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ABSTRACT

This paper describes the new architecture and optimizations for
parallel SQL execution in the Oracle10g database. Based on the
fundamental shared-disk architecture underpinning Oracle’s
parallel SQL execution engine since Oracle7, we show in this
paper how Oracle’s engine responds to the challenges of
performing in new grid-computing environments. This is made
possible by using advanced optimization techniques, which
enable Oracle to exploit data and system architecture dynamically
without being constrained by them. We show how we have
evolved and re-architected our engine in OraclelOg to make it
more efficient and manageable by using a single global parallel
plan model.

1. Introduction and Overview

Parallel processing is a key technology that allows businesses to
efficiently process massive amounts of data. The cost-effective
consolidation of hardware resources in a large cluster of
interconnected servers - a grid with dynamic allocation and de-
allocation of resources - and the support of increasingly complex
applications presents new challenges to parallel database systems.

A modern engine needs to be flexible, scalable, resource-efficient
and manageable. It should be flexible to adapt to the grid’s
changing data and system resources without requiring the SQL
application to change. The parallel engine of OraclelOg,
introduced in Oracle7 [4], is built on top of a shared-disk
architecture where every node can access all data. The shared-
disk model affords enormous application simplicity because data
does not have to be statically partitioned and mapped. It also
allows Oracle server to map parallel processing agents to data
fragments in a flexible and dynamic manner. Our Parallel
Execution (PX) engine is independent of both the underlying
hardware architecture and data partitioning, and can therefore
exploit the characteristics of the dynamic grid effectively.

Oracle’s PX engine achieves scalability by generating efficient
parallel plans, guaranteeing balanced workload distribution across
parallel agents and minimizing communication costs by a variety
of compile and run-time techniques. We optimize the usage
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critical resources like memory and DML locks by using
execution-constructs, which constrain load and thread-allocation
in a cost-based manner.

One of the main challenges customers faced with Oracle’s PX
engine in the past has been the complexity of managing,
monitoring, and diagnosing performance of parallel operations.
This was historically related to how function-shipping and sub-
task representation for parallel execution was implemented. In the
Oracle 10g server we solved this by introducing the Parallel
Single Cursor (PSC) model where the same global parallel plan
for a SQL statement (cursor) is shared across all agents
participating in the parallel execution.

The rest of the paper is organized as follows. In Section 2, we
provide the basic concepts of Oracle’s PX architecture. In Section
3 we summarize the compilation aspects of the PSC model. In
Section 4 we show some execution techniques, which make our
model cluster-aware, resource-aware and able to dynamically map
and allocate resources in a grid. In Section 5 we present some key
features of our engine that either parallelize features from
different business areas or solve traditionally hard scalability
problems. We conclude with some practical lessons specific to
our industrial development effort in Section 6. We briefly refer to
related work in parallel databases throughout our paper.

2. Concepts and key abstractions

Oracle’s PX architecture supports both intra and inter operation
parallelism. It is comprised of a Parallel Execution Coordinator
(PEC) and a set of Parallel Execution Servers (PES). Physically, a
PES is either a thread (e.g. Windows NT) or a process (e.g.
UNIX). A set of PESs allocated to execute a parallel statement
can run within a node (intra-node parallelism) or across multiple
nodes of the grid (inter-node parallelism). Intra-node
communication  uses  shared-memory and  inter-node
communication uses [PC protocol over high-speed interconnects.
Oracle supports parallel execution of a very large spectrum of
operations: all relational operations (e.g. scans, joins, order-by,
aggregation, set operations), DML’s (e.g. insert, update, delete,
merge), DDL’s (e.g. create table, index and materialized views),
data reorganization (e.g. partition maintenance operations), data
load and unload via external tables and SQL-extensions for
Analytics (e.g. window functions, model clause [12]) and Data-
Mining (e.g. frequent item set counting [9])

A parallel execution plan (PEP) is based on four key abstractions:
Dataflow operators (DFOs) which are fragments of the parallel
execution plan consisting of multiple connected row sources
(termed Iterators in [8]), Table Queues (TQs) which encapsulate
data redistribution between DFOs (termed Exchange in [8]),



Granule Iterators (GRA) which control horizontal dynamic
partitioning of object access and finally the Parallelizer row
source which controls the scheduling of a parallel subtree below
it. Each such parallel subtree is composed of one or more DFOs
each of which can be executed concurrently by multiple PES. In
Oracle, this tree-based representation of row sources represents
the compiled plan of a SQL cursor.

