
Quantum Games and Minimum Entropy

Edward Jiménez
CRM and Experimental Economics, Todo1 Services Inc, Miami Fl 33126
Research and Development Department, Petroecuador, Quito Ecuador, 5932

Tel. 59322291999; Fax 59322524766 (ejimenezecu@yahoo.com) and Address

Av 6 de Diciembre y Paul Rivet (Edif El Pinar) Quito- Ecuador.

March 10, 2003

Abstract

This paper analyze Nash’s equilibrium (maximum utilility MU) and its re-
lation with the order state (minimum entropy ME). I introduce the concept
of minimum entropy as a paradigm of both Nash-Hayek’s equilibrium. The
ME concept is related to Quantum Games. One question arises after complet-
ing this exercise: What do the Quantum Mechanics postulates indicate about
Game Theory and Economics?
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1 Introduction

The quantum games and the quantum computer are closely-related. The science
of Quantum Computer is one of the modern paradigms in Computer Science and
Game Theory [2], [3], [4], [5], [6] [7], [8]. Quantum Computer increases processing
speed to have a more effective data-base search. The quantum games incorporate
Quantum Theory to Game Theory [4] algorithms. This simple extrapolation al-
lows the Prisoner’s Dilemma to be solved and demonstrates that the cooperative
equilibrium is viable and stable with a probability differential of zero.
In [4], [5] and [6], the analogy between Quantum Games and Game Theory is

expressed as: “At the most abstract level, game theory is about numbers of entities
that are efficiently acting to maximize or minimize. For a quantum physicist, it
is then legitimate to ask: what happens if linear superpositions of these actions
are allowed for?, that is, if games are generalized into the quantum domain. For a
particular case of the Prisoner’s Dilemma, we show that this game ceases to pose
a dilemma if quantum strategies are implemented for.” They demonstrate that
classical strategies are particular quantum strategies cases.
Eisert, Wilkens, and Lewenstein, 2001, not only provide a physical model of

quantum strategies but also express the idea of identifying moves using quantum
operations and quantum properties. This approach appears to be fruitful in at least
two ways. On one hand, several recently proposed quantum information application
theories can already be conceived as competitive situations, where several factors
which have opposing motives interact. These parts may apply quantum operations
using a bipartite quantum system. On the other hand, generalizing decision theory
in the domain of quantum probabilities seems interesting, as the roots of game
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theory are partly rooted in probability theory. In this context, it is of interest to
investigate what solutions are attainable if superpositions of strategies are allowed
[10], [14], [15] and [16]. A game is also related to the transference of information.
It is possible to ask: What happens if these carriers of information are applied
to be quantum systems, where Quantum information is a fundamental notion of
information [8] . Nash’s equilibria concept as related to quantum games is essentially
the same as that of game theory, but the most important difference is that the
strategies appear as a function of quantum properties in the physical system [14],
[15], [19] and [20].
Econophysics is a new branch of scientific development that seeks to establish

analogies between economics and physics in a particular case (analogies between
Game Theory and Quantum Mechanic). The establishment of analogies is a creative
way to apply the idea of cooperative equilibrium. The result of this cooperative
equilibrium will allow synergies between these two sciences to occur. From my
point of view, the power of physics is its ability to equilibrium formal treatment
in stochastic dynamic systems. Therefore, the power of economics resides in its
formal study of rationality, cooperation and the non-cooperative equilibrium.
Econophysics is the beginning of a unification stage of the systemic approach

of scientific thought. I demonstrate that it is the beginning of a unification stage,
but it is also related to the remaining sciences.
This paper essentially explains the relationship which exists among Quantum

Mechanics, Nash’s equilibria, and the Minimum Entropy Principle.
This paper is organized as follows:
Section 2: Quantum Games or Minimum Entropy, Section 3: Application of the

Model. Section 4: Conclusion.

2 Quantum Games or Minimum Entropy

Let Γ = (K,S, v) be a game with n−players, where K is the set of players k =
1, ..., n. The finite set Sk of cardinality lk ∈ N is the set of pure strategies of each
player, where k ∈ K, skjk ∈ Sk, jk = 1, ..., lk and S = ΠKSk represents the set of
pure strategy profiles with s ∈ S an element of that set, l = l1, l2, ..., ln represents
the cardinality of S . The vectorial function v : S → Rn associates every profile
s ∈ S , where the vector of utilities v(s) = (v1(s), ..., vn(s))T , and vk(s) designates
the utility of the player k facing the profile s. In order to understand calculus easier,
we write the function vk(s) in one explicit way vk(s) = vk(j1, j2, ..., jn).The matrix
vn,l represents all points of the Cartesian product Πk∈KSk, [2],[9], [16] and [18].
The vector vk(s) is the k− column of v.
If the mixed strategies are allowed, then we have:

