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Abstract New industrial applications call for new methods and new ideas in signal analysis. Wavelet

packets are new tools in industrial applications and they have just recently appeared in projects and

patents. In training neural networks, for the sake of dimensionality and of ratio of time, compact

information is needed. This paper deals with simultaneous noise suppression and signal compression

of quasi-harmonic signals. A quasi-harmonic signal is a signal with one dominant harmonic and some

more sub harmonics in superposition. Such signals often occur in rail vehicle systems, in which noisy

signals are present. Typically, they are signals which come from rail overhead power lines and are

generated by intermodulation phenomena and radio interferences. An important task is to monitor

and recognize them. This paper proposes an algorithm to differentiate discrete signals from their

noisy observations using a library of nonorthonormal bases. The algorithm combines the shrinkage

technique and techniques in regression analysis using Shannon Entropy function and Cross Entropy

function to select the best discernable bases. Cosine and sine wavelet bases in wavelet packets are used.

The algorithm is totally general and can be used in many industrial applications. The effectiveness

of the proposed method consists of using as few as possible samples of the measured signal and in

the meantime highlighting the difference between the noise and the desired signal. The problem is a

difficult one, but well posed. In fact, compression reduces the level of the measured noise and undesired

signals but introduces the well known compression noise. The goal is to extract a coherent signal from

the measured signal which will be “well represented” by suitable waveforms and a noisy signal or

incoherent signal which cannot be “compressed well” by the waveforms. Recursive residual iterations

with cosine and sine bases allow the extraction of elements of the required signal and the noise. The

algorithm that has been developed is utilized as a filter to extract features for training neural networks.

It is currently integrated in the inferential modelling platform of the unit for Advanced Control and

Simulation Solutions within ABB’s industry division. An application using real measured data from an

electrical railway line is presented to illustrate and analyze the effectiveness of the proposed method.

Another industrial application in fault detection, in which coherent and incoherent signals are univocally

visible, is also shown.
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1 Motivations and Introduction to the Paper

1.1 Motivations

The construction of electrical rail vehicles has greatly changed due to advances in the fields
of power electronics and computer control. Converter control vehicles are active devices and
their characteristics and functionality depend on control algorithms implemented in distributed
real-time computer systems. The harmonic interference problem in electrical railway systems
has recently received particular attention. The widespread utilization of modern electronic
devices, such as GTO-Thyristor (Gate Turn Off-Thyristor) or IGBT (Insulated Gate Bipolar
Transistors), can cause interference in signal circuits and communication systems as well as lead
to stability problems[1]. Harmonic detection techniques are also of great importance for vehi-
cles. Real-time distortion current monitoring, in many practical situations, is not an easy task
because the current magnitude and phase change over time. Several approaches can be found in
the literature on rail vehicles as in [2], where an adaptive Kalman filter based on the correlation
analysis is proposed. Other works in this direction[3−4] have indicated wavelets as a promising
approach for off-line analysis, monitoring and classification of transients in electrical railway
systems. In rail vehicles, inrush currents are quasi–harmonic signals characterized by very high
rectified current levels. These currents are typically dangerous for electronic power systems.
In on-line detection of harmonic features interesting contributions have been presented in [5–6]
where solutions to the problem of detection of dominant frequency vibration in pantograph
systems are proposed. It has been highlighted in [7–8], that one of the most important prob-
lems in rail vehicle control is to model the nonlinearity of the locomotive transformer as well
as to classify the transformer inrush current. Progress in this direction is marked by [7] which
proposes an efficient algorithm in order to model strong non-linear systems. The transformer
inrush current is caused by the transformer nonlinearity and occurs with the discontinuity of
the magnetic flow. A typical example of inrush current phenomenon is when the locomotive
is passing through a neutral section of line∗. Note that usually the number of connections
(and disconnections) of the pantograph to the overhead line is very high and this causes a high
number of inrush currents to the transformer, thus rapidly degrading the transformer perfor-
mance. To conclude, the main motivation and the aim of this paper consists of presenting a
developed industrial algorithm for extracting relevant features of quasi–harmonic signals from
noisy measurements due to interference. In other words, the primary motivation is to separate
the noise from the signal. Secondly, such features are used for training neural networks to rec-
ognize dangerous from non-dangerous inrush currents. A possible scheme is reported in Fig.1.
In accordance with the primary motivation the algorithm presented can be used to separate
two signals. An example in which inrush current is extracted from its noise measurements is
presented at the end of the paper. Furthermore, the paper presents an application dedicated
to fault detection which is obtained through a neural network in which the training signals are
filtered through the algorithm introduced here. All these applications show the generality of
the technique. From the main and the second motivation it emerges that, when the signal is
affected by a high level of noise, as in rail vehicle, the problem becomes difficult but also really
interesting. In fact, an over compression reduces the noise but introduces the well known com-
pression noise. By using a small number of parameters the noise due to the compression may
be too high. On the contrary by using a big number of parameters the level of the compression
may not be enough. Moreover, in the case of data overfitting, the measured and overhead power
line noise could actually corrupt the data. This paper presents an optimal algorithm which tries
to find a compromise and it is conceived using wavelet bases structured in a tree structure.

