Object Oriented Programming with Java:
Essentials and Applications

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pvt Ltd, Australia

Thamarai Selvi Somasundaram
Anna University Chennai, India

Xingchen Chu
The University of Melbourne, Australia

McGraw-Hill Education (India) Pvt Ltd
New Delhi, India

PUBLISHER COPYRIGHT PAGE...

il

Preface

Recent advances in Internet and Web are changing the way we conduct business, manage our life,
and interact among ourselves as a society. They have made the world a global village for
information exchange and service delivery. However, developing software systems and applications
for these environments continues to be a complex and challenging task. In addition, the cost of
software maintenance is increasing at a rapid pace surpassing the cost of its development and
hardware used for running it. Several paradigms and methodologies have been developed to manage
this software crisis. Object-Oriented Programming (OOP) has emerged as the most popular silver
bullet for managing complexity associated with the development and maintenance of software
systems and applications.

Several object-oriented programming languages have been invented since 1960. The two most
well-known ones are: C++ and Java. The emergence of Web as media for information exchange and
service delivery in early 1990s has created the need for a programming language supporting
networked environments involving a wide variety of computers and devices. To meet these
requirements, Sun Microsystems developed the Java programming language, which has rapidly
emerged as a dominant OOP language for implementing Web and Internet service applications. As a
platform independent language, Java provides capabilities such as network, graphic, and concurrent
programming as its core elements.

Coverage and Resources

The “Object Oriented Programming with Java: Essentials and Applications” book introduces the
software crisis the industry is facing due to the challenges associated with the development and
maintenance of large-scale software systems and applications. Then it presents OOP as a solution
with Java as a programming language. The book covers fundamentals of OOP and Java
programming at both basic and advanced levels. It offers a balanced treatment of OOP theory and
practice for developing desktop, enterprise, and web applications. These features make it a unique
textbook for both undergraduate and postgraduate students. The advanced topics covered include
Socket programming, multithreading, GUI (Graphical User Interface) programming, RMI (Remote
Method Invocation), JDBC (Java Database Connectivity), Java Servlet, JavaServer Pages and Java
Beans. Such coverage ensures that the book also serves as a reference for software engineers and
practitioners working in IT and other industries.

Every chapter comes with an extensive set of exercises: objective questions, review questions,
and programming problems. We encourage students to try these out by themselves to test and
enhance their understanding of the subject. However, we have included answers to objective
questions only (see Appendix D) - just for verification purpose!

To encourage students to put all concepts learned in this book into practice, we have proposed
two projects: Automation of a Publishing House and a Bank - complete details on these projects are
included in Appendix A and B.

iii

To enrich teaching and learning experience using this book, we have created a Web Resource
Center providing pointers/links to online resources, educational materials such as presentation
slides, white papers detailing recent advances, and innovative web applications. For details, please
visit the book’s website:

http://www.buyya.com/java/

Acknowledgments

First and foremost, we are grateful to all of our colleagues for contributing their time, effort, and
understanding during the preparation of the book. They include: Selina Dennis, Shanika
Karunasekera, Christian Vecchiola, Charity Laplap, Suraj Pandey, and Rodrigo Calheiros. We offer
our sincere gratitude to our employers for their support and cooperation.

We thank members of the GRIDS Lab for proofreading one or more chapters. They include
Rajiv Ranjan, James Broberg, Chee Shin Yeo, Alexandre di Costanzo, Srikumar Venugopal, Marco
Netto, Mukaddim Pathan, Ming Zhu, Mudiyanselage Wickremasinghe, Mustafizur Rahman,
Saurabh Garg, William Voorsluys, Mohsen Amini, Amir Vahid, Arun Anandasivam and Anton
Beloglazov.

We would like to thank all of our colleagues at Melbourne University who taught Software
Design subject as their teaching materials have influenced on the content of this book. Some of the
contents of this book have evolved over a period of time from our own teaching of subjects such as
Distributed Systems and Grid Computing. We would like to thank Rao Kotagiri for his mentorship
and support in mounting courses in these areas.

We thank our family members, especially Smrithi Buyya, Soumya Buyya, Radha Buyya, Siyin
Sun for their love and understanding during the preparation of the book.

We sincerely thank external reviewers commissioned by the publisher for their critical
comments and suggestions on enhancing the presentation and organisation of many chapters at a
finer level. This has greatly helped us in improving the quality of the book.

Finally, we would like to thank the staff at McGraw Hill Education (I) Press for their
enthusiastic support and guidance during the preparation of the book. In particular, Vibha Mahajan
inspired us to take up this project and set the publication process in motion, Nilanjan Chakravarty
managed the manuscript review process, and Surbhi Suman guided us in updating the book to enrich
the content and ensured that it covers topics prescribed in the syllabus of many educational
institutions. They were wonderful to work with!

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pvt Ltd, Australia

Thamarai Selvi Somasundaram
Anna University Chennai, India

Xingchen Chu
The University of Melbourne, Australia

v

Table of Contents

g T T e iii
Chapter 1 Software Development and Object Oriented Programming Paradigms.............. 1
1.1 TIITOAUCTION <.ttt sttt sttt e st e st e st e st e e saneenaees 1
1.2 Problem Domain and Solution Domain............cceceiriiiniiiiiiieniieiiieiecieeee e 2
1.2.1 ProbIEm STALEScooviiiiiiiiieeee ettt st st 3
1.3 Types of Persons Associated t0 SOIUION.cccueeierierieriiiiiiieiereeec e 3
Ti4 PIOZIAIN ..ottt ettt ettt e b e e sat e e bt e bt e e bt e ebte e bt e e ssae e baeenneeenne 4
1.5 Approaches in Problem SOIVINGcc.cooeiiiiiiiiiniiiiieieeesteseeeeee et 4
1.5.1 Multiple attacks or ASK QUESTIONS.eeuirtirieriieniienieeieete ettt siee e 5
1.5.2 Look for things that are SImilarcoceevieriiriinieneineeeceeeee e 5
1.5.3 Working backward or bottom-up approach..........c.cceeeeveerieeiienienieneeneeneeene e 5
1.5.4 Problem decomposition or top-down approachccecceverveereeneeneenieenienienieneennees 5
1.6 Styles of Programmingcocoevieiiiiiiiiiiiiiiiieieceee et st 5
1.7 Complexity Of SOFtWATEccc.ooiiiiiiiiiiiiiii et 8
1.8 SOTEWATE CTISTS ..vveuvieiiieeiie ettt ettt ettt ettt et b e et e bt e sateesbt e e sabeesbeeesabeesateesaneeaees 9
1.9 Software Engineering PrinCiplescccocooiiiiiiiiiiiiniinieicece e 10
1.10 Evolution of a New Paradigmc..cccccooiiiiiiiiiiiiiiice e 13
1.11 Natural Way of Solving a Problem.............ccceciiiiiniiiiiiiiiiiei e 14
112 ADSEFACLION ..ttt st s s et 15
1.13 Interface and IMplementation.........c.cceveeriieiiieiinienienieiceeee ettt 16
1,14 ENCAPSUIATION ..outtiiiiiiiiiiiiiieete ettt ettt st st sttt ettt saae s b esbeenbeas 17
1.15 Comparison of Natural and Conventional Programming Methodsc...cccccecvenienennnen. 17
1.16 Object-Oriented Programming Paradigmsc..ccocereereineineniiiienieneeieeieeieseeneeeen 18
117 Classes and ODJECESccueeueriiriiiieniierieeitete ettt sttt ettt st sttt ettt saaesbeesbeenbeas 19
1.18 Features of Object-Oriented Programmingc..ccccceeeeiiriiniinienienieiieieeeeeeeneeneen 21
1.18.1 ENCAPSULAtIONeouiiiiiiiiiiieiiciiceete ettt sttt 22
1.18.2 Data ADSIIACIONeevutiiiiiieiieeiieeeiee ettt sttt st s e st e sttt e st e sbeesanee s 22
1.18.3 INNETILANCEeeeiiiiiieiiie ettt sttt sttt sttt e st e st e s b e sanee s 25
1.18.4 Multiple INheritancecccccocieriiriiiiiieiiieee et 25
1.18.5 PolymOrphiSII ...couiiiiiiiiiiiiiccee et 25
1.18.6 DEISZALION ...ouetiniieniiiiieieeie ettt ettt ettt ettt st sttt ettt et sbae b ebeen 25
L1187 GEMETICILY ..ottt ettt ettt ettt st sttt ettt satesbaenbeebean 25
1188 PEISISIENCE ..c.eviiieiiiiiitieteeie ettt s et s s e 26
1.18.9 CONCUITEIICY ..ottt sttt ettt ettt ettt et et st satesbe et e bt et e eabesbaenbeebean 26
1.18.10 EVENLS ..ot 26
119 MOAUIATIEY ..ot st et es 26
1.20 HoW to Design @ Class?......ccceeuiiiiriiniieiieiieieeeetese ettt et 27
1.21 Design Strategies in OOPccccooiiiiiiiiiiiiieee et 27
1211 COMPOSITION «..eeniiiniieiiieiiieie ettt ettt ettt 27
1.21.2 GeNEraliZationcoocueiiiieniiiiiieeiee ettt sttt sttt sttt st e st e st esanee s 28

1.22 Comparison of Structured and Object-Oriented Programmingccccceeeevveruenveneennen. 29

1.23 Object-Oriented Programming Languagescocueveereereinieniiiieneeneeieeiesteseenieeniees 29
1.24 Requirements of Using OOP APProachcceceevereeneiniineniiiiieneenieeiceieeeeseesieeiee 31
1.25 Advantages of Object-Oriented Programmingccccceeeeiiiiiiienieninnieienieneeneeees 31
1.26 Limitations of Object-Oriented Programming...........c..ccccceeeeviriirienienieniiecienieneeneenees 32
1.27 Applications of Object-Oriented Programming............ccccceceevieriiirienienieniecienieneeneenees 32
1.28 SUMMATY .ottt ettt e s st et e e s s eneen 32
1.2 EXCOISICES .veteniteiiieeiieeiteeeite ettt ettt ettt ettt et ettt et et e s bt e st e e bt e et e s baeeabeesabeeeabeesabeesanee s 33
Chapter 2 Java Platform and Program Structure 35
2.1 INErOAUCHION ..ottt s 35
2.2 Historical Perspective of Java........cocoviiiiiiiiiiiiiiiiiiicecceecee et 36
2.3 JAVA e et bbbt s b s e 37
2.4 Java Runtime ENVIrONMENtcccocceeiiiiiiiiiiiiniiiiiciceceie et 40
2.5 Architecture Of JVIM .. c.cooiiiiiiiiiicicteeee e s 42
2.6 CharacteriStiCs Of JAVAcoeciiviiiiiiiiiieicicectee et s 44
2.7 Java Program StIUCTUTE.........coccovuiiiiiiiieiiiieieecte et e 44
2.8 Commands for Running a Java Program............c..ccccoeoiiiiiiiiiiiiiiinceceeeeeeeeeen 46
2.9 Simple I/O Operations in JAVA........cccccovueriiriiniieiieieeeeeeee et 48
291 Reading Input Data from the Keyboard.............cccccociniiniininiiiiiiiceceeee 49
29.2 Writing Output t0 the SCIEEN........cc.eeviiiiiiiiiciec e e 49
210 COAE CONVENLIONSveeuvieiiieriieeniieerieesteesteeeteesbeeeateesbeesateesabeesateesabeesabeesabeesaseesbeesseess 51
2,101 PACKAZES .ottt ettt et st sttt et 52
2.00.2 CIASSES vttt sttt ettt sttt sttt s et 52
2.10.3 TIEEITACES ..ottt e 52
2,104 MEhOAS ..ceiiiiiiiiiiisiite e e 52
2.10.5 VariablesS...coiiiiiiiiiiieecccee e s 52
2.10.6 CONSLANLS ...eeeiieeiieeiteeite ettt ettt ettt et e e bt esateesbt e e satesnbeeesbeesbaeebeeebeeenseeanne 52
2.11 Java Enterprise Edition (JaVA EE) 5.0cooiiiiiiiiiiiiiieeee et 52
2.12 Java 2 Micro Edition (J2ZME)cccuuiiieiiiiieeiie ettt ettt e e e evae e s e e e seaeeeenens 55
2,13 SUMMATY oottt st sttt et et e s e e e e e sanesaeesaeesaeenneenneeas 57
214 EXETCISES . uueeeuiieruieeeiiteeiee et e et e ettt e st e st e st e st e s bt eeab e e st e e s ab e e sabeeeabeesabeesabeesabeeeabeesabeeeatee s 57
Chapter 3 Lexical Elements of Java 59
3.1 INErOAUCHION ..ottt 59
3.2 GIAIMIMAT ...ttt sttt ettt be s e e bttt b e sa e b st ennen 59
33 Character Set Used in Java Programs........ccocceveeviirieniiniiniineieiecenceeeeeeesieesiee e 60
3.4 Character ENCOAINGc.eovuiiiiiiiniiiiieiieieee ettt st st 60
3.5 ESCAPE SEQUEINCES ...uueeuiieuiiiutieiientteniteteete ettt st st et et ettt ebtesbte bt e be e bt satesatesbeenbeenaeenaeeas 61
3.6 LAENUHIETS....eiuiiiiiiiiieccece e s 63
3.7 KEYWOIAS ..ottt st e 64
3.8 ConCePt OF DAtcoouiiiiiiiiiieec et 64
3.9 Data TYPES....eenieeiieieeieee ettt et s e 64
3.10 Declaration of Scalar Variables..........cooceiriiiriiiiiiiniieiieceiee ettt 66
311 LexXical BIBMENLS ..ccc.ueiiiiiiiieiiieeiiee ettt ettt ettt sttt e st sab e st e st e sabeesanee s 67
302 COMUMENLS. ...ueiiiiiiiiieiiiiteiiet ettt sttt sttt be bbb e et besaeebesae oo s ennes 68
3.12.1 RegUIAT COMIMENLSeoutiiiiiiiniietieieete ettt ettt et sbte bt ebeesbeeatesieesbeesbeenbeenneeas 68
3.12.2 Single-liNe COMMENEScc.eeruririieriieieeieiie ittt ettt ettt e et e este s e sbeesaeenaeeaeeeas 68
3.12.3 Documentation COMMENLSc..ccueruerreruiereeeeeereteniesteesesaeeseestessessessessesaeesesseensensennes 68