∆(Sk) =

pk ∈ Rlk :

lkX
jk=1

pkjk = 1


the unit simplex of the mixed strategies of player k ∈ K, and pk = (pkjk) the

probability vector. The set of profiles in mixed strategies is the polyhedron ∆ with
∆ = Πk∈K ∆(Sk), where p = (p1

j1
, p2

j2
..., pnjn), and pk = (pk1 , p

k
2 , ..., p

k
ln
)T . Using the

Kronecker product, ⊗ it is possible to write1 :

p = p1⊗p2⊗...⊗ pk−1⊗pk⊗pk+1 ⊗ ...⊗ pn (1)

p(−k) = p1⊗p2⊗...⊗ pk−1⊗lk⊗pk+1 ⊗ ...⊗ pn (1.1)

1We use bolt in order to represent vector or matrix.
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where

lk = (1, 1, ..., 1)T ,
£
lk
¤
lk,1

(2)

ok = (0, 0, ..., 0)T ,
£
ok
¤
lk,1

(2.1)

The n− dimensional function u : ∆ → Rn is associated with every profile in
mixed strategies and the vector of expected utilities

u(p) =
³
u1 (p,v(s)) , .., un (p,v(s))

´T
(3)

where uk(p,v(s)) is the expected utility of the player k. Every ukjk = ukjk(p
(−k),v(s))

represents the expected utility of each player’s strategy and the vector uk is noted
uk = (uk

1 , u
k
2 , ..., u

k
n)

T .

uk =

lkX
jk=1

ukjk(p
(−k), v(s))pkjk (4)

u = v0p (4.1)

uk =
¡
lk ⊗ vk

¢
p(−k) (4.2)

The triplet (K,∆,u(p)) designates the extension of the game Γ with the mixed
strategies. We get Nash’s equilibrium (the maximization of utility [2],[9],[16] and
[18]) if and only if ∀k, p, the inequality uk(p∗) ≥ uk(

¡
pk
¢∗

,p(−k)) is respected .

Another way to calculate Nash’s equilibrium [9,16,18], is leveling the values of
the expected prospective utilities of each strategy, when possible.

uk1

³
p(−k), v(s)

´
= uk

2

³
p(−k), v(s)

´
= ... = uk

jk

³
p(−k), v(s)

´
(5)

lkX
jk=1

pkjk = 1 ∀k = 1, ..., n (5.1)

σ2
k =

lkX
jk=1

³
uk
jk

³
p(−k), v(s)

´
− uk

´2

pkjk = 0 (5.2)

If the resulting system of equations doesn’t result in
¡
p(−k)

¢∗
, then we pro-

pose the Minimum Entropy Method [11] and [12]. This method is expressed as
Minp (

P
k Hk(p)) , where σ2

k(p
∗) is the standard deviation and Hk(p

∗) is the en-
tropy of each player k.

σ2
k(p

∗) ≤ σ2
k

³¡
pk
¢∗

,p(−k)
´
or (6)

Hk(p
∗) ≤ Hk

³¡
pk
¢∗

,p(−k)
´

(6.1)

2.1 Minimum Entropy Method

Theorem 1 (Minimum Entropy Theorem). The game entropy is minimum only
in mixed strategy Nash’s equilibrium [11] and [12]. The entropy minimization pro-
gram Minp (

P
k Hk(p)), is equal to the standard deviation minimization program

Minp (Πkσk(p)), when
³
uk
jk

´
has gaussian density function or multinomial logit.
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According to Hayek, equilibrium refers to the order state or minimum entropy.
The order state is opposite to entropy (disorder measure). There are some intellec-
tual influences and historical events which inspired Hayek to develop the idea of a
spontaneous order. Here, we present the technical tools needed in order to study
the order state [11], [12], [17] and [17].

Case 1 If the probability density of a variable X is normal: N(µk, σk), then its
entropy is minimum for the minimum standard deviation (Hk)min ⇔ (σk)min. ∀k =
1, ..., n.

Proof. Let the entropy function Hk = − R +∞
−∞ p(x) ln(p(x))dx and p(x) the

normal density function.

