

i

Object Oriented Programming with Java:

Essentials and Applications

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pvt Ltd, Australia

Thamarai Selvi Somasundaram
Anna University Chennai, India

Xingchen Chu
The University of Melbourne, Australia

McGraw-Hill Education (India) Pvt Ltd
New Delhi, India

ii

PUBLISHER COPYRIGHT PAGE…

iii

Preface

Recent advances in Internet and Web are changing the way we conduct business, manage our life,

and interact among ourselves as a society. They have made the world a global village for

information exchange and service delivery. However, developing software systems and applications

for these environments continues to be a complex and challenging task. In addition, the cost of

software maintenance is increasing at a rapid pace surpassing the cost of its development and

hardware used for running it. Several paradigms and methodologies have been developed to manage

this software crisis. Object-Oriented Programming (OOP) has emerged as the most popular silver

bullet for managing complexity associated with the development and maintenance of software

systems and applications.

Several object-oriented programming languages have been invented since 1960. The two most

well-known ones are: C++ and Java. The emergence of Web as media for information exchange and

service delivery in early 1990s has created the need for a programming language supporting

networked environments involving a wide variety of computers and devices. To meet these

requirements, Sun Microsystems developed the Java programming language, which has rapidly

emerged as a dominant OOP language for implementing Web and Internet service applications. As a

platform independent language, Java provides capabilities such as network, graphic, and concurrent

programming as its core elements.

Coverage and Resources

The “Object Oriented Programming with Java: Essentials and Applications” book introduces the

software crisis the industry is facing due to the challenges associated with the development and

maintenance of large-scale software systems and applications. Then it presents OOP as a solution

with Java as a programming language. The book covers fundamentals of OOP and Java

programming at both basic and advanced levels. It offers a balanced treatment of OOP theory and

practice for developing desktop, enterprise, and web applications. These features make it a unique

textbook for both undergraduate and postgraduate students. The advanced topics covered include

Socket programming, multithreading, GUI (Graphical User Interface) programming, RMI (Remote

Method Invocation), JDBC (Java Database Connectivity), Java Servlet, JavaServer Pages and Java

Beans. Such coverage ensures that the book also serves as a reference for software engineers and

practitioners working in IT and other industries.

Every chapter comes with an extensive set of exercises: objective questions, review questions,

and programming problems. We encourage students to try these out by themselves to test and

enhance their understanding of the subject. However, we have included answers to objective

questions only (see Appendix D) - just for verification purpose!

To encourage students to put all concepts learned in this book into practice, we have proposed

two projects: Automation of a Publishing House and a Bank - complete details on these projects are

included in Appendix A and B.

iv

To enrich teaching and learning experience using this book, we have created a Web Resource

Center providing pointers/links to online resources, educational materials such as presentation

slides, white papers detailing recent advances, and innovative web applications. For details, please

visit the book’s website:

 http://www.buyya.com/java/

Acknowledgments

First and foremost, we are grateful to all of our colleagues for contributing their time, effort, and

understanding during the preparation of the book. They include: Selina Dennis, Shanika

Karunasekera, Christian Vecchiola, Charity Laplap, Suraj Pandey, and Rodrigo Calheiros. We offer

our sincere gratitude to our employers for their support and cooperation.

We thank members of the GRIDS Lab for proofreading one or more chapters. They include

Rajiv Ranjan, James Broberg, Chee Shin Yeo, Alexandre di Costanzo, Srikumar Venugopal, Marco

Netto, Mukaddim Pathan, Ming Zhu, Mudiyanselage Wickremasinghe, Mustafizur Rahman,

Saurabh Garg, William Voorsluys, Mohsen Amini, Amir Vahid, Arun Anandasivam and Anton

Beloglazov.

We would like to thank all of our colleagues at Melbourne University who taught Software

Design subject as their teaching materials have influenced on the content of this book. Some of the

contents of this book have evolved over a period of time from our own teaching of subjects such as

Distributed Systems and Grid Computing. We would like to thank Rao Kotagiri for his mentorship

and support in mounting courses in these areas.

We thank our family members, especially Smrithi Buyya, Soumya Buyya, Radha Buyya, Siyin

Sun for their love and understanding during the preparation of the book.

We sincerely thank external reviewers commissioned by the publisher for their critical

comments and suggestions on enhancing the presentation and organisation of many chapters at a

finer level. This has greatly helped us in improving the quality of the book.

Finally, we would like to thank the staff at McGraw Hill Education (I) Press for their

enthusiastic support and guidance during the preparation of the book. In particular, Vibha Mahajan

inspired us to take up this project and set the publication process in motion, Nilanjan Chakravarty

managed the manuscript review process, and Surbhi Suman guided us in updating the book to enrich

the content and ensured that it covers topics prescribed in the syllabus of many educational

institutions. They were wonderful to work with!

Rajkumar Buyya

The University of Melbourne and Manjrasoft Pvt Ltd, Australia

Thamarai Selvi Somasundaram

Anna University Chennai, India

Xingchen Chu

The University of Melbourne, Australia

v

Table of Contents

Preface……………………………………………………………………………………………… iii

Chapter 1 Software Development and Object Oriented Programming Paradigms 1
1.1 Introduction ... 1
1.2 Problem Domain and Solution Domain... 2

1.2.1 Problem States ... 3
1.3 Types of Persons Associated to Solution... 3
1.4 Program ... 4
1.5 Approaches in Problem Solving .. 4

1.5.1 Multiple attacks or Ask Questions... 5
1.5.2 Look for things that are similar ... 5
1.5.3 Working backward or bottom-up approach... 5
1.5.4 Problem decomposition or top-down approach ... 5

1.6 Styles of Programming .. 5
1.7 Complexity of Software .. 8
1.8 Software Crisis .. 9
1.9 Software Engineering Principles ... 10
1.10 Evolution of a New Paradigm ... 13
1.11 Natural Way of Solving a Problem.. 14
1.12 Abstraction .. 15
1.13 Interface and Implementation.. 16
1.14 Encapsulation .. 17
1.15 Comparison of Natural and Conventional Programming Methods 17
1.16 Object-Oriented Programming Paradigms .. 18
1.17 Classes and Objects ... 19
1.18 Features of Object-Oriented Programming ... 21

1.18.1 Encapsulation .. 22
1.18.2 Data Abstraction.. 22
1.18.3 Inheritance ... 25
1.18.4 Multiple Inheritance .. 25
1.18.5 Polymorphism ... 25
1.18.6 Delegation ... 25
1.18.7 Genericity .. 25
1.18.8 Persistence ... 26
1.18.9 Concurrency .. 26
1.18.10 Events .. 26

1.19 Modularity ... 26
1.20 How to Design a Class?... 27
1.21 Design Strategies in OOP.. 27

1.21.1 Composition .. 27
1.21.2 Generalization ... 28

vi

1.22 Comparison of Structured and Object-Oriented Programming ... 29
1.23 Object-Oriented Programming Languages .. 29
1.24 Requirements of Using OOP Approach .. 31
1.25 Advantages of Object-Oriented Programming .. 31
1.26 Limitations of Object-Oriented Programming... 32
1.27 Applications of Object-Oriented Programming... 32
1.28 Summary ... 32
1.29 Excersices.. 33

Chapter 2 Java Platform and Program Structure... 35
2.1 Introduction ... 35
2.2 Historical Perspective of Java.. 36
2.3 Java.. 37
2.4 Java Runtime Environment ... 40
2.5 Architecture of JVM.. 42
2.6 Characteristics of Java ... 44
2.7 Java Program Structure.. 44
2.8 Commands for Running a Java Program... 46
2.9 Simple I/O Operations in Java... 48

2.9.1 Reading Input Data from the Keyboard... 49
2.9.2 Writing Output to the Screen... 49

2.10 Code Conventions ... 51
2.10.1 Packages .. 52
2.10.2 Classes ... 52
2.10.3 Interfaces ... 52
2.10.4 Methods ... 52
2.10.5 Variables.. 52
2.10.6 Constants ... 52

2.11 Java Enterprise Edition (Java EE) 5.0 ... 52
2.12 Java 2 Micro Edition (J2ME) .. 55
2.13 Summary ... 57
2.14 Exercises.. 57

Chapter 3 Lexical Elements of Java ... 59
3.1 Introduction ... 59
3.2 Grammar.. 59
3.3 Character Set Used in Java Programs.. 60
3.4 Character Encoding ... 60
3.5 Escape Sequences.. 61
3.6 Identifiers... 63
3.7 Keywords .. 64
3.8 Concept of Data... 64
3.9 Data Types... 64
3.10 Declaration of Scalar Variables... 66
3.11 Lexical Elements ... 67
3.12 Comments.. 68

3.12.1 Regular comments ... 68
3.12.2 Single-line comments .. 68
3.12.3 Documentation comments ... 68

vii

3.13 White Spaces ... 69
3.14 Tokens ... 69
3.15 Literals... 70

3.15.1 Boolean Literals... 70
3.15.2 Arithmetic Literals... 71
3.15.3 Integer Literals... 71
3.15.4 Octal and Hexadecimal Literals .. 71
3.15.5 Character Literals .. 72
3.15.6 Floating Point Literals ... 72
3.15.7 String Literals .. 73

3.16 Separators or Punctuators .. 74
3.17 Operators ... 74
3.18 Summary ... 75
3.19 Exercises.. 75

Chapter 4 Operators and Expressions.. 77
4.1 Introduction ... 77
4.2 Categories of Operators... 78
4.3 Expressions.. 79
4.4 Binding and Binding Time .. 79
4.5 Side Effect ... 80
4.6 Features of Operators .. 80
4.7 Evaluation of Expressions ... 81
4.8 Type Conversion ... 82
4.9 Numeric Promotion ... 83
4.10 Arithmetic Expressions ... 84
4.11 Relational and Equality Operators... 85
4.12 Logical Operators .. 86

4.12.1 Bitwise Logical Operators ... 86
4.13 Shift Operators .. 91
4.14 One’s Complement Operator... 93
4.15 Logical Operators .. 94
4.16 Assignment Operators ... 95
4.17 Explicit Type Conversion.. 97
4.18 String Concatenation ... 97
4.19 Operator Precedence and Associativity ... 97
4.20 Summary ... 99
4.21 Exercises.. 99

Chapter 5 Control Flow Statements ... 101
5.1 Introduction ... 101
5.2 Classification of Statements .. 102

5.2.1 Expression Statement .. 102
5.2.2 Control Flow Statements ... 103

5.3 if-else Control Constructs... 104
5.3.1 Nested if-else ... 106
5.3.2 if-else-if Control Construct.. 106

5.4 switch-case Control Construct... 108
5.5 enum Types and Conditional Statements .. 110

viii

5.6 while Loop Construct .. 111
5.7 do-while Loop Construct ... 114
5.8 for Loop Construct .. 114
5.9 Unconditional Execution ... 123