vi

3013 WHIEE SPACES ..ttt sttt ettt ettt sbt e bt et e bt st satesbeenbeeteente e 69

B4 TOKENS ottt e et s 69
BUIS LEEEIAIS ettt st s 70
3.15.1 Boolean LIterals......ccc.eevuiirieiiiiiiieiiiieieeite ettt ettt e 70
3.15.2 Arithmetic LIteralS......coouiiiiiiiiiiiiieiiieeieete ettt et e 71
3,153 Integer LAtETals....c..coouiiiiiiiiiiiicieeeee ettt 71
3.15.4 Octal and Hexadecimal Literalscocceeviiiniiiiiiinieiiiieieeiieeeeeeeeee e 71
3.15.5 Character LItEralscovuiiriiiiiiiiieiiieei ettt ettt et e 72
3.15.6 Floating Point LIteralsccccoceiiiiiiriiiiiiiieiieieeeeieereeeese et 72
3.15.7 SHNG LAETALS ettt 73
3.16 Separators OF PUNCIUALOLScccuevutiriiertiiieiieite sttt ettt ettt e sae e e e eas 74
BU1T OPETALOTS .ttt ettt ettt ettt st st s bt et e st ea bt et b e sb e e bt e bt e bt satesatesbeenbeenaeenteeas 74
3018 SUIMIMATY ittt ettt ettt et s be e sb e b e e b e e bt eatesatesbeenbeenaeenteeas 75
319 EXEICISES..cuiiuiiuiiiiiiieieiit ettt st sttt s s et st 75
Chapter 4 Operators and Expressions 77
4.1 TOITOAUCLION ..ttt et sat e st e et e sabe e et e sabeesanee s 77
4.2 Categories OF OPEIALOLScc.eeruieriirieiiereeit ettt ettt et ettt e eaee b enrees 78
4.3 EXPIESSIONS. ...cuueeuiieiiieiieire ittt ettt ettt ettt et sa e st et e e e s e b e neesneeanesane e 79
4.4 Binding and Binding Timecccocoriiiiiiiiiiiiinieeeee et 79
4.5 SIA@ EfFECT ..ottt et 80
4.6 Features Of OPETatorsccocevieiieiiieienienieieeie ettt ettt 80
4.7 Evaluation Of EXPIESSIONSceoueiiiiiiriiniieiietietesitesieetcete ettt sttt ettt 81
4.8 TYPE CONVEISIONeeuiiiniieniiinieiieiite sttt ettt et ettt et e bt et et s atesbtesbee bt e bt eateeatesbaenbeenbees 82
4.9 NUMEriC PrOMOLIONocuiiiiiiiiiiiiiciiiciciee e s 83
4.10 Arithmetic EXPIESSIONS ...c..covuerviiiiiiiiniiiiieiieteeitesit ettt sttt 84
4.11 Relational and EquUality OPerators.........cccceevueerierienienieneenieeiestesitesieenieenieereeeresieesieeniees 85
412 LOZICAl OPEIALOTSouueeniieniienieiie ettt ettt ettt et e sae e e e e e saeenees 86
4.12.1 Bitwise Logical OPerators..........c.ccceeeruieiiieiieienienieeieere ettt sne e 86
413 Shift OPETALOTSoeeiiiiiieiieieeie ettt e ettt e e saeenees 91
4.14 One’s Complement OPETator..........c.cccouieruieiieiieienieneeeere e e seee e st ereeeneeanesenesaeennees 93
415 LOZICAl OPEIALOTS ..ottt ettt ettt ettt et e s st st esa e e e s e saeenees 94
4.16 AsSSINMENE OPETALOTSccuveeurieiriiiririieiieti ettt ettt e e enesae st esaee st esneeaseennesanesueenees 95
4.17 EXPLCIt TYPE CONVEISION...ccuueruiiriiiriiiiienieetieiteeitestt ettt et ettt sbee bt et esteeatesbaenbeenbeas 97
4.18 String CONCAENALIONeeviiiiriiiritiritenttenteete et et ett et et eteebestesbtesbeesbeebeeateeasesbaenbeenseas 97
4.19 Operator Precedence and ASSOCIAtIVILY ..c..eeveevirieniienienieenieeiente sttt sieeniees 97
420 SUIIMALY .eouviiniieiiieiieittent ettt sttt et e bt e e et e s bt e bt e bt e bt eabesbtesbeesbee bt enbeenbeeabesbaenbeenbeas 99
421 EXCICISES..uiuiiuiiiieiiiiieieie sttt sttt ettt st ettt s b et 99
Chapter 5 Control Flow Statements 101
5.1 TIITOAUCTION ..ttt ettt et e sat e e st e bt e e sabeeaees 101
5.2 Classification Of StAtEIMENLSccovuiiriiiiriiieniie ettt ettt e s e saree s 102
5241 EXPression Statementc.coceeruieriieiiieiieienieeeieeie ettt 102
5.2.2 Control FIOW STatementscoeueerieiniieniienieenieeniee ettt etee e st e sbee e s 103
5.3 if-e1S€ CONLLOl CONSIIUCES ...eeuvieiiiieiieeitteriteeite ettt ettt ettt e sab e sateesaee e e 104
5.3.1 NESEE I-CISE ...neuiiiiiieiiciiee e e 106
532 if-else-if Control CONSIIUCE.......ccuevviriiiiriieiieicieietee st 106
54 switch-case Control CONSIIUCE........ceeieiiieriiriiriieiieteeetetee sttt s 108
5.5 enum Types and Conditional StatemMENtsccceevueevierierienieneeneee et 110

vii

5.6 While LOOP CONSIITUCE . ..eotieuiiiiiieiiieiieitieit ettt sttt ettt 111

5.7 do-while LOOP CONSIIUCE ...cc..eeiiriiriiiniieriieieeteete ettt ettt s 114
5.8 fOr LOOP CONSIIUCEeeniiiniieniiiiiieiieeiiesit ettt sttt ettt st sbe e e esae s e 114
5.9 Unconditional EXECUONcovuviiiiiiiiiiiiiieieeieeeete ettt 123
5.9.1 Dreak StateIMENLc.eeiiuiiiiiiiiiieieee ettt et s 123
5.9.2 Labeled break StAEMENTcc.veeruiierieiriiienieeniee ettt ettt e st e s e s s 124
593 CONLINUE STALETNEIIEeueteiniiieiieeiiee ettt et e sttt e st e st e e sabe e st e sabeesabeesabeesabeesabeesaneens 124
594 The return STAEIMENTcovuvierieiriiienieeriiee ettt ettt e sttt e st e sabeesanee s 125
5.10 BIOCK StatemENLSceevuieiriiieriieiitieeieesiie ettt ettt et ettt e sate e it e st e sateesabeenaees 126
5.11 Declaration StAteIMENLcceeuiruieuirieieieienie ettt sttt s ere e enenens 126
5.12 EmPLY STABIMENL ...oueiiiiiieiieiiieiteeitestt ettt sttt et et ettt satesbee bt ebeenbeestesaaenae 127
5.13 SUMIMATY cntiiiiiiiiie ittt st sttt et s at e s bt s bt e bt e b enaesaaesmaenae 128
S.14 EXEICISES..cuviuiiiiiiriiitieitetetetete sttt sttt et s ettt s et 129
Chapter 6 Arrays 133
6.1 INEOAUCHION ..c.oviiiiiiiccce et s 133
6.2 ATTAYS .ottt ettt et et st a et en 134
6.3 ClassifiCation Of ATTAYScoveriieriieiiiiieiie ettt e s 134
6.4 Creation OF ATITAYScoiiiiiiiiieiieeee ettt e ene e ee 135
6.5 Creation of Regular AITAYS.........ccccceviiiiiiiiiiiiiiiieieit e 135
6.5.1 Creation of One-Dimensional Regular ATraysccccoeerienienieniiniinicnieneenene 136
6.5.2 Creation of Two Dimensional Regular Arraysccccceeerveenienienieiieicnieneenene 137
6.5.3 Creation of Three-Dimensional Regular Arrays.........ccocceveeveereeneenenniencienieneennens 139
6.6 Reading and WIiting Of AITAYScoueriiriiniiiiiiieiie ettt s 141
6.7 InitialiZation Of ATTAYS ...cceertiiiiiiiiieiteeeeee ettt s 142
6.7.1 Initialization of One-Dimensional Regular Arrays.........ccccoceveeneenieniienicnieneennen. 143
6.7.2 Initialization of Two-Dimensional Regular Arraysc..ccoceveeneeniniiencicnieneennens 145
6.7.3 Initialization of Three-Dimensional Regular Arrayscccccoveevieciieiiinciinieneenen. 153
6.8 Features Of ATTAYScc.ooiuiiiiiiiiiieiet ettt e 154
6.9 Passing Array as @ Parameterc..cocooviieiiiiiiiieiienieecccecee e 156
6.10 Applications Of AITAYSccouiiiiiiiiiiiiieiiee ettt e e 157
6.11 Recursive MEthodsoiiiiiiiiiiieieeeee ettt e 168
6.12 SUMMATY ..ottt et sttt et e e b e eane e sae 170
0.13 EXEICISES..cuviuiiiiiiriiitieiteitetetete sttt sttt s et sae et 170
Chapter 7 Classes and Objects 173
7.1 INEOAUCHION ...t s 173
T2 LSS ettt e et s et 174
7.2.1 Class DECIAration..........ccceieieieiiiiiniiiiiieeeeeertese et st 175
7.2.2 Field DeClarations...........cocueieieriinieniiiiiieieieeeiestese ettt s 176
7.2.3 Defining MethOds.......c..coouiiiiiiiniiiiciieeeeeeeee et 176
T3 ODJEOLS ettt sttt ettt ettt ettt bbbt b e et b e et ae ettt e bbbt eanenen 178
7.3.1 Creation of Object References..........ccoevuiviierienienieniiiiiciceecceeceee e 178
7.3.2 Creation of Objects Using new OPerator.............cccceeueevueriiereenieneennieiieeeeeeneeneen 178
7.3.3 Accessing Object MEMDETScoieciieiieiiinieieeeie ettt 179
7.3.4 SAMPIE PrOGrams......c..coviriiiriiiriiiieiieic sttt st 179
T4 CONSIITUCTOTS. c.cueuiiiiiieiieitetetete sttt ettt sttt et et a e b sae e bt et e ne e e besaeeseeaeennennens 182
7.4.1 Default CONSIIUCLOTS.......coutiieieiiieniieeiit ettt sttt s s 184
7.5 ACCESS MOGITIETS ...ttt s e 185

viii

7.6 Getter and Setter MEthOASc.uvvvvviiiiiieiieiiee et e et e e e e 189

7.7 Classification of Methods.........cccoiviiiiiiiiiniiiiiiiiiceie e 190
7.8 INStance MEthOdS.cccoeiiiiriiiiiiiiiiicicctee et s 191
7.9 Parameter PasSing.........coceooiiiiiiiiniiicii et 191
7.10 InvoKING MEthOdS.......coouiiiiiiiiieiiiieee et s 192
7.10.1 Method call for a method returning void...........cccceeceeeienienieniiniiicneeeeeeeeee 193
7.10.2 Method Call for a Method Returning a Valuecccooeeiieiiiniiiiienicnieeeens 193
7.10.3 Actual ATGUMEIES. ...c..eiiiiiieiiiieiie ettt esreene e eas 196
7.11 Methods OVErloadingcocccovieriiriiiiiiiiiinieieeee et s e 196
7.12 The this REfEIrENCE.......cceoviiiiiiiiiiiiiciccceeeeee et 199
7.12.1 Using this as an 0bJeCct TEfEreNCec..coverviirriiriirierieeieeeteeeteeee e 201
7.13 Static Fields and Methodscocoecivieiiiiiiiiiniiinicieicee e 202
TA3.1 Static FIEIAS .oouviiiiiiiiiiiicccee e 203
7.13.2 Static MethOdSccuoouiiiiiiiieiciiieicccecee e 204
7.14 Accessing a Static MEMDETcocueiiiiiiiiiiiiieeeete sttt 205
7.15 Features of Static MEMDETScooiuiiiiiiiiiiiiiieiiieete ettt ettt 205
7.16 Java Program STIUCLULE...........cocueriiiiiiiieieeieeeeeee ettt e e 206
T16.1 BNy POINE...coiiiiiiiiciceee e 210
7.16.2 DUMMY CIASS ..cviiiiiiiiiieieeiece ettt ettt sneeneene e 211
TAT NESIEA ClASSES -.eeuvtiiutieeiieiiieette ettt ettt ettt ette e bt e et esb e e e bt e s beeesbteebeeebeesbeeenseesane 211
T18 SUMIMATY .ottt et st e a e e s e b e ennesanesae 212
To1O EXEICISES..cuiiuiiuiiiiiiieiieitctet ettt ettt sttt s e bt et e a e b sae et 212
Chapter 8 Inheritance 215
8.1 INEEOAUCHION ...oviiiiiiiccce et 215
8.2 Derived Class Declarationcoceeeeieueniiniininiiieieiciesieee st 217
8.3 Types Of INNETItaNCEcovueiuiiiiiiiiiiiieieecececeet ettt 219
8.4 How to Implement INhETitance.........coceouieiieiiiiiiieiieecceece e 221
8.5 Inheritance and Member Accessibilitycccoocevieiieiiniiiiiiiiiecc e 222
8.6 Constructors in DErived ClaSSEs.......ceeuiiriieriieiiieeiie ittt ettt st e s e e 224
8.7 Overriding and Hiding Fields and Methodscc.coccoeviiiniiiiiniiiiicicececeee 225
8.8 UsIng the KeyWOTId SUPETc..coriiiiiiiiiieiieieeee ettt 228
8.9 Abstract Classes and MethOds.........ccueoiiiiiiiiiiiinieiieeee e 231
8.10 The final Classes and final Methods.............cccoeirieiiieiiiniiniiinicrceeee e 234
8.11 Java Class HICTarChYccccooeiviiiiiiiiniieniceieeeeteetetee ettt 236
8.12 Dynamic BINAINGcooeeriiiiiiiiiiiiieieieeieeeeest ettt 237
813 POLYMOIPIISIN ..ottt ettt st st sttt satesbaesbeebees 239
8.14 When to Use INhEritance?ccooieiiiiiiiiiniiiiiieiceecientee et 241
8.15 Advantages of INNETItANCecouiriiriiiniiiiieieeerteteeecete ettt 241
8.16 Multi-Level Inheritance Programcccocieviiiiniiniiiiiiiicceeceeeeeeeeeeeeeen 241
8.17 Hierarchical Inheritance Program.............cccoccoeviiiiiiiniiiiiiiincccce e 244
818 SUMMALY ...oouiiiiiiiiiieitecee ettt e s st st e et e sanesaeenees 246
Bl EXEICISES .eeeeueieiutieeite ettt ettt ettt ettt ettt ettt ettt e e s bt et b e et sa bt e s be e s baesanee s 246
Chapter 9 Interfaces and Packages 249
9.1 TNEEIEACES ...ttt e e et e e et e e e e ata e e e e tr e e e etaaeeeearaaaens 249
9.1.1 Declaration and Implementations of Interfacesccocceeereereeneeniniinicnicneenens 251
9.1.2 Polymorphism in INterfaces..........coceevuiriiiriiniiniiniiiiicctececeeeceeeee 254
9.13 Multilevel INheritancecccoveviiriiiiniiieieicieee e 256

