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Abstract. The problem of scheduling divisible loads in distributed com-
puting systems, in presence of processor release time is considered. The
objective is to find the optimal sequence of load distribution and the opti-
mal load fractions assigned to each processor in the system such that the
processing time of the entire processing load is a minimum. This is a dif-
ficult combinatorial optimization problem and hence genetic algorithms
approach is presented for its solution.

1 Introduction

One of the primary issues in the area of parallel and distributed computing is
how to partition and schedule a divisible processing load among the available
processors in the network/system such that the processing time of the entire load
is a minimum. In the case of computation-intensive tasks, the divisible process-
ing load consists of large number of data points, that must be processed by the
same algorithms/programs that are resident in all the processors in the network.
Partitioning and scheduling computation-intensive tasks incorporating the com-
munication delays (in sending the load fractions of the data to processors) is
commonly referred to as divisible load scheduling. The objective is to find the
optimal sequence of load distribution and the optimal load fractions assigned to
each processor in the system such that the processing time of the entire process-
ing load is a minimum. The research on the problem of scheduling divisible loads
in distributed computing systems started in 1988 [1] and has generated consider-
able amount of interest among researchers and many more results are available
in [2, 3]. Recent results in this area are available in [4].
Divisible load scheduling problem will be more difficult, when practical issues like
processor release time, finite buffer conditions and start-up time are considered.
It is shown in [5] and [6], that this problem is NP hard when the buffer constraints
and start-up delays in communication are included. A study on computational
complexity of divisible load scheduling problem is presented in [6]. The effect
of communication latencies (start-up time delays in communication) are studied
in [7–11] using single-round and multi-round load distribution strategies. The



problem of scheduling divisible loads in presence of processor release times is
considered in [12–14]. In these studies, it is assumed that the processors in the
network are busy with some other computation process. The time at which the
processors are ready to start the computation of its load fraction (of the divisible
load) is called “release time” of the processors.
The release time of processors in the network, affect the partitioning and schedul-
ing the divisible load. In [12], scheduling divisible loads in bus network (homo-
geneous processors) with identical and non-identical release time are considered.
The heuristic scheduling algorithms for identical and non-identical release time
are derived based on multi-instalment scheduling technique presented based on
the release time and communication time of the complete load. In [14], heuristic
strategies for identical and non-identical release time are presented for divisible
load scheduling in linear network. In these studies the problem of obtaining the
optimal sequence of load distribution by the root processor is not considered.
In this paper, the divisible load scheduling problem with arbitrary processor
release time in single level tree network is considered. When the processors in
the network have arbitrary release time, it is difficult to obtain a closed-form
expression for optimal size of load fractions. Hence, for a network with arbi-
trary processor release times, there are two important problems: (i) For a given
sequence of load distribution, how to obtain the load fractions assigned to the
processors, such that the processing time of the entire processing load is a min-
imum, and (ii) For a given network, how to obtain the optimal sequence of load
distribution.
In this paper, Problem(i), of obtaining the processing time and the load fractions
assigned to the processors, for a given sequence of load distribution is solved using
a real coded hybrid genetic algorithm. Problem (ii), of obtaining the optimal
sequence of load distribution is a combinatorial optimization problem. For a
single-level tree network with m child processors there are m! sequences of load
distribution are possible. Optimal sequence of load distribution is the sequence
for which the processing time is a minimum. We use genetic algorithm to obtain
the optimal sequence of load distribution. The genetic algorithm for obtaining
the optimal sequence of load distribution uses the results of real-coded genetic
algorithm used to solve problem(i). To the best of our knowledge, this is the
first attempt to solve this problem of scheduling divisible with processor release
times.