Hk = −
Z +∞

−∞
p(x) ln(p(x))dx (7)

Hk = −
Z +∞

−∞
p(x)

Ã
ln

Ã
1p
2πσ2

k

!
−
µ
x− uk√
2σk

¶2
!
dx (7.1)

developing the integral we have

Hk = ln
³√
2πσk

´Z +∞

−∞
p(x)dx (8)

+
1

2σ2
k

Z +∞

−∞
(x− uk)

2p(x)dx (8.1)

= ln
³√
2πσk

´
+

σ2
k

2σ2
k

=

µ
1

2
+ ln

√
2π

¶
+ lnσk (8.2)

For a game to n− players, the total entropy can be written as follows:

nX
k=1

Hk = n

µ
1

2
+ ln

√
2π

¶
+ ln(Πn

k=1 σk) (9)

Minp

ÃX
k

Hk(p)

!
⇔ Minp (Πkσk(p)) (9.1)

after making a few more calculations, it is possible to demonstrate that

Minp

Ã
nX

k=1

σk(p)

!
⇒Minp (Πkσk(p)) (10)

The entropy or measure of the disorder is directly proportional to the standard
deviation or measure of uncertainty. Clausius, who discovered the entropy idea,
presents it as both an evolutionary measure and as the characterization of reversible
and irreversible processes [1], [3], [7] and [13].

Case 2 If the probability function of uk
jk
(p(−k), v(s)) is a multinomial logit of pa-

rameter λ, then its entropy is minimum and its standard deviation is minimum for
λ→∞.

4



Proof. Let pkjkthe probability for k ∈ K, jk = 1, ..., lk

pkjk =
e
λuk

jk
(p−k)Plk

jk=1 e
λuk

jk
(p−k)

=
e
λuk

jk
(p−k)

Zk

(11)

where Zk

³
λ,uk(p−k)

´
=
Plk

jk=1 e
λuk

jk
(p−k) represents the partition utility func-

tion [1], [11] and [12].
The entropy Hk(pk), expected utility E{ukjk(p−k)} = uk(p) , and variance

V ar{uk
jk
(p−k)} will be different for each player k.

Hk(p
k) = −

lkX
jk=1

pkjk ln(p
k
jk
) (12)

uk(p) =
lkX

jk=1

pkjku
k
jk

(12.1)

V ar
©
ukjk(p

−k)
ª

=

lkX
jk=1

pkjk(u
k
jk
− uk)2 (12.2)

Using the explicit form of pkjk , we obtain the entropy, the expected utility and
the variance [11] and [12]:

Hk(p
k) = ln(Zk)− λuk(p) (13)

uk(p) =
∂ ln(Zk)

∂λ
(13.1)

∂uk(p)

∂λ
= V ar{ukjk(p−k)} = σ2

k (13.2)

The equation ∂Hk(pk)
∂λ

= −λσ2
k can be obtained using the last seven equations; it

explains that, when entropy diminishes, rationality increases.
The rationality increases from an initial value of zero when the entropy arrives

at its maximum value, and drops to its minimum value when the rationality spreads
toward the infinite value: Limλ→∞Hk(p

k(λ)) = min(Hk)
The standard deviation is minimum in Nash’s equilibria [2] and [16].
If rationality increases, then Nash’s equilibria can be reached when the rational-

ity spreads to its infinite value: Limλ→∞σk(λ) = 0.
Using the logical chain that has just been demonstrated, we can conclude that

the entropy diminishes when the standard deviation diminishes:

(Hk(p) = (Hk(p))min) ⇔ (σk(λ) = (σk)min) (14)

Minp

ÃX
k

Hk(p)

!
⇔ Minp (Πkσk(p)) (14.1)

after making a few more calculations, it is possible to demonstrate that

Minp

Ã
nX

k=1

σk(p)

!
⇒Minp (Πkσk(p)) (15)
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Remark 1 The entropy Hk for gaussian probability density and multinomial logit

is written as
¡

1
2 + ln

√
2π
¢
+ lnσk and ln(

Plk
jk=1 e

λuk
jk )− λuk

Case 3 The special case of Minimum Entropy is when σ2
k = 0 and the utility func-

tion value of each strategy ukjk(p
(−k), v(s)) = uk, is the same ∀jk,∀k.

3 Application of the Model

Let Γ = (K,S, v) be a game to 3−players, with K the set of players k = 1, 2, 3. The
finite set Sk of cardinality lk ∈ N is the set of pure strategies of each player where
k ∈ K, skjk ∈ Sk, jk = 1, 2, 3 and S = ΠkSk represents the set of pure strategy
profiles which have s ∈ S as an element of that set, and l = 3∗3∗3 = 27 represents
the cardinality of S. The vectorial function v : S → R3 associates every profile
s ∈ S with the vector of utilities v(s) = (v1(s), ..., v3(s)), where vk(s) designates
the utility of the player k using the profile s. In order to use calculus easier, we
write the function vk(s) in one explicit way: vk(s) = vk(j1, j2, ..., jn).The matrix
v3,27 represents all points of the Cartesian product ΠKSk see in (Table 1). The
vector vk(s) is the k- column of v. The graphic representation of the 3-players
game (Figure 1).