∗A neutral section of the overhead line is a section of the line with tension equal to zero.
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1.2 Introduction to the Paper

This paper proposes an algorithm for signal denoising by using libraries of non-orthogonal
bases (frames) such as local smooth trigonometric libraries. This method extracts, from the
observed discrete signals, a coherent part which is well represented by the given waveforms and
a noisy, or incoherent part which cannot be compressed well by the waveforms. This paper
also describes an algorithm which can be used to differentiate a discrete signal from its noisy
components using a library of nonorthonormal wavelet packets of smooth trigonometric bases.
The proposed technique is essentially a nonparametric regression analysis. The developed al-
gorithm consists of building a map for the values of the Shannon Entropy function on every
time-frequency cell of the sine and cosine packets for the measured signal. The libraries are
split into two classes: coherent (for instance with the even and odd part of the sine bases)
and incoherent (with the even and odd part of the cosine bases) decomposition, by minimizing
and maximizing the Shannon Entropy function respectively. Then the time-frequency cells,
maximizing the Cross Entropy function between the two groups, are chosen. In such a way one
selects the bases with the best compression level and the bases which highlight the difference
between the noise (incoherent decomposition) and the signal (coherent decomposition). Recur-
sive residual iterations with sine bases for the coherent decomposition and with cosine bases for
the noise allow the reconstruction of the signal and the noise with the best discernable bases. It
is known that the Shannon entropy function is a measure of the flatness of the energy distribu-
tion of the signal so that its minimization leads to an efficient representation, mainly for signal
compression[9]. It is known that the Cross Entropy function is a measure of the discrepancy
between two or more bases and can be used to illuminate the difference between the noise and
signal, see [10]. It is necessary to define a language to describe the signals. The language must
be as versatile as possible in order to describe various local features of the signal. The method
must be computationally efficient to be practically applied. The wavelet frames provides a
flexible coordinate system with their redundant adaptive time-frequency cells. The smooth
trigonometric bases match the desired harmonic signal very well and can detect information in
small amounts of coherent data. Furthermore, the non-orthogonal libraries allow more elastic-
ity in order to approximate the measured signals. In fact by relaxing the orthogonality, much
more freedom on the choice of the wavelet function is gained to guarantee good choices of the
compressed parameters, even though the fast algorithms associated with the orthogonality are
lost[11]. In order to consider and use the non-orthogonality of the frames which generate an
interaction between the elements of the bases† the algorithm considers, at each step, all the
elements of the bases previously selected, without any elimination, see [11]. As the decompo-
sition on a non-orthogonal basis is not unique, it is necessary to stop the algorithm. In order
to reduce the dimensionality of the problem the algorithm works on initial compression data
(data shrinkage), and uses the best basis paradigm as in [9] or [10] which allows a rapid search
among a large collection of bases. The computational complexity is O(n

(
log(n)

)p), where p
is equal to 1 or 2 depending on the basis type, wavelet dictionaries or trigonometric wavelet
dictionaries respectively, being n the length of data signals. The compression method by using
wavelets has already been used in control applications as in signal processing, see for instance
[12], [13], and [14]. Meanwhile, several works claimed that wavelets are also useful for reducing
noise [15], [16], and [17]. This paper tries to take advantage of both. It proposes an algorithm
for the simultaneous suppression of random noise in data and the compression of signals. In [18]
the minimum description length principle is adopted to find the best decomposition in order to
suppress noise and detect the desired signal in the orthogonal wavelet libraries. The proposed
algorithm can be used as a filter for the raw signals before applying the classification technique

†In a frame the decomposition is not unique.
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already described in [8]. The algorithm is totally general and can be used in any signal feature
detection problem. Suffice to say that cosine and sine bases are already used in JPEG (Joint
Photographic Experts Group) compress techniques. The processing of real measured data for a
railway vehicle line is presented here to illustrate and discuss the effectiveness of the proposed
method. The paper is organized as follows. In Section 2 the problem is formalized. In Section
3 the non-orthogonality, the smooth trigonometric wavelet packets and the choice of the best
regressor family are discussed. Sections 4 and 5 are devoted to the presentation of the algorithm
and the discussion of the results.

2 Problem Formulation

Useful features of inrush current, despite the presence of noisy signals, must be detected
in order to recognize this phenomenon and shut down the transformer of the locomotive. The
inrush current is a quasi–harmonic signal well described in [4]. Though a rigorous definition of
a quasi-harmonic signal does not exist in any literature, it is commonly accepted that:

A quasi-harmonic signal is a signal with one dominant harmonic and “some” (two or three)
relevant sub-harmonics in superposition.

In neural networks, in order to obtain short pattern recognition time and a low percentage of
errors, a particular training is required and normally demanded

Good compressed features: small amount of data with high level of information.