X

9.14 Multiple INNETItANCEevuviriiiiiiiieieeieeiceeteeeee ettt 257

9.1.5 Explicit Interface Member Implementationscc.cceeeeveereeneeneeneniienicneeneenes 259
9.1.6 Validating INTErfacescocueveeriiriiiiiiiirierieeceeeeete et 261
9.1.7 Problems in Interfaces Because of Inheritance............ccoceevvieinviieniiinniiniecnnieenneen. 263
9.2 Packages: Putting classes TOZEthercccocuiviiiieiiiiiiiiicicce e 265
9.2.1 Java Foundation Packagesc..cocevieiiiiiiiiiiinieceeeeeeeece e 265
9.2.2 Package Naming CONVENTIONScc.cecuieiieierieniieieeieere et 266
9.23 Creating PaCKagesc.cooiiiiiiiniiiiciieeceeee et 267
9.2.4 Accessing Classes from Packagescocovvevieiiiiiiiiiiiiinicccccceeeeee 268
9.2.5 Accessing @ PaCKage.........ooviviiiiiiiiiiiiiiiictece e 268
9.2.6 Using a Package: An EXamplecocoeoiiiiiniiniiniiiiienicececeeececeeeeeee 269
9.2.7 Adding a Class to an Existing Packageccccceveeveininiiiiiniiniiieiceicecneeen 270
9.2.8 Packages and Name Clashing..........coceevuervierieniiniiniiieiicnencececeteeeeeeeeee 271
9.2.9 Extending a Class from Packageccccocevienieniininniniiciinceceiceceeceeeeen 272
0.2.10 Creating Java ATCRIVEScccuiiiiiiiiieiiiieee ettt 272
9.2.11 SetJava Classpathccoeciiiiiriiiiiiieieee ettt s 272
9.2.12 Read Environment Variables..........ccccueeviiriiiiiiiniieeieeeiieeiee et 273
9.3 SUMIMATY ..ottt ettt ettt e s e s e e e st eanesanesanesaeesaeenneenneens 273
9.4 EXOTCISES ..ttt ettt et ettt e a e st bt e st e nat e s abeeaees 274
Chapter 10 Exception Handling 277
10,1 INEEOAUCHION .ottt ettt ettt ettt et e st e et esb e sbeesbaeebeesbaeenneeeane 277
10.2 Exception Handlingcoccceoiiiiiriiniiiiiiientesiteicecee sttt 279
10.3 EXception Programming.........c.cccoceeveeiirienienieniieiceic ettt st 280
10.3.1 The throw Statement..........cccccueieiiiiiiniiiinieieeeeee e 281
10.3.2 The try StACMENL c..eoveiiiiiiiiieiieteeteeit ettt ettt ettt st et beebeestesaee e 281
10.4 User Defined EXCEPLIONccuiriiriiiiiiiiieieniiesiieicecee sttt s 287
10.5 Debugging Java Programs.........c..ccccecieiiiriinieniiiiieiitieenecseeie ettt 293
10.6 SUIMMATY .eiiiiiiiiiieiceieee ettt st st e a e et s e s e b e eneenne e e 294
TO.7 EXETCISES . ceuutteiuteeeiiee ittt ettt sttt sttt et s e et e s bt e e bt e s bt e e bt e sabeeeabeesabaeebeesbeeenseeeane 294
Chapter 11 Strings and Collections 297
1101 INEEOAUCHION ettt ettt ettt ettt ettt e st e et esab e e s beesbaeebeesbaeebeeeane 297
T1.2 SHrNG CIASS..cuiiiiiiieieeieee ettt et st sttt et e s e s s 298
113 String Manipulation........cooueiiiiiireinieiieeientenee ettt 300
114 SNGBULTEI.c..coiiiiiii ettt s 304
11.5 Command-Line ATZUMENESc..covueeriiriirieniientienieeteetestesieenieeste et eeresteesbeesbeebeesaesaeesaee 309
T1.6 JAVAULIL Lot 309
117 SANGTOKEMIZET ..coutiniiiiiiiieiie ittt sttt ettt 311
11.8 Collection Frameworkcccoecveiiiiiiiniiiiiiiieieiciceie et 313
11.9 Components of Collection Framework..........c..cccccocieiiiiiniiniiniiiiiiieeeeeeeeeee 314
11.10 Accessing the Collection ClIass..........cecuerierierieniieiiiirenecneeie et 314
11.11 Legacy Collection TYPES......c.ccooeeriieiieiiieiieienieeieeeee et 315
11.11.1 VIBCLOT ..ttt ettt et et e s bt e e bt e s bt e e sbee s baeenbeeeane 316
11.11.2 Hash Table.......cocuoiiiriniiiieececee ettt et 318
11.11.3 ENUMETAtION ...ooviiiiiiiiiiiiiiciciece e 319
L1122 WIAPPET CLASSES .euveiuiiiiieiiienieeieeieete et ettt ettt st st be ettt sbt e s b e sbe e b ebeemaesaae e 320
11.12.1 Methods in Wrapper CLasscoeeieererieniiiieneeneeieeieete ettt 321
11.13 Generic Data Types and COIECHONSc.eeveerieriiriiiniinieniienieeeee et 321

11.14 Frequently Used COIIECONSccc.eeuirierieniieniiiieeie ettt ettt s
11.14.1 LISttt e s
11.14.2 Sttt st
11.14.3 VLD .ttt ettt ettt nees

11.15 SUMIMATY ..ottt sttt ettt et e e e e enesaeesaeesaeesneenneeas

11.16 EXOTCISES c.veteutteette ettt ettt et et sttt st e et e s bt e st e s bt e et e sabeeeabee s

Chapter 12 Streams and I/O Programming
12,1 INtroduction tO STIEAMISc..eerueiritierieeiiieeiee et etee et e etee st eebeesbeesbeesbaessaeessbaeesneeeane
12.2 Java Stream AP ..ot

12.2.1 Reading and Writing Bytes........cocuieiiriiriiniiiiiciie et
12.2.2 Reading and Writing Characters........c.ccovereerernieiiienieneenieeieeteeire st
12.2.3 Layered Java StrEamSc..coveiriieiiiiiniieniieniteieete sttt ettt
1224 Handling EXCEPLIONScoueviiriiiiiiiinieniteniteieee ettt
123 File MaNa@emMENtc.covuiiiiiiiiiieiieieeieeiteeitest ettt st sttt et setesbeesbee b e e emaesaee e
124 FIle PIOCESSING ...eoveiiiiieiiiiiienitenieete ettt sttt ettt st sttt et sat e sbee bt e b e e e s s
12.4.1 BINAry SrEAIMS ...cocuiiiiiiiiiieiieitete ettt ettt et e sbe e e e ne e e
12,42 Write TeXt OULPUL....c.oiiiiiiiiiiieie ettt s e
12,43 Read TexXt INPUL ...c.cooiiiiiiicc et s
12.5 Primitive Data PrOCESSINGc.ccoouieiiiiiiiiiiiieiieicceee ettt
12.6 ODJECt PrOCESSINGc.viiuiiiiiiiiiiiiieiieit ettt sttt ettt s
12.6.1 Java SerialiZation.........coocueeiuiiiiiiiiiienieerie ettt ettt et e et e s e naees
12.6.2 Write and Read ODJECES......cc.ceruieiiriiriiiienieeieeeete ettt
12,63 VEISIONINEZ ..eenviiiieniiiieiite ittt ettt ettt ettt st st sbe et e bt eabe st esbee bt ebeesaesaeesaee
12.7 Retrieve Data from CONSOIEcccccuiviiriiiiiiiiiiieicicieie e
12.8 SUITIMATLY .eutiitiiieiieieete ettt bbb ettt st bt e bt et e st ebtesbeesbeenbeenbeemaesaeesae
12,9 EXEICISES...euiiuiiuiiiieiieieiertte sttt sttt sttt st s et

Chapter 13 Socket Programming
13,1 INEEOAUCHION ..vvvieiieieeeiiiieeee ettt ee ettt e e e e eeeta et e e e e e e eetaaaeeeeeeeeeansreeeeeeeeeeassraseeeeeeanes
13.1.1 Client/Server COMMUNICATIONcceeivrrieeeeeeeeeiiirreeeeeeeeeiirreeeeeeeeeeirrreeeeeeeeeenrrnneeeees
13.1.2 Hosts Identification and Service POItS............cccovvvieiieiieiiiiiiiieee e
13.1.3 Sockets and Socket-based CommUNICAtIONeeeveeeeeeiiiiiieeeeeeeiiiieeeeeeeeeeirreeenne.
13.2 Socket Programming and java.net Classccceceeiiiiiiienienieiieieeeeseeseee e
13.3 TCP/IP Socket Programmingcceceevuerierieneenierieiieneeneenie et sieesiee e eieesae e
13.4 UDP Socket Programmingc.ccoceevueeiierienieniinieeieiie sttt ettt siee e siee e
13,5 AN SEIVET .ot et e et e ettt e e et e e e etaeeeeeataeeeentseeesaaaeeeareeaans
13.6 URL ENCOING . c..tetiiiiiiiiiiiieiiteieete ettt sttt et sttt
13.6.1 Writing and Reading Data via URLCONNECHONccouverueeniiiiiniiniieniieieeieeienee e
137 SUITIMATY ettt sttt b et e e st she e bt et e st eb b e sbeesbeenbeenbeemaesmeesae
13,8 B XCICISES..uuuuiiiiieeeieeiitieee e e eeeccee e e e e e ettt e e e e e eeetaaeeeeeeeeeetaraeeeeeeeeeantaaeeeeeeeeaaraaaeeeeeeanns

Chapter 14 Multithreaded Programming
) O 0T (016 11 16 (o) o RS PS
142 Defining TRIEAAScooveieiiiiiieeiee ettt ettt ettt e s b e saee e
143 TRreads N JAVA......cooiiiiiiiiiieeeeeeee ettt sttt st e b e s beesbaeesaae e

14.3.1 Extending the Thread Class.......cc.ccoceriirienieninnieiiententeneeeeeeite st
14.3.2 Implementing the Runnable INterfaceccoceverviiriiniiniiiiniiinienicccceeeeee
14.3.3 Thread class versus Runnable interface...........cooceeverienieniniiniiinienieneeceeneee