5.9.1 break Statement ... 123
5.9.2 Labeled break statement .. 124
5.9.3 continue Statement .. 124
5.9.4 The return Statement ... 125

5.10 Block Statements ... 126
5.11 Declaration Statement ... 126
5.12 Empty Statement ... 127
5.13 Summary ... 128
5.14 Exercises.. 129

Chapter 6 Arrays.. 133
6.1 Introduction ... 133
6.2 Arrays .. 134
6.3 Classification of Arrays ... 134
6.4 Creation of Arrays ... 135
6.5 Creation of Regular Arrays.. 135

6.5.1 Creation of One-Dimensional Regular Arrays .. 136
6.5.2 Creation of Two Dimensional Regular Arrays .. 137
6.5.3 Creation of Three-Dimensional Regular Arrays.. 139

6.6 Reading and Writing of Arrays ... 141
6.7 Initialization of Arrays .. 142

6.7.1 Initialization of One-Dimensional Regular Arrays.. 143
6.7.2 Initialization of Two-Dimensional Regular Arrays ... 145
6.7.3 Initialization of Three-Dimensional Regular Arrays ... 153

6.8 Features of Arrays ... 154
6.9 Passing Array as a Parameter .. 156
6.10 Applications of Arrays .. 157
6.11 Recursive Methods .. 168
6.12 Summary ... 170
6.13 Exercises.. 170

Chapter 7 Classes and Objects.. 173
7.1 Introduction ... 173
7.2 Class .. 174

7.2.1 Class Declaration... 175
7.2.2 Field Declarations.. 176
7.2.3 Defining Methods.. 176

7.3 Objects... 178
7.3.1 Creation of Object References... 178
7.3.2 Creation of Objects Using new Operator... 178
7.3.3 Accessing Object Members ... 179
7.3.4 Sample Programs... 179

7.4 Constructors... 182
7.4.1 Default Constructors.. 184

7.5 Access Modifiers ... 185

ix

7.6 Getter and Setter Methods ... 189
7.7 Classification of Methods.. 190
7.8 Instance Methods... 191
7.9 Parameter Passing.. 191
7.10 Invoking Methods.. 192

7.10.1 Method call for a method returning void ... 193
7.10.2 Method Call for a Method Returning a Value ... 193
7.10.3 Actual Arguments.. 196

7.11 Methods Overloading .. 196
7.12 The this Reference... 199

7.12.1 Using this as an object reference ... 201
7.13 Static Fields and Methods ... 202

7.13.1 Static Fields ... 203
7.13.2 Static Methods ... 204

7.14 Accessing a Static Member ... 205
7.15 Features of Static Members ... 205
7.16 Java Program Structure.. 206

7.16.1 Entry Point... 210
7.16.2 Dummy Class .. 211

7.17 Nested Classes ... 211
7.18 Summary ... 212
7.19 Exercises.. 212

Chapter 8 Inheritance .. 215
8.1 Introduction ... 215
8.2 Derived Class Declaration ... 217
8.3 Types of Inheritance .. 219
8.4 How to Implement Inheritance .. 221
8.5 Inheritance and Member Accessibility .. 222
8.6 Constructors in Derived Classes.. 224
8.7 Overriding and Hiding Fields and Methods .. 225
8.8 Using the keyword super ... 228
8.9 Abstract Classes and Methods... 231
8.10 The final Classes and final Methods.. 234
8.11 Java Class Hierarchy ... 236
8.12 Dynamic Binding .. 237
8.13 Polymorphism ... 239
8.14 When to Use Inheritance? ... 241
8.15 Advantages of Inheritance ... 241
8.16 Multi-Level Inheritance Program .. 241
8.17 Hierarchical Inheritance Program.. 244
8.18 Summary ... 246
8.19 Exercises.. 246

Chapter 9 Interfaces and Packages... 249
9.1 Interfaces ... 249

9.1.1 Declaration and Implementations of Interfaces ... 251
9.1.2 Polymorphism in Interfaces... 254
9.1.3 Multilevel Inheritance ... 256

x

9.1.4 Multiple Inheritance .. 257
9.1.5 Explicit Interface Member Implementations ... 259
9.1.6 Validating Interfaces ... 261
9.1.7 Problems in Interfaces Because of Inheritance.. 263

9.2 Packages: Putting classes Together ... 265
9.2.1 Java Foundation Packages ... 265
9.2.2 Package Naming Conventions... 266
9.2.3 Creating Packages ... 267
9.2.4 Accessing Classes from Packages ... 268
9.2.5 Accessing a Package.. 268
9.2.6 Using a Package: An Example .. 269
9.2.7 Adding a Class to an Existing Package ... 270
9.2.8 Packages and Name Clashing.. 271
9.2.9 Extending a Class from Package ... 272
9.2.10 Creating Java Archives.. 272
9.2.11 Set Java Classpath ... 272
9.2.12 Read Environment Variables... 273

9.3 Summary ... 273
9.4 Exercises.. 274

Chapter 10 Exception Handling.. 277
10.1 Introduction ... 277
10.2 Exception Handling ... 279
10.3 Exception Programming.. 280

10.3.1 The throw Statement.. 281
10.3.2 The try Statement .. 281

10.4 User Defined Exception .. 287
10.5 Debugging Java Programs .. 293
10.6 Summary ... 294
10.7 Exercises.. 294

Chapter 11 Strings and Collections .. 297
11.1 Introduction ... 297
11.2 String Class.. 298
11.3 String Manipulation... 300
11.4 StringBuffer... 304
11.5 Command-Line Arguments ... 309
11.6 Java.util ... 309
11.7 StringTokenizer ... 311
11.8 Collection Framework ... 313
11.9 Components of Collection Framework.. 314
11.10 Accessing the Collection Class.. 314
11.11 Legacy Collection Types ... 315

11.11.1 Vector .. 316
11.11.2 Hash Table... 318
11.11.3 Enumeration .. 319

11.12 Wrapper Classes .. 320
11.12.1 Methods in Wrapper Class .. 321

11.13 Generic Data Types and Collections ... 321

xi

11.14 Frequently Used Collections ... 329
11.14.1 List... 329
11.14.2 Set.. 330
11.14.3 Map.. 332

11.15 Summary ... 335
11.16 Exercises.. 335

Chapter 12 Streams and I/O Programming.. 337
12.1 Introduction to Streams ... 337
12.2 Java Stream API .. 338

12.2.1 Reading and Writing Bytes.. 338
12.2.2 Reading and Writing Characters.. 339
12.2.3 Layered Java Streams .. 341
12.2.4 Handling Exceptions ... 342

12.3 File Management ... 343
12.4 File Processing .. 346

12.4.1 Binary Streams .. 346
12.4.2 Write Text Output.. 348
12.4.3 Read Text Input ... 351

12.5 Primitive Data Processing ... 353
12.6 Object Processing .. 355

12.6.1 Java Serialization... 355
12.6.2 Write and Read Objects... 356
12.6.3 Versioning ... 358

12.7 Retrieve Data from Console .. 359
12.8 Summary ... 364
12.9 Exercises.. 364

Chapter 13 Socket Programming.. 367
13.1 Introduction ... 367

13.1.1 Client/Server Communication ... 367
13.1.2 Hosts Identification and Service Ports... 369
13.1.3 Sockets and Socket-based Communication ... 369

13.2 Socket Programming and java.net Class ... 370
13.3 TCP/IP Socket Programming .. 371
13.4 UDP Socket Programming .. 374
13.5 Math Server ... 377
13.6 URL Encoding... 381

13.6.1 Writing and Reading Data via URLConnection .. 382
13.7 Summary ... 384
13.8 Exercises.. 385

Chapter 14 Multithreaded Programming .. 387
14.1 Introduction ... 387
14.2 Defining Threads ... 388
14.3 Threads in Java.. 389

14.3.1 Extending the Thread Class ... 390
14.3.2 Implementing the Runnable Interface ... 391
14.3.3 Thread class versus Runnable interface... 392

xii

14.4 Thread Life Cycle.. 393
14.5 A Java Program with Multiple Threads... 393
14.6 Thread Priority .. 396
14.7 Thread Methods... 398
14.8 Multithreaded Math Server.. 400
14.9 Concurrent Issues with Thread Programming ... 402

14.9.1 Read/Write problem .. 402
14.9.2 Producer and Consumer Problem .. 405

14.10 Summary ... 409
14.11 Exercises.. 409

Chapter 15 Graphical Programming.. 411
15.1 Introducing Swing ... 411
15.2 Graphics Programming.. 414

15.2.1 Displaying String... 414
15.2.2 Working with Shapes .. 416

15.3 Handling Events .. 419
15.3.1 Overview of Delegation Event Model... 419
15.3.2 Examples: Capturing Simple Action ... 420
15.3.3 Yet Another Example : Window Events ... 423
15.3.4 Work with Keyboard ... 423
15.3.5 Work with Mouse .. 425

15.4 Swing Components.. 430
15.4.1 Introduction to Layout Management ... 430
15.4.2 Top-level Containers ... 435
15.4.3 JComponent Base Class .. 436
15.4.4 Text Components... 437
15.4.5 Choice Components... 443
15.4.6 Menu.. 452

15.5 Summary ... 462
15.6 Exercises.. 463

Chapter 16 Advanced GUI Programming and Applets .. 465
16.1 Advanced Swing Components... 465

16.1.1 Dialogs... 465
16.1.2 Advanced Containers... 470

16.2 Model-View-Controller ... 480
16.3 Java Applet .. 481

16.3.1 The Lifecycle of Applets ... 483
16.3.2 Passing Parameters to Applets... 484
16.3.3 Interactive Applet .. 486
16.3.4 AudioClip Interface ... 491
16.3.5 AppletContext .. 494
16.3.6 AppletStub... 496

16.4 Building Non-Blocking GUI ... 499
16.4.1 Event Dispatcher Thread ... 500
16.4.2 Accessing Swing Components in Other Threads... 500
16.4.3 Real Time Clock Example.. 500

xiii

16.5 Summary ... 503
16.6 Exercises.. 503

Chapter 17 RMI Programming.. 505
17.1 When to use RMI .. 505
17.2 RMI Development Lifecycle ... 507
17.3 Implementing an RMI Server .. 509
17.4 Implementing an RMI Client... 515
17.5 How to Run an RMI-based Application .. 516
17.6 Security Issues ... 518
17.7 Summary ... 521
17.8 Exercises.. 522

Chapter 18 JDBC Programming ... 525
18.1 What is JDBC: A Brief Introduction ... 525
18.2 Types of JDBC Drivers ... 527
18.3 Using HSQL Database .. 528
18.4 Configuration for JDBC Connection... 531
18.5 JDBC Update Operations .. 534
18.6 JDBC Query Operation ... 538
18.7 A Robust and Efficient Approach: Using Prepared Statement.. 542
18.8 Stored Procedure ... 543
18.9 JDBC Transaction Support.. 546
18.10 Summary ... 548
18.11 Exercises.. 548