2 Definitions and Problem Formulation

Consider a single-level tree network with (m + 1) processors as shown in Figure
1. The child processors in the network denoted as p1, p2, · · ·, pm are connected
to the root processor (p0) via communication links l1, l2, · · · lm. The divisible
load originates at the root processor (p0) and the root processor divides the
load into (m + 1) fractions (α0, α1, · · ·, αm) and keeps the part α0 for itself to
process/compute and distributes the load fractions (α1,α2, · · ·, αm) to other m
processors in the sequence (p1, p2, · · ·, pm) one after another.
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Fig. 1. Single-level tree network

The child processors in the network may not be available for computations
process immediately after the load fractions are assigned to it. This will in-
troduce a delay in starting the computation process of the load fraction. This
delay is commonly referred as processor release time. The release time is differ-
ent for different child processors. The objective here is to obtain the processing
time and load fractions assigned to the processors. In this paper, we follow the
standard notations and definitions used in divisible load scheduling literature.
Definitions:

– Load distribution: This is denoted as α, and is defined as an (m+1)-tuple
(α0, α1, α2, · · ·, αm) such that 0 < αi ≤ 1, and

∑m
i=0 αi = 1. The equation∑m

i=0 αi = 1 is the normalization equation, and the space of all possible load
distribution is denoted as Γ .

– Finish time: This is denoted as Ti and is defined as the time difference
between the instant at which the ith processor stops computing and the time
instant at which the root processor initiates the load distribution process.

– Processing time: This is the time at which the entire load is processed. This
is given by the maximum of the finish time of all processors; i.e.,T = max{Ti}
i = 0, 1, · · · ,m, where Ti is the finish time of processor pi.

– Release time: The release time of a child processor pi is the time instant
at which the child processor is available to start the computation of its load
fraction of the divisible load.

Notations:

– αi: The load fraction assigned to the processor pi.
– wi: The ratio of the time taken by processor pi, to compute a given load, to

the time taken by a standard processor, to compute the same load;
– zi: The ratio of the time taken by communication link li, to communicate a

given load, to the time taken by a standard link, to communicate the load.



– Tcp: The time taken by a standard processor to process a unit load;
– Tcm: The time taken by a standard link to communicate a unit load.
– bi: Release time for processor pi.

Based on these notations, we can see that αiwiTcp is the time to process the load
fraction αi of the total processing load by the processor pi. In the same way,
αiziTcm is the time to communicate the load fraction αi of the total process-
ing load over the link li to the processor pi. We can see that both αiwiTcp and
αiziTcm are in units of time. In divisible load scheduling literature, timing di-
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Fig. 2. Timing Diagram For Single Level Tree Network With Release Time

agram is the usual way of representing the load distribution process. In this
diagram the communication process is shown above the time axis, the compu-
tation process is shown below the time axis and the release time is shown as
shaded region below time axis. The timing diagram for the single-level tree net-
work with arbitrary processor release time is shown in Figure. 2. From timing
diagram, we can write the finish time (T0) for the root processor (p0) as

T0 = α0w0Tcp (1)

Now, we find the finish time for any child processor pi. The time taken by the
root processor to distribute the load fraction (αi) to the child processor pi is∑i

j=1 αjzjTcm. Let bi be the release time of the child processor pi then the child

processor starts the computation process at max
(
bi,

∑i
j=1 αjzjTcm

)
. Hence, the

finish time (Ti) of any child processor pi is

Ti = max


bi,

i∑

j=1

αjzjTcm


 + αjwjTcp i = 1, 2, · · · ,m (2)



The above equation is valid, if the load fraction assigned to the child processor
is greater than zero (the child processors participate in the load distribution
process) otherwise Ti = 0.
From the timing diagram, the processing time (T ) of the entire processing load
is

T = max (Ti,∀ i = 0, 1, · · · ,m) (3)

Obtaining the processing time (T ), and the load fractions (αi) for the divisible
load scheduling problem with arbitrary processor release time is difficult. Hence,
in this paper, we propose a real coded genetic algorithm approach to solve the
above scheduling problem.