Xi

144 Thread Life CYCIe....cceiriiiiiiiiieiieieeteetett ettt st s 393

14.5 A Java Program with Multiple Threads.........c.ccooccevirriiiiniiniiniieeeeeeeee e 393
146 TRIead Priority ...cccoveiriiiiiieieeneeeeeeeee ettt ettt s 396
147 Thread MethOdS.coc.eeeiiiiiiieieeeieeeee ettt ettt s b e s sbeesbeeesbee e 398
14.8 Multithreaded Math SEeTVET.........cocuiiriiiiiiiiiiiiieee ettt ettt 400
14.9 Concurrent Issues with Thread Programmingcocccoverieniniiiniiiniieniieneeecieeeeee 402
14.9.1 Read/Write Problemccocieviiiiiiiiiiiiiieieecee e 402
14.9.2 Producer and Consumer Problemccccooviiiiiiiiiiiniiiniiiniieieeieeeeeeseeee 405
14.10 SUMIMATY ..ottt ettt ettt et e e e ae e saeesaeesaeesneenneeas 409
14.11 EXETCISES ..ttt sttt s 409
Chapter 15 Graphical Programming 411
15.1 INtrodUCING SWINE ..eovveiiiiiiiiiiiieieete ettt ettt ettt sttt ettt eat e st sbee b e e emae e sae 411
15.2 Graphics Programming..........ccocceveeriieriirienieniieniceicete ettt 414
15.2.1 DiSplaying StrNZ....ccoueiieiiirieniietteteeiteettent ettt st e sttt ettt st e esbeetesaee e 414
1522 Working With SHaPEesc.ccovieriiiiiiiiirienieeee et 416
153 Handling EVENLS ..c..coouiiiiiiiiiiiiiiiiee ettt e s e 419
15.3.1 Overview of Delegation Event Model...........c..cccccooiriiniiniiiiniinienicececeee e 419
15.3.2 Examples: Capturing Simple ACHONc..coveeviieiiiiiiirieniieiece e 420
15.3.3 Yet Another Example : Window EVentsccccocccoiiniiiiiiiniiniinieeeceeeeee 423
1534 Work with Keyboardcoccooiiiiiiiiiiiieieecee e 423
15.3.5 WOTK With MOUSE ...couvviiiiiiiiieieeiceeeee ettt et 425
154 SWING COMPONENLS.eiriiriiriiiriiinieeieeteeteett et et et et sate st esaee bt eatesbbesbeesbeesbeenbeesaesaeenaee 430
15.4.1 Introduction to Layout Managementcceeveeruerierieneeneenieeienrenieenieenieeee e 430
1542 TOP-1evel CONLAINETSooueiriieiieiieiieiienitenieeie ettt ettt st s 435
15.4.3 JComponent Base CIasscccccevuiriirierienieniiiieite sttt 436
1544 TexXt COMPONEILS....couiiiiriiiniieniietieteeitenitent et et et satesbee bt esbeeatesbaesbeenbeenbeeneesaeesaee 437
15.4.5 ChoiCe COMPONENLS........ooiiruieiierieteeteneeteereereeresee st et esneeanesaeesseesseeneenesanenaee 443
1540 MENU..iiiiiiiiiiieiieieiee ettt ettt ettt ettt sttt et ettt sa e bttt naen 452
155 SUMMATY .ottt e st et e 462
15.0 EXOTCISES.ceuutieiuiteeitie ittt ettt sttt sttt st e et e s bt e et e s bt e e bt e sabeeebee s b aeebeesbaeenbeeeane 463
Chapter 16 Advanced GUI Programming and Applets 465
16.1 Advanced Swing COMPONENLS........eerueerrtieriiieriieriteeetteerieeeteeesteeebeeesteessbaeesseessbeeesseesane 465
LO.1. 1 DHALOZS. c.eteetiiteieeieete ettt ettt ettt sttt ettt et sb e bbb e st 465
16.1.2 Advanced CONLAINETS.coveieieiiniiniiieiecietetee ettt s 470
16.2 Model-VIieW-CONtrollercocoeiiiiiiiiiiiiiieiieeeeee sttt 480
16.3 VA APPIEL .ttt ettt et 481
16.3.1 The Lifecycle of APPIEtSccooieriiriiiriinieniieieieete ettt 483
16.3.2 Passing Parameters t0 APPIEtS.......cocueeierierieniriiiienteneeieeeeteeite st 484
16.3.3 INteractive APPIEL.....c.cocuiiiiiiiiiiiiieieeeeeeee et 486
16.3.4 AUAIOCHP INIETFACE ...t 491
16.3.5 APPIEICONIEXT ...ttt 494
16.3.6 APPLetStub........ccooiiiii 496
16.4 Building Non-Blocking GUIc.coeiiiiiiiiiiiiiieieeteetc ettt s 499
16.4.1 Event Dispatcher Thread............cccccoiiiiiiiiiiiiiicccee 500
16.4.2 Accessing Swing Components in Other Threads.............cccccoovniiiiinn. 500
16.4.3 Real Time Clock EXample.........ccccccoiiiiiiiiiiiiiiiiinrcececccecceees 500

xii

16.5 SUITIMATLY teutiiiiiieiieieete ettt ettt sb e ettt st she e bt et e st ebbesbeesbeenbeenbeenaesaeesae
L0.6 EXEICISES...cuiiuiiuiiiieiieieiestiete ettt sttt sttt ae st s et
Chapter 17 RMI Programming
17.1 When to use RIMIooiiiiiiiii ettt st e
17.2 RMI Development LifECYClecocueiiiiiiiiiiiiiiiieeie ettt
17.3 Implementing an RMI SEIVer.........cccoociiiiiiiiiiiiiiiiei e
17.4 Implementing an RMI CHENt......c...cciiiiiiiiiiiiiiiiec e e
17.5 How to Run an RMI-based AppliCAtionc..ccceevuieiiiriiiiinieniieiieieeeeseeeere e
17.6 SECUTILY ISSUS ..ottt st et e
177 SUITIMATY ettt ettt ettt ettt sb e et et st she e bt et e st eb b e sbeesbeenbeenbeemaesaeesae
17.8 EXEICISES...cuiiuiiuiiuieiieieiesttet ettt sttt st ettt st s et
Chapter 18 JDBC Programming
18.1 Whatis IDBC: A Brief INtroducCtionc.cceceeieieiienieniiniininieieicieieniee s
18.2 Types Of IDBEC DIIVELS ..ccuuiruiiriiiiieiieiietesitestteicete et sttt ettt
18.3 Using HSQL Databasecccoceeruiiriiiiiiiiniieniienieeicee sttt ettt
18.4 Configuration for JDBC CONNECHON.........ooiiriieriiiiieiiiienecieeie et
18.5 JDBC Update OPErationscceecuieuieierieniienieereeresreseenneeaeeereeesesseesseesseenesnesnnesane
18.6 JDBC QUErY OPEIatiOncceeruieiieiieiiieiieniienieeieere et st et ene et s e s eneene e
18.7 A Robust and Efficient Approach: Using Prepared Statement............cccceceeveerreencnnenne.
18.8 StOred PrOCEAUIE ...ccouviiiiiiiiieeiee ettt ettt esaee e
18.9 JDBC Transaction SUPPOIT.....c..ccouieruieriieienieniienieereeresreseesneeseesreensesseesueesseeneesnesanenaee
1810 SUITMALY .evtiiieiieiieieeie ettt ettt ettt et e bt e e st saeesbe et eat e eb b sbeesbe e beenbeenaesaeesae
18.11 EXETCISES .ttt sttt st
Chapter 19 Java Servlet Programming
19.1 Server-side Programmingccocceveeviirienienieniiicete ettt s
19.1.1 The Old Way: CGI Programming..........c..ccoceereeriernierieneeneenieeienienieenieenieeee e
19.1.2 The Java Way: Model-View-Controllercocerviinieniiiiniiiniienieeeeeeeee e
19.2 Apache Tomcat Servlet CONtaINeT..........ccuevveriieriieniieiiiiierecneeie et
19.3 The Controller: Java SEIVIELt.........cceeiueiiiiiiriiiiiieeiie ettt ettt et s saee e
19.3.1 WHRAL 1S SETVIEL ..cneiiiiiiiiieiieeeeee ettt ettt et e s
1932 Servlet LIfECyCle. . ..ot e
19.3.3 Serlvets iN ACHOM ...eevuiiiriiiiiiieiieeiie ettt ettt ettt e st e st e s e i
19.3.4 DEPIOYIMENL ..ottt ettt ettt st st sae ettt et sbtesbeesbeebeetesaeesae
19.3.5 Cookies and SESSIONc.eeuieuieieiiiiniiienieteteeete ettt st
19.3.6 Filtering REQUESE c...coueiuiiiiiiiiiiieiieieeitet ettt
194 SUITIMATY .eutiiiiiieiteieete ettt ettt sb et et et st st e sbe et e st eb b e sbeesbeenbeenbeemaesaeesae
19.5 EXEICISES..ueuiiuiiieiieiieieiesttete ettt sttt sttt s et
Chapter 20 JavaServer Pages and Java Beans
20.1 What is JavaServer Pages (JSP)oooieiiiiiiiiiiieeeeeeeeee e
20.2 The SKeleton Of JSP........coiiiiiiiiieeee ettt e
20.2.1 DATECHIVES.c..tteueeeitteiteeite ettt ettt et ettt et e e bt et e s bt e ettt sab e e s bt e sabte e bt e sabeesabeesabeesaneens
20.2.2 Java BXPIessions.....c..ccoieiiiiiiiiiiieniieieeieee et e e
20.2.3 TMPHCIt ODJECLS ..ueveniiiniieiiieiiieiieeiieee ettt
20.3 Getting Started with JSP: A Blog EXample........cccociiiiniiniiniiiiiiiinicniceececee e
20.3.1 BlOg CONIOIIETeiiiiiiiiieiiieiteeitete ettt
20.3.2 VIiewing the BlOg......ccooiiiiiiiiiiieicieieee et

Xiii

20.3.3 Modifying a BIog ENtry.....cocuoiiiiiiiiiiiiiiiicieteeeeeeee et e 599

20.3.4 POStING COMIMEBNLScorueetieuiiriienitentienteete et et sitesttesieesteesteeate st e sbeenbeesbeebesseesaeenaee 601
20.3.5 Processing REQUESEScocuieiiiiirieniieiieieeeee sttt 602
20.4 Simplifying JSP with JavaBeansccccooieviiiiiiiiiiniiieicieeeeeeee e 608
20.4.1 How to Write JavaBeanscoocueiiiiiiiiiiiiiiieeeccteeee e 608
20.4.2 JSP Standard JavaBeans Tagsc..cccceeeeviiiiiiiiinieniciieieeeeeeeseee e 616

20.5 JSP Expression Language (EL)cccocooiiiiiiiiiiiiiicicieceeeeeeee e e 618
20.5.1 ReServed WOTAS.....cooeeiiiiiiiieiiieeie ettt ettt sttt 618
20.5.2 OPETALOTSceeeiieeieeiieieet ettt ettt et ettt aeene e eaa e s e s i e ae e s e esneeanesanesae 619
20.5.3 LIEIAIS .cuueeieiieiie ittt ettt ettt ettt sttt s 619
20.5.4 TMPLCIE ODJECLS ..cuvveniiiniiiiieiiieiienitesitete ettt ettt ettt ettt et e b e saae e 619

20.6 Introduction to JSP Standard Tag Library (JSTL).......ccocceviiviiiiiniiniiniinieccceeeeeee 619
20.6.1 Getting Started With JSTLcccocoiiiiiiiiiiiiiceeeeeeee e 620
20.6.2 Configuring JSTL ...c.coiiiiiiiiiii ettt 622

20.7 SUIMIMATY coeeiiiiieiieiiteeiee ettt ettt et ettt sheesbee bt et e eatesbtesbtesbee bt enbeenbessaesaaenae 622
20.8 EXETCISES...ueeeuiieriteeiitteeteeeite e st ettt e et e sttt e st e sttt e s ab e e sbt e e sabeesbbeesab e e bt e e sabe e bt e e sabeennteeeabeenaees 622
Appendix A Project A - Publishing House Automation 625
Appendix B Project B - Bank Automation System 635
Appendix C Eclipse IDE 647
Appendix D Answers to Objective Questions 655
Appendix E Glossary 669
Appendix F ASCII Table 681
Appendix G Recommended References 683
INAEX .oueiniiniiiiiiiiiiiiiiiiiiiiiiiiiieiititiietieietieieeieteteesstsscsssssscssssssssnssscsscnssnsnssnns 685

Xiv

Chapter 1

Software Development and
Object Oriented Programming Paradigms

This chapter presents various methodologies for problem solving and development of applications
that have evolved over a period of time. This is primarily driven by the increasing complexity of
software and the cost of software maintenance growing rapidly. The chapter introduces object-
oriented design and programming as a silver bullet to solve software crisis. It then discusses various
features of objected oriented programming (OOP) from encapsulation and inheritance to templates.
Finally, the chapter presents various OOP programming languages with their unique properties.

Objectives
After learning the contents of this chapter, the reader must be able to:

understand programming paradigms

know the factors influencing the complexity of software development
define software crisis

know the important models used in software engineering
explain the natural way of solving a problem

understand the concepts of object-oriented programming
define abstraction and encapsulation

differentiate between interface and implementation
understand classes and objects

state the design strategies embedded in OOP

compare structured programming with OOP

list examples of OOP languages

list the advantages and applications of OOP

1.1 Introduction

Computers are used for solving problems quickly and accurately irrespective of the magnitude of the
input. To solve a problem, a sequence of instructions is communicated to the computer. To
communicate these instructions, programming languages are developed. The instructions written in
a programming language comprise a program. A group of programs developed for certain specific

purposes are referred to as software whereas the electronic components of a computer are referred to
as hardware. Software activates the hardware of a computer to carry out the desired task. In a
computer, hardware without software is similar to a body without soul. Software can be system
software or application software. System software is a collection of system programs. A system
program is a program, which is designed to operate, control and utilize the processing capabilities of
the computer itself effectively. System programming is the activity of designing and implementing
system programs. Almost all the operating systems come with a set of ready to use system
programs: user management, file system management, and memory management. By composing
programs it is possible to develop new, more complex, system programs. Application software is a
collection of prewritten programs meant for specific applications.

Computer hardware can understand instructions only in the form of machine codes i.e. 0's and
I's. A programming language used to communicate with the hardware of a computer is known as
low-level language or machine language. It is very difficult for humans to understand machine
language programs because the instructions contain a sequence of 0’s and 1’s only. Also, it is
difficult to identify errors in machine language programs. Moreover, low-level languages are
machine dependent. To overcome the difficulties of machine languages, high-level languages such
as Basic, Fortran, Pascal, COBOL and C were developed.

High-level languages allow some English-like words and mathematical expressions that
facilitate better understanding of the logic involved in a program. While solving problems using
high-level languages, importance was given to develop an algorithm (step by step instructions to
solve a problem). While solving complex problems, a lot of difficulties were faced in the
algorithmic approach. Hence object-oriented programming languages such as C++ and Java were
evolved with a different approach to solve the problems. Object-oriented languages are also high-
level languages with concepts of classes and objects that are discussed later in this chapter.

1.2 Problem Domain and Solution Domain

A problem is a functional specification of desired activities to generate the intended output. A
solution is the method of achieving the desired output. For example, getting a train-ticket from
Chennai to Delhi is a problem statement and purchasing a ticket by going to the Reservation Ticket
Counter is a solution to the problem. The output of this problem is the reserved ticket. Every
problem belongs to a domain of knowledge. The domain is the general field of business or
technology in which the user will use the software. The domain knowledge for reserving the ticket
requires knowing the train routes and fares to do that task. Hence, the term problem domain is used
in problem solving. The domain or the sector to which the problem belongs defines problem
domain. The problem that specifies the requirement in a particular knowledge domain and the
domain experts associated with the task of explaining the requirements belong to problem domain.
Similarly the solution obtained belongs to the solution domain. The subject matter that is of concern
to the computer and the persons associated with the task of devising solution define solution
domain. The problem domain specifies the scope of the problem along with the functional
requirements represented in a high level so that human beings can understand.

The solution domain contains the procedures or techniques used to generate the desired output
by a computer. Thus, problem solving is a mapping of problem domain to solution domain as shown
in Figure 1.1. It is the act of finding solution to a problem. The formulation of solution for a simple
problem is easy. The solution for simple problems may not require any systematic approach. But a
complex problem requires logical thinking and careful planning. Generally the problems to be
solved using computers will be reasonably complex.