When the signal is affected by noise, as in a rail vehicle, the problem becomes really difficult.
In fact, an over compression reduces the noise but introduces the well known compression noise.
To sum up, there are two different requirements in order:

For the sake of data compression the signal should be compressed with a small number of
parameters.

For the sake of minimizing the distortion between the estimate and the true signal a great
number of parameters are needed.

Now the conflict is clear. By using a small number of parameters the noise due to the
compression may be too high, by using a data overfitting the level of the compression may not
be enough. Moreover, in the case of data overfitting, the measured and overhead line noise could
really corrupt the data. The problem could be stated as a nonparametric model identification
problem with little a-priori knowledge in which the choice of the most suitable basis plays a
crucial role. In general the main problem could be stated in the following way. Let us consider
a discrete degradation model

d = f + n, (1)

where d, f , n ∈ X ⊆ <d0 and d0 = 2n0 (n0 ∈ N). The subspace X is called signal space and
d0 is the number of samples of the signal. The vector d represents the noisy observed data and
f is the unknown true signal to be estimated. The vector n is white Gaussian noise (WGN),
whose distribution is assumed to be unknown. The distribution is assumed with an unknown
average because of undesired signals from the overhead line, and unknown deviation because
of measured errors. The problem consists of differentiating signal f from noisy observation d.
Assume that the signal f is a quasi-harmonic signal. First, the trigonometric bases are selected.
Let B be the candidate library packet tree to describe the signal f .

Problem Given a measured data d = f + n as in (1) where f is assumed to be a
“quasi-harmonic” signal, n is Gaussian noise with unknown distribution. Given the library
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Figure 1 On-line structure to recognize inrush current.

of trigonometric bases B = {B1,B2, · · · ,BM}, let f = W mαk
m, where W m ∈ <k×k is a non-

orthogonal matrix whose column vectors are the basis elements of Bm, m = 0, 1, · · · ,M , and the
αk

m are the expansion coefficients of f with only k no-negligible coefficients. In order to extract
relevant features, find a map K, called feature extractor, K : X → F ⊂ <k (k is normally more
than one) with k ¿ d0 such that

min
{W m,αk

m}
σ̂2, (2)

where
σ̂2 = ‖d−W mαk

m‖2,
and ‖ · ‖ is the Euclidean norm. Note that in order to reduce the computational complexity, a
data shrinkage pre processing phase is required to reduce the number d0 of samples.

Remark 1 It is useful to note that the function f belongs to the subspace of dimension
equal to d0. In other words, function f could be represented as a column with do elements.
For the sake of data compression the signal should be compressed with a small number k of
parameters. All the m bases of the wavelet library have the dimension k× k. Moreover, it will
be explained that the W m can be composed from linear dependant elements, in other words
non-orthogonal bases.

Remark 2 Given a k, an optimum for (1) consists of finding {W m,αk
m} with an iterative

procedure. The non-orthogonality gives more elasticity but at the same time requires more
calculation effort.

3 Giving up on Orthogonality

Wavelet and wavelet series are popular in signal processing and numerical analysis. Loosely
speaking, a function f(t) can be decomposed into

f(t) =
∑

j

∑
n

wj,nψj,n(t), (3)

where ψj,n(t) are wavelet functions, normally obtained by dilating and translating a mother
function ψ(t), index j and n denote dilation and translation respectively and wj,n is the weight
coefficient for ψj,n(t). The most popular algorithms deal with the orthonormal wavelet bases,
see [19]. Besides these, wavelet frames, see [19], consist of non-orthogonal wavelet families and
are redundant bases. Wavelet frames are more powerful but computationally more involved.
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Figure 2 Real Signal. Left: Inrush current: time domain. Right: Inrush

current: windowed spectral analysis

Definition 1 A family of functions {ψj,n(t); (j, n) ∈ Z, t ∈ R} in a Hilbert H space is
called a frame of H if there are two positive constants A and B such that ∀ f(t) ∈ H it holds:

A‖f(t)‖2 ≤
∑

j,n

‖〈f(t),ψj,n(t)〉‖2 ≤ B‖f(t)‖2, (4)

where 〈 · , · 〉 indicates the inner product and with ‖ · ‖ a norm.
In this framework, the drawback is that the optimal decomposition on a non-orthogonal basis

is a NP-complete problem and one needs to stop the algorithm, for instance, with a threshold
criterion at the stage i for the l2 norm of the differential error. Now, the first question is which
function to use as the basis function. Thus the problem consists of picking one that ’suits the
application’, in the sense that only a few terms will be needed. A suitable criterion already
known in literature is to select the basis which, once a threshold level has been fixed, has the
minimum number of elements in the selected frame. Now, having chosen the best family, how
does one go about choosing the size of the frame subset? Finally, how is it possible to select
the terms of the subset?

3.1 Choosing the Best Regressor Family:
Smooth Trigonometric Wavelet Packets

A regressor family is a family of functions, orthogonal or non-orthogonal, with which it is
possible to approximate a given signal.