3 Real-Coded Genetic Algorithm

The Genetic Algorithm (GA) is perhaps the most well-known of all evolution
based search techniques. The genetic algorithm is a probabilistic technique that
uses a population of solutions rather than a single solution at a time [15–17].
In these studies, the search space solutions are coded using binary alphabet.
For optimization problems floating point representation of solution in the search
space outperform binary representations because they are more consistent, more
precise and lead to faster convergence. This fact is discussed in [18]. Genetic
algorithms using real number representation for solutions are called real-coded
genetic algorithms. More details about how genetic algorithms work for a given
problem can be found in literature [15–18].
A good representation scheme for solution is important in a GA and it should
clearly define meaningful crossover, mutation and other problem-specific opera-
tors such that minimal computational effort is involved in these procedures. To
meet these requirements, we propose real coded hybrid genetic algorithm ap-
proach to solve the divisible load scheduling problem with arbitrary processor
release time. The real coded approach seems adequate when tackling problems
of parameters with variables in continuous domain [19, 20]. A detailed study on
effect of hybrid crossovers for real coded genetic algorithm is presented in [21,
22].

3.1 Real-coded Genetic Algorithm for Divisible Load Scheduling
Problem

In this paper, a hybrid real coded genetic algorithm is presented to solve the
divisible scheduling problem with arbitrary processor release time. In real coded
GA, solution (chromosome) is represented as an array of real numbers. The chro-
mosome representation and genetic operators are defined such that it satisfies
the normalization equation.



String Representation The string representation is the process of encoding a
solution to the problem. Each string in a population represent possible solution
to the scheduling problem. For our problem, the string consists of an array of
real numbers. The values of real number represents the load fractions assigned
to the processors in the network. The length of the string is m + 1, the number
of processors in the system. A valid string is the one in which the total load
fractions (sum of all real numbers) is equal to one.
In case of four (m = 4) processor system, a string will represent the load fractions
{α0, α1, α2, α3, α4} assigned to the processors p0, p1, p2, p3 and p4 respectively.
For example, a valid string {0.2, 0.2, 0.2, 0.2, 0.2}, in our problem represents the
load fraction assigned to the processors (α0 = 0.2, α1 = 0.2, α2 = 0.2, α3 =
0.2 and α4 = 0.2) in the network. The sum of load fractions assigned to the
processors is equal to 1. In general, for an m-processor system, the length of the
string is equal to m + 1.

Population Initialization Genetic algorithms search from a population of
solution points instead of a single solution point. The initial population size,
and the method of population initialization will affect the rate of convergence
of the solution. For our problem the initial population of solutions is selected in
the following manner.

– Equal allocation: The value of load fraction (αj) in the solution is 1
M+1 , for

j = 1, ..., M + 1.
– Random allocation: Generate M + 1 random numbers. These random num-

bers are normalized such that the sum is equal to one. This is the value of
αj in the solution, for j = 1, ...,M + 1.

– Zero allocation: Select a solution using equal or random allocation. Any one
element in the selected solution is assigned zero and its value is equally
allocated to other elements.

– Proportional allocation: The value of load fraction αj in the solution is αj =
wj∑M

i=1
wi

.

Selection function Normalized Geometric Ranking Method: The solutions
(population) are arranged in descending order of their fitness value. Let q be
the selection probability for selecting best solution and rj be the rank of jth
solution in the partially ordered set. The probability of solution j being selected
using normalized geometric ranking method is

sj = q
′
(1− q)rj−1 (4)

where q
′
= q

1−(1−q)N and N is the population size. The details of the normalized
geometric ranking method can be found in [23].

Genetic operators Genetic operators used in genetic algorithms are analogous
to those which occur in the natural world: reproduction (crossover, or recombi-
nation); mutation.



Crossover Operator is a primary operator in GA. The role of crossover opera-
tor is to recombine information from the two selected solutions to produce better
solutions. The crossover operator improves the diversity of the solution vector.
Four different crossover operators used in our divisible load scheduling prob-
lem are Two-point crossover (TPX), Simple crossover (SCX), Uniform crossover
(UCX) and Averaging crossover (ACX). These crossover operators are described
in [24].
Hybrid Crossover: We have used four types of crossover operators. The per-
formance of these operators in terms of convergence to optimal solution depends
on the problem. One type of crossover operator which performs well for one
problem may not perform well for another problem. Hence many research works
are carried out to study the effect of combining crossover operators in a genetic
algorithm [25–28] for a given problem. Hybrid crossovers are a simple way of
combining different crossover operators. The hybrid crossover operators use dif-
ferent kinds of crossover operators to produce diverse offsprings from the same
parents. The hybrid crossover operator presented in this study generates eight
offsprings for each pair of parents by SPX, TPX, UCX and ACX crossover op-
erators. The most promising offsprings of the eight substitute their parents in
the population.
Mutation Operator The mutation operator alters one solution to produce a
new solution. The mutation operator is needed to ensure diversity in the popu-
lation, and to overcome the premature convergence and local minima problems.
Mutation operators used in this study are Swap mutation (SM) and Random
Zero Mutation (RZM) are described in [24].