Problem is transformed to Solution

Problem Domain (P) Solution Domain (S)

Figure 1.1: Problem Solving

1.2.1 Problem States

The problem has a start state and an end state or goal state. The solution helps the transition from the
start state to the end state as shown in Figure 1.2. It defines the sequence of actions that produces the
end state from the start state.

Start State End State

Beginning Point Achieve goal

Figure 1.2: Solution to a problem

The states are to be clearly understood before trying to get a solution for the problem. The initial
conditions and assumptions are to be explicitly stated to derive a solution for a problem. The
solution to a problem must be viewed in terms of people associated with it.

1.3 Types of Persons Associated to Solution

We may observe the three types of people associated with a solution to a problem as shown in
Figure 1.3. The logical solution may be explained by the domain experts. A domain expert is a
person who has a deep knowledge of the domain. The program is developed by one set of people
and the same is used by another set of people. The people developing solution are called developers
and the people using the solution are called users. The developer is also known as supplier or
programmer or implementer. The user is also called client or customer or end-user. The solution
represents the instructions to be followed to generate the output. The solution of a problem should
be carefully planned to enable the user to gain confidence in the solution.

Domain

Expert
Provides Logical
Solution
\ 4
Analyst/
Designer/
Developer

1.4 Program

Produces uses
User

Figure 1.3: People associated with solution

The solution to a problem is written in the form of a program, while a computer is used to solve the
problem. A program is a set of instructions written in a programming language. A programming
language provides the medium for conveying the instructions to the computer. There are many
programming languages such as BASIC, FORTRAN, Pascal, C, C++, etc., similar to the written
languages like English, Tamil and Hindi. Once the steps to be followed for solving a problem are
identified, it is easier to convert these steps to a program through a programming language. The idea
of providing solution is quite challenging. The domain experts play a major role in formulating the
solution. The formulation of solution is important before writing a program. It requires logical
thinking, careful planning and systematic approach. This can be achieved through the proper
combination of domain experts, system analysts/system designers and developers. The program
takes the input from the user and generates the desired output as shown in Figure 1.4.

Input is transformed to Output

Converted to

F: > O

Figure 1.4: Program

1.5 Approaches in Problem Solving

The principles and techniques used to solve a problem are classified under the following categories.
The following strategies are used in building solutions to a problem.

1.5.1 Multiple attacks or Ask Questions

By asking questions like what, why and how, the solution may be outlined for some problems.
Questions can be asked to many people irrespective of the domain and the answers to multiple
attacks of questions may help in revealing the solution. Whenever the solution is not known, this
approach may be used.

1.5.2 Look for things that are similar

We should never reinvent the wheel again. The existing solution for a similar problem can be used
to solve a problem. For example, finding the maximum value in a set of numbers is the same as
finding the maximum mark in a class of students or finding the highest temperature in a day. All
these different problems require the same concept of finding the biggest value among the values.
The solution is based on the similar nature of a problem.

1.5.3 Working backward or bottom-up approach

The problem can also be solved by starting from the Goal state and reaching the Start state. For
example, sometimes we prefer to derive an equation in mathematics from right side to left side. The
solution is derived in the reverse direction. For complex problems, this approach will be an easier
approach. Consider the problem of reaching an unknown place from a known place. It is always
easier to trace a known place starting from an unknown place compared to tracing from known to
unknown place. There may be many known landmarks nearer to the known place helping in locating
the place. If any one such landmark is reached, it is equivalent to finding the solution. But, the
landmarks of the unknown place are new while searching. Hence, even by reaching to the nearest
place, sometimes the location may not be identified and the tracing becomes difficult.

1.5.4 Problem decomposition or top-down approach

The problem is decomposed into small units and they are further decomposed into smaller units over
and over again until each smaller unit is manageable. The complex problem is simplified by
decomposing it into many simple problems. It is applicable for simple and fairly complex problems.
The top-down approach is also known as stepwise refinement or modular decomposition or
structured approach or algorithmic approach.

1.6 Styles of Programming

Each programming language enforces a particular style of programming. The way of organizing
information is influenced by its style of programming and it is known as programming paradigm.
First generation programming languages (1954-1958) such as FORTRAN I, ALGOL 58 and
FLOWMATIC were used for numeric computations. Any program makes use of data. Data is
represented by a variable or constant in a program. To perform an action, an operator acts on the
data (operand). Operands and operators are combined to form expressions. Each instruction is
written as a statement with the help of expressions. A sequence of statements comprises a program.
The structure of first generation languages is shown in Figure 1.5.

There is no support for subprograms. Such programming is known as monolithic programming.
The data is globally available and hence there is no chance of data hiding (denying the access of
data is known as data hiding). First generation languages were used only for simple applications.
The program is closer to solution domain by representing the operations/operators in the
programming language that can be performed in the computer.

Sequence of statements

PROGRAM] 3 Global Data

Figure 1.5: Structure of the first generation languages

Second generation programming languages (1959-1961) introduced subprograms (functions or
procedures or subroutines) as shown in Figure 1.6. Inclusion of subprograms avoids repetition of
coding. Such programming is known as procedural programming. Second generation language is
suitable for applications that require medium sized programs.

Global Data
A

/ N\

Subprogram Subprogram Subprogram

Figure 1.6: Structure of the second generation languages

FORTRAN II, ALGOL 60 and COBOL are second generation languages. The second generation
languages provided the possibility of information hiding (i.e., hiding the implementation details of a
subprogram). However, sharing the same data by many subprograms breaks the data hiding
principle. Hence, data hiding is only partially succeeded. Here also the program is closer to solution
domain where concentration is on operations/operators using functions.

Third generation programming languages (1962-1970) such as PASCAL and C use sequential
code, global data, local data and subprograms as shown in Figure 1.7. They follow structured
programming, which supports modular programming. The program is divided into a number of
modules. Each module consists of a number of subprograms represented by rectangles.

Importance was given for developing an algorithm and hence this approach is also known as
algorithmic oriented programming. In structural programming approach, data and subprograms
exist separately (Algorithms + Data Structures = Programs). A main program calls the subprograms.
Structured programming approach supports the following features:

Each procedure has its own local data and algorithm.
Each procedure is independent of other procedures.
Parameter passing mechanisms are evolved.

It is possible to create user defined data types.

A rich set of control structures is introduced.

e

Scope and visibility of data are introduced.

Nesting of subprograms is supported.

Procedural abstractions or function abstractions are achieved yielding abstract operations.
Subprograms are the basic physical building blocks supporting modular programming.

A e B

Modulel Module2 Module3

/

Global Data
N
7/
Nesteé \ \\ \ N\
subprogram
Local variable may exist

in the subprograms.

Figure 1.7: Data in third generation programming languages

By introducing scopes’ of variables, data hiding was made possible. For a very complex
problem, the maintenance of the program becomes very tedious because of the existence of so many
subprograms and global data. Here also the program is closer to the solution domain.

develops

Programmer » Program (closer to computer)

Figure 1.8: Relationship between a program and programmer

It can be observed that in structured programming, the emphasis is on the subprograms and the
efficient way of developing algorithms in terms of computing time and computer memory to solve
the problem. The relationship between programmer and program is given prime importance as
shown in Figure 1.8. Hence structured programming paradigms depend on solution domain and not
on problem domain. The data is not given importance regarding access permission.

To solve a complex problem using top-down approach, first the complex problem is
decomposed into smaller problems. Further these smaller problems are decomposed and finally a
collection of small problems are left out. Each problem is solved one at a time. Structured
programming starts with high-level descriptions of the problem representing global functionality. It
successively refines the global functionality by decomposing it into subprograms using lower level

" A scope identifies the portion of source program from which a variable can be accessed. It
normally consists in the portion of text that starts from the variable declaration and spans till the end
of the nearest enclosing block.

descriptions, always maintaining correctness at each level. At each step, either a control or a data
structure is refined. Thus top-down approach is followed in structured programming. This is a fairly
successful approach because it will cause problems only when there is a revision of design phase.
Such revisions may result in massive changes in the program. Also the possibility of reuse of
software modules is minimized.

There was a generation gap from 1970 to 1980. Many programming languages evolved, but only
a few of them were used in software development. Despite the invention of new programming
languages and software engineering concepts, software industries were unable to meet the demand
in reality.

1.7 Complexity of Software

Mainly simple problems were solved using computers during the initial evolution phases of
computing technologies (prior to 1990). These days, computers are utilized in solving many mission
critical problems and they are playing a vital role in the fields of space, defense, research,
engineering, medicine, industry, business and even in music and painting. For example, Inter-
Continental Ballistic Missiles (ICBM) in defense and launching of satellites in space cannot be
controlled without computers. Such applications cannot be even imagined without computers.
Influence of computers in various activities leads to the establishment of many software companies
engaged in the development of various types of applications.

Large projects involve many highly qualified persons in the software development process.
Software industries face a lot of problems in the process of software development. The following
factors influence the complexity of software development as shown in Figure 1.9.

1. Improper understanding of the problem

The users of a software system express their needs to the software professionals. The
requirement specification is not precisely conveyed by the users in a form understandable by the
software professionals. This is known as impedance mismatch between the users and software
professionals.

2. Change of rules during development

During the software development process because of some government policy or any other
industrial constraints realized, the users may request the developer to change certain rules of the
problem already stated.

3. Preservation of existing software

In reality, the existing software is modified or extended to suit the current requirement. If a
system had been partially automated, the remaining automation process is done by considering the
existing one. It is expensive to preserve the existing software because of the non-availability of
experts in that field all the time. Also it results in complexity while integrating newly developed
software with the existing one.

4. Management of development process

Since the size of the software becomes larger and larger in the course of time it is difficult to
manage, coordinate, and integrate the modules of the software.

5. Flexibility due to lack of standards

There is no single approach to develop software for solving a problem. Only standards can bring
out uniformity. Since only a few standards exist in the software industries, software development is
a laborious task resulting in complexity.

6. Behavior of discrete systems

The behavior of a continuous system can be predicted by using the existing laws and theorems.
For example, the landing of a satellite can be predicted exactly using some theory even though it is a
complex system. But, computers have systems with discrete states during execution of the software.
The behavior of the software may not be predicted exactly because of its discrete nature. Even
though the software is divided into smaller parts, the phase transition cannot be modeled to predict
the output. Sometimes an external event may corrupt the whole system. Such events make the
software extremely complex.

7. Software testing

The number of variables, control structures and functions used in the software are enormous.
The discrete nature of the software execution modifies a variable and it may be unnoticed. This may
result in unpredictable output. Hence, vigorous testing is essential. It is impossible to test each and
every aspect of the software in a complex software system. So only important aspects are subjected
to testing and the user must be satisfied with this. The reliability of the software depends on rigorous
testing. But testing processes make software development more and more complex.

Improper
understanding of
problem

Change of
rules during
development

Software
Testing

Software
Development

Preservation
of existing
system

Behaviour
of discrete
system

Flexibility
due to lack of
standards

Management of
development process

Figure 1.9: Factors influencing software complexity

1.8 Software Crisis

The complexity involved in the software development process led to the software crisis. Late
completion, exceeding the budget, low quality, software not satisfying the stated demand and lack of
reliability are the symptoms of software crisis. Software crisis has been the result of a missing
methodology in software development. The lack of structured and organized approach to software

development — not conceived as a process — led to late completion, exceeding budget in the case of
large and complex project. The OO paradigm arose as a consequence of a software crisis, where the
relative cost of software has increased substantially at a rate where software maintenance and
software development cost has far outstripped that of hardware costs. This rate of increase is
depicted in Figure 1.10. Software crisis as a term arose from the understanding that costs in software
development and maintenance have increased significantly, and that software engineering concepts
and innovations have not resulted in significant improvements in the productivity of software
development and maintenance. The software crisis provided an impetus to develop principles and
tools in software to drive, maintain and provide solid paradigms to apply to the software
development life cycle, with the intent to create more reliable and reusable systems. The sharp
increase in software maintenance from 1995-2000 is attributed to Y2K (Year 2000) problem in
software applications. As a result Indian software engineers have gained world-wide popularity,
which has in turn led to rapid growth of IT industries in India.

100 [o,
z 80 T
w; .~ Hardware ...~ Software
£ 060 [T Developmenltl i
§ prememeeeeeeeeeeo P
-E ____________________ 1 1 1 1
Q 40 e Software
DS_’ = Maintenance
20

1950 1960 1970 1980 1990 2000 2010 2020
Time (in years) ——

Figure 1.10: System development cost

Hardware development has been tremendously larger compared to software development.
Hardware industries develop their products by assembling standardized hardware components such
as integrated silicon chips. If a component fails, it is replaced by a new component without affecting
the functionality of the product. Standardized components are reused in developing other products
also. This revolutionary approach of reusable components and easier maintenance influenced the
software development process.

1.9 Software Engineering Principles

To avoid the software crisis, software engineering principles, programming paradigms and suitable
supporting software tools are introduced. Software engineering principles help to develop software
in a scientific manner. Systematic engineering principles and techniques such as model building,
simulation, estimation, and measurement are used to build software products. There are six main
software engineering activities in the Software Development Life Cycle (SDLC) as shown in Figure
1.11. This model is known as Waterfall model.

Waterfall model follows the activities in a rigid sequential manner. There is no overlap of

10

activities in this model. Each activity is followed after completion of the previous activity. Because
of the rigid sequential nature there is a lack of iterations of activities. The analyst may use dataflow
diagrams (DFDs), the designer may focus on hierarchy charts, and the programmer may use
flowcharts and hence there are disjoint mappings among the SDLC activities. Generally, the analyst
uses top-down functional decomposition while solving a problem. The programmer implements the
solution easily by using the procedural languages/structural programming languages that support
functional decomposition. The difficulty of reuse of software components still persists.