The case presented in this paper has quasi-harmonic signals that change amplitude and phase
over time. The latter aspect suggests the wavelet as the basis function. In Fig. 2, a measured
signal in the time domain and its windowed Fourier transform are depicted. The data is very
well concentrated around several frequencies, in this case it is multiples of the fundamental
(50 Hz). The picture in Fig. 2 seems to suggest a function with a frequency window and time
support. As shown in [7] a suitable family for this case is the smooth trigonometric wavelet
packet. By choosing adjacent functions in particular, orthonormal bases are obtained. But if
bases on different levels of the tree are considered as in Fig. 3, these do not form an orthonormal
basis. The functions

Si,k(t) =
2√
2Ti

Wi(t) sin
[
(2k + 1)

π

2Ti
(t− αi)

]
(5)

form an orthonormal basis of L2(<) subordinate to the partition Wi. The collection of such
bases forms a library of orthonormal bases[20]. One can form a library of orthonormal local
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d=1
j=2
n=1,2,3,4.

Figure 3 Organization of local intervals into a binary tree for smooth local
trigonometric wavelets. Orthogonal basis (left) and frame (right)
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Figure 4 Left: Adjacent (orthogonal) cosine waveforms with smooth window
C2,1(t) and C2,2(t). Right: Biorthogonal smooth local sine and cosine
function S2,2(t) and C2,2(t)

cosine bases:

Ci,k(t) =
2√
2Ti

Wi(t) cos
[
(2k + 1)

π

2Ti
(t− αi)

]
, (6)

where < =
∞⋃
−∞

Ii is considered, where Ii = [αi, αi+1) and αi < αi+1. Write Ti = αi+1−αi = |Ii|
and let Wi(t) be a window function supported in [αi − Ti−1

2 , αi+1 + Ti+1
2 ] such that

∞∑
−∞

W2
i (t) = 1 (7)

and
W2

i (t) = 1−W2
i (2αi+1 − t), for t near αi+1. (8)

Definition 2 Let a library of wavelet packets be a collection of functions of the form

ψd,j,n(t) = ψj(2
dt− n), (9)

where (d, n) ∈ Z and j ∈ N .
Here, the pyramidal packet is represented by the indices d, j, n, where d is the level of

the tree (scaling parameter), j is a frequency cell (oscillation parameter) and n is a time cell
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Figure 5 Time frequency cells in phase plane for trigonometric functions

(localization parameter), see Fig. 3. Another representation of the pyramidal tree is given in
Fig. 6. The function ψd,j,n(t) = ψj(2dt − n) is roughly centered at 2−dn, and has support of
size ≈ 2−d and oscillates with frequency ≈ j.

If we look at it in more detail we can see that if the signal consists of d0 = 2n0 dyadic and
equally spaced samples, the basis functions will be indexed by the triplet d, j, n: if d0 is the
total number of the samples then the corresponding samples related to the d level with relative
desampling are d0d

= 2d and

0 ≤ d ≤ n0, 0 ≤ j < 2n0−d, 0 ≤ n < 2d. (10)

The scale parameter d divides the number of decompositions of the original signal window into
subwindows and the position index n numbers the adjacent windows. Thus the information cell
is drawn over the horizontal (time) interval In = [2n0−dn, 2n0−d(n + 1)[. In general, the local
trigonometric bases, for instance the cosine basis, for the subspace over the time subinterval
In consists of the function with the associated information cell alongside the frequency interval
Ij = [2dj, 2d(j + 1)[ on the vertical axis (frequency), see Fig. 5. The basis functions have
nominal frequencies in 2d(j + 1

2 ). Each subdivision halves the nominal window width and thus
the resolution level. In particular the resolution level on the tree could be represented as a
collection of rectangles:

[2n0−dn, 2n0−d(n + 1)[ × [2dj, 2d(j + 1)[. (11)

Taking a basis with cells on different levels of the tree, a non-orthogonal basis (frames) is
obtained. Taking basis elements on different levels of the tree, which cover the real axis < one
is considering superpositions of bases with different resolution frequency cells. In other words
the orthogonality is lost.

4 Denoising and Harmonic Detection Algorithm

Our algorithm will work transversally on the wavelet packet tree without any restriction
in order to use all the possible combinations of the bases, all the possible frames. A family
regressor is selected, for instance the sine/cosine wavelets, the d, j, n parameterized family:

{Rc,Rs

}
=

{
ψc

d,j,n(t),ψs
d,j,n(t); (d, n) ∈ Z, j ∈ N, t ∈ <}
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Figure 6 A structure of the wavelet tree

should contain a finite number of wavelets, as few as possible, so that the regressor selection
procedure can be efficiently applied. In an approximating wavelet library not all the wavelet
functions are useful. Normally only a small number of the coefficients are important and the
other ones can be neglected. In general one can select a candidate library as follows:

{Rc, Rs

}
=

{
ψc

d,j,n(t),ψs
d,j,n(t) : d, j, n ∈ I1 ∪ I2 ∪ · · · ∪ IK

}
(12)

with K = 1, 2, · · · , L and

Ik =
{
d, j, n : ‖wc

d,j,n(k)‖p > ε, ‖ws
d,j,n(k)‖p > ε

}
. (13)

where

wc
d,j,n(k) =

〈Y k(t),ψc
d,j,n(t)〉

‖ψc
d,j,n(t)‖2p

and ws
d,j,n(k) =

〈Y k(t),ψs
d,j,n(t)〉

‖ψs
d,j,n(t)‖2p

with Y k(t) is a set of testing signals, ε is a chosen small positive number, 〈 · , · 〉 and ‖ · ‖p

represents its p induced norm. In this way ‘empty’ wavelets are eliminated from the wavelet
frame. In other words, starting with a regular tree packet (library), select only those whose
support fit our training data. This method is called wavelet shrinkage by some authors[21]. The
algorithm seeks a set of the wavelet bases characterized by the indices d, j, n, which minimize
and maximize the Entropy functions (16) and (17), respectively. Among these sets, the indices
which maximize the Cross Entropy (18) are selected. Before describing the proposed algorithm
in a mathematical way a summary description is given.

Once the cosine and sine frames have been built.
Step 0 The measured signal is charged.
Step 1 The measured signal is decomposed on all the wavelet functions of the tree.
Step 2 Calculate for the measured signal in sine frame the best basis representation (“co-

herent” part of the signal) and in cosine frame the worst basis representation (“in-
coherent” part of the signal). In this step at least two bases for each representation
are calculated.

Step 3 Among the selected bases (at least 4 bases) select the couple which maximizes “the
cross Entropy function”.
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Step 4 Through these two bases build “the coherent” and the “incoherent” part of the
signal. Subtract these two parts from the analyzed signal. Iterate again till a stop
criterion is not satisfied.

Let Rc =
{
ψc

d,j,n(t); (d, n) ∈ Z, j ∈ N, t ∈ <}
and Rs =

{
ψs

d,j,n(t); (d, n) ∈ Z, j ∈ N, t ∈
<}

be the truncated cosine and sine packet frames respectively as defined in [7]. The algorithm
is developed as follows. Let f c(i)(t) and fs(i)(t) denote the estimate of the quasi–harmonic
signal and noise respectively. Let us use function Yi(t), which represents the measured data.
γc(i)(t) and γs(i)(t) represent the residual functions at the step i.

Algorithm
Step 0 (initialization): Initialize the iterative algorithm as follows

i = 1,

f c(0)(t) = fs(0)(t) = 0,

γc(0)(t) = γs(0)(t) = Y0(t) = d.

Step 1 (computing weights): For each triple d, j, n within bounds (10), compute the weights
cd,j,n, sd,j,n of the signal’s decomposition on the trigonometric wavelet library:

min
(c(.),s(.))

J0(cd,j,n, sd,j,n)

= min
(c(.),s(.))

(
Y (i−1)(t)−

∑

d,j,n∈Rc

cd,j,nψc
d,j,n(t)−

∑

d,j,n∈Rs

sd,j,nψs
d,j,n(t)

)2

.

This yields to

cd,j,n =

∑
d,j,n∈Rc

〈γc(i−1)(t),ψ
c
d,j,n(t)〉

∑
d,j,n∈Rc

(
ψc

d,j,n(t)
)2 , (14)

sd,j,n =

∑
d,j,n∈Rs

〈γs(i−1)(t),ψ
s
d,j,n(t)〉

∑
d,j,n∈Rs

(
ψs

d,j,n(t)
)2 . (15)

Step 2 (optimizing Entropy functions): Select Nc ≥ 2 bases (also redundant) around the
minimum of the Entropy function of the cosine library

Vc = −
∑

d,j,n

(
P̂(

γc(i−1)(t))

P(
γc(i−1)(t)

)
)

ln

(
P̂(

γc(i−1)(t)
)

P(
γc(i−1)(t)

)
)

, (16)

and select Ns ≥ 2 bases (also redundant) around the maximum of the Entropy
function of the sine library

Vs = −
∑

d,j,n

(
P̂(

γs(i−1)(t)
)

P(
γs(i−1)(t)

)
)

ln

(
P̂(

γs(i−1)(t)
)

P(
γs(i−1)(t)

)
)

, (17)
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where

P(
γc(i−1)(t)

)
= ‖γc(i−1)(t)‖2, P̂(

γc(i−1)(t)
)

=

∥∥∥∥∥
∑

d,j,n∈Rc

cd,j,nψc
d,j,n(t)

∥∥∥∥∥

2

.

and P(
γs(i−1)(t)

)
and P̂(

γs(i−1)(t)
)

are defined analogously. Refer to these bases as
{lcd,j,n

} with d, j, n ∈ {Rs} and {lsd,j,n
} with d, j, n ∈ {Rc}, i.e.,

{
lcd,j,n

}
= arg

(
min
{Rc}

(‖Vc‖)
)

and {lsd,j,n
} = arg

(
max
{Rs}

(‖Vs‖)
)

.