Fitness Function: The objective in our scheduling problem is to determine
the load fractions assigned to the processors such that the processing time of the
entire processing load is a minimum. The calculation of fitness function is easy.
The string gives the load fractions α0, α1, · · ·, αm assigned to the processors
in the network. Once the load fractions are given, the finish time of all proces-
sors can be easily obtained. For example, the finish time Ti of processor pi is
max

(
bi,

∑i
j=1 αjzjTcm

)
+ αiwiTcp. If the value of αi is zero for any processor

pi, then the finish time of that processor Ti is zero. The processing time of the
entire processing load T is max (Ti, ∀ i = 0, 1, · · · ,m). Since, the genetic algo-
rithm maximizes the fitness function, the fitness is defined as negative of the
processing time (T ).

F = −T (5)

Termination Criteria In genetic algorithm, the evolution process continues
until a termination criterion is satisfied. The maximum number of generations is
the most widely used termination criterion and is used in our simulation studies.



3.2 Genetic Algorithm

Step 1. Select population of size N using initialization methods described ear-
lier.

Step 2. Calculate the fitness of the solutions in the population using the equa-
tion (3).

Step 3. Select the solutions from the population using normalized geometric
ranking method, for genetic operations.

Step 4. Perform different types of crossover and mutation on the selected solu-
tions (parents). Select the N best solutions using elitist model.

Step 5. Repeat the Step 2-4 until the termination criteria is satisfied.

4 Numerical Example

We have successfully implemented and tested the real coded hybrid genetic al-
gorithm approach for divisible load scheduling problems in tree network with
arbitrary processor release time. The convergence of the genetic algorithm de-
pends on population size (N), selection probability (Sc), crossover rate (pc) and
mutation rate (pm). In our simulations the numerical values used are: N = 30,
Sc = 0.08, Pc = 0.8, pm = 0.2, and Tcm, Tcp are 1.0 .
Let us consider a single-level tree network with eight child processors (m = 8)
attached to the root processor p0. The computation and communication speed
parameters, and processor release time are given in Table. 1. The root proces-
sor (p0) distributes the load fractions to the child processors in the following
sequence p1, p2, · · ·, p8. The result obtained from real coded hybrid genetic al-
gorithm is presented in Table. 1. The processing time of the entire processing
load is 0.29717

Table 1. System Parameters and Results for Numerical Example 1.

Sequence Comp. speed Comm. speed Release Load
parameter parameter Time Fraction

p0 w0 = 1.1 - - α0 = 0.2702
p1 w1 = 1.5 z1 = 0.4 b1 = 0.15 α1 = 0.0981
p2 w2 = 1.4 z2 = 0.3 b2 = 0.1 α2 = 0.1408
p3 w3 = 1.3 z3 = 0.2 b3 = 0.50 α3 = 0
p4 w4 = 1.2 z4 = 0.1 b4 = 0.2 α4 = 0.0810
p5 w5 = 1.1 z5 = 0.35 b5 = 0.05 α5 = 0.1431
p6 w6 = 1.2 z6 = 0.1 b6 = 0.25 α6 = 0.0393
p7 w7 = 1.0 z7 = 0.05 b7 = 0.1 α7 = 0.1462
p8 w8 = 1.65 z8 = 0.15 b8 = 0.12 α8 = 0.0812

In this numerical example, the processor-link pair (p3,l3) is removed from the
network by assigning zero load fractions. The processors p1, p2, p4, p5, p6, p7 and
p8 receives their load fractions at times 0.0392, 0.0815, 0.0896, 0.1397, 0.1436



0.1509 and 0.1631. Thus, the processors p1, p2, p4 and p6 will start the compu-
tation process from the release time where as the processors p5, p7 and p8 will
be idle until their load fractions are received.