3. Parallel Single Cursor Model

In the Parallel Single Cursor (PSC) model, all constructs needed
for the parallel execution of a statement are expressed as row
sources assembled in a single and global execution plan. This
execution plan is produced by the PEC when the statement is first
compiled and then used by both PEC and PESs when the
statement is executed in parallel.

3.1 Generation of a Single PEP

During the compilation of the SQL statement, the optimizer
generates a logical execution plan in two passes. In the first pass,
join order and access methods are selected such that the parallel
cost of the plan is minimized given its degree of parallelism
(DOP). While computing the parallel cost of a plan in this pass we
take various parallel characteristics into account, such as number
of nodes in the grid, number of partitions (table or index
fragment) of each object, and the default distribution method. In
the second pass, the optimizer computes the best distribution
method for each operation in the parallel plan. The result is a
logical representation of the execution plan, which then goes
through the physical compilation phase to generate a tree-based
representation of physical operators (i.e. row-sources). In this
phase we also clump row sources into DFO’s and perform some
physical optimizations by taking into account specific knowledge
of the requirement of each row source such as clustering, ordering
or data-fragmentation. Unlike the clumping pass of TOPAZ [6]
we do not consider the DOP in this phase. Our usage of a parallel
cost-model and parallel-aware optimizer is similar to approaches
in shared-nothing engines like DB2-PE [1] and Teradata [2].

Figure 1 shows the complete physical plan corresponding to a
simple parallel hash-join with its left input serial (e.g. because it is
too small to benefit from parallelism). The shaded areas represent
DFO's and the white ellipses are row sources. The same physical
plan is used by both PEC and PESs. The PEC executes the
Parallelizer row source and the serial left DFO (a serial scan).
One set of PESs executes DFOL1 (a parallel scan) and a second set
of PESs executes DFO2 (the parallel hash-join). The PX Send and
Receive row sources are added at DFO boundaries to implement
the hash redistribution TQ between the two sets of PESs.

3.2 Implication of a Single Global PEP

Most of the industrial parallel database engines express DFOs (i.e.
parallel subplans) in some intermediate language (e.g. encoded
plan trees that can be transported over a network) or as higher-
level SQL constructs. Each approach has benefits, which we
cannot claborate here, for lack of space. However, in our
experience with maintaining a vastly complex commercial
parallel engine over several releases, we have learned that both
approaches have inherent flaws, which become more and more
difficult to overcome as the parallel engine grows in size and
scope. Generating, compiling and executing an intermediate
language for each DFO is a complex and error-prone process. If
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Figure 1. PEP execution on the QC and parallel slaves.
SQL is used as the intermediate representation, generating SQL
for each DFO is hard because of the mismatch between the
declarative SQL representation and the execution plan based on
low-level physical operators. If the intermediate language is a
linearized representation of the plan, there is a maintenance issue
in making sure that each of the physical operators contains all the
information necessary for their execution and in extending the
operators every time a new feature is parallelized. To get around
such problems, in OraclelO0g we avoid using an intermediate
language for parallel DFOs altogether. Instead the PEC and all
PESs use the same parallel execution plan. This is achieved by
sharing the same physical copy of the plan when the PEC and
PESs run on the same node, and by shipping the original SQL
statement to remote nodes participating in the execution. On each
remote node, the statement will be recompiled by one of the PES
and shared by the others. This is the Parallel Single Cursor (PSC)
execution model. It has three major advantages:

| First, it dramatically improves the manageability and
monitoring of parallel execution since all parallel constructs
are expressed in the physical plan as row sources. Interesting
parallel execution statistics (e.g. memory usage, number of
messages, load skew) are all available in the row sources of
the shared plan across all PESs and can be aggregated either
live (for progress monitoring) or after a query finishes.