Step 3 (maximizing Cross Entropy): Among the Nc × Ns selected bases, choose the basis
pair which maximizes the Cross Entropy function

Vcross =
∑

d,j,n∈Rc

∑

d,j,n∈Rs

(
P̂(γc(i−1)(t))
P(γc(i−1)(t))

)
ln



bP(γc(i−1)(t))

P(γc(i−1)(t))

bP(γs(i−1)(t))

P(γs(i−1)(t))


 . (18)

Analytically
{
lc∗d,j,n

, ls∗d,j,n

}
= arg

(
max

{lcd,j,n
}×{lsd,j,n

}

(V(cross)

))
.

Step 4 Reconstruct, by using these two bases, the coherent and the incoherent part of the
signal. Update f c(t), γc(t), fs(t) and γs(t):

f ci
(t) = f c(i−1)

(t) +
∑

lc∈Rc

clcd,j,n
ψc

lcd,j,n
(t); (19)

fsi(t) = fs(i−1)
(t) +

∑

lsd,j,n
∈Rs

slsd,j,n
ψs

lsd,j,n
(t); (20)

γci(t) = γc(i−1)(t)−
∑

lcd,j,n
∈Rc

clcd,j,n
ψc

ld,j,n
(t); (21)

γsi(t) = γs(i−1)(t)−
∑

lsd,j,n
∈Rs

slsd,j,n
ψs

lsd,j,n
(t), (22)

Y i(t) = Y (i−1)(t)− f ci
(t)− fsi

(t). (23)

Step 5 Stop the algorithm if index (1), i.e. the l2 norm of d − Y i, is lower than a given
threshold, otherwise increment index i and go to Step 1.

The obtained feature of the signal (clcd,j,n
and slsd,j,n

) could be used for training neural
networks.

Remark 3 The basic idea of the algorithm is to split the signal into two parts which
correspond to the coherent and incoherent part of the signal relative to the selected bases. This
is found by seeking subspaces characterized by the indexes d, j, n where the Entropy functions
of sine and cosine waveforms have a minimum and maximum, respectively. The Cross Entropy
function is used successively, in order to select the most discriminating subspaces.

Remark 4 Concerning the minimum of the index (1) it will be shown that the problem is
convex, thus implying the convergence of the proposed algorithm. The basic problem consists
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of looking for a linear vector combination cd,j,n and sd,j,n which minimizes and maximizes
Shannon Entropy functions of sine and cosine waveforms respectively. The search is done
among the following truncated frames:

Rc =
{
ψc

d,j,n(t); (d, n) ∈ Z, j ∈ N, t ∈ <}

and
Rs =

{
ψs

d,j,n(t); (d, n) ∈ Z, j ∈ N, t ∈ <}
.

In order to show the convergence of the algorithm the first step (i = 1) is considered. Let
γ0 = Y 0(t) and

min
(c(.),s(.))

J0 = min
(c(.),s(.))

(
γ0 − cd,j,nψc

d,j,n(t)− sd,j,nψs
d,j,n(t)

)T

·
(
γ0 − cd,j,nψc

d,j,n(t)− sd,j,nψs
d,j,n(t)

)
(24)

is solved by

cd,j,n =
((

ψc
d,j,n(t)

)T
ψc

d,j,n(t)
)−1(

ψc
d,j,n(t)

)T
γ0 =

(
ψc

d,j,n(t)
)T

γ0

and
sd,j,n =

((
ψs

d,j,n(t)
)T

ψs
d,j,n(t)

)−1(
ψs

d,j,n(t)
)T

γ0 =
(
ψs

d,j,n(t)
)T

γ0,

being ψc
d,j,n(t) and ψs

d,j,n(t) such that

(
ψc

d,j,n(t)
)T

ψc
d,j,n(t)−1 = I,

(
ψs

d,j,n(t)
)T

ψs
d,j,n(t)−1 = I.

Index J0 can be written as:

J0 =
(
γ0 − ψc

B(t)Tγ0ψ
c
B(t)− ψs

B(t)Tγ0ψ
s
B(t)

)T

·
(
γ0 − ψc

B(t)Tγ0ψ
c
B(t)− ψs

B(t)Tγ0ψ
s
B(t)

)

= γT
0 γ0 +

(
ψc
B(t)Tγ0

)2

ψc
B(t)Tψc

B(t)− 2
(
ψc
B(t)Tγ0

)2

+
((

ψs
B(t)

)T
γ0

)2(
ψs
B(t)

)T
ψs
B(t)− 2

((
ψs
B(t)

)T
γ0

)2

.

According to the transposition and biorthogonality properties, 〈ψc
d,j,n(t), ψs

d,j,n(t)〉 = 0,
∀ d, j, n, see [20], the minimization problem can be written as

min
(c(.),s(.))

