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Abstract. The last advances in commodity hardware have allowed users of im-
mersive visualization to create high-performance systems using a set of inter-
connected computers. These systems, called cluster computers, allow to employ
high-quality graphics cards, high-speed processors and significant amounts of
memory for much lower costs than would be possible with high-end, shared mem-
ory computers traditionally used for virtual reality purposes.
In this paper we present ClusterJuggler, a system based on the VR Juggler archi-
tecture that enables the use of distributed and clustered computers for the display
of immersive virtual environments. We provide and overview of the potential
ways to synchronize a cluster for immersive visualization. Then, we describe
the ClusterJuggler architecture in detail, and we show how ClusterJuggler allows
virtual reality application developers to combine various existing clustering tech-
niques to meet the needs of their specific applications. A performance evaluation
of our clustered technique on real 3D real-time immersive applications demon-
strates the efficiency of ClusterJuggler with respect to both number of nodes in
the cluster and the bandwidth of the interconnection network system.

1 Introduction

Traditionally, multi-screen immersive visualization systems have relied upon dedicated,
high-end, shared memory graphics computers to generate interactive virtual environ-
ments. These systems must not be confused with distributed virtual environment (DVE)
systems where many users remotely connected from different computers, typically con-
nected through the Internet, share the same 3D virtual world [17]. Such multi-screen im-
mersive systems typically require one or two video outputs for each projection surface,
and they often utilize many input devices simultaneously. In recent years, the nearly
exclusive use of high-end computers for these purposes has shifted to commodity hard-
ware as it has become a viable alternative [2, 10, 18]. Continuous, rapid improvements
in commodity hardware have allowed users of immersive visualization to employ high-
quality graphics hardware, high-speed processors, and significant amounts of memory
for much lower costs than would be possible with high-end, shared memory comput-
ers. However, to drive a multi-screen immersive visualization system, we need multiple
commodity systems working as a single unit, thereby mimicking the behavior of a sin-
gle, shared memory computer. This transparency of the VR system can be accomplished
through the use of a tightly synchronized cluster.

Clustering techniques have been utilized to parallelize complex computations for
many years in high-performance computing (HPC) [5, 18]. Despite HPC clusters offer



an alternative to expensive supercomputers and can be used to drive multi-screen visual-
ization systems, the existing parallelization techniques used for HPC cannot be applied
directly to graphics clusters. In this sense, graphics clusters add some constraints to
virtual reality (VR) software. While these constraints are all solved at the hardware of
shared memory computers, they must be solved at the software level for a graphics
cluster. These constraints are related to:

– High-performance network: Interactive graphics require extremely low latency
communication networks in order to maintain real-time frame rates. Also certain
clustering techniques require high bandwidths because of the substantially large
amounts of data they need to transfer each frame.

– Swap buffer synchronization: In order to prevent tearing while combining images
rendered on multiple cluster nodes we must synchronize the swapping of the front
and back frame buffers.

– Consistent random number generation:Applications that use random numbers
in their calculations require consistent random numbers across the entire cluster to
ensure identical results.

– Frame delta: Many applications use the elapsed time since the last frame in their
physics calculations. Because each node is executing at different speeds this time
delta must be shared to ensure consistent results.

– Start barrier: Certain clustering techniques require that each node starts the first
frame of the application at the same time. In order to accommodate this each node
must wait at a barrier before starting the frame loop.

– Multiple input devices: Most VR input devices communicate with a computer
using a serial port. This causes a limitation for commodity hardware because of the
limited number of serial ports. This can be addressed by allowing input devices to
transparently reside on multiple nodes.

In this paper, we present ClusterJuggler [4], a system based on the VR Juggler archi-
tecture that enables the use of distributed and clustered computers for the display of im-
mersive virtual environments. The main goals of ClusterJuggler are to allow the cluster
software to adapt to the particular hardware configuration of the virtual reality system;
to provide application portability and scalability from high-end systems to commodity
clusters by hiding the clustering from developers; and to allow users to customize the
clustering methods being used to best meet their specific needs. It’s worth mention that
ClusterJuggler works transparently to VR application designers and requires no code
changes when inmersive applications are executed in different multi-screen configura-
tions including CAVEs, head mounted displays (HMD) and desktop VR.