5 Optimal Sequence of Load Distribution

Sequence of load distribution is the order in which the child processors are ac-
tivated in divisible load scheduling problem. In the earlier section, the sequence
(activation order) of load distribution by the root processor is {p1, p2, · · ·, pm}.
For a system with m child processors there are m! sequences of load distribu-
tion are possible. Optimal sequence of load distribution is the sequence of load
distribution for which the processing time is a minimum.
First we will show that the problem of finding the optimal sequence of load
distribution, is similar to the well-known Travelling Salesman Problem (TSP)
studied in operations research literature. TSP is very easy to understand; a
travelling salesman, must visit every city exactly once, in a given area and return
to the starting city. The cost of travel between all cities are known. The travelling
salesman to plan a sequence (or order) of visit to the cities, such that the cost of
travel is a minimum. Let the number of cities be m. Any single permutation of m
cities is a sequence (solution) to the problem. The number of sequences possible
are m!. A genetic algorithm approach to TSP is well discussed in [18]. We now
show the similarities between finding the optimal sequence of load distribution
and Travelling Salesman Problem (TSP).
In TSP a solution is represented as string of integers representing the sequence
in which the cities are visited. For example, the string {4 3 5 1 2} represents
the tour as c4 −→ c3 −→ c5 −→ c1 −→ c2, where ci is the city i. In our
problem, the string {4 3 5 1 2} represents the sequence of load distribution by
the root processor to the child processors is {p4 p3 p5 p1 p2}. So we can see the
solution representation in our problem is the same as solution representation
problem in TSP [18]. Hence, for our problem we have used the genetic algorithm
approach given for TSP given in [18]. From genetic algorithm point of view,
the only difference between TSP and divisible load scheduling problem is the
fitness function. The fitness function is the cost of travel in TSP for the given
sequence but the fitness function in our problem is the processing time for a
given sequence of load distribution.
Fitness Function: The fitness function is based on the processing time of the
entire processing load. Here for a given sequence, fitness function is the solution
of real-coded genetic algorithm described in the earlier section. The objective
in our problem is processing time minimization. Hence, in our case the fitness
function is (−T )

F = − T (6)

In order to determine the fitness (F ), for any given sequence, the processing time
(T ), is obtained by solving the problem (i) using real-coded genetic algorithm
methodology given in the earlier section. The optimal or best sequence of load



distribution can be found by using the genetic algorithm approach given for TSP
given in [18], with the above fitness function.
Optimal Sequence for Numerical Example. 1: The optimal sequence of
load distribution (by root processor p0) obtained using the above genetic al-
gorithm is {p7 p5 p2 p8 p1 p6 p4}. The processing time for this sequence is
T = 0.2781. The load fractions assigned to processors are: α0 = 0.25286,
α7 = 0.17814, α5 = 0.18568, α2 = 0.12015, α8 = 0.093447, α1 = 0.081151,
α6 = 0.023453, α4 = 0.06512. The processor p3 is assigned a zero load fraction.
Processor p3 is assigned a zero load fraction because the release time (b3 = 0.5)
is high.

6 Conclusions

The problem of scheduling divisible loads in distributed computing system, in
presence of processor release time is considered. In this situation, there are two
important problems: (i) For a given sequence of load distribution, how to obtain
the load fractions assigned to the processors, such that the processing time of
the entire processing load is a minimum, and (ii) For a given network, how to
obtain the optimal sequence of load distribution. A real-coded genetic algorithm
is presented for the solution of problem (i). It is shown that problem (ii), of ob-
taining the optimal sequence of load distribution is a combinatorial optimization
problem similar to Travelling Salesman Problem. For a single-level tree network
with m child processors there are m! sequences of load distribution are possible.
Optimal sequence of load distribution is the sequence for which the processing
time is a minimum. We use another genetic algorithm to obtain the optimal
sequence of load distribution. The genetic algorithm for obtaining the optimal
sequence of load distribution uses the real-coded genetic algorithm used to solve
problem (i).
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