Requirement

Specification

Analysis

|

Design

|

Implementation

Testing

|

Maintenance

Figure 1.11: Software development activities (Waterfall Model)

Percentage of costs incurred during the different phases of SDLC is shown in Figure 1.12. Cost
factor of the first two phases can be combined. It can be observed that the maintenance of software
is 60% whereas all the other costs are only 40%. Hence, maintenance is an important factor to be
considered in software development process. Also, earlier programming languages did not support
reusability. An existing program cannot be reused because of the dependence of the program on its
environment. Thus, the following two major problems demanded a new programming approach:

1. Software maintenance.
2. Software reuse.

Logical improvement to the Waterfall model resulted in the Fountain model. The same six
activities in the software development are still followed in the same sequence. However, there is an
overlap of activities and iteration of activities as shown in Figure 1.13. The Fountain model is a
graphical representation to remind us that although some life cycle activities cannot start before
others, there is a considerable overlap and merging of activities across the full life cycle. In a
fountain, water rises up the middle and falls back, either to the pool below or is re-entrained at an
intermediate level.

11

Cost in Percentage

60

50

40

30

20

10

Analysis

Design

Development

Maintenance

Figure 1.12: Costs involved in SDLC

Maigtenance

Testi)

pe

Figure 1.13: Fountain model

12

The Fountain model outlines the general characteristics of the systems level perception of an
object-oriented development. There is a high degree of merging in the analysis, design,
implementation and unit testing phases. Moving through a number of steps, falling back one or more
steps and performing repeatedly, is a far more flexible approach than the one proposed by Waterfall
model. It follows a bottom up approach, which starts from the solution. If there is an existing
solution, that solution is studied first and the necessary details are identified and organized in a
suitable manner. For a problem not having a solution, the domain experts (i.e., experts who are
capable of providing useful information and future requirements) are consulted with the
conventional solution to start with. Since the software is developed by analyzing the solution first,
this approach is known as bottom up approach. There is another approach similar to Fountain model
called as a Spiral model as shown in Fig. 1.14. Spiral model also follows iterative approach in each
phase.

The Spiral model involves a little bit of analysis, followed by a little bit of design, a little bit of
implementation and a little bit of testing. A loop of the spiral goes through some or all of the
Waterfall phases. The idea is that each loop produces an output and by repeatedly following all the
activities such as planning, analysis, implementation and review the final solution is reached.
Engineering phase shown in quadrant III of Figure 1.14 involves coding, testing and putting the
solution into use.

Quadrant I Quadrant IT
Planning Risk analysis and

prototyping
Initial
Requirements /— \\I

N
_ Toward a

Correct and complete solution

Quadrant IV

Quadrant IIT
Reviewing

Engineering

Figure 1.14: Spiral model

Both the Fountain model and Spiral model provided better solution for complex problems
compared to top-down approach followed in the Waterfall model. The procedural and structured
programming languages were found unsuitable for the bottom-up approach because a change in
requirement, analysis, or design phase can cause the programming to start from the beginning once
again. They lack flexibility, modifiability and software component reuse.

1.10 Evolution of a New Paradigm
The complexity of software required a change in the style of programming. It was aimed to:

1. produce reliable software

2. reduce production cost

3. develop reusable software modules
4. reduce maintenance cost

13

5. quicken the completion time of software development

The Object-oriented model was evolved for solving complex problems. It resulted in object-
oriented programming paradigms. Object-oriented software development started in the 1980s.
Object-oriented programming (OOP) seems to be effective in solving the complex problems faced
by software industries. The end-users as well as the software professionals are benefited by OOP.
OOP provides a consistent means of communication among analysts, designers, programmers and
end users.

Object-oriented programming paradigm suggests new ways of thinking for finding a solution to
a problem. Hence the programmers should keep their mind tuned in such a manner that they are not
to be blocked by their preconceptions experienced in other programming languages such as
structured programming. Proficiency in object-oriented programming requires talent, creativity,
intelligence, logical thinking and the ability to build and use abstractions and experience.

If procedures or functions are considered as verbs and data items are considered as nouns, a
procedure oriented program is organized around verbs while an object-oriented program is
organized around nouns.

1.11 Natural Way of Solving a Problem

People tackle a number of problems in everyday life. It is very important to understand the way a
problem is addressed. Consider a situation in an office.

Manager wants to go to a customer’s site. He wants to sign a letter
before he leaves.

How does the manager solve this problem? The way by which the problem is addressed is shown in
Figure 1.15.

MANAGER
) %
K13

%QS? i
& %,
N\ iy

5 %
& S
Q‘b’
Stenographer Driver

Figure 1.15: Message passing

The manager first calls the stenographer to prepare the letter and dictates the matter. The
stenographer takes shorthand notes of the dictation and prepares the letter using a computer and a
printer. Now the letter is ready for signing and the manager signs it. Then the manager calls the
driver to take him to the customer’s site. The driver along with the manager reaches the destination
with the help of a car.

The manager delegates the responsibility of typing and taking the printed output to the
stenographer. The driver is entrusted with the responsibility of taking him to the customer’s site.

14

Thus, the manager uses two persons to complete the task. He doesn’t bother to know how the
stenographer prepares the document. By delegating the responsibility to someone, the manager is
free from that work. The specific tasks assigned to the steno and to the driver are done
independently. The stenographer makes use of another object (computer and printer or typewriter) to
complete the task. The driver uses the car to go to the destination. The manager is able to perform
the complex task by delegating the responsibilities to the concerned persons. Action is initiated by
sending a message to the person responsible for the action. The message receiving person accepts
the responsibility and the task is carried out by means of a method. Thus, messages and methods
play important roles in solving real world problems. Message passing is the first principle to initiate
an action by means of a method. Observe the responsibility-driven technique used in problem
solving. Message passing resembles a function call in a structured programming language. A
function is called to perform an action by passing parameters. Both message passing and function
call result in performing a task. But there are differences between them. The differences between
function call and message passing, shown in Table 1.1, must be understood before learning OOP.

Table 1.1: Comparison of function call and message passing

Function Call Message Passing

1. Function call may use zero or more Message passing uses at least one argument that

arguments.

identifies the receiving agent.

2. It always identifies a single piece of
executable code

The function name is called message selector. The
same name may be associated with different receiving
agents.

3. It is applied to data to carry out a task.

Message passing is a way to access the data. Message
may invoke a function defined for a specific purpose.

4. Consumer is responsible for choosing

Supplier is responsible for choosing the appropriate

functions that operate properly on the
data.

message.

5. There is no designated receiver in the
function call.

There is a designated receiving agent in message
passing.

If the way of solving a problem is viewed in depth, the concept of abstraction can be understood.

1.12 Abstraction

The abstract view of solving a problem is an essential requirement as we do in a real world problem.
Consider the previous example of the situation in an office. The manager passes the information
about the place of destination to the driver who performs the action of moving from the office to the
desired site. The manager must know the person who is capable of doing this task even though he
may not know driving. The driver takes care of the execution part of driving. In the perspective of
the manager, the driver is an employee who knows driving and can take him to the desired place.
This abstract information about the driver is enough for the manager. The manager is an officer
employed in the office. For the driver the details of the officer like name and designation are
enough. This is the abstract information about the officer. The driver uses a car to perform the task.
In the perspective of a driver the features of a car are shown in Fig. 1.16. In the perspective of the
manager, the type of car such as A/C or non-A/C and brand name may be important. Thus the
abstract information of the same entity differs from individual to individual.

The essential features of an entity are known as abstraction. A feature may be either an attribute
reflecting a property (or state or data) or an operation reflecting a method (or behavior or function).

15

The features such as things in the trunk of a car, the medical history of the manager traveling in the
car and the working mechanism of the car engine are not necessary for the driver. The essential
features of an entity in the perspective of the user define abstraction. A good abstraction is achieved
by having:

¢ meaningful name such as driver reflecting the function

¢ minimum and at the same time complete features

e coherent features.

Abstraction specifies necessary and sufficient descriptions rather than implementation details. It

results in separation of interface and implementation. The concepts of interface and implementation
are discussed next.

PROPERTIES FUNCTIONS
BrandName start()
RegNo .'\\ drive()
Color / currentSpeed()
v\ >
FuelType w—___ Q
N &/

Figure 1.16: Features of a car in the perspective of a driver

1.13 Interface and Implementation

It is very important to know the difference between interface and implementation. For example,
when a driver drives the car, he uses the steering to turn the car. The purpose of the steering is
known very well to the driver, but the driver need not to know the internal mechanisms of different
joints and links of various components connected to the steering.

An interface is the user’s view of what can be done with an entity. It tells the user what can be
performed. Implementation takes care of the internal operations of an interface that need not be
known to the user as shown in Figure 1.17. The implementation concentrates on how an entity
works internally. Their comparison is shown in Table 1.2.

INTERFACE IMPLEMENTATION

WHAT part? HOW part?

Implementation of the
operational features

Y

Operational features

Visible to the users Visible to the supplier

Figure 1.17: Separation of interface from implementation

16

Table 1.2: Comparison of interface and implementation.

Interface Implementation

It is user’s view point. (What part) It is supplier’s view point. (How part)

It is used to interact with the outside | It describes how the delegated responsibility is

world. carried out.

User is permitted to access the interfaces | Functions or methods are permitted to access the

only. data. Thus, supplier is capable of accessing data and
interfaces.

It encapsulates the knowledge about the | It provides the restriction of access to data by the

object. user.

1.14 Encapsulation

From the user’s point of view, a number of features are packaged in a capsule to form an entity.
This entity offers a number of services in the form of interfaces by hiding the implementation
details. The term encapsulation is used to describe the hiding of the implementation details. The
advantages of encapsulation are:

¢ information hiding
e implementation independence

If the implementation details are not known to the user, it is called information hiding. Restriction of
external access to features results in data hiding. The driver may not know the steering mechanism,
but knows how to use it. Here, the hidden steering mechanism refers to information hiding.
Whatever type of steering is used, the way of using the steering is same. Rotating the steering wheel
is an example of interface. The steering wheel is visible to the driver (user) and its function is not
affected by the change in the implementation by a different type of steering mechanism such as
power steering. The user’s interface is not affected by changing the implementation mechanism. A
change in the implementation is done easily without affecting the interface. This leads to
implementation independence. Thus, the natural way of solving a problem involves abstraction and
encapsulation. Conventional programming which uses structured programming is different from the
natural way of solving a problem.

1.15 Comparison of Natural and Conventional Programming Methods

In conventional programming, structured or procedural languages are used. In the structured
programming approach, functions are defined according to the algorithm to solve the problem. Here
function abstractions are concentrated. A function is applied to some data to perform the actions on
data. This approach may be called as data-driven approach, which involves operator/operand
concept. It depends on the solution domain because the algorithm (solution) is closer to the coding
of the program. The relationship between the programmer and the program is emphasized in the
data-driven approach. The solution is solution-domain specific. Conventional programming follows
the following principles:

e Operator-operand concept
* Function abstraction
e Separation of data and functions

The development of the algorithm is given prime importance in conventional programming. The
importance of data is not considered and hence, sometimes critical data having global access may

17

result in miserable output. The abstraction followed is function abstraction and not data abstraction.
Data and functionalities are considered as two separate parts.

But, in the natural way of solving real world problems, the responsibility is delegated to an
agent. The solution is proposed instead of developing an algorithm. The problem is solved by
having a number of agents (interfaces). The interface part is the user’s view point and hence the
solution is not closer to the coding of the program. The real world problem is solved using
responsibility driven approach. In this approach, the relationship between the user and the
programmer is emphasized. Here the solution is problem domain-specific. The natural way of
problem solving follows the following basic principles:

e Message passing
e Abstraction
e Encapsulation

The importance of data is realized through object-oriented technology which follows the natural
way of solving problem. Data abstraction and data encapsulation help to make the abstract view of
the solution with information hiding. Data is given the proper importance and action is initiated by
message passing. Data and functionalities are put together resulting in objects and a collection of
interacting objects are used to solve the problem. Object-oriented programming languages are
developed based on object-oriented technology.

1.16 Object-Oriented Programming Paradigms

The object-oriented approach to programming is an easy way to master the management and
complexity in developing software systems that take advantage of the strengths of data abstraction.
Data-driven methods of programming provide a disciplined approach to the problems of data
abstraction, resulting in the development of object-based languages that support only data
abstraction. These object-based languages do not support the features of the object-oriented
paradigm, such as inheritance or polymorphism. Depending on the object features supported, there
are two categories of object languages:

1. Object-Based Programming Languages

2. Object-Oriented Programming Languages

Object-based programming languages support encapsulation and object identity (unique property
to differentiate it from other objects) without supporting important features of OOP languages such
as polymorphism, inheritance and message based communication, although these features may be
emulated to some extent. Ada, C and Haskell are three examples of typical object-based
programming languages.

Object-based language = Encapsulation + Object Identity
Object-oriented languages incorporate all the features of object-based programming languages,

along with inheritance and polymorphism (discussed later in this chapter). Therefore, an object-
oriented programming language is defined by the following statement:

Object-oriented language = Object-based features + Inheritance + Polymorphism

Object-oriented programming languages for projects of any size use modules to represent the
physical building blocks of these languages; a module is a logical grouping of related declarations,

18

such as objects or procedures, and replaces the traditional concept of subprograms that existed in
earlier languages.

The following are important features in object-oriented programming and design:

1. Improvement over the structured programming paradigm.

2. Emphasis on data rather than algorithms.

3. Procedural abstraction is complemented by data abstraction.

4. Data and associated operations are unified, grouping objects with common attributes,
operations and semantics.

Programs are designed around the data on which is being operated, rather than the operations
themselves. Decomposition, rather than being algorithmic, is data-centric. Clear understanding of
classes and objects are essential for learning object-oriented development. The concepts of classes
and objects help in the understanding of object model and realizing its importance in solving
complex problems.

Object-oriented technology is built upon object models. An Object is anything having crisply
defined conceptual boundaries. Book, pen, train, employee, student, machine, etc., are examples of
objects. But the entities that do not have crisply defined boundaries are not objects. Beauty, river,
sky, etc., are not objects. Model is the description of a specific view of a real world problem domain
showing those aspects, which are considered to be important to the observer (user) of the problem
domain. Object-oriented programming language directly influences the way in which we view the
world. It uses the programming paradigm to address the problems in everyday life. It addresses the
solution closer to the problem domain. Object model is defined by means of classes and objects. The
development of programs using object model is known as object-oriented development.

To learn object-oriented programming concepts, it is very important to view the problem from
the user’s perspective and model the solution using object model.

