and U : n; they are compared separately
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for other bounds of I and U in[44] and obtained results preserve the relative

order as shown here).

All algorithms were coded in C language (coding in PASCAL was also

done but the comparison gave similar results as in C language). Algorithms

that were originally written in old-fashioned way (for example, using go to

instruction), like Algorithms Ml and M2, are re-coded in C language

fashion and compared in modified form (the modified form was faster by

about l0% than the original one in all such cases). The algorithms were

implemented on PC-286, Sun, and NeXT workstations in the laboratory of

Computer Science Department, University of Ottawa. The actual CPU

times and the average number of (arithmetic, logical and assignment)

instructions per partition of the algorithms are summarized in tables below.

CPU times are measured (averaged over three runs) when algorithms are

run without printing out partitions. A separate measurement of the number

of instructions rather than running time is also performed, but the results

are essentially the same as these obtained by comparing CPU times. More

details of all measurements are reported in [aa].
The results show clearly that both Algorithms ZSI and ZS2 are superior

to all other known algorithms (Ml, RJl, PWl, H, RJ2, PW2, M2, W) that

generate partitions in the standard representation. While their speed was

comparable to each other, each of them was at least four times faster on any

of three machines when partitions of 75 were generated. Moreover, both

algorithms are even faster than any algorithm for generating integer

partitions in the multiplicity representation.

Among algorithms that generate partitions in the multiplicity representa-

tion (as defined), Algorithm FLI was fastest on all three machines, and for

n : 75 was between above l07o and lDDoh faster than other Algorithms E,

FL2, AS, FL3, NW while GLW proved inefficient compared with other

algorithms. Algorithm S was faster than Algorithm FLI and is included in

the group since its combined representation is closer to multiplicity than to

standard representation; it becomes inefficient if its output is transfered to

the multiplicity representation.

Several algorithms were not implemented because of either their apparent

inefficiency (for example, Algorithms [35,38], or certain multiple restrictions

which are the only ones of their kind (Algorithms from [6] and [24]), or

generating more general objects than partitions [32].
The CPU time in tables below are in seconds. The names of algorithms

are defined earlier, and the orders of generations are abbreviated as follows:

A (anti-lexicographic), L (lexicographic), P (part order), U (unranking, i.e.,

mapping from integers to partitions) and N (none of them). The tables refer



330 A. ZOGHBI AND I. STOJMENOVIC

TABLE I Generating unrestricted partitions of 75 in the standard representation

Als Order PC-286 SUN NeXT

zsl
ZS2
M 1
PW1
RJI
H
RJ2
PW2
A
M2
w

A
I

A
A
P
N
P
A
A
U
U

I 1 0 . 0
124.0
5 1 7 . 0
800.0
652.0
892.0
997.0

1164.0
3 1 3 8 . 0
8086.0
8508.0

9 . 1
10.3
45.6
61.2
67.9
7  5 . 1
84.9

254.3
280.9
405.2
469.1

19 -4
22.5

116.2
123-2
130.3
145.4
189.9
223.1
565.8

t 3 7 1 . 5
t621.4

Alg.

TABLE II Generating unrestricted partitions of 75 in the multiplicity representation

Order PC-286 SUN NeXT

S
FLI
E
FL2
FL3
AS
NW
z
GLW

188.0
l'16.0
l9 l  . 0
245.0
214.0
2t2.0
326.0
319.0
500.0

I J . J

14.4
20.8
17.0
28.3
30.9
3 t - )

39.0
61 .6

24.9
42.8
48.5
50.3
60.5
62.6
80.0
82.0

126.8

L
L
L

N
A
A
A
N
P

to partition of 75. In [44] running time are given for partitions of some other
numbers (15, 30, 45 60, and 90) but the results do not differ significantly
from the case of number 75.

7. CONCLUSION

We have shown in this paper that two new algorithms for generating integer
partition in standard representation, described here, have constant average
delay property. To the best of our knowledge, there are first such algorithms
for which the property is proved. There exist well-known algorithms for
generating partitions in the multiplicity representation. Although the change
from multiplicity to the standard representation is routine, it is not a
constant time operation and one cannot obtain constant average delay
algorithm for generating integer partitions in standard representation using
one algorithm that generates them in the multiplicity representation. There
are applications which require the standard representation of integer
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partitions; for example, generating B-trees 14, 12]. Open problem is to find a
constant time (worst case) delay algorithm for generating unrestricted
integer partitions in standard representation, exclusive of the ouput. This
means that there should be constant number of differences in parts in
neighboring partitions. Algorithm [35] achieves later (with one minimal
change difference) but fails to do than in constant time.

Another problem is to find the average number of parts in a partition.
This would give precise total output size if partitions are to be printed out.
In [2] two parallel algorithms that generate partitions on a linear array of
n 1fi processors in the standard (multiplicity) representations are given, and
they run with constant delay. The costs of the algorithms (product of the
number of processors used and time complexity) are O(nP(n)) and
O(/nf@)) (respectively) which may not be cost-optimal. An empirical
study indicates that the average number of parts of a partition of n is n2l3
(with relative error < 3oh for n < 500) while the number of different parts
is nale (with relative error < l\oh for 30 < n < 120\.
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