Chapter 19 Java Servlet Programming ... 551
19.1 Server-side Programming.. 551

19.1.1 The Old Way: CGI Programming.. 552
19.1.2 The Java Way: Model-View-Controller .. 552

19.2 Apache Tomcat Servlet Container... 553
19.3 The Controller: Java Servlet .. 554

19.3.1 What is Servlet .. 554
19.3.2 Servlet Lifecycle.. 555
19.3.3 Serlvets in Action .. 556
19.3.4 Deployment ... 570
19.3.5 Cookies and Session .. 572
19.3.6 Filtering Request ... 577

19.4 Summary ... 580
19.5 Exercises.. 580

Chapter 20 JavaServer Pages and Java Beans ... 583
20.1 What is JavaServer Pages (JSP) .. 583
20.2 The Skeleton of JSP... 586

20.2.1 Directives... 586
20.2.2 Java Expressions.. 588
20.2.3 Implicit Objects ... 589

20.3 Getting Started with JSP: A Blog Example ... 589
20.3.1 Blog Controller.. 591
20.3.2 Viewing the Blog... 596

xiv

20.3.3 Modifying a Blog Entry... 599
20.3.4 Posting Comments... 601
20.3.5 Processing Requests .. 602

20.4 Simplifying JSP with JavaBeans ... 608
20.4.1 How to Write JavaBeans ... 608
20.4.2 JSP Standard JavaBeans Tags ... 616

20.5 JSP Expression Language (EL) ... 618
20.5.1 Reserved Words... 618
20.5.2 Operators ... 619
20.5.3 Literals... 619
20.5.4 Implicit Objects ... 619

20.6 Introduction to JSP Standard Tag Library (JSTL)... 619
20.6.1 Getting Started with JSTL ... 620
20.6.2 Configuring JSTL.. 622

20.7 Summary ... 622
20.8 Exercises.. 622

Appendix A Project A - Publishing House Automation ... 625

Appendix B Project B - Bank Automation System .. 635

Appendix C Eclipse IDE.. 647

Appendix D Answers to Objective Questions ... 655

Appendix E Glossary ... 669

Appendix F ASCII Table ... 681

Appendix G Recommended References ... 683
Index …………………………………………………………………………………………….. 685

1

Chapter 1

Software Development and
Object Oriented Programming Paradigms

This chapter presents various methodologies for problem solving and development of applications

that have evolved over a period of time. This is primarily driven by the increasing complexity of

software and the cost of software maintenance growing rapidly. The chapter introduces object-

oriented design and programming as a silver bullet to solve software crisis. It then discusses various

features of objected oriented programming (OOP) from encapsulation and inheritance to templates.

Finally, the chapter presents various OOP programming languages with their unique properties.

Objectives

After learning the contents of this chapter, the reader must be able to:

• understand programming paradigms

• know the factors influencing the complexity of software development

• define software crisis

• know the important models used in software engineering

• explain the natural way of solving a problem

• understand the concepts of object-oriented programming

• define abstraction and encapsulation

• differentiate between interface and implementation

• understand classes and objects

• state the design strategies embedded in OOP

• compare structured programming with OOP

• list examples of OOP languages

• list the advantages and applications of OOP

1.1 Introduction
Computers are used for solving problems quickly and accurately irrespective of the magnitude of the

input. To solve a problem, a sequence of instructions is communicated to the computer. To

communicate these instructions, programming languages are developed. The instructions written in

a programming language comprise a program. A group of programs developed for certain specific

2

purposes are referred to as software whereas the electronic components of a computer are referred to

as hardware. Software activates the hardware of a computer to carry out the desired task. In a

computer, hardware without software is similar to a body without soul. Software can be system

software or application software. System software is a collection of system programs. A system

program is a program, which is designed to operate, control and utilize the processing capabilities of

the computer itself effectively. System programming is the activity of designing and implementing

system programs. Almost all the operating systems come with a set of ready to use system

programs: user management, file system management, and memory management. By composing

programs it is possible to develop new, more complex, system programs. Application software is a

collection of prewritten programs meant for specific applications.

Computer hardware can understand instructions only in the form of machine codes i.e. 0's and

1's. A programming language used to communicate with the hardware of a computer is known as

low-level language or machine language. It is very difficult for humans to understand machine

language programs because the instructions contain a sequence of 0’s and 1’s only. Also, it is

difficult to identify errors in machine language programs. Moreover, low-level languages are

machine dependent. To overcome the difficulties of machine languages, high-level languages such

as Basic, Fortran, Pascal, COBOL and C were developed.

High-level languages allow some English-like words and mathematical expressions that

facilitate better understanding of the logic involved in a program. While solving problems using

high-level languages, importance was given to develop an algorithm (step by step instructions to

solve a problem). While solving complex problems, a lot of difficulties were faced in the

algorithmic approach. Hence object-oriented programming languages such as C++ and Java were

evolved with a different approach to solve the problems. Object-oriented languages are also high-

level languages with concepts of classes and objects that are discussed later in this chapter.

1.2 Problem Domain and Solution Domain
A problem is a functional specification of desired activities to generate the intended output. A

solution is the method of achieving the desired output. For example, getting a train-ticket from

Chennai to Delhi is a problem statement and purchasing a ticket by going to the Reservation Ticket

Counter is a solution to the problem. The output of this problem is the reserved ticket. Every

problem belongs to a domain of knowledge. The domain is the general field of business or

technology in which the user will use the software. The domain knowledge for reserving the ticket

requires knowing the train routes and fares to do that task. Hence, the term problem domain is used

in problem solving. The domain or the sector to which the problem belongs defines problem

domain. The problem that specifies the requirement in a particular knowledge domain and the

domain experts associated with the task of explaining the requirements belong to problem domain.

Similarly the solution obtained belongs to the solution domain. The subject matter that is of concern

to the computer and the persons associated with the task of devising solution define solution

domain. The problem domain specifies the scope of the problem along with the functional

requirements represented in a high level so that human beings can understand.

The solution domain contains the procedures or techniques used to generate the desired output

by a computer. Thus, problem solving is a mapping of problem domain to solution domain as shown

in Figure 1.1. It is the act of finding solution to a problem. The formulation of solution for a simple

problem is easy. The solution for simple problems may not require any systematic approach. But a

complex problem requires logical thinking and careful planning. Generally the problems to be

solved using computers will be reasonably complex.

3

1.2.1 Problem States

The problem has a start state and an end state or goal state. The solution helps the transition from the

start state to the end state as shown in Figure 1.2. It defines the sequence of actions that produces the

end state from the start state.

The states are to be clearly understood before trying to get a solution for the problem. The initial

conditions and assumptions are to be explicitly stated to derive a solution for a problem. The

solution to a problem must be viewed in terms of people associated with it.

1.3 Types of Persons Associated to Solution
We may observe the three types of people associated with a solution to a problem as shown in

Figure 1.3. The logical solution may be explained by the domain experts. A domain expert is a

person who has a deep knowledge of the domain. The program is developed by one set of people

and the same is used by another set of people. The people developing solution are called developers

and the people using the solution are called users. The developer is also known as supplier or

programmer or implementer. The user is also called client or customer or end-user. The solution

represents the instructions to be followed to generate the output. The solution of a problem should

be carefully planned to enable the user to gain confidence in the solution.

Problem Domain (P) Solution Domain (S)

Problem is transformed to Solution

F : P � S

Fig. 1.1 Problem Solving

Problem Domain (P) Solution Domain (S)

Problem is transformed to Solution

F : P � S

Figure 1.1: Problem Solving

Start State End State

Beginning Point Achieve goal

Figure 1.2: Solution to a problem

Start State End State

4

1.4 Program
The solution to a problem is written in the form of a program, while a computer is used to solve the

problem. A program is a set of instructions written in a programming language. A programming

language provides the medium for conveying the instructions to the computer. There are many

programming languages such as BASIC, FORTRAN, Pascal, C, C++, etc., similar to the written

languages like English, Tamil and Hindi. Once the steps to be followed for solving a problem are

identified, it is easier to convert these steps to a program through a programming language. The idea

of providing solution is quite challenging. The domain experts play a major role in formulating the

solution. The formulation of solution is important before writing a program. It requires logical

thinking, careful planning and systematic approach. This can be achieved through the proper

combination of domain experts, system analysts/system designers and developers. The program

takes the input from the user and generates the desired output as shown in Figure 1.4.

1.5 Approaches in Problem Solving
The principles and techniques used to solve a problem are classified under the following categories.

The following strategies are used in building solutions to a problem.

User
 Solution

Analyst/
Designer/
Developer

Produces

uses

Provides L ogical
Solution

Domain
Expert

 Figure 1.3: People associated with solution

Input (I) Output (O)

Input is transformed to Output

F : I � O

Converted to

Figure 1.4: Program

Input (I) Output (O)

F : I � O

Converted to

5

1.5.1 Multiple attacks or Ask Questions

By asking questions like what, why and how, the solution may be outlined for some problems.

Questions can be asked to many people irrespective of the domain and the answers to multiple

attacks of questions may help in revealing the solution. Whenever the solution is not known, this

approach may be used.

1.5.2 Look for things that are similar

We should never reinvent the wheel again. The existing solution for a similar problem can be used

to solve a problem. For example, finding the maximum value in a set of numbers is the same as

finding the maximum mark in a class of students or finding the highest temperature in a day. All

these different problems require the same concept of finding the biggest value among the values.

The solution is based on the similar nature of a problem.

1.5.3 Working backward or bottom-up approach

The problem can also be solved by starting from the Goal state and reaching the Start state. For

example, sometimes we prefer to derive an equation in mathematics from right side to left side. The

solution is derived in the reverse direction. For complex problems, this approach will be an easier

approach. Consider the problem of reaching an unknown place from a known place. It is always

easier to trace a known place starting from an unknown place compared to tracing from known to

unknown place. There may be many known landmarks nearer to the known place helping in locating

the place. If any one such landmark is reached, it is equivalent to finding the solution. But, the

landmarks of the unknown place are new while searching. Hence, even by reaching to the nearest

place, sometimes the location may not be identified and the tracing becomes difficult.

1.5.4 Problem decomposition or top-down approach

The problem is decomposed into small units and they are further decomposed into smaller units over

and over again until each smaller unit is manageable. The complex problem is simplified by

decomposing it into many simple problems. It is applicable for simple and fairly complex problems.

The top-down approach is also known as stepwise refinement or modular decomposition or

structured approach or algorithmic approach.