1.17 Classes and Objects

The concepts of object-oriented technology must be represented in object-oriented programming
languages. Only then, complex problems can be solved in the same manner as they are solved in real
world situations. OOP languages use classes and objects for representing the concepts of abstraction
and encapsulation. The mapping of abstraction to a program is shown in Figure 1.18.

Real World Abstraction Object oriented programming

CLASS

Properties

Entity <

) Functions

Figure 1.18: Mapping real world entity to object oriented programming

Operations

19

The software structure that supports data abstraction is known as class. A class is a data type
capturing the essence of an abstraction. It is characterized by a number of features. The class is a
prototype or blue print or model that defines different features. A feature may be a data or an
operation. Data are represented by instance variables or data variables in a class. The operations
are also known as behaviors or methods or functions. They are represented by member functions of
a class in C++ and methods in Java and C#.

A class is a data type and hence it cannot be directly manipulated. It describes a set of objects.
For example,

apple is a fruit

implies that apple is an example of fruit. The term fruit is a type of food and apple is an instance
of fruit. Likewise, a class is a type of data (data type) and object is an instance of class.

Similarly car represents a class (a model of vehicle) and there are a number of instances of car.
Each instance of car is an object and the class car does not physically mean a car. An object is also
known as class variable because it is created by the class data type. Actually, each object in an
object-oriented system corresponds to a real world thing, which may be a person or a product or an
entity. The difference between class and object are given in Table 1.3.

Table 1.3: Comparison of Class and Object

Class Object
Class is a data type. Object is an instance of class data type.
It generates object. It gives life to a class.
It is the prototype or model. It is a container for storing its features.
Does not occupy memory location. It occupies memory location.
It cannot be manipulated because it is not | It can be manipulated.
available in the memory.

Instantiation of an object is defined as the process of creating an object of a particular class.
An object has:
° states or properties
e operations
® identity
Properties maintain the internal state of an object. Operations provide the appropriate
functionality to the object. Identity differentiates one object from the other. Object name is used to
identify the object. Hence, object name itself is an identity. Sometimes, the object name is mixed
with a property to differentiate two objects. For example, differentiation of two similar types of cars,
say MARUTI 800 may be differentiated by colors. If colors are also same, the registration number is
used. Unique identity is important and hence the property reflecting unique identity must be used in
an object.

The properties of an object are important because, the outcome of the functions depends on these
properties. The functions control the properties of an object. They act and react to messages. The
message may cause a change in the property of an object. Thus, the behavior of an object depends
on the properties. For example, assume a property called brake condition for the class car. If the
brake is not in working condition, guess the behavior of car. The outcome may be unexpected.

20

Similarly, in a student mark statement, the result () behavior depends on the data called
marks. The property of resultstatus may be modified based on the marks.

Comprises

Supports

Encapsulation

Data
Abstraction

Single
Inheritance

Multiple
Inheritance

Programming
Paradigm

Polymorphism

Delegation

Genericity

Persistence

Concurrency

Events

Figure 1.19: Features of the object-oriented paradigm

1.18 Features of Object-Oriented Programming

The fundamental features of object-oriented programming are as follows:
e Encapsulation

Data Abstraction

Inheritance

Polymorphism

Extensibility

Persistence

Delegation

Genericity

Object Concurrency

Event Handling

Multiple Inheritance

Message Passing

A model of these features and the way they relate to the Java language is shown in Figure 1.9.

21

1.18.1 Encapsulation

The process, or mechanism, by which you combine code and the data it manipulates into a single
unit, is commonly referred to as encapsulation. Encapsulation provides a layer of security around
manipulated data, protecting it from external interference and misuse. In Java, this is supported by
classes and objects.

1.18.2 Data Abstraction

Real world objects are very complex and it is very difficult to capture the complete details. Hence,
OOP uses the concepts of abstraction and encapsulation. Abstraction is a design technique that
focuses on the essential attributes and behavior. It is a named collection of essential attributes and
behavior relevant to programming a given entity for a specific problem domain, relative to the
perspective of the user.

Closely related to encapsulation, data abstraction provides the ability to create user-defined data
types. Data abstraction is the process of abstracting common features from objects and procedures,
and creating a single interface to complete multiple tasks. For example, a programmer may note that
a function that prints a document exists in many classes, and may abstract that function, creating a
separate class that handles any kind of printing. Data abstraction also allows user-defined data types
that, while having the properties of built-in data types, it also allows a set of permissible operators
that may not be available in the initial data type. In Java, the class construct is used for creating
user-defined data types, called Abstract Data Types (ADTs).

A good abstraction is characterized by the following properties:
1. Meaningful way of naming

An abstraction must be named in a meaningful way. The name itself must reflect the
attributes and behaviors of the object for which the abstraction is made.
2. Minimum features
An abstraction must have only essential attributes and behaviors, no more and no less.

3. Complete details

4. Coherence
An abstraction should define a related set of attributes and behavior to satisfy the
requirement. Knowing the ISBN number of a book is irrelevant for a reader whereas for a
librarian, it is very important for classification. Hence, the abstraction must be relevant to
the given application.

Separation of interface and implementation is an abstraction mechanism in object-oriented
programming language. Separation is useful in simplifying a complex system. It refers to
distinguishing between a goal and a plan. It can be stated as separating “what” is to be done from
“how” it is to be done. The separation may be well understood by the following equivalent terms:

Table 1.4: Equivalent terms reflecting separation

What How

Goals Plans

Policy Mechanism
Interface/ requirement Implementation

The implementation is hidden and it is important only for the developer. Separation in software
design is an important concept for simplifying the development of software. Also, separation

22

provides flexibility in the implementation. Several implementations are possible for the same
interface. Sometimes, a single implementation can satisfy several interfaces.

Encapsulation is a process of hiding non-essential details of an object. It allows an object to
supply only the requested information to another object and hides non-essential information. Since it
packages data and methods of an object, an implicit protection from external tampering prevails.
However, an entire application cannot be hidden. A part of the application needs to be accessed by
users to use an application. Abstraction is used to provide access to a specific part of an application.
It provides access to a specific part of data while encapsulation hides data.

Rendering abstraction in software is an implicit goal of programming. Object-oriented
programming languages permit abstractions to be represented more easily and explicitly. Object-
oriented programming languages use classes and objects for representing abstractions. A class
defines the specific structure of a given abstraction. It has a unique name that conveys the meaning
of the abstraction. Class definition defines the common structure once. It allows ‘reuse’ when
creating new objects of the defined structure. An object’s properties are exactly those described by
its class. Two main parts of an object are:

e [Interface: The user’s view of the operations performed by an object is known as the
interface part of that object.

e [Implementation: The implementation of an object describes how the entrusted
responsibility in the interface is achieved.

It is important to observe abstraction from the perspective of the user. Software is developed for
end users. Hence, the abstraction is captured from the user’s point of view. For the same reason
abstraction varies from viewer to viewer. For example, a book abstraction viewed by a librarian is
different from the abstraction viewed by a reader of the book. A librarian may consider the
following features:

Attributes Functions
title printBook ()
author getDetails()
publisher sortTitle()
cost sortAuthor ()
accNumber

ISBNnumber

A reader may consider the following features:

Attributes Functions

title bookDetails ()
author availability ()
content tokenDetails ()
examples

exercises

index

Here, the attributes are data and the functions are operations or behaviors related to data. If an
application software is to be developed for a library, the abstraction captured by the librarian is
important. The reader’s point of view is not necessary. Thus abstraction differs from viewer to
viewer Abstraction relative to the perspective of the user is very important in software development.

A simple view of an object is a combination of properties and behavior. The method name with
arguments represents the interface of an object. The interface is used to interact with the outside

23

world. Object-oriented programming is a packaging technology. Objects encapsulate data and
behavior hiding the details of implementation. The concept of implementation hiding is also known
as information hiding. Since data is important, the users can not access this data directly. Only the
interfaces (methods) can access or modify the encapsulated data. Thus, data hiding is also achieved.
The restriction of access to data within an object to only those methods defined by the object’s class
is known as encapsulation. Also, implementation is independently done improving software reuse
concept. Interface encapsulates knowledge about the object. Encapsulation is an abstract concept.
Table 1.5 gives a clear picture about the different concepts.

Table 1.5: Comparison of Abstraction and Encapsulation

Abstraction

Encapsulation

Abstraction separates interface and
implementation.

Encapsulation groups related concepts into
one item.

User knows only the interfaces of the object
and how to use them according to abstraction.
Thus, it provides access to a specific part of data.

Encapsulation hides data and the user
cannot access the same directly (data hiding).

Abstraction gives the coherent picture of what
the user wants to know. The degree of relatedness
of an encapsulated unit is defined as cohesion.
High cohesion is achieved by means of good
abstraction.

Coupling means dependency. Good systems
have low coupling. Encapsulation results in
lesser dependencies of one object on other
objects in a system that has low coupling. Low
coupling may be achieved by designing a good
encapsulation.

Abstraction is defined as a data type called
class which separates interface from
implementation.

Encapsulation packages data and
functionality and hides the implementation
details (information hiding).

The ability to encapsulate and isolate design
from execution information is known as

Encapsulation is a concept embedded in
abstraction.

abstraction.

Classes and objects represent abstractions in OOP languages. Class is a common representation
with definite attributes and operations having a unique name. Class can be viewed as a user defined
data type. Data types cannot be used in a program for direct manipulation. A variable of a particular
data type is defined first as a container for storage. The variables are manipulated after holding data
in them. For example,

int year, mark ;

is a declaration of variables in C. This statement conveys to the compiler that year and mark are
instances of integer data type. Likewise, in OOP, a class is a data type. A variable of a class data
type is known as an object. An object is defined as an instance of a class. For example, if Book is a
defined class,

Book

cBook, javaBook ;

declares the variables cBook and javaBook of the Book class type. Thus, classes are software
prototypes for objects. Creation of a class variable or an object is known as instantiation (creation of
an instance of a class). The objects must be allocated in memory. Classes can not be allocated in
memory.

24

1.18.3 Inheritance

Inheritance allows the extension and reuse of existing code, without having to repeat or rewrite the
code from scratch. Inheritance involves the creation of new classes, also called derived classes, from
existing classes (base classes). Allowing the creation of new classes enables the existence of a
hierarchy of classes that simulates the class and subclass concept of the real world. The new derived
class inherits the members of the base class and also adds its own. For example, a banking system
would expect to have customers, of which we keep information such as name, address, etc. A
subclass of customer could be customers who are students, where not only we keep their name and
address, but we also track the educational institution they are enrolled in.

Inheritance is mostly useful for two programming strategies: extension and specialization.
Extension uses inheritance to develop new classes from existing ones by adding new features.
Specialization makes use of inheritance to refine the behavior of a general class.

1.18.4 Multiple Inheritance

When a class is derived through inheriting one or more base classes, it is being supported by
multiple inheritance. Instances of classes using multiple inheritance have instance variables for each
of the inherited base classes. Java does not support multiple inheritance. However, Java allows any
class implements multiple interfaces which provides similar feature to multiple inheritance.

1.18.5 Polymorphism

Polymorphism allows an object to be processed differently by data types and/or data classes. More
precisely, it is the ability for different objects to respond to the same message in different ways. It
allows a single name or operator to be associated with different operations, depending on the type of
data it is passed, and gives the ability to redefine a method within a derived class. For example,
given the student and business subclasses of customer in a banking system, a programmer would be
able to define different getlnterestRate() methods in student and business to override the default
interest getInterestRate() that is held in the customer class. While Java supports method
overloading, it does not support operator overloading.

1.18.6 Delegation

Delegation is an alternative to class inheritance. Delegation allows an object composition to be as
powerful as inheritance. In delegation, two objects are involved in handling a request: methods can
be delegated by one object to another, but the receiver stays bound to the object doing the
delegating, rather than the object being delegated to. This is analogous to child classes sending
requests to parent classes. In Java, delegation is supported as more of a message forwarding
concept.

1.18.7 Genericity

Genericity is a technique for defining software components that have more than one interpretation
depending on the data type of parameters. Thus, it allows the abstraction of data items without
specifying their exact type. These unknown (generic) data types are resolved at the time of their
usage (e.g. through a function call), and are based on the data type of parameters. For example, a
sort function can be parameterized by the type of elements it sorts. To invoke the parameterized
sort(), just supply the required data type parameters to it and the compiler will take care of issues
such as creation of actual functions and invoking that transparently. Genericity is introduced in Java
1.5, implemented as generic interfaces that take parameter types.

25

1.18.8 Persistence

Persistence is the concept by which an object (a set of data) outlives the life of the program, existing
between executions. All database systems support persistence; however, persistence is not supported
in Java. However, persistence can be simulated through use of file streams that are stored on the file
system.

1.18.9 Concurrency

Concurrency is represented in Java through threading, synchronization and scheduling. Using
concurrency allows additional complexity to the development of applications, allowing more
flexibility in software applications.

1.18.10 Events

An event can be considered a kind of interrupt; they interrupt your program and allow your program
to respond appropriately. In a conventional, non object-oriented language, processing proceeds
literally through the code; code is executed in a ‘top-down’ manner. The flow of code in a
conventional language can only be interrupted by loops, functions, or iterative conditional
statements. In an object-oriented language such as Java, events interrupt the normal flow of program
execution; objects can pass information and control from themselves to another object, which in turn
can pass control to other objects, and so on. In Java, events are handled through the EventHandler
class which supports dynamically generated listeners. Java also implements event functionality in
classes such as the Error subclass; abnormal conditions are caught and thrown so they can be
handled appropriately.

1.19 Modularity

The complexity of a program can be reduced by partitioning the program into individual modules.
In object-oriented programming languages, classes and objects form the logical structure of a
system. Modules serve as the physical containers in which the classes and objects are declared.
Modularity is the property of a system that has been decomposed into a set of cohesive and loosely
coupled modules. A module is an indivisible unit of software that can be reused. The boundaries of
modules are established to minimize the interfaces among different parts of the development
organization. Modules are frequently used as an implementation technique for abstract data type.
Abstract data type is a theoretical concept and module is an implementation technique. Each class is
considered to be a module in OOP.

The responsibilities of classes are defined by means of their attributes and behavior. But a single
object alone is not very useful. Higher order functionality and complex behavior are achieved
through interaction of objects in different modules. Hence, interaction of objects is very important.
Software objects interact and communicate with each other by sending messages to each other.