The rest of the paper is organized as follows: Section 2 describes the most impor-
tant approaches to simulate multi-screen immersive visualization systems on a cluster
of computers. Section 3 shows the modular architecture based of layers of ClusterJug-
gler and also how the features of this clustering platform oriented to 3D real-time envi-
ronments can be extended. Next, Section 4 presents the performance evaluation results
of the current version of ClusterJuggler. Finally, Section 5 presents some concluding
remarks and future work to be completed.



2 Background

Several software libraries generate immersive environments by utilizing clusters of
commodity computers. Each of these solutions attacks the issues listed in the previ-
ous section at one of four locations: input data [2, 8, 16], remote shared memory [11],
scene graph change lists [15, 16], or graphics primitives [10, 12, 18].

In order for a user to become fully immersed in a virtual environment, they must
interact with it using one or more physical input devices such as a position tracker or
glove. Since the objective is to provide the user with a sense of immersion these devices
obtain all the input needed to determine the changes in application state. Clustering
solutions utilizinginput datasharing start a distinct complete copy of the application
on each node in the cluster. All input data is then synchronized across the cluster at
the beginning of each frame loop. Thus, application state remains consistent as long as
it depends solely on input events. Despite this approach does not require any changes
to the application relative to a shared memory architecture (since the application still
has access to the same input data and rendering targets), random number generation,
consistent frame deltas, and a start barrier are not addressed. Examples of multi-screen
immersive visualization systems based on cluster architectures are Net Juggler [2] and
Syzygy [16]. While Net Juggler [2] uses message passing via the Message Passing In-
terface (MPI) [8] in its implementation, frameworks such as VR Juggler [4] and Syzygy
[16] use the TCP/IP suite directly.

Remote shared memory approachoffers another way to ensure that each node has
an identical snapshot of that state for rendering each frame. Implementations of re-
mote shared memory often require that the application programmer take special steps
to use it. Special storage areas must be created, and in some cases, access to the shared
memory must be controlled so that there may be multiple readers but only one writer.
Different designs put more or less of the burden on the application programmer for un-
derstanding and managing these details. Implementations as DIVERSE [11] are based
on a shared memory architecture where a general inter-process communication pro-
gramming tool guarantee identical copies among the nodes of the cluster.

Since most graphic applications are based on the manipulation of scene graphs [19],
if one node keeps track of all changes made to the scene each frame, that node can send
the changes to each of the other nodes to be reapplied to the local memory copy of
the scene graph. Therefore, each node always has the information it needs to render
an accurate version of the scene. This approach, calledscene graph change lists, takes
advantage of the fact that visual consistency and coherency is the critical aspect of
all graphics clusters. Both OpenSG [15] and Syzygy [16] implement this clustering
method.

At the lowest level, all immersive applications generate a stream of graphics com-
mands that are delivered to the graphics hardware for rendering. This is accomplished
by making calls to a low level graphics application programming interface (API) such
as OpenGL. Software libraries such as Chromium [10] and DGL [12] are designed to
intercept thegraphics primitivesfor the rendering of each frame and distribute them
over a network in order to divide the rendering task among multiple nodes. This ap-
proach tends to require more bandwidth than any of the previously mentioned methods
[18].



3 Conceptual Model and Architecture

Since clustering techniques presented above have their own unique benefits and draw-
backs, we present a modular and extensible architecture, calledClusterJuggler, that
combines the advantages of all of them. The ClusterJuggler design contributes several
key features not found in other clustering architectures: a layered architecture, run-time
reconfiguration, and an extensible, component-based system.

The architecture of ClusterJuggler separates the aspects of clustering for VR into
several layers. Each layer builds upon the functionality of those below to provide addi-
tional features. This modular design allows us to implement and test each layer indepen-
dently, and changes made to one can happen transparently to the layers above. Cluster
Juggler uses the same advanced configuration infrastructure that VR Juggler [3, 4]. In
this configuration infrastructure, information arrives in the form of config elements. Ba-
sically, these elements are XML files and they are the fundamental unit of configuration
in VR Juggler [9]. Handlers of config elements are registered with an entity known as
the Configuration Manager, and newly received config elements are delivered to the
appropriate handlers. New config elements may arrive at any time during the lifetime
of an application, thus allowing run-time reconfiguration of the software. Since Clus-
ter Juggler is based on the VR Juggler architecture, it takes advantage of this feature
[4]. ClusterJuggler allows nodes, displays, and input devices to be added, removed, or
reconfigured as needed at run time. We have followed the traditional component-based
approach for developing this architecture [20]. The code that uses the components is
then responsible for loading implementations at run time based on some specification.
Each component, called plug-in, is a standalone module loaded at run time based on the
user-specified cluster configuration. The plug-ins extend the ClusterJuggler core with
specialized clustering functionality. Users can choose any of the plug-ins needed for
their applications and their specific cluster configuration.