Second, parallelization of new operation becomes much
casier and less error-prone since we do not have to support
an intermediate language to implement function shipping.
The only additional step needed to parallelize a new
operation is to define data distribution, clumping and DFO
boundaries for the corresponding new row sources.

Third, it improves code maintenance and debugging
capability and reduces the memory usage associated with
intermediate representations.

Our decision of using a shared-plan model but foregoing an
intermediate representation for function-shipping stands in
contrast to Informix XPS [13].



4. Execution of a Parallel Single Cursor

As discussed above, the PEC and all PESs use and even share the
same parallel plan. At execution time, the PEC only sends control
information to PESs to schedule the various DFOs (defined by the
dotted arrows in Figure 1). PESs scanning an object, lazily
request and receive object fragment information (a granule) via
the granule row source (GRA). Once a PES has finished
consuming a granule, it requests another one from the PEC.
Hence, dynamic load balancing happens automatically by the rate
at which PESs consume granules and generate data to be sent to
the parent DFO.

One of the main advantages of our PX engine is that it is neither
constrained by the physical layout of the database (the hardware
configuration) nor the logical layout of the database (how the
database objects are partitioned by the user). It takes advantage of
the physical layout by imposing vertical virtual partitioning of the
dataflow for wvarious optimizations, some of which are
traditionally found in shared-nothing architectures [1] and some
of which are only possible because of our shared-disk approach.

With shared-nothing systems, the database must be partitioned in
advance so that a given node can access a fragment of the data
(e.g. by HASH in Teradata [2]). The scheduler has to be aware of
this static node-to-data mapping and cannot use any other node to
access the data. No such constraints burden Oracle’s PX engine.
In fact, we leverage Oracle’s Partitioning Option which supports
data-fragmentation for high-availability and performance. Our PX
engine is not constrained by how users use partitioning to
fragment database objects (which should be based on business
requirements), but can exploit it whenever possible.

For example, we exploit user-defined partitioning to implement
our version of collocated equi-joins[1], even though strictly there
is no concept of location in our model. In this version, which we
term Full Partition-wise Join, each PES is constrained to scan and
join an entire partition from each of two “equi-partitioned” tables.
However, unlike in shared-nothing architectures, any PES can
perform the partition-wise join for any of the partition pair since
all nodes share disks. For example, the scan-join for a particular
partition pair can be performed by a PES running on node 1 in the
first run of a query, and by a different PES running on node 10 in
the next execution of that query.

4.1 Cluster-aware PX

During the optimization phases of a parallel operation, the
optimizer considers the number of nodes available and the
number of data partitions involved in the query, and generates a
vertical partitioning of the dataflow to minimize communication
costs.

For instance, consider a join between two equi-partitioned tables
performed on a cluster of two nodes. Both tables are partitioned
into 4 partitions. The best way to minimize communication cost is
to eliminate the need of distributing the data altogether. If the
requested degree of parallelism (DOP) is four, a regular full
partition-wise join can be done. The join of a pair of partitions,
one from each table, is processed by a single PES and no data
redistribution is performed as shown in Figure 2.

However, with partition-wise join, the maximum DOP is limited
by the number of partitions. In the above example a maximum of
four PESs can be used.
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An alternative strategy is the parallelized hash-join algorithm.
This strategy can be selected when the overhead in hash-
redistributing each row is outweighed by the gain of using more
PESs. In our example we could use a DOP of 8 (which means that

Partition 1 Partition 2 Partition 3 Partition 4
Node 1 Node 2

Figure 2. Full Partition-wise Join of 4 partition tables
on 2 nodes.
16 PESs are used, 8 producers and 8 consumers), but
redistributing both inputs on the join key would be required. Each
PES scanning the partitioned table sends its rows to a join PES
after computing a hash function. On a cluster, the scan to join
traffic can go through the cluster’s interconnect (as illustrated in
Figure 3) and therefore incur a higher communication cost.