J0 = min
(c(.),s(.))

(
γT
0 γ0 −

((
ψc

d,j,n(t)
)T

γ0

)2

−
((

ψs
d,j,n(t)

)T
γ0

)2)
. (25)

Because of the biorthogonality, one can separately find the subspaces parameterized by
d, j, n which optimize the Shannon entropy function. For the generic index i, because of the
monotonicity of the Entropy function, the minimum in Step 2 corresponds to the minimum in

Ji

(
cd,j,n

)
= γT

i γi −
((

ψc
d,j,n(t)

)T
γi

)2

(26)
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which corresponds to the minimum for the index (1). In [22] it was proved that γT
i γi is mono-

tonically decreasing as i increases and this guarantees that the loop can be efficiently stopped
by checking index (1).

Regarding the numerical aspects, the computational complexity is O(n
(
log(n)

)2) where n
is the length of the considered signals. The algorithm is robust since it does not require any
matrix inversion. The drawback of the proposed procedure is the low speed of convergence.
Basically, this is due to the non-orthogonality of the bases.

5 Applications and Results Integrating Denoising Filter
and Neural Networks

5.1 Validation

In order to validate the proposed algorithm, just an example is shown.
Fig. 7 shows the original signal and the reconstructed signal.
The following signal is considered:

Yf = (400 + 70n(t)) sin(2π70t) + 20,

where n(t) is the white noise with variance equal to 1.
From Fig. 7 it is possible to see how constant 20 is included in the coherent part of the

signal.
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Figure 7 Left on the top: Generated signal. Right on the top: compressed
and reconstructed signal. Left on the bottom: compressed and recon-
structed noise. Right on the bottom: Details of the generated signal
and its compression and reconstruction.
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To validate the algorithm other kind of signal have been used but for sake of brevity just
this two is shown. Real measured data from a locomotive transformer of a railway vehicle are
processed through the proposed algorithm in order to detect the good features of the inrush
current. The algorithm is well suited to such applications since the inrush currents are quasi-
harmonic signals. The signal slowly changes amplitude and phase, making them comparatively
narrow-band. This feature justifies the choice of the trigonometric bases in order to perform
a coherent and incoherent expansion. The measured dyadic signal belongs to <512, after the
thresholding phase, a dyadic vector belonging to the space <8 is obtained. This allows the
consideration of only 8 frequencies [0, 50, 100, 150, 200, 250, 300, 350] Hz for every time cell. The
selected wavelet packet tree has three levels and considering the Nyquist frequency equal to
3.5 MHz and the length of the basis equal to 512 samples, one obtains a resolution around
3.5 Hz, 7 Hz and 14 Hz respectively.‡ The accuracy of the estimate depends on the setting of
the threshold parameter and the nature of the disturbance. The usefulness of the technique
consists of getting relevant compressed features even though the signal is corrupted by relevant
noise. These features could be used in training wavelet networks in order to recognize dangerous
inrush currents as they occur in a rail vehicles. In fact the problem connected with the training
of the wavelet networks consists of obtaining the good features of the signal which are normally
corrupted by electrical interference. Fig. 8 shows the results regarding the denoising problem.
In the meantime it is easy to see the effect of the compression which introduces a new noise,
the so called compression noise.
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Figure 8 Original signal, denoised signal, compressed and reconstructed signal
and details

‡Recall that the resolution R =
Nf 2d

N
, where N is the length of the basis, d the level of the tree and Nf the

Nyquist frequency.
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Figure 9 Left: Inrush current obtained through the proposed denoising and
compression algorithm. Right: Inrush current obtained through the
Saito denoising and compression algorithm.

5.2 Inrush Current

In Fig. 11 the structure of the network is represented. The sine pattern is devoted to the
detection of the dangerous inrush currents. The cosine pattern is devoted to the detection to
the non dangerous currents and the noise. In Table the results of the test are reported. In the
network, sine and cosine layers are presented to recognize and differentiate dangerous transients
from non-dangerous ones. By using the proposed algorithm as a filter for the neural network
already presented in [8] the Inrush current is recognized without any error. In [8] a network
structure is adaptively performed through subspaces of sine and cosine wavelet packet trees
organized in three levels. The adaptive subspaces were characterized by sine and cosine vectors
described as following. Once the prototype function is built by the training, this is compressed
with a cosine/sine basis in vectors with 8 coefficients for every time cell, corresponding to
the [0; 50; 100; 150; 200; 250; 300; 350] Hz. These vectors represent our compressed prototype
(coordinate system). The preliminary testing simulations, consisting of evaluating the Euclidean
distance between the projected fresh signal and the coordinate basis vectors, show correct
identification percentages of 95 % in 60 ms. The classical methods used in rail vehicle control,
combine FFT (Fast Fourier Transform), DFT (Digital Fourier Transform) and a band pass
plus threshold criterion and normally need more than 80 ms to recognize the inrush. Their
equipment is very intricate and cannot distinguish dangerous transients from non-dangerous
ones, see Fig. 10. In Fig. 11 the new scheme for identification of dangerous transients is
schematically reported, where it is possible to see its elementary structure. The coordinated
systems reported in Fig. 11 could be built through a neural network as reported in Fig. 1,
see [8]. By using the Saito algorithm, as proposed in [18], the results show a low percentage
of error (around 90 %) but with time significantly shorter (around 40 ms). This is due to the
velocity connected with the orthogonality of the filter technique. In table I some results are
summarized. The orthogonal algorithm is not able to make good distinction between noise
and signal because of its fixed structure. The advantage consists of the introduction of a low
disturbance compression. Fig. 9 shows, in the case of inrush current, the results of the two
algorithms for the denoising problem.