3.1 An Architecture based on layers

As both Figure 1-a and Figure 1-b show, the architecture of ClusterJuggler has been de-
signed as a set of components that are arranged into layers. At the lowest level, the Clus-
ter Network provides a messaging interface for communicating with the entire cluster.
The Cluster Plug-ins are built on top of the Cluster Network and provide the application
developer with a set of components to construct the best solution for their applications
needs. The top layer is the Cluster Manager which acts as a interface to ClusterJuggler.
Higher level code utilizes the Cluster Manager to control ClusterJuggler.

Cluster Manager Layer. This is the main layer in ClusterJuggler. This layer is re-
sponsible for handling the cluster configuration and for synchronizing the calls to each
plug-in. Once all nodes of the cluster load the application code into memory, an en-
try point function is called to create an instance per plug-in in the Cluster Manager. In
this moment, each plug-in (selected by the users) becomes a mechanism which allows
and defines the communication among the nodes of the cluster. In this sense, a cluster
can incorporate a master/slave or a P2P network protocol depending the selected plug-
ins. Since plugins can generate data inconsistency problem in the cluster, the Cluster



Fig. 1.The architecture of Cluster Juggler: (a) A layered view, b) a simplified UML class diagram

Manager is responsible for making sure that all plugins have their run-time informa-
tion dependencies satisfied during the simulation. In order to accommodate all possible
needs, each plug-in has a well-defined interface and a contract that specifies the invo-
cation timing. In order to guarantee a full compatibility between VR Juggler [4] and
ClusterJuggler a micro-kernel architecture is adopted. In this case, each pass through
the “kernel loop” guarantees can be made about the state of input, graphics contexts,
and the Cluster Manager. The Cluster Manager can in turn invoke the methods of the
plugins at well-defined times during the kernel loop.

Cluster Network Layer. This layer maintains an abstract representation of the system
of interconnected nodes that comprise the cluster. This abstraction provides ClusterJug-
gler with a messaging interface for communicating with the entire cluster. Internally, it
maintains a list of the nodes in the cluster along with the current network connections
used to communicate with them.

Cluster Plug-ins They represent the point of extension for ClusterJuggler. This aspect
of the design allows the addition of new plug-ins to address cluster-specific application
issues not handled by the standard set of Cluster Plug-ins. By default ClusterJuggler
incorporates the next plugins: the Remote Input Manager (RIM) plug-in, Application
Data Manager (ADM), the Swap Lock (SL) plug-ins, and the Start Barrier (SB) plug-in.

RIM plug-inis responsible for distributing synchronized device data across the clus-
ter. In order to ensure that all nodes in the cluster have a consistent snapshot of all input
data, (regardless of the location of the physical hardware) RIM emulates each node
of the cluster as a “device server”. The device data is shared over the network using
the platform-independent protocol provided by the Cluster Network layer. Users of the
device server idea can take advantage of this to utilize input devices that might not
otherwise be usable due to hardware or software limitations. This device location trans-
parency allows not only to construct a cluster from any combination of the platforms
supported by VR Juggler [4], but also to balance the workload generated by a large
number of VR devices by connecting them to separate computers.

ADM provides application developers with a method for sharing arbitrary applica-
tion state across the cluster. This capability extends the fundamental input data sharing



and demonstrates that the ClusterJuggler design allows multiple clustering techniques
to be utilized in a single application. Sharing of application-specific data structures
works by providing the application developers with a base class that they extend with
their own type. The base class defines an interface for serializing and de-serializing the
data structure. Application developers must implement this interface with serialization
code that is specific to their data type. In order to ensure data consistency across the
cluster, ADM not only maintains a different GUID (128-bit Globally Unique Identi-
fiers) for each application specific data type [21], but also does not allow distinct nodes
have different copies of the same data. All the serialize function calls are performed in
the same node of the cluster (which is configured by the user) called “host node”.