Figure 3. Hash join on 2 nodes with a DOP of 8.

A Dbetter execution strategy is a hybrid of the above two solutions.
The main idea is to split the PES set according to the physical
constraints, leveraging the underlying partitioning scheme for
optimizing the redistribution of data. A constraint on the
execution of a parallel query is expressed through a special
construct called a PES mapper attached to each of the objects.
This class of physical optimizations is especially important on
grid architectures composed of a high number of small nodes
since in this case most of the communication traffic goes through
the cluster’s interconnect. When executed on multiple instances
(cluster or MPP installation) this strategy avoids all data traffic
through the cluster’s interconnect and keeps communication local
to each node. This execution strategy can be chosen by the
optimizer in the situation where a partition-wise join is possible
but causes the DOP to be reduced because of the small number of
partitions. The optimal strategy for a given environment is chosen
based on CPU and communication costs of all of the above
variants of the execution plan.

Figure 4 shows the same hash-join example with eight PESs using
the PES-mapper optimization. In environments with disk affinity
to nodes, the assignment of partition to the nodes of the cluster
obeys the affinity of the data. In this mode, Oracle behaves like a
shared-nothing cluster but is still able to take advantage of shared-
disk load-balancing optimizations.



Partition 1  Partition 2 Partition 3  Partition 4

Node 1 Node 2
Figure 4. Hash join on 2 nodes with a PES mapper.

4.2 Performance

For reasons of space, we cannot present and analyze performance
data in detail. Table 1 shows how cluster-aware PES mappers
improve the performance of a simple two-table hash-join
(modeled on Query 19 of the TPCH schema). In the example, 600
Gbytes of data is sent over a cluster of 1 to 8 nodes each with four
Intel Xeon processors running Linux. With a PES mapper, there is
no interconnect traffic except for messages needed to return the
result to the PEC. This improves the scalability of this
interconnect-bound query. The single node number for elapsed
time shows the relatively small overhead of using a PES mapper
due to the additional CPU cost of the mapping function applied to
each row sent from a scan PES to a join PES.

Table 1. Use of PES Mapping (PM) with Hash distribution

Without PM With PM
8 nodes 113s 92s
4 nodes 202s 156s
1 node 606s 617s

4.3 Resource-Aware PX

Parallelism puts a heavy burden on the resources of any system
and it is very easy for its resource usage to grow super-linearly
and overwhelm the physical limits of any system. Our PX engine
transparently adapts the usage of resources like memory, locks
and processes to system load.

Memory. The memory requirement for parallel execution can be
very large (e.g. parallel hash-join requires each PES to build an
in-memory hash-table). In order to control the amount of memory
consumed at runtime, each SQL operator dynamically adapts to
the memory pressure on the system by communicating with the
memory manager [3]. In some cases it is possible to limit the
memory consumption of some operators a priori. For example, in
a parallel INSERT statement against a partitioned table, each PES
allocates in-memory buffers for each partition it loads into. These
in-memory buffers are used to directly perform large and
asynchronous write for the rows being loaded. If the memory
available is not sufficient, it is necessary to limit the number of
partitions touched by a given PES. In this case the PES mapper
construct splits the PESs into small enough groups working on
distinct partitions, thus preventing the DML from running out of
memory since a given PES will work on a subset of partitions.
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Locking. A parallel DELETE or UPDATE statement can easily
overcome the physical limit on the number of processes allowed
by the Oracle lock manager to modify a single data block. In
order for the DML operation to succeed, the engine has to control
the number of PESs touching a block. In this case, the PES
mapper splits PESs into groups similar to the memory-
optimization above, to respect the lock limit.