1.6 Styles of Programming
Each programming language enforces a particular style of programming. The way of organizing

information is influenced by its style of programming and it is known as programming paradigm.

First generation programming languages (1954-1958) such as FORTRAN I, ALGOL 58 and

FLOWMATIC were used for numeric computations. Any program makes use of data. Data is

represented by a variable or constant in a program. To perform an action, an operator acts on the

data (operand). Operands and operators are combined to form expressions. Each instruction is

written as a statement with the help of expressions. A sequence of statements comprises a program.

The structure of first generation languages is shown in Figure 1.5.

There is no support for subprograms. Such programming is known as monolithic programming.

The data is globally available and hence there is no chance of data hiding (denying the access of

data is known as data hiding). First generation languages were used only for simple applications.

The program is closer to solution domain by representing the operations/operators in the

programming language that can be performed in the computer.

6

Second generation programming languages (1959-1961) introduced subprograms (functions or

procedures or subroutines) as shown in Figure 1.6. Inclusion of subprograms avoids repetition of

coding. Such programming is known as procedural programming. Second generation language is

suitable for applications that require medium sized programs.

FORTRAN II, ALGOL 60 and COBOL are second generation languages. The second generation

languages provided the possibility of information hiding (i.e., hiding the implementation details of a

subprogram). However, sharing the same data by many subprograms breaks the data hiding

principle. Hence, data hiding is only partially succeeded. Here also the program is closer to solution

domain where concentration is on operations/operators using functions.

Third generation programming languages (1962-1970) such as PASCAL and C use sequential

code, global data, local data and subprograms as shown in Figure 1.7. They follow structured

programming, which supports modular programming. The program is divided into a number of

modules. Each module consists of a number of subprograms represented by rectangles.

Importance was given for developing an algorithm and hence this approach is also known as

algorithmic oriented programming. In structural programming approach, data and subprograms

exist separately (Algorithms + Data Structures = Programs). A main program calls the subprograms.

Structured programming approach supports the following features:

1. Each procedure has its own local data and algorithm.

2. Each procedure is independent of other procedures.

3. Parameter passing mechanisms are evolved.

4. It is possible to create user defined data types.

5. A rich set of control structures is introduced.

 Sequence of statements

 PROGRAM

Global Data

 Figure 1.5: Structure of the first generation languages

Global Data

Subprogram Subprogram Subprogram

Fig.1.6 Structure of the second generation languages

Global Data

Subprogram Subprogram Subprogram

Figure 1.6: Structure of the second generation languages

7

6. Scope and visibility of data are introduced.

7. Nesting of subprograms is supported.

8. Procedural abstractions or function abstractions are achieved yielding abstract operations.

9. Subprograms are the basic physical building blocks supporting modular programming.

 Subprograms(Rectangles represent subprograms)

Global Data

Nested

subprogram

Module1 Module2 Module3

Local variable may exist

in the subprograms.

Figure 1.7: Data in third generation programming languages

By introducing scopes
1
 of variables, data hiding was made possible. For a very complex

problem, the maintenance of the program becomes very tedious because of the existence of so many

subprograms and global data. Here also the program is closer to the solution domain.

It can be observed that in structured programming, the emphasis is on the subprograms and the

efficient way of developing algorithms in terms of computing time and computer memory to solve

the problem. The relationship between programmer and program is given prime importance as

shown in Figure 1.8. Hence structured programming paradigms depend on solution domain and not

on problem domain. The data is not given importance regarding access permission.

To solve a complex problem using top-down approach, first the complex problem is

decomposed into smaller problems. Further these smaller problems are decomposed and finally a

collection of small problems are left out. Each problem is solved one at a time. Structured

programming starts with high-level descriptions of the problem representing global functionality. It

successively refines the global functionality by decomposing it into subprograms using lower level

1
 A scope identifies the portion of source program from which a variable can be accessed. It

normally consists in the portion of text that starts from the variable declaration and spans till the end

of the nearest enclosing block.

 Figure 1.8: Relationship between a program and programmer

Programmer Program (closer to computer)

develops

8

descriptions, always maintaining correctness at each level. At each step, either a control or a data

structure is refined. Thus top-down approach is followed in structured programming. This is a fairly

successful approach because it will cause problems only when there is a revision of design phase.

Such revisions may result in massive changes in the program. Also the possibility of reuse of

software modules is minimized.

There was a generation gap from 1970 to 1980. Many programming languages evolved, but only

a few of them were used in software development. Despite the invention of new programming

languages and software engineering concepts, software industries were unable to meet the demand

in reality.

1.7 Complexity of Software
Mainly simple problems were solved using computers during the initial evolution phases of

computing technologies (prior to 1990). These days, computers are utilized in solving many mission

critical problems and they are playing a vital role in the fields of space, defense, research,

engineering, medicine, industry, business and even in music and painting. For example, Inter-

Continental Ballistic Missiles (ICBM) in defense and launching of satellites in space cannot be

controlled without computers. Such applications cannot be even imagined without computers.

Influence of computers in various activities leads to the establishment of many software companies

engaged in the development of various types of applications.

Large projects involve many highly qualified persons in the software development process.

Software industries face a lot of problems in the process of software development. The following

factors influence the complexity of software development as shown in Figure 1.9.

1. Improper understanding of the problem

The users of a software system express their needs to the software professionals. The

requirement specification is not precisely conveyed by the users in a form understandable by the

software professionals. This is known as impedance mismatch between the users and software

professionals.

2. Change of rules during development

During the software development process because of some government policy or any other

industrial constraints realized, the users may request the developer to change certain rules of the

problem already stated.

3. Preservation of existing software

In reality, the existing software is modified or extended to suit the current requirement. If a

system had been partially automated, the remaining automation process is done by considering the

existing one. It is expensive to preserve the existing software because of the non-availability of

experts in that field all the time. Also it results in complexity while integrating newly developed

software with the existing one.

4. Management of development process

Since the size of the software becomes larger and larger in the course of time it is difficult to

manage, coordinate, and integrate the modules of the software.

5. Flexibility due to lack of standards

There is no single approach to develop software for solving a problem. Only standards can bring

out uniformity. Since only a few standards exist in the software industries, software development is

a laborious task resulting in complexity.

6. Behavior of discrete systems

9

The behavior of a continuous system can be predicted by using the existing laws and theorems.

For example, the landing of a satellite can be predicted exactly using some theory even though it is a

complex system. But, computers have systems with discrete states during execution of the software.

The behavior of the software may not be predicted exactly because of its discrete nature. Even

though the software is divided into smaller parts, the phase transition cannot be modeled to predict

the output. Sometimes an external event may corrupt the whole system. Such events make the

software extremely complex.

7. Software testing

The number of variables, control structures and functions used in the software are enormous.

The discrete nature of the software execution modifies a variable and it may be unnoticed. This may

result in unpredictable output. Hence, vigorous testing is essential. It is impossible to test each and

every aspect of the software in a complex software system. So only important aspects are subjected

to testing and the user must be satisfied with this. The reliability of the software depends on rigorous

testing. But testing processes make software development more and more complex.

1.8 Software Crisis
The complexity involved in the software development process led to the software crisis. Late

completion, exceeding the budget, low quality, software not satisfying the stated demand and lack of

reliability are the symptoms of software crisis. Software crisis has been the result of a missing

methodology in software development. The lack of structured and organized approach to software

Impr oper
understanding of
problem

Software
Testing

Change of
rules during
development

Behaviour
of discrete
system

Flexibility
due to lack of
standards

Preservation
of existing
system

Management of
development process

 Software

 Development

 Figure 1.9: Factors influencing software complexity

10

development – not conceived as a process – led to late completion, exceeding budget in the case of

large and complex project. The OO paradigm arose as a consequence of a software crisis, where the

relative cost of software has increased substantially at a rate where software maintenance and

software development cost has far outstripped that of hardware costs. This rate of increase is

depicted in Figure 1.10. Software crisis as a term arose from the understanding that costs in software

development and maintenance have increased significantly, and that software engineering concepts

and innovations have not resulted in significant improvements in the productivity of software

development and maintenance. The software crisis provided an impetus to develop principles and

tools in software to drive, maintain and provide solid paradigms to apply to the software

development life cycle, with the intent to create more reliable and reusable systems. The sharp

increase in software maintenance from 1995-2000 is attributed to Y2K (Year 2000) problem in

software applications. As a result Indian software engineers have gained world-wide popularity,

which has in turn led to rapid growth of IT industries in India.

1950 1970 1990 2000 2020

20

40

60

80

100

1960 1980 2010

Software
Development

Software
Maintenance

Hardware

Time (in years)

P
ro

p
o

rt
io

n
a

te
 o

f
c
o
s
t

1950 1970 1990 2000 2020

20

40

60

80

100

1960 1980 2010

Software
Development

Software
Maintenance

Hardware

Time (in years)

P
ro

p
o

rt
io

n
a

te
 o

f
c
o
s
t

Figure 1.10: System development cost

Hardware development has been tremendously larger compared to software development.

Hardware industries develop their products by assembling standardized hardware components such

as integrated silicon chips. If a component fails, it is replaced by a new component without affecting

the functionality of the product. Standardized components are reused in developing other products

also. This revolutionary approach of reusable components and easier maintenance influenced the

software development process.

1.9 Software Engineering Principles
To avoid the software crisis, software engineering principles, programming paradigms and suitable

supporting software tools are introduced. Software engineering principles help to develop software

in a scientific manner. Systematic engineering principles and techniques such as model building,

simulation, estimation, and measurement are used to build software products. There are six main

software engineering activities in the Software Development Life Cycle (SDLC) as shown in Figure

1.11. This model is known as Waterfall model.

Waterfall model follows the activities in a rigid sequential manner. There is no overlap of

11

activities in this model. Each activity is followed after completion of the previous activity. Because

of the rigid sequential nature there is a lack of iterations of activities. The analyst may use dataflow

diagrams (DFDs), the designer may focus on hierarchy charts, and the programmer may use

flowcharts and hence there are disjoint mappings among the SDLC activities. Generally, the analyst

uses top-down functional decomposition while solving a problem. The programmer implements the

solution easily by using the procedural languages/structural programming languages that support

functional decomposition. The difficulty of reuse of software components still persists.

Requirement

Specification

Analysis

Design

Implementation

Testing

Maintenance

Figure 1.11: Software development activities (Waterfall Model)

Percentage of costs incurred during the different phases of SDLC is shown in Figure 1.12. Cost

factor of the first two phases can be combined. It can be observed that the maintenance of software

is 60% whereas all the other costs are only 40%. Hence, maintenance is an important factor to be

considered in software development process. Also, earlier programming languages did not support

reusability. An existing program cannot be reused because of the dependence of the program on its

environment. Thus, the following two major problems demanded a new programming approach:

1. Software maintenance.

2. Software reuse.

Logical improvement to the Waterfall model resulted in the Fountain model. The same six

activities in the software development are still followed in the same sequence. However, there is an

overlap of activities and iteration of activities as shown in Figure 1.13. The Fountain model is a

graphical representation to remind us that although some life cycle activities cannot start before

others, there is a considerable overlap and merging of activities across the full life cycle. In a

fountain, water rises up the middle and falls back, either to the pool below or is re-entrained at an

intermediate level.