SL plug-in is used with the RIM Plug-in to ensure that the applications running
on the cluster nodes all begin their execution on the same frame. SL plug-in creates a
software barrier by sending signals between the cluster nodes. The plug-in uses a mas-
ter/slave paradigm where each slave sends a signal to the master immediately before
swapping the frame buffers. The master is identified through a configuration specific to
the plug-in, and the remaining nodes are then identified as slaves. All the slaves then
suspend their execution, waiting for the master to send a response signal. The master
sends its response immediately before it invokes the frame buffer swap operation. Upon
receiving the response from the master, the slaves perform the frame buffer swap. De-
pending on how the interconnection nodes is configured, ClusterJuggler incorporates
three different versions of SL plug-in: TCP swap lock, the parallel port swap lock, and
the hybrid TCP/serial port swap lock [1].

Since each node in the cluster runs a distinct and complete copy of the VR Juggler
application, Cluster Juggler needs a mechanism to guarantee that all nodes begin their
execution on the same frame. This feature is provided by theSB plug-inusing a mas-
ter/slave paradigm similar to the SL plug-in. One node in the cluster is identified to be
the master with a configuration specific to this plug-in type. The remaining nodes are
therefore slaves. When each slave is ready to begin its frame loop, it sends a message
to the master and waits for a response. When the master has received all the messages
from the slaves, it sends the responses to them. At that point, all nodes may begin their
frame loop, thereby guaranteeing the goal of the SB plug-in.

4 Performance Evaluation

In this section, we present the performance evaluation of ClusterJuggler. Instead of an-
alyzing the efficiency of our clustering platform by using simple and well-known 3D
models [18], we have performed our experiments on real VR applications. In order
to show the performance of ClusterJuggler we have wanted to select a group of rep-
resentative VR applications that would cover the spectrum of graphics-intensive and
computationally-intensive workloads of VR applications. We have chosen four applica-
tion based on this criteria: “cubes”, “ agua”, “ hindu” and “mpapp”.

“Cubes” is an extremely simple application where 1000 cubes are drawn floating in
the space. This simplicity allows “cubes” application to generate low levels of work-
load in terms of both graphic and computation requirements. Next application, “agua”,
takes advantage of special hardware techniques, such as vertex shading [7], in order



to recreate a real-time travel around a complete deep sea reef. Despite the computa-
tional workload generated by “agua” is very low, the huge use of the graphical card
capabilities allows this application to be considered as highly graphics-intensive. The
third application, “hindu”, is a virtual walkthrough which allows users to explore the
Radharaman Temple (Vrindavan, India). This application uses a set of animated virtual
characters in order to perform a traditional religious ceremony inside of the temple.
Hindu“hindu” is not only graphically intensive as it contains large amounts of polygons
and textures (for both temple and characters), but also is computational intensive due
to time it takes in to generate the final the movements and shadows for all the charac-
ters in each frame of the simulation. Finally, on the opposite extreme of the application
spectrum, “mpapp” performs a real-time simulation of a square piece of cloth which
has been modelled as a simple mesh surface. Since this mesh is generated by means of
a complex 3D polynomial equation, “mpapp” requires a minimal graphical workload
but it is highly computational intensive. Figure 2 depicts different snapshots of the four
proposed VR applications taken when they are executed in a stand-alone configuration
on VR Juggler. All the applications use OpenGL (with any type of graphic optimization
or advanced tool to speed-up rendering) as an average programmer would use it.

Fig. 2. Snapshots obtained from VR Juggler for: (a) Cubes (b) Agua (c) Hindu and d) Mpapp

Our test-environment is composed by 8 Linux-PCs, each running RedHat 8.0 with
a NVIDIA GeForce3 Ti200 (128 MBytes) graphics card, a 2GHz Intel Pentium Proces-
sor, 1 GByte of RAM, and 512 Kbyte of cache memory. The machines are connected
to a Cisco Catalyst 3750 Gigabit Ethernet switch.

Since we have considered the system throughput as the number of frames per sec-
ond (denoted as FPS) performed by the graphics cluster [18], we have measured this
parameter by varying both the number of nodes and the network bandwidth in the clus-
ter. The results of this variations are shown in Figure 3-a and Figure 3-b, respectively.
The Y-axis of both figures show FPS values for the simulations performed with each
system configuration. Each point in both plots represents the average value of the FPS
obtained after 25 executions of the same application benchmark. The standard deviation
for any of the points shown in the plots was not higher than 4 FPS in any case.