Adaptive DOP and PES Allocation. In the grid, each node has
information about the current workload, the number of CPU’s,
and the virtual service supported. We use this information at the
beginning of a parallel query to constrain the DOP. A user
connects through a session associated with a service (e.g. finance
or marketing). When this session starts a parallel query, the PEC
tries to satisfy the query requirements by acquiring PESs only on
nodes supporting the service. Given a set of nodes, the load-
balancing algorithm tries to maintain an even load across the
nodes and to minimize the inter-node communication cost. A unit
of allocation per PES is computed based on the workload and the
DOP requested. This unit of allocation is used to fill up each of
the nodes until they reached their load target.

Granule allocation. During allocation of granules (unit of work
or fragment of objects) the data-locality or affinity (of a disk to a
node) can be taken into account by the PEC to map the granules
to PESs. The result of this optimization pass is a set of work
queues from which the PESs get their granules first. Because of
the shared-disk model, this optimization problem can be solved
without rebuilding the database (i.e. re-defining the layout of the
data) and by dynamically reconfiguring resource usage by taking
into account the shape of the service offered by the grid.

5. A feature-rich Parallel Engine

A modern engine has to go beyond the support of the simple
parallel operators such as scan, join and aggregation. We now
illustrate how different properties of Oracle’s PX engine are used
to transparently parallelize an ETL process, to parallelize
traditionally problematic queries such as correlated subqueries,
and to support requirements coming from new business areas such
as the integration of data-mining algorithms in the parallel engine.

5.1 Flexible data distribution and pipelining
The key element in SQL parallelization of functions and operators
is the partitioning of input data objects (e.g. tables or indexes) or
streams (intermediate results in a query execution plan). Oracle
supports the simple and natural parallelization of a large class of
features by using the explicit or implicit distribution requirements
of the physical operator.

The optimizer can infer the distribution from a suitable grouping
construct (e.g. PARTITION BY for an OLAP Window Function,
PARTITION BY and DIMENSION BY for SQL MODEL
clause[12]) to parallelize features transparently. Consider a
parallel operation aggregating the sales revenue per region
followed by an order-by on region. Oracle would choose a hash-
based redistribution on region id between the scan and sort PESs
as if the order-by did not exist. In this case the clumping logic
during physical plan generation would recognize the
compatibility between the group-by and order-by keys and would
change the hash redistribution to range to therefore eliminate the
subsequent DFO with the order-by sort.



For a user-defined or explicit specification of data redistribution,
consider a user-defined Table Function [9] with a PARTITION
BY HASH clause on column a. The query “SELECT a’, b’ FROM
TABLE(F(CURSOR(select a, b from TAB))” would be compiled
into a parallel scan of TAB, followed by a redistribution of the
rows by hashing on column a to feed the parallel evaluation of F
across the PESs.

To illustrate the power of this mechanism, consider an ETL
(Extract-Transform-Load) process by which data is read from
external sources, cleaned and transformed through user-defined
Table Functions, and then loaded (via MERGE or multi-table
INSERT) into one or more tables. In Oracle 10g, this entire
process is performed inside the database server through a single
SQL statement. Oracle transparently parallelizes this statement
without any intermediate synchronization or staging. The external
table is scanned in parallel by dividing the external object into
load-balanced granules. The output rows are fed into a parallel
table function obeying the PARTITION BY clause specified in its
definition and the resulting rows are re-partitioned according to
the requirement of the destination table amongst the PESs used
for the DML operation. If the partitioning requirements of the
DML and the Table Function are compatible, then the two
operations are clumped together, avoiding data redistribution.

5.2 Cost-based Parallelization of Subqueries
Parallelization of subqueries is a difficult problem which most of
commercial engines handle either through subquery flattening
techniques (e.g. Teradata [2], magic decorrelation in DB/2[10],
transformation via aggregation in SQL server[5]) or simply going
serial in Sybase [11]). Oracle supports most of the query rewrite
techniques transforming nested subqueries into joins and
aggregations, but for queries that cannot be unnested or
transformed we parallelize the query plans in a general cost-based
manner. The benefit of the PSC model is that we can build
independent parallel plans for nested query blocks and decide at
run-