Figure 1 3-players game strategies
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Table 1: Minimum Entropy: The Game of Stone-Paper-Scissors.
minp(H1 +H2 +H3)⇔Minp (σ1(p)σ2(p)σ3(p))

Nash Utilities and Standard Deviations

Minp (σ(σ(σ(σ1111σσσσ2222σσσσ3333)))) = 0

u1 u2 u3

0.5500 0.5500 0.5500
σ1 σ2 σ3

0.0000 0.0000 0.0000
H1 H2 H3

0.0353 0.0353 0.0353

Nash Equilibria: Probabilities, Utilities
Player 1 Player 2 Player 3
p1

1 p1
2 p1

3 p2
1 p2

2 p2
3 p3

1 p3
2 p3

3
0.3333 0.3333 0.3333 0.3333 0.3333 0.3333 0.3300 0.3300 0.3300

u1
1 u1

2 u1
3 u2

1 u2
2 u2

3 u3
1 u3

2 u3
3

0.5500 0.5500 0.5500 0.5500 0.5500 0.5500 0.5556 0.5556 0.5556
p1

1 u1
1 p1

2 u1
2 p1

3 u1
3 p2

1 u2
1 p2

2 u2
2 p2

3 u2
3 p3

1 u3
1 p3

2 u3
2 p3

3 u3
3

0.1833 0.1833 0.1833 0.1833 0.1833 0.1833 0.1833 0.1833 0.1833

Kroneker Products

j1 j2 j3 v1 (j 1
,j 2

,j 3
)

v2 (j 1
,j 2

,j 3
)

v3 (j 1
,j 2

,j 3
)

p1
j1 p2

j2 p3
j3 p1

j1p2
j2 p1

j1p3
j3 p2

j2p3
j3 u1 (j 1

,j 2
,j 3

)

u2 (j 1
,j 2

,j 3
)

u3 (j 1
,j 2

,j 3
)

stone stone stone 0 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.0000
stone stone paper 0 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.1111
stone stone sccisor 1 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.0000
stone paper stone 0 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.0000
stone paper paper 0 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.1111
stone paper sccisor 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
stone sccisor stone 1 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.1111
stone sccisor paper 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
stone sccisor sccisor 1 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.0000
paper stone stone 1 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.0000
paper stone paper 1 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.1111
paper stone sccisor 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
paper paper stone 1 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.0000
paper paper paper 0 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.0000
paper paper sccisor 0 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.1111
paper sccisor stone 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
paper sccisor paper 0 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.0000
paper sccisor sccisor 0 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.1111
sccisor stone stone 0 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.1111
sccisor stone paper 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
sccisor stone sccisor 0 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.1100 0.0000
sccisor paper stone 1 1 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.1111
sccisor paper paper 1 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.0000
sccisor paper sccisor 1 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.0000 0.1111
sccisor sccisor stone 0 0 1 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.1111
sccisor sccisor paper 1 1 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.1100 0.1100 0.0000
sccisor sccisor sccisor 0 0 0 0.3333 0.3333 0.3300 0.1111 0.1100 0.1100 0.0000 0.0000 0.0000
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4 Conclusion

1 An immediate application of quantum games in the science of economics is
related to the principal-agent relationship. Specifically, we can use m to represent
types of agents in the adverse selection model. In moral risk, quantum games could
be used as a discrete or continuous set of efforts.
2 In this paper we have demonstrated that the Nash-Hayek equilibrium

opens new doors so that entropy in game theory can be used. Remembering that
the primary way to prove Nash’s equilibria is through utility maximization, we can
affirm that human behavior arbitrates between these two stochastic-utility (ben-
efits) U(p(x)) and entropy (risk or disorder) H(p(x)) elements. Accepting that

the stochastic-utility/entropy
h
U(p(x))
H(p(x))

i
relationship is equivalent to the well-known

benefits/cost ratio, we present a new way to calculate equilibria: Maxx

³
U(p(x))
H(p(x))

´
,

where p(x) probability function and x = (x1, x2, ..., xn) exogenous variables.
3 This paper, which uses Kronecker product ⊗, represents an easy, new for-

malization of game (K,∆,u(p)) ,which extends the game Γ to the mixed strategies.
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