Figure 3-a shows the values of FPS reached by ClusterJuggler depending on the
number of nodes in the cluster. This figure shows on the X-axis the number of nodes
ranging from a C1 to a C8 configuration. While C1 is a classical VR Juggler config-



uration composed of a single stand-alone node [4], ClusterJuggler achieves to execute
the considered benchmark applications by means of eight synchronized computers in
C8. It shows that, for all the considered benchmark applications, FPS is almost lin-
early reduced as more nodes are added to the cluster. Moreover, the linear factor of
the throughput reduction decreases with the workload generated by the application in a
stand-alone configuration. In this sense, applications as “hindu” or “ mpapp” only have
an average reduction of nine and seven FPS when they are ported from a stand-alone to
a C8 configuration. The reason of this behavior is related to the linear network overhead
that is incurred as new nodes are added to the cluster system. This linear overhead is
caused by the master/slave configuration of the SL plug-in described in section 3.1.

Fig. 3. Values of system throughput (FPS) for different (a) number of nodes and b) network
bandwidth in ClusterJuggler

Despite an important topic when analyzing the performance of clusters is how net-
work bandwidth and system throughput are related [14], this concept does not use to be
taken into account when virtual reality cluster systems are analyzed [2, 10, 15, 16]. In
order to study this behavior in detail, we have taken advantage of a recent tool called
Netem[13]. Netem (Network Emulator) is a general-purpose tool for emulating band-
limited links in real-time in order to study the effects of bandwidth limitations on sys-
tem performance and user interaction. By operating at the IP level, Netem can emulate
the critical end-to-end performance characteristics imposed by various wide area net-
work situations (e.g., congestion loss) or by various underlying subnetwork technolo-
gies (e.g., Ethernet, Fast Ethernet, cable modems). Basically, Netem allows each node
of the cluster to ensure a non-uniform RTT (Round Trip Time) value for the transmitted
TCP packets according to the specifications of the subnetwork technology. Since the
correlation between RTT delay and the type of the physical network connection has
been widely described in the literature of cluster computing [5, 6], Netem becomes an
excellent tool for emulating performance dynamics in our test-environment hardware.

Figure 3-b shows the performance evaluation results obtained by Cluster Juggler
when different values of RTT are considered in a C6 configuration. The first value on
the X-axis (0.13 ms.) corresponds to the case in which no delay was added to all packets
going out of the local Ethernet. This case shows the effective (and minimum) RTT value
obtained in this configuration composed of six nodes and based on a Gigabit Ethernet



backbone. In order to decrease the network throughput of the system, the above values
correspond to the situations where Netem is used. Despite the main goal of our study
was to determine the performance of Cluster Juggler in LAN configurations, a large
range of delays is considered. This figure shows how FPS linearly decreases as com-
munication link delay increases for all the considered benchmark applications. Unlike
the above case, the FPS value tend to converge towards a similar threshold level when
high latencies are emulated for all the benchmark applications. In this situations, Clus-
ter Juggler spends most of rendering period while waiting for the synchronization from
both SL and SB plug-ins. Besides that situation is typical of WAN environments, Figure
3-b shows that Cluster Juggler provides a very low reduction of performance levels, in
terms of FPS, when VR Juggler immersive stand-alone applications are launched on
commodity LAN clusters. Since values of RTT in these systems are not higher than a
couple of milliseconds [5], these results show Cluster Juggler can be considered as a
efficient tool to simulate multi-screen immersive visualization systems on a cluster of
computers.

5 Conclusions and Future Work

In this paper, we have described the architecture and the performance evaluation of
ClusterJuggler, a evolution of VR Juggler that enables commodity computing and ren-
dering hardware to drive immersive visualization systems. The opened architecture of
ClusterJuggler has been specifically designed to allow VR application developers to
combine various existing clustering techniques, both at the hardware level and at the
software level, to meet their own specific needs. In this sense, ClusterJuggler not only
allows users to configure the software to meet the needs of their specific hardware,
but also its plug-in framework allows programmers to extend ClusterJuggler with new
clustering features. Moreover, the results of the performance evaluation show Cluster
Juggler provide application portability and scalability from high-end systems to com-
modity clusters by hiding the clustering from developers. In our case, ClusterJuggler
has allowed us to migrate existing applications (designed initially for high-end shared
memory computers) to the newer cluster-based configurations while keeping high levels
of frame-rate and without changes required to the application code.

As future work to be done, we plan to add to Cluster Juggler the ability to use
additional network protocols such as IP multicast. Since the current version of Clus-
ter Network layer is limited to using point-to-point TCP connections, our intention is
to provide further network efficiency beyond those domain-specific optimizations pre-
sented in the current implementation. Finally, the addition of a plug-in for monitoring
the performance of the cluster at run time and for validating correct synchronization is
also planned.
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