The activities are initiated by the transmission of a message to an object responsible for the
action. The message encodes the request and the information is passed along with the message as
parameters. There are three components to comprise a message:

e The receiver objects to whom the message is addressed
e The name of the function performing the action
e The parameters required by the function

Interaction between objects is possible with the help of message passing. In the case of
distributed applications, objects in different machines can also send and receive messages.

26

1.20 How to Design a Class?

A class is designed with a specific goal. Its purpose must be clear to the users. An entity in solving a
problem is categorized as a class if there is a need for more than one instance of this class. Also, it
is very important to entrust a responsibility to an object. Presenting simply the behaviors such as
reading data and displaying data in a class is a poor design of a class. To perform complex tasks,
one class must jointly work with the other classes to perform the task. This approach is known as
collaboration among classes. The class must be designed with essential attributes and behavior to
reflect an idea in the real world.

The terms class and object are very important in object-oriented programming. A class is a
prototype or blueprint or model that defines the variables and functions in it. The variables defined
in a class represent the data or states or properties or attributes of a visible thing of a certain type.

Classes are user defined data types. It is possible to create a lot of objects of a class. The
important advantages of classes are:

e Modularity
e Information hiding
e Reusability

1.21 Design Strategies in OOP

Object-oriented programming includes a number of powerful design strategies based on software
engineering principles. Design strategies allow the programmers to develop complex systems in a
manageable form. They have been evolved out of decades of software engineering experience. The
basic design strategies embedded in object-oriented programming are:

i. Abstraction

ii. Composition

iii. Generalization
The existing object-oriented programming languages support most of these features.
Abstraction is clearly discussed in the section 1.18.2.

1.21.1 Composition

A complex system is organized using a number of simpler systems. An organized collection of
smaller components interacting to achieve a coherent and common behavior is known as
composition. There are two types of composition:

1. Association
2. Aggregation

Aggregation considers the composed part as a single unit whereas association considers each
part of composition as a separate unit. For example, a computer is an association of CPU, keyboard
and monitor. Each part is visible and manipulated by the user. CPU is an aggregation of processor
memory and control unit. The individual parts are not visible and they cannot be manipulated by the
user. Both types of composition are useful. Aggregation provides greater security because its
structure is defined in advance and cannot be altered at run-time. Association offers greater
flexibility because the relationships among the visible units can be redefined at run time. It adapts to
changing conditions in its execution environment by replacing one or more of its components. The
two types of composition are frequently used together. A computer is an example for combination of
both association and aggregation.

27

1.21.2 Generalization

Generalization identifies the common properties and behaviors of abstractions. It is different from
abstraction. Abstraction is aimed at simplifying the description of an entity whereas generalization
identifies commonalities among a set of abstractions. Generalizations are important since they are
like “laws” or “theorems” which lay the foundation for many things. Generalization helps to
develop software capturing the idea of similarity.

The different types of generalization are:
1. hierarchy

2. genericity

3. polymorphism

4. pattern

1. Hierarchy

The first type of generalization uses a tree structured form to organize commonalities. A
generalization/specialization hierarchy is achieved with the help of inheritance in object-oriented
programming languages. The advantages are:

e Knowledge representation in a particular form.

e The intermediate levels in the hierarchy provide the names that can be used among
developers and between developers and application domain experts.

® A new specialization at any level can be extended.
e New attributes and behavior can be easily added.
2. Genericity
It refers to a generic class, which is meant for accepting different types of parameters. A stack class

can be considered as a generic class if it is capable of accepting integer data as well as float or
double or char data also. This type of generalization is known as genericity.

3. Polymorphism

The term poly means many and the term morph means to form. Then polymorphism concerns the
possibility for a single property of exposing multiple possible states. The generally accepted
definition for this term in object oriented programming is the capability of objects belonging to the
same class hierarchy to react differently to the same method call. This means that a function may be
defined in different forms with the same function name. It is possible to implement different
functionalities using a common name for a function. Polymorphism provides a way of generalizing
algorithms. Late binding or dynamic binding (discussed later) is required to implement
polymorphism in object-oriented programming. Based on the parameters passed, the compiler
dynamically identifies the function to be invoked and it is known as dynamic binding.

4. Pattern

A pattern is a generalization of a solution for a common problem. An architecture or model is a
large scale pattern used in computer science. Client — server model is an example of a large scale
pattern. A pattern is a distinct form of generalization. It gives a general form of solution. A pattern
need not be expressed in code at all. The elements of the pattern are represented by classes. The
relationships among the elements may be defined by association, aggregation and/or hierarchy.

28

1.22 Comparison of Structured and Object-Oriented Programming
It is essential to understand the basic differences between structured programming and OOP

concepts, which is shown in Table 1.6.

Table 1.6: Difference between Structured and OO Programming

Structured Programming

Object-Oriented Programming

Top-down approach is followed.

Bottom-up approach is followed.

Focus is on algorithm and control flow.

Focus is on object model.

Program is divided into a number of sub-
modules or functions or procedures.

Program is organized by having a number of
classes and objects.

Functions are independent of each other.

Each class is related in a hierarchical manner.

No designated receiver in the function call.

There is a designated receiver for each message
passing.

Views data and functions as two separate
entities.

Views data and function as a single entity.

Maintenance is costly.

Maintenance is relatively cheaper.

Software reuse is not possible.

Helps in software reuse.

Function call is used.

Message passing is used.

Function abstraction is used.

Data abstraction is used.

Algorithm is given importance.

Data is given importance.

Solution is solution-domain specific.

Solution is problem-domain specific.

No encapsulation. Data and functions are
separate.

Encapsulation packages code and data altogether.
Data and functionalities are put together in a single
entity.

Relationship between and

program is emphasized.

programmer

Relationship between programmer and user is
emphasized.

Data-driven technique is used.

Driven by delegation of responsibilities.

1.23 Object-Oriented Programming Languages

Several object-oriented programming languages have been invented since 1960. Some well-known
ones are listed in table below. Among them, C++, Java, and C# are the three most commercially
successful OOP languages. Inventors and features of various OOP languages are given in table 1.7.

Simula

Simula was the first object-oriented language with syntax similar to Algol. Concurrent processes are
managed by scheduler class. This language is best suited to the simulation of parallel systems. It
allows classes with attributes and procedures that are public by default. It is possible to declare them
as private also. Inheritance and virtual functions are supported. Memory is managed automatically
with garbage collection.

29

Table 1.7: OO Programming languages
(a) OO programming languages and their inventors.

Language Inventor, Year Organisation

Simula Kristen Nygaard and Ole- | Norwegian Defense Research
Johan Dahl, 1960 Establishment, Norway

Ada Jean Ichbiah, 1970 Honeywell-CII-Bull, France

Smalltalk Alan Kay, 1970 Xerox PARC, USA

C++ Bjarne Stroustrup, 1980 AT&T Bell Labs, USA

Objective C Brad Cox, 1980 Stepstone, USA

Object Pascal | Larry Tesler, 1985 Apple Computer, USA

Eiffel Bertrand Meyer, 1992 Eiffel Software, USA

Java James Gosling, 1996 Sun Microsystems, USA

CH# Anders Hejlsberg, 2000 Microsoft, USA

(b) OO programming languages and comparison of their features

Feature | Java | C++ | Smalltalk ObJeC“‘W Simula | Ada | Eiffel | C#

Encapsulation \ \ Poor \ \ \ \ \
. Smgle N N J J J X J J
inheritance

Multiple X \ X \ X X v X
inheritance

Polymorphism \ \ \ \ \ \/ V l
Binding

Late | Both Late Both Both Early Early Late

(early or late)

Concurrency \ Poor Poor Poor \ Difficult \ \
Garbage =\ |y Y v v X v v
collection
Persistent . Like .
objects X X promised X X 3GL Limited X
Genericity \ \ X X X \ \ \

Class libraries \ \ \ \ \ Limited \ \

Ada

Ada was developed by Jean Ichbiah and his team at Bull in the late 1970s. It was named after
Augusta Ada, daughter of Byron, the famous romantic poet. It is a general-purpose language. An

30

abstract type is implemented as a package in Ada. Each package can contain abstract types. The
concept of genericity is introduced at the level of types and packages.

Smalltalk

It was designed by Alan Kay at Xerox PARC during the 1970s. It is a general purpose language. It
allows polymorphism. Automatic garbage collection is provided. Generalization of the object
concept is another original contribution from Smalltalk.

C++

C++ was designed by Bjarne Stroustrup in the AT and T Bell Laboratories in the early 1980s. It
borrowed the concepts of class, subclass, inheritance and polymorphism from Simula. The name
C++ was coined by Rick Mascitti in 1983.

Objective C

It is a general-purpose language designed by B. Cox. It extends C with an object model based on
Smalltalk 80. It does not support metaclasses, which are classes used to describe other classes.
Simple inheritance is supported. There are generic classes and no memory garbage collector.

Object Pascal

It is an extension of Pascal, developed by Apple for the Macintosh in the early 1980s. Simple
inheritance dynamic binding is supported. There is no automatic garbage collection.

Eiffel

It was developed by Bertrand Meyer in 1992 for both scientific and commercial applications.
Exception management is a feature supported by this language.

Java

It is a pure object-oriented language developed by Arnold and Gosling in 1996. It helps in
developing small applications called applets which can be integrated into web pages. It supports
multithreading. It supports encapsulation, inheritance, polymorphism, genericity, and dynamic
binding.

Cc#

It is an object-oriented programming language developed by Microsoft Corporation for its new
NET Framework. It is derived from C and C++; appears very similar to Java. It supports
encapsulation, inheritance, polimorphysm, genericity, and late binding.

1.24 Requirements of Using OOP Approach
The method of solving complex problems using OOP approach requires:

. Change in mindset of programmers, who are familiar with structured programming.
Closer interaction between program developers and end-users.

Much concentration on requirement, analysis and design.

More attention for system development than just programming.

Intensive testing procedures.

1.25 Advantages of Object-Oriented Programming

The following are the advantages of software developed using object-oriented programming:

31

1. Software reuse is enhanced.

2. Software maintenance cost can be reduced.

3. Data access is restricted providing better data security.

4. Software is easily developed for complex problems.

5. Software may be developed meeting the requirements on time, on the estimated budget.
6. Software has improved performance.

7. Software quality is improved.

8. Class hierarchies are helpful in the design process allowing increased extensibility.

9. Modularity is achieved.

10. Data abstraction is possible.

1.26 Limitations of Object-Oriented Programming
1. The benefits of OOP may be realized after a long period.
2. Requires intensive testing procedures.

3. Solving a problem using OOP approach consumes more time than the time taken by
structured programming approach.

1.27 Applications of Object-Oriented Programming

If there is complexity in software development, object-oriented programming is the best paradigm to
solve the problem. The following areas make use of OOP:

Image processing

Pattern recognition

Computer assisted concurrent engineering
Computer aided design and manufacturing
Computer aided teaching

Intelligent systems

Data base management systems

Web based applications

. Distributed computing and applications
10. Component based applications

11. Business process reengineering

12. Enterprise resource planning

13. Data security and management

14. Mobile computing

15. Data warehousing and data mining

16. Parallel computing

© 0N oL R L=

Object concept helps to translate our thoughts to a program. It provides a way of solving a
problem in the same way as a human being perceives a real world problem and finds out the
solution. It is possible to construct large reusable components using object-oriented techniques.
Development of reusable components is rapidly growing in commercial software industries.

1.28 Summary

Computers are used to solve problems. Different styles of programming have evolved in the history
of generation of languages. But the problem of reuse and maintenance was not solved by those early
languages and this led to the phenomenon called software crisis. To overcome the limitations,
software engineering principles were applied and the object oriented paradigm model was found to

32

be suitable for addressing, modeling, and solving complex problems. The diffusion of this paradigm
is the result of a continuous shift of programming abstractions from the solution domain to the
problem domain. The more the problems to solve got complex the more we moved to models more
close to the problem domain for solving them. From machine language to the Object-oriented model
and beyond. This constant movement has made the activity of finding a solution easier, more
understandable, and maintainable.

Object-oriented programming uses object models and it resembles the natural way of solving a
problem. The concepts of abstraction and encapsulation are used in OOP. The essential features of
an entity are known as abstraction. Abstraction separates the interface from implementation.
Encapsulation insulates the data by wrapping them up using methods. Classes and objects are the
fundamental concepts that render abstractions. Classes are user defined data types and objects are
instances of a class. The features of OOP are discussed to realize the importance of OOP approach.
The design strategies such as abstraction, composition, and generalization are embedded in OOP.
Examples of OOP languages, advantages, and applications of OOP are presented to know the
importance of OOP. Java is an OOP language. The history of development of Java and the runtime
environment of Java are described in the next chapter.

1.29 Excersices

Objective Questions

1.1 Both Java and C# are programming language.

1.2 Mapping of problem domain to solution domain is so called

1.3 A program is a set of instructions written in a

1.4 approach general requires decomposing a complex problem into smaller
problems.

1.5 process is useful to make a software reliable.

1.6 is a software development model that follows top-down approach.

1.7 The software structure that supports data abstraction is known as

1.8 The process, or mechanism, by which you combine code and the data it mampulates into a
single unit, is commonly referred to as

1.9 allows an object to be processed dlfferently by data types and/or data classes.

1.10 The basic design strategies embedded in object-oriented programming are: ,

and .

1.11 Bottom-up and top-down are the two very common problem solving strategies: True or

False.

1.12 C and C++ are structural programming languages, Java and C# are object-oriented
programming languages: True or False.

1.13 Class is a data type and Object is an instance of a class: True or False.
1.14 Abstract Data Types is a term referring to an abstract class: True or False.
1.15 Encapsulation hides the data and the user cannot access them directly: True or False.

1.16 Reusability is an important aspect of designing classes: True or False.

1.17 Object inheritance is a way of achieving genericity: True or False.

1.18 The focus of Object-Oriented Programming is the algorithm and control flow in a way of
defining classes: True or False.

1.19 Structural programming language does not have a way of defining classes: True or False.

1.20 The testing is used to help Object-oriented programs instead of structural programs: True
or False.

33