5.3 Other Possible Applications

In Fig. 12 and 15 another industrial application is presented. It is a temperature sensor
in a paper machine application. In [23] a similar problem is presented, where the authors
proposed an algorithm to detect noise and outliers. Nevertheless the approach presented in
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Figure 10 Actual Apparatus for Identification of Dangerous Transients

Figure 11 New Apparatus for Identification of Dangerous Transients

this paper offers the possibility to classify and increase the percentage of correct detection and
increase the speed of detection time. With the technique presented in this paper, the outliers
are performed as the incoherent part of the signal. The structure of the pattern recognition
is identical to the case presented previously. This problem, according to the definitions, is
performed through just one class of signals and its complement (outliers). The sine pattern is
devoted to the detection of the desired signal. The cosine pattern is devoted to the detection
of the outliers. The signal under consideration has a large bandwidth. The presented simula-
tions are performed by vectors with the length of no more than 32 components, 16 components
for every time cell (8 for sine and 8 for cosine decomposition). To be more exact, for every
time cell, [0; 50; 100; 150; 200; 250; 300; 350; 400; 450; 500; 550; 600; 650; 700; 750] Hz. In the pre-
liminary simulation 50 signals are considered as training signals and other 50 signals as fresh
testing ones. These signals were split into two complementary classes: 50 signals with outliers
and the remaining 50 without them. The identified percentage of outliers is, for the kind of
signal considered, around 98%. In Fig. 12, 13, and 14 some cases are shown. It is interesting
to notice that there is a hyper selectivity due to ”on-line operation” of the learning machine,
see Fig. 15. The hyper selectivity decrees if a shorter window is adopted. In this case the per-
centage of the correctly identified outliers is lower and it does not increase through increased
training. The inner product between the coordinate systems and the fresh data vectors resulting
from the compression through the algorithm needs mostly only one time-frequency cell (on-line
detection) to recognize the outliers. In these cases, (outliers’ detection) Saito’s approach is
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Table 1 Inrush Current Test

Training wavelet network by using non-orthogonal denoising filter

Class Tested Correctly identified Time of Identification Incorrect

Training Data 100% less than 20 ms 0%

Fresh Data around 95% less than 60 ms around 5%

Training wavelet network without denoising filter

Class Tested Correctly identified Time of Identification Incorrect

Training Data 100% less than 20 ms 0%

Fresh Data around 80% less than 40 ms around 20%

Training wavelet network using Saito denoising filter

Class Tested Correctly identified Time of Identification Incorrect

Training Data 100% less than 20 ms 0%

Fresh Data around 90% less than 50 ms around 10%

Results by using actual apparatus for identification inrush current

Class Tested Correctly identified Time of Identification Incorrect

Fresh Data around 90% less than 200 ms around 10%

preferred because it presents similar results but the structure is much simpler.
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Figure 12 On the top: non-filtered signal. On
the bottom the dashed line is the
signal filtered through the learning
machine

Figure 13 On the top: non- filtered signal. On
the bottom the dashed line is the
signal filtered through the learning
machine

6 Conclusions

An algorithm for simultaneously suppressing any additional white Gaussian noise compo-
nent and compressing the signal component in a data set is described. The aim of the paper
consists of extracting relevant features of quasi–harmonic signals from noisy measurements with
interferences. In railway applications such features can be used for training neural networks
to recognize dangerous inrush currents from non-dangerous ones. In chemical processes the
neural network can be used to detect a fault and an outlier from sensor measurements. The
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Figure 14 On the top: non-filtered signal. On
the bottom the dashed line is the
filtered signal through the learning
machine

Figure 15 On the top: non-filtered signal. On
the bottom the dashed line is the
signal filtered through the learning
machine

selected bases consist of wavelets, more precisely they consist of wavelet packets where the basis
functions are local trigonometric bases. Cosine and sine bases with their biorthogonality allow
an efficient coordinate system to perform properly. The bases are selected during every step
by maximizing the cross entropy function which highlights the difference between the noise
and the desired signal. Two industrial applications are reported to show the usefulness of the
algorithm, the first one is related to inrush current detection and the second one is concerns an
outliers problem.
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