12

60

50

40

30

20

10

0

Analysis Design Development Maintenance

Cost in Percentage

60

50

40

30

20

10

0

Analysis Design Development Maintenance

Cost in Percentage

60

50

40

30

20

10

0

Analysis Design Development Maintenance

Cost in Percentage

Figure 1.12: Costs involved in SDLC

Analysis

Design

coding

Testing

 Software

in Use

Evolution Maintenance

Figure 1.13: Fountain model

13

The Fountain model outlines the general characteristics of the systems level perception of an

object-oriented development. There is a high degree of merging in the analysis, design,

implementation and unit testing phases. Moving through a number of steps, falling back one or more

steps and performing repeatedly, is a far more flexible approach than the one proposed by Waterfall

model. It follows a bottom up approach, which starts from the solution. If there is an existing

solution, that solution is studied first and the necessary details are identified and organized in a

suitable manner. For a problem not having a solution, the domain experts (i.e., experts who are

capable of providing useful information and future requirements) are consulted with the

conventional solution to start with. Since the software is developed by analyzing the solution first,

this approach is known as bottom up approach. There is another approach similar to Fountain model

called as a Spiral model as shown in Fig. 1.14. Spiral model also follows iterative approach in each

phase.

The Spiral model involves a little bit of analysis, followed by a little bit of design, a little bit of

implementation and a little bit of testing. A loop of the spiral goes through some or all of the

Waterfall phases. The idea is that each loop produces an output and by repeatedly following all the

activities such as planning, analysis, implementation and review the final solution is reached.

Engineering phase shown in quadrant III of Figure 1.14 involves coding, testing and putting the

solution into use.

Quadrant II

Risk analysis and

prototyping

Toward a

Correct and complete solution

Quadrant III

Engineering

Quadrant IV

Reviewing

Quadrant I

Planning

Initial

Requirements

Quadrant II

Risk analysis and

prototyping

Toward a

Correct and complete solution

Quadrant III

Engineering

Quadrant IV

Reviewing

Quadrant I

Planning

Initial

Requirements

Quadrant II

Risk analysis and

prototyping

Toward a

Correct and complete solution

Quadrant III

Engineering

Quadrant IV

Reviewing

Quadrant I

Planning

Initial

Requirements

Figure 1.14: Spiral model

Both the Fountain model and Spiral model provided better solution for complex problems

compared to top-down approach followed in the Waterfall model. The procedural and structured

programming languages were found unsuitable for the bottom-up approach because a change in

requirement, analysis, or design phase can cause the programming to start from the beginning once

again. They lack flexibility, modifiability and software component reuse.

1.10 Evolution of a New Paradigm
The complexity of software required a change in the style of programming. It was aimed to:

1. produce reliable software

2. reduce production cost

3. develop reusable software modules

4. reduce maintenance cost

14

5. quicken the completion time of software development

The Object-oriented model was evolved for solving complex problems. It resulted in object-

oriented programming paradigms. Object-oriented software development started in the 1980s.

Object-oriented programming (OOP) seems to be effective in solving the complex problems faced

by software industries. The end-users as well as the software professionals are benefited by OOP.

OOP provides a consistent means of communication among analysts, designers, programmers and

end users.

Object-oriented programming paradigm suggests new ways of thinking for finding a solution to

a problem. Hence the programmers should keep their mind tuned in such a manner that they are not

to be blocked by their preconceptions experienced in other programming languages such as

structured programming. Proficiency in object-oriented programming requires talent, creativity,

intelligence, logical thinking and the ability to build and use abstractions and experience.

If procedures or functions are considered as verbs and data items are considered as nouns, a

procedure oriented program is organized around verbs while an object-oriented program is

organized around nouns.

1.11 Natural Way of Solving a Problem
People tackle a number of problems in everyday life. It is very important to understand the way a

problem is addressed. Consider a situation in an office.

How does the manager solve this problem? The way by which the problem is addressed is shown in

Figure 1.15.

MANAGER

Stenographer Driver

Passes m
essage

Pas
se

s
m

es
sa

ge

MANAGER

Stenographer Driver

Passes m
essage

Pas
se

s
m

es
sa

ge

Figure 1.15: Message passing

The manager first calls the stenographer to prepare the letter and dictates the matter. The

stenographer takes shorthand notes of the dictation and prepares the letter using a computer and a

printer. Now the letter is ready for signing and the manager signs it. Then the manager calls the

driver to take him to the customer’s site. The driver along with the manager reaches the destination

with the help of a car.

The manager delegates the responsibility of typing and taking the printed output to the

stenographer. The driver is entrusted with the responsibility of taking him to the customer’s site.

Manager wants to go to a customer’s site. He wants to sign a letter

before he leaves.

15

Thus, the manager uses two persons to complete the task. He doesn’t bother to know how the

stenographer prepares the document. By delegating the responsibility to someone, the manager is

free from that work. The specific tasks assigned to the steno and to the driver are done

independently. The stenographer makes use of another object (computer and printer or typewriter) to

complete the task. The driver uses the car to go to the destination. The manager is able to perform

the complex task by delegating the responsibilities to the concerned persons. Action is initiated by

sending a message to the person responsible for the action. The message receiving person accepts

the responsibility and the task is carried out by means of a method. Thus, messages and methods

play important roles in solving real world problems. Message passing is the first principle to initiate

an action by means of a method. Observe the responsibility-driven technique used in problem

solving. Message passing resembles a function call in a structured programming language. A

function is called to perform an action by passing parameters. Both message passing and function

call result in performing a task. But there are differences between them. The differences between

function call and message passing, shown in Table 1.1, must be understood before learning OOP.

Table 1.1: Comparison of function call and message passing

Function Call Message Passing

1. Function call may use zero or more

arguments.

Message passing uses at least one argument that

identifies the receiving agent.

2. It always identifies a single piece of

executable code

The function name is called message selector. The

same name may be associated with different receiving

agents.

3. It is applied to data to carry out a task. Message passing is a way to access the data. Message

may invoke a function defined for a specific purpose.

4. Consumer is responsible for choosing

functions that operate properly on the

data.

Supplier is responsible for choosing the appropriate

message.

5. There is no designated receiver in the

function call.

There is a designated receiving agent in message

passing.

If the way of solving a problem is viewed in depth, the concept of abstraction can be understood.

1.12 Abstraction
The abstract view of solving a problem is an essential requirement as we do in a real world problem.

Consider the previous example of the situation in an office. The manager passes the information

about the place of destination to the driver who performs the action of moving from the office to the

desired site. The manager must know the person who is capable of doing this task even though he

may not know driving. The driver takes care of the execution part of driving. In the perspective of

the manager, the driver is an employee who knows driving and can take him to the desired place.

This abstract information about the driver is enough for the manager. The manager is an officer

employed in the office. For the driver the details of the officer like name and designation are

enough. This is the abstract information about the officer. The driver uses a car to perform the task.

In the perspective of a driver the features of a car are shown in Fig. 1.16. In the perspective of the

manager, the type of car such as A/C or non-A/C and brand name may be important. Thus the

abstract information of the same entity differs from individual to individual.

The essential features of an entity are known as abstraction. A feature may be either an attribute

reflecting a property (or state or data) or an operation reflecting a method (or behavior or function).

16

The features such as things in the trunk of a car, the medical history of the manager traveling in the

car and the working mechanism of the car engine are not necessary for the driver. The essential

features of an entity in the perspective of the user define abstraction. A good abstraction is achieved

by having:

• meaningful name such as driver reflecting the function

• minimum and at the same time complete features

• coherent features.

Abstraction specifies necessary and sufficient descriptions rather than implementation details. It

results in separation of interface and implementation. The concepts of interface and implementation

are discussed next.

 Figure 1.16: Features of a car in the perspective of a driver

1.13 Interface and Implementation
It is very important to know the difference between interface and implementation. For example,

when a driver drives the car, he uses the steering to turn the car. The purpose of the steering is

known very well to the driver, but the driver need not to know the internal mechanisms of different

joints and links of various components connected to the steering.

An interface is the user’s view of what can be done with an entity. It tells the user what can be

performed. Implementation takes care of the internal operations of an interface that need not be

known to the user as shown in Figure 1.17. The implementation concentrates on how an entity

works internally. Their comparison is shown in Table 1.2.

 INTERFACE

WHAT part?

Operational features

IMPLEMENTATION

HOW part?

Visible to the supplier Visible to the users

 Figure 1.17: Separation of interface from implementation

Implementation of the

operational features

 PROPERTIES FUNCTIONS

BrandName start()

RegNo drive()

Color currentSpeed()

FuelType

17

Table 1.2: Comparison of interface and implementation.

Interface Implementation

It is user’s view point. (What part) It is supplier’s view point. (How part)

It is used to interact with the outside

world.

It describes how the delegated responsibility is

carried out.

User is permitted to access the interfaces

only.

Functions or methods are permitted to access the

data. Thus, supplier is capable of accessing data and

interfaces.

It encapsulates the knowledge about the

object.

 It provides the restriction of access to data by the

user.

1.14 Encapsulation
From the user’s point of view, a number of features are packaged in a capsule to form an entity.

This entity offers a number of services in the form of interfaces by hiding the implementation

details. The term encapsulation is used to describe the hiding of the implementation details. The

advantages of encapsulation are:

• information hiding

• implementation independence

If the implementation details are not known to the user, it is called information hiding. Restriction of

external access to features results in data hiding. The driver may not know the steering mechanism,

but knows how to use it. Here, the hidden steering mechanism refers to information hiding.

Whatever type of steering is used, the way of using the steering is same. Rotating the steering wheel

is an example of interface. The steering wheel is visible to the driver (user) and its function is not

affected by the change in the implementation by a different type of steering mechanism such as

power steering. The user’s interface is not affected by changing the implementation mechanism. A

change in the implementation is done easily without affecting the interface. This leads to

implementation independence. Thus, the natural way of solving a problem involves abstraction and

encapsulation. Conventional programming which uses structured programming is different from the

natural way of solving a problem.

1.15 Comparison of Natural and Conventional Programming Methods
In conventional programming, structured or procedural languages are used. In the structured

programming approach, functions are defined according to the algorithm to solve the problem. Here

function abstractions are concentrated. A function is applied to some data to perform the actions on

data. This approach may be called as data-driven approach, which involves operator/operand

concept. It depends on the solution domain because the algorithm (solution) is closer to the coding

of the program. The relationship between the programmer and the program is emphasized in the

data-driven approach. The solution is solution-domain specific. Conventional programming follows

the following principles:

• Operator-operand concept

• Function abstraction

• Separation of data and functions

The development of the algorithm is given prime importance in conventional programming. The

importance of data is not considered and hence, sometimes critical data having global access may

18

result in miserable output. The abstraction followed is function abstraction and not data abstraction.

Data and functionalities are considered as two separate parts.

But, in the natural way of solving real world problems, the responsibility is delegated to an

agent. The solution is proposed instead of developing an algorithm. The problem is solved by

having a number of agents (interfaces). The interface part is the user’s view point and hence the

solution is not closer to the coding of the program. The real world problem is solved using

responsibility driven approach. In this approach, the relationship between the user and the

programmer is emphasized. Here the solution is problem domain-specific. The natural way of

problem solving follows the following basic principles:

• Message passing

• Abstraction

• Encapsulation

The importance of data is realized through object-oriented technology which follows the natural

way of solving problem. Data abstraction and data encapsulation help to make the abstract view of

the solution with information hiding. Data is given the proper importance and action is initiated by

message passing. Data and functionalities are put together resulting in objects and a collection of

interacting objects are used to solve the problem. Object-oriented programming languages are

developed based on object-oriented technology.

1.16 Object-Oriented Programming Paradigms
The object-oriented approach to programming is an easy way to master the management and

complexity in developing software systems that take advantage of the strengths of data abstraction.

Data-driven methods of programming provide a disciplined approach to the problems of data

abstraction, resulting in the development of object-based languages that support only data

abstraction. These object-based languages do not support the features of the object-oriented

paradigm, such as inheritance or polymorphism. Depending on the object features supported, there

are two categories of object languages:

1. Object-Based Programming Languages

2. Object-Oriented Programming Languages

Object-based programming languages support encapsulation and object identity (unique property

to differentiate it from other objects) without supporting important features of OOP languages such

as polymorphism, inheritance and message based communication, although these features may be

emulated to some extent. Ada, C and Haskell are three examples of typical object-based

programming languages.

Object-based language = Encapsulation + Object Identity

Object-oriented languages incorporate all the features of object-based programming languages,

along with inheritance and polymorphism (discussed later in this chapter). Therefore, an object-

oriented programming language is defined by the following statement:

Object-oriented language = Object-based features + Inheritance + Polymorphism

Object-oriented programming languages for projects of any size use modules to represent the

physical building blocks of these languages; a module is a logical grouping of related declarations,

19

such as objects or procedures, and replaces the traditional concept of subprograms that existed in

earlier languages.

The following are important features in object-oriented programming and design:

1. Improvement over the structured programming paradigm.

2. Emphasis on data rather than algorithms.

3. Procedural abstraction is complemented by data abstraction.

4. Data and associated operations are unified, grouping objects with common attributes,

operations and semantics.

Programs are designed around the data on which is being operated, rather than the operations

themselves. Decomposition, rather than being algorithmic, is data-centric. Clear understanding of

classes and objects are essential for learning object-oriented development. The concepts of classes

and objects help in the understanding of object model and realizing its importance in solving

complex problems.

Object-oriented technology is built upon object models. An Object is anything having crisply

defined conceptual boundaries. Book, pen, train, employee, student, machine, etc., are examples of

objects. But the entities that do not have crisply defined boundaries are not objects. Beauty, river,

sky, etc., are not objects. Model is the description of a specific view of a real world problem domain

showing those aspects, which are considered to be important to the observer (user) of the problem

domain. Object-oriented programming language directly influences the way in which we view the

world. It uses the programming paradigm to address the problems in everyday life. It addresses the

solution closer to the problem domain. Object model is defined by means of classes and objects. The

development of programs using object model is known as object-oriented development.

To learn object-oriented programming concepts, it is very important to view the problem from

the user’s perspective and model the solution using object model.

1.17 Classes and Objects
The concepts of object-oriented technology must be represented in object-oriented programming

languages. Only then, complex problems can be solved in the same manner as they are solved in real

world situations. OOP languages use classes and objects for representing the concepts of abstraction

and encapsulation. The mapping of abstraction to a program is shown in Figure 1.18.

 Real World Abstraction Object oriented programming

Properties

Operations Functions

Data
Entity

CLASS

 Figure 1.18: Mapping real world entity to object oriented programming

20

The software structure that supports data abstraction is known as class. A class is a data type

capturing the essence of an abstraction. It is characterized by a number of features. The class is a

prototype or blue print or model that defines different features. A feature may be a data or an

operation. Data are represented by instance variables or data variables in a class. The operations

are also known as behaviors or methods or functions. They are represented by member functions of

a class in C++ and methods in Java and C#.

A class is a data type and hence it cannot be directly manipulated. It describes a set of objects.

For example,

apple is a fruit

implies that apple is an example of fruit. The term fruit is a type of food and apple is an instance

of fruit. Likewise, a class is a type of data (data type) and object is an instance of class.

Similarly car represents a class (a model of vehicle) and there are a number of instances of car.

Each instance of car is an object and the class car does not physically mean a car. An object is also

known as class variable because it is created by the class data type. Actually, each object in an

object-oriented system corresponds to a real world thing, which may be a person or a product or an

entity. The difference between class and object are given in Table 1.3.

Table 1.3: Comparison of Class and Object

Class Object

Class is a data type. Object is an instance of class data type.

It generates object. It gives life to a class.

It is the prototype or model. It is a container for storing its features.

Does not occupy memory location. It occupies memory location.

It cannot be manipulated because it is not

available in the memory.

It can be manipulated.

Instantiation of an object is defined as the process of creating an object of a particular class.

An object has:

• states or properties

• operations

• identity

Properties maintain the internal state of an object. Operations provide the appropriate

functionality to the object. Identity differentiates one object from the other. Object name is used to

identify the object. Hence, object name itself is an identity. Sometimes, the object name is mixed

with a property to differentiate two objects. For example, differentiation of two similar types of cars,

say MARUTI 800 may be differentiated by colors. If colors are also same, the registration number is

used. Unique identity is important and hence the property reflecting unique identity must be used in

an object.

The properties of an object are important because, the outcome of the functions depends on these

properties. The functions control the properties of an object. They act and react to messages. The

message may cause a change in the property of an object. Thus, the behavior of an object depends

on the properties. For example, assume a property called brake condition for the class car. If the

brake is not in working condition, guess the behavior of car. The outcome may be unexpected.

21

Similarly, in a student mark statement, the result() behavior depends on the data called

marks. The property of resultStatus may be modified based on the marks.

Figure 1.19: Features of the object-oriented paradigm

1.18 Features of Object-Oriented Programming
The fundamental features of object-oriented programming are as follows:

• Encapsulation

• Data Abstraction

• Inheritance

• Polymorphism

• Extensibility

• Persistence

• Delegation

• Genericity

• Object Concurrency

• Event Handling

• Multiple Inheritance

• Message Passing

A model of these features and the way they relate to the Java language is shown in Figure 1.9.

22

1.18.1 Encapsulation

The process, or mechanism, by which you combine code and the data it manipulates into a single

unit, is commonly referred to as encapsulation. Encapsulation provides a layer of security around

manipulated data, protecting it from external interference and misuse. In Java, this is supported by

classes and objects.

1.18.2 Data Abstraction

Real world objects are very complex and it is very difficult to capture the complete details. Hence,

OOP uses the concepts of abstraction and encapsulation. Abstraction is a design technique that

focuses on the essential attributes and behavior. It is a named collection of essential attributes and

behavior relevant to programming a given entity for a specific problem domain, relative to the

perspective of the user.

Closely related to encapsulation, data abstraction provides the ability to create user-defined data

types. Data abstraction is the process of abstracting common features from objects and procedures,

and creating a single interface to complete multiple tasks. For example, a programmer may note that

a function that prints a document exists in many classes, and may abstract that function, creating a

separate class that handles any kind of printing. Data abstraction also allows user-defined data types

that, while having the properties of built-in data types, it also allows a set of permissible operators

that may not be available in the initial data type. In Java, the class construct is used for creating

user-defined data types, called Abstract Data Types (ADTs).

A good abstraction is characterized by the following properties:

1. Meaningful way of naming

An abstraction must be named in a meaningful way. The name itself must reflect the

attributes and behaviors of the object for which the abstraction is made.

2. Minimum features

 An abstraction must have only essential attributes and behaviors, no more and no less.

3. Complete details

4. Coherence

 An abstraction should define a related set of attributes and behavior to satisfy the

requirement. Knowing the ISBN number of a book is irrelevant for a reader whereas for a

librarian, it is very important for classification. Hence, the abstraction must be relevant to

the given application.

Separation of interface and implementation is an abstraction mechanism in object-oriented

programming language. Separation is useful in simplifying a complex system. It refers to

distinguishing between a goal and a plan. It can be stated as separating “what” is to be done from

“how” it is to be done. The separation may be well understood by the following equivalent terms:

Table 1.4: Equivalent terms reflecting separation

What How

Goals Plans

Policy Mechanism

Interface/ requirement Implementation

The implementation is hidden and it is important only for the developer. Separation in software

design is an important concept for simplifying the development of software. Also, separation

23

provides flexibility in the implementation. Several implementations are possible for the same

interface. Sometimes, a single implementation can satisfy several interfaces.

Encapsulation is a process of hiding non-essential details of an object. It allows an object to

supply only the requested information to another object and hides non-essential information. Since it

packages data and methods of an object, an implicit protection from external tampering prevails.

However, an entire application cannot be hidden. A part of the application needs to be accessed by

users to use an application. Abstraction is used to provide access to a specific part of an application.

It provides access to a specific part of data while encapsulation hides data.

Rendering abstraction in software is an implicit goal of programming. Object-oriented

programming languages permit abstractions to be represented more easily and explicitly. Object-

oriented programming languages use classes and objects for representing abstractions. A class

defines the specific structure of a given abstraction. It has a unique name that conveys the meaning

of the abstraction. Class definition defines the common structure once. It allows ‘reuse’ when

creating new objects of the defined structure. An object’s properties are exactly those described by

its class. Two main parts of an object are:

• Interface: The user’s view of the operations performed by an object is known as the

interface part of that object.

• Implementation: The implementation of an object describes how the entrusted

responsibility in the interface is achieved.

It is important to observe abstraction from the perspective of the user. Software is developed for

end users. Hence, the abstraction is captured from the user’s point of view. For the same reason

abstraction varies from viewer to viewer. For example, a book abstraction viewed by a librarian is

different from the abstraction viewed by a reader of the book. A librarian may consider the

following features:

Attributes Functions

title printBook()

author getDetails()

publisher sortTitle()

cost sortAuthor()

accNumber

ISBNnumber

A reader may consider the following features:

Attributes Functions

title bookDetails()

author availability()

content tokenDetails()

examples

exercises

index

Here, the attributes are data and the functions are operations or behaviors related to data. If an

application software is to be developed for a library, the abstraction captured by the librarian is

important. The reader’s point of view is not necessary. Thus abstraction differs from viewer to

viewer Abstraction relative to the perspective of the user is very important in software development.

A simple view of an object is a combination of properties and behavior. The method name with

arguments represents the interface of an object. The interface is used to interact with the outside

24

world. Object-oriented programming is a packaging technology. Objects encapsulate data and

behavior hiding the details of implementation. The concept of implementation hiding is also known

as information hiding. Since data is important, the users can not access this data directly. Only the

interfaces (methods) can access or modify the encapsulated data. Thus, data hiding is also achieved.

The restriction of access to data within an object to only those methods defined by the object’s class

is known as encapsulation. Also, implementation is independently done improving software reuse

concept. Interface encapsulates knowledge about the object. Encapsulation is an abstract concept.

Table 1.5 gives a clear picture about the different concepts.

Table 1.5: Comparison of Abstraction and Encapsulation

Abstraction Encapsulation

Abstraction separates interface and

implementation.

Encapsulation groups related concepts into

one item.

User knows only the interfaces of the object

and how to use them according to abstraction.

Thus, it provides access to a specific part of data.

Encapsulation hides data and the user

cannot access the same directly (data hiding).

Abstraction gives the coherent picture of what

the user wants to know. The degree of relatedness

of an encapsulated unit is defined as cohesion.

High cohesion is achieved by means of good

abstraction.

Coupling means dependency. Good systems

have low coupling. Encapsulation results in

lesser dependencies of one object on other

objects in a system that has low coupling. Low

coupling may be achieved by designing a good

encapsulation.

Abstraction is defined as a data type called

class which separates interface from

implementation.

Encapsulation packages data and

functionality and hides the implementation

details (information hiding).

The ability to encapsulate and isolate design

from execution information is known as

abstraction.

Encapsulation is a concept embedded in

abstraction.

Classes and objects represent abstractions in OOP languages. Class is a common representation

with definite attributes and operations having a unique name. Class can be viewed as a user defined

data type. Data types cannot be used in a program for direct manipulation. A variable of a particular

data type is defined first as a container for storage. The variables are manipulated after holding data

in them. For example,

int year, mark ;

is a declaration of variables in C. This statement conveys to the compiler that year and mark are

instances of integer data type. Likewise, in OOP, a class is a data type. A variable of a class data

type is known as an object. An object is defined as an instance of a class. For example, if Book is a

defined class,

Book cBook, javaBook ;

declares the variables cBook and javaBook of the Book class type. Thus, classes are software

prototypes for objects. Creation of a class variable or an object is known as instantiation (creation of

an instance of a class). The objects must be allocated in memory. Classes can not be allocated in

memory.

25

1.18.3 Inheritance

Inheritance allows the extension and reuse of existing code, without having to repeat or rewrite the

code from scratch. Inheritance involves the creation of new classes, also called derived classes, from

existing classes (base classes). Allowing the creation of new classes enables the existence of a

hierarchy of classes that simulates the class and subclass concept of the real world. The new derived

class inherits the members of the base class and also adds its own. For example, a banking system

would expect to have customers, of which we keep information such as name, address, etc. A

subclass of customer could be customers who are students, where not only we keep their name and

address, but we also track the educational institution they are enrolled in.

Inheritance is mostly useful for two programming strategies: extension and specialization.

Extension uses inheritance to develop new classes from existing ones by adding new features.

Specialization makes use of inheritance to refine the behavior of a general class.

1.18.4 Multiple Inheritance

When a class is derived through inheriting one or more base classes, it is being supported by

multiple inheritance. Instances of classes using multiple inheritance have instance variables for each

of the inherited base classes. Java does not support multiple inheritance. However, Java allows any

class implements multiple interfaces which provides similar feature to multiple inheritance.

1.18.5 Polymorphism

Polymorphism allows an object to be processed differently by data types and/or data classes. More

precisely, it is the ability for different objects to respond to the same message in different ways. It

allows a single name or operator to be associated with different operations, depending on the type of

data it is passed, and gives the ability to redefine a method within a derived class. For example,

given the student and business subclasses of customer in a banking system, a programmer would be

able to define different getInterestRate() methods in student and business to override the default

interest getInterestRate() that is held in the customer class. While Java supports method

overloading, it does not support operator overloading.

1.18.6 Delegation

Delegation is an alternative to class inheritance. Delegation allows an object composition to be as

powerful as inheritance. In delegation, two objects are involved in handling a request: methods can

be delegated by one object to another, but the receiver stays bound to the object doing the

delegating, rather than the object being delegated to. This is analogous to child classes sending

requests to parent classes. In Java, delegation is supported as more of a message forwarding

concept.

1.18.7 Genericity

Genericity is a technique for defining software components that have more than one interpretation

depending on the data type of parameters. Thus, it allows the abstraction of data items without

specifying their exact type. These unknown (generic) data types are resolved at the time of their

usage (e.g. through a function call), and are based on the data type of parameters. For example, a

sort function can be parameterized by the type of elements it sorts. To invoke the parameterized

sort(), just supply the required data type parameters to it and the compiler will take care of issues

such as creation of actual functions and invoking that transparently. Genericity is introduced in Java

1.5, implemented as generic interfaces that take parameter types.

26

1.18.8 Persistence

Persistence is the concept by which an object (a set of data) outlives the life of the program, existing

between executions. All database systems support persistence; however, persistence is not supported

in Java. However, persistence can be simulated through use of file streams that are stored on the file

system.

1.18.9 Concurrency

Concurrency is represented in Java through threading, synchronization and scheduling. Using

concurrency allows additional complexity to the development of applications, allowing more

flexibility in software applications.

1.18.10 Events

An event can be considered a kind of interrupt; they interrupt your program and allow your program

to respond appropriately. In a conventional, non object-oriented language, processing proceeds

literally through the code; code is executed in a ‘top-down’ manner. The flow of code in a

conventional language can only be interrupted by loops, functions, or iterative conditional

statements. In an object-oriented language such as Java, events interrupt the normal flow of program

execution; objects can pass information and control from themselves to another object, which in turn

can pass control to other objects, and so on. In Java, events are handled through the EventHandler

class which supports dynamically generated listeners. Java also implements event functionality in

classes such as the Error subclass; abnormal conditions are caught and thrown so they can be

handled appropriately.

1.19 Modularity
The complexity of a program can be reduced by partitioning the program into individual modules.

In object-oriented programming languages, classes and objects form the logical structure of a

system. Modules serve as the physical containers in which the classes and objects are declared.

Modularity is the property of a system that has been decomposed into a set of cohesive and loosely

coupled modules. A module is an indivisible unit of software that can be reused. The boundaries of

modules are established to minimize the interfaces among different parts of the development

organization. Modules are frequently used as an implementation technique for abstract data type.

Abstract data type is a theoretical concept and module is an implementation technique. Each class is

considered to be a module in OOP.

The responsibilities of classes are defined by means of their attributes and behavior. But a single

object alone is not very useful. Higher order functionality and complex behavior are achieved

through interaction of objects in different modules. Hence, interaction of objects is very important.

Software objects interact and communicate with each other by sending messages to each other.

The activities are initiated by the transmission of a message to an object responsible for the

action. The message encodes the request and the information is passed along with the message as

parameters. There are three components to comprise a message:

• The receiver objects to whom the message is addressed

• The name of the function performing the action

• The parameters required by the function

Interaction between objects is possible with the help of message passing. In the case of

distributed applications, objects in different machines can also send and receive messages.

27

1.20 How to Design a Class?
A class is designed with a specific goal. Its purpose must be clear to the users. An entity in solving a

problem is categorized as a class if there is a need for more than one instance of this class. Also, it

is very important to entrust a responsibility to an object. Presenting simply the behaviors such as

reading data and displaying data in a class is a poor design of a class. To perform complex tasks,

one class must jointly work with the other classes to perform the task. This approach is known as

collaboration among classes. The class must be designed with essential attributes and behavior to

reflect an idea in the real world.

The terms class and object are very important in object-oriented programming. A class is a

prototype or blueprint or model that defines the variables and functions in it. The variables defined

in a class represent the data or states or properties or attributes of a visible thing of a certain type.

Classes are user defined data types. It is possible to create a lot of objects of a class. The

important advantages of classes are:

• Modularity

• Information hiding

• Reusability

1.21 Design Strategies in OOP
Object-oriented programming includes a number of powerful design strategies based on software

engineering principles. Design strategies allow the programmers to develop complex systems in a

manageable form. They have been evolved out of decades of software engineering experience. The

basic design strategies embedded in object-oriented programming are:

i. Abstraction

ii. Composition

iii. Generalization

The existing object-oriented programming languages support most of these features.

Abstraction is clearly discussed in the section 1.18.2.

1.21.1 Composition

A complex system is organized using a number of simpler systems. An organized collection of

smaller components interacting to achieve a coherent and common behavior is known as

composition. There are two types of composition:

1. Association

2. Aggregation

Aggregation considers the composed part as a single unit whereas association considers each

part of composition as a separate unit. For example, a computer is an association of CPU, keyboard

and monitor. Each part is visible and manipulated by the user. CPU is an aggregation of processor

memory and control unit. The individual parts are not visible and they cannot be manipulated by the

user. Both types of composition are useful. Aggregation provides greater security because its

structure is defined in advance and cannot be altered at run-time. Association offers greater

flexibility because the relationships among the visible units can be redefined at run time. It adapts to

changing conditions in its execution environment by replacing one or more of its components. The

two types of composition are frequently used together. A computer is an example for combination of

both association and aggregation.

28

1.21.2 Generalization

Generalization identifies the common properties and behaviors of abstractions. It is different from

abstraction. Abstraction is aimed at simplifying the description of an entity whereas generalization

identifies commonalities among a set of abstractions. Generalizations are important since they are

like “laws” or “theorems” which lay the foundation for many things. Generalization helps to

develop software capturing the idea of similarity.

The different types of generalization are:

1. hierarchy

2. genericity

3. polymorphism

4. pattern

1. Hierarchy

The first type of generalization uses a tree structured form to organize commonalities. A

generalization/specialization hierarchy is achieved with the help of inheritance in object-oriented

programming languages. The advantages are:

• Knowledge representation in a particular form.

• The intermediate levels in the hierarchy provide the names that can be used among

developers and between developers and application domain experts.

• A new specialization at any level can be extended.

• New attributes and behavior can be easily added.

2. Genericity

It refers to a generic class, which is meant for accepting different types of parameters. A stack class

can be considered as a generic class if it is capable of accepting integer data as well as float or

double or char data also. This type of generalization is known as genericity.

3. Polymorphism

The term poly means many and the term morph means to form. Then polymorphism concerns the

possibility for a single property of exposing multiple possible states. The generally accepted

definition for this term in object oriented programming is the capability of objects belonging to the

same class hierarchy to react differently to the same method call. This means that a function may be

defined in different forms with the same function name. It is possible to implement different

functionalities using a common name for a function. Polymorphism provides a way of generalizing

algorithms. Late binding or dynamic binding (discussed later) is required to implement

polymorphism in object-oriented programming. Based on the parameters passed, the compiler

dynamically identifies the function to be invoked and it is known as dynamic binding.

4. Pattern

A pattern is a generalization of a solution for a common problem. An architecture or model is a

large scale pattern used in computer science. Client – server model is an example of a large scale

pattern. A pattern is a distinct form of generalization. It gives a general form of solution. A pattern

need not be expressed in code at all. The elements of the pattern are represented by classes. The

relationships among the elements may be defined by association, aggregation and/or hierarchy.

29

1.22 Comparison of Structured and Object-Oriented Programming
It is essential to understand the basic differences between structured programming and OOP

concepts, which is shown in Table 1.6.

Table 1.6: Difference between Structured and OO Programming

Structured Programming Object-Oriented Programming

Top-down approach is followed. Bottom-up approach is followed.

Focus is on algorithm and control flow. Focus is on object model.

Program is divided into a number of sub-

modules or functions or procedures.

Program is organized by having a number of

classes and objects.

Functions are independent of each other. Each class is related in a hierarchical manner.

No designated receiver in the function call. There is a designated receiver for each message

passing.

Views data and functions as two separate

entities.

Views data and function as a single entity.

Maintenance is costly. Maintenance is relatively cheaper.

Software reuse is not possible. Helps in software reuse.

Function call is used. Message passing is used.

Function abstraction is used. Data abstraction is used.

Algorithm is given importance. Data is given importance.

Solution is solution-domain specific. Solution is problem-domain specific.

No encapsulation. Data and functions are

separate.

Encapsulation packages code and data altogether.

Data and functionalities are put together in a single

entity.

Relationship between programmer and

program is emphasized.

Relationship between programmer and user is

emphasized.

Data-driven technique is used. Driven by delegation of responsibilities.

1.23 Object-Oriented Programming Languages
Several object-oriented programming languages have been invented since 1960. Some well-known

ones are listed in table below. Among them, C++, Java, and C# are the three most commercially

successful OOP languages. Inventors and features of various OOP languages are given in table 1.7.

Simula

Simula was the first object-oriented language with syntax similar to Algol. Concurrent processes are

managed by scheduler class. This language is best suited to the simulation of parallel systems. It

allows classes with attributes and procedures that are public by default. It is possible to declare them

as private also. Inheritance and virtual functions are supported. Memory is managed automatically

with garbage collection.

30

Table 1.7: OO Programming languages

(a) OO programming languages and their inventors.

Language Inventor, Year Organisation

Simula Kristen Nygaard and Ole-

Johan Dahl, 1960

Norwegian Defense Research

Establishment, Norway

Ada Jean Ichbiah, 1970 Honeywell-CII-Bull, France

Smalltalk Alan Kay, 1970 Xerox PARC, USA

C++ Bjarne Stroustrup, 1980 AT&T Bell Labs, USA

Objective C Brad Cox, 1980 Stepstone, USA

Object Pascal Larry Tesler, 1985 Apple Computer, USA

Eiffel Bertrand Meyer, 1992 Eiffel Software, USA

Java James Gosling, 1996 Sun Microsystems, USA

C# Anders Hejlsberg, 2000 Microsoft, USA

(b) OO programming languages and comparison of their features

Feature Java C++ Smalltalk
Objective

C
Simula Ada Eiffel C#

Encapsulation √ √ Poor √ √ √ √ √

Single

inheritance
√ √ √ √ √ X √ √

Multiple

inheritance
X √ X √ X X √ X

Polymorphism √ √ √ √ √ √ √ √

Binding

(early or late)
Late Both Late Both Both Early Early Late

Concurrency √ Poor Poor Poor √ Difficult √ √

Garbage

collection
√ X √ √ √ X √ √

Persistent

objects
X X promised X X

Like

3GL
Limited X

Genericity √ √ X X X √ √ √

Class libraries √ √ √ √ √ Limited √ √

Ada

Ada was developed by Jean Ichbiah and his team at Bull in the late 1970s. It was named after

Augusta Ada, daughter of Byron, the famous romantic poet. It is a general-purpose language. An

31

abstract type is implemented as a package in Ada. Each package can contain abstract types. The

concept of genericity is introduced at the level of types and packages.

Smalltalk

It was designed by Alan Kay at Xerox PARC during the 1970s. It is a general purpose language. It

allows polymorphism. Automatic garbage collection is provided. Generalization of the object

concept is another original contribution from Smalltalk.

C++

C++ was designed by Bjarne Stroustrup in the AT and T Bell Laboratories in the early 1980s. It

borrowed the concepts of class, subclass, inheritance and polymorphism from Simula. The name

C++ was coined by Rick Mascitti in 1983.

Objective C

It is a general-purpose language designed by B. Cox. It extends C with an object model based on

Smalltalk 80. It does not support metaclasses, which are classes used to describe other classes.

Simple inheritance is supported. There are generic classes and no memory garbage collector.

Object Pascal

It is an extension of Pascal, developed by Apple for the Macintosh in the early 1980s. Simple

inheritance dynamic binding is supported. There is no automatic garbage collection.

Eiffel

It was developed by Bertrand Meyer in 1992 for both scientific and commercial applications.

Exception management is a feature supported by this language.

Java

It is a pure object-oriented language developed by Arnold and Gosling in 1996. It helps in

developing small applications called applets which can be integrated into web pages. It supports

multithreading. It supports encapsulation, inheritance, polymorphism, genericity, and dynamic

binding.

C#

It is an object-oriented programming language developed by Microsoft Corporation for its new

.NET Framework. It is derived from C and C++; appears very similar to Java. It supports

encapsulation, inheritance, polimorphysm, genericity, and late binding.

1.24 Requirements of Using OOP Approach
The method of solving complex problems using OOP approach requires:

• Change in mindset of programmers, who are familiar with structured programming.

• Closer interaction between program developers and end-users.

• Much concentration on requirement, analysis and design.

• More attention for system development than just programming.

• Intensive testing procedures.

1.25 Advantages of Object-Oriented Programming
The following are the advantages of software developed using object-oriented programming:

32

1. Software reuse is enhanced.

2. Software maintenance cost can be reduced.

3. Data access is restricted providing better data security.

4. Software is easily developed for complex problems.

5. Software may be developed meeting the requirements on time, on the estimated budget.

6. Software has improved performance.

7. Software quality is improved.

8. Class hierarchies are helpful in the design process allowing increased extensibility.

9. Modularity is achieved.

10. Data abstraction is possible.

1.26 Limitations of Object-Oriented Programming
1. The benefits of OOP may be realized after a long period.

2. Requires intensive testing procedures.

3. Solving a problem using OOP approach consumes more time than the time taken by

structured programming approach.

1.27 Applications of Object-Oriented Programming
If there is complexity in software development, object-oriented programming is the best paradigm to

solve the problem. The following areas make use of OOP:

1. Image processing

2. Pattern recognition

3. Computer assisted concurrent engineering

4. Computer aided design and manufacturing

5. Computer aided teaching

6. Intelligent systems

7. Data base management systems

8. Web based applications

9. Distributed computing and applications

10. Component based applications

11. Business process reengineering

12. Enterprise resource planning

13. Data security and management

14. Mobile computing

15. Data warehousing and data mining

16. Parallel computing

Object concept helps to translate our thoughts to a program. It provides a way of solving a

problem in the same way as a human being perceives a real world problem and finds out the

solution. It is possible to construct large reusable components using object-oriented techniques.

Development of reusable components is rapidly growing in commercial software industries.

1.28 Summary
Computers are used to solve problems. Different styles of programming have evolved in the history

of generation of languages. But the problem of reuse and maintenance was not solved by those early

languages and this led to the phenomenon called software crisis. To overcome the limitations,

software engineering principles were applied and the object oriented paradigm model was found to

33

be suitable for addressing, modeling, and solving complex problems. The diffusion of this paradigm

is the result of a continuous shift of programming abstractions from the solution domain to the

problem domain. The more the problems to solve got complex the more we moved to models more

close to the problem domain for solving them. From machine language to the Object-oriented model

and beyond. This constant movement has made the activity of finding a solution easier, more

understandable, and maintainable.

Object-oriented programming uses object models and it resembles the natural way of solving a

problem. The concepts of abstraction and encapsulation are used in OOP. The essential features of

an entity are known as abstraction. Abstraction separates the interface from implementation.

Encapsulation insulates the data by wrapping them up using methods. Classes and objects are the

fundamental concepts that render abstractions. Classes are user defined data types and objects are

instances of a class. The features of OOP are discussed to realize the importance of OOP approach.

The design strategies such as abstraction, composition, and generalization are embedded in OOP.

Examples of OOP languages, advantages, and applications of OOP are presented to know the

importance of OOP. Java is an OOP language. The history of development of Java and the runtime

environment of Java are described in the next chapter.

1.29 Excersices

Objective Questions

1.1 Both Java and C# are _________ programming language.

1.2 Mapping of problem domain to solution domain is so called _________.

1.3 A program is a set of instructions written in a _________.

1.4 _________ approach general requires decomposing a complex problem into smaller

problems.

1.5 _________ process is useful to make a software reliable.

1.6 _________ is a software development model that follows top-down approach.

1.7 The software structure that supports data abstraction is known as_________.

1.8 The process, or mechanism, by which you combine code and the data it manipulates into a

single unit, is commonly referred to as _________ .

1.9 _________ allows an object to be processed differently by data types and/or data classes.

1.10 The basic design strategies embedded in object-oriented programming are: _________ ,

_________ and _________.

1.11 Bottom-up and top-down are the two very common problem solving strategies: True or

False.

1.12 C and C++ are structural programming languages, Java and C# are object-oriented

programming languages: True or False.

1.13 Class is a data type and Object is an instance of a class: True or False.

1.14 Abstract Data Types is a term referring to an abstract class: True or False.

1.15 Encapsulation hides the data and the user cannot access them directly: True or False.

1.16 Reusability is an important aspect of designing classes: True or False.

1.17 Object inheritance is a way of achieving genericity: True or False.

1.18 The focus of Object-Oriented Programming is the algorithm and control flow in a way of

defining classes: True or False.

1.19 Structural programming language does not have a way of defining classes: True or False.

1.20 The testing is used to help Object-oriented programs instead of structural programs: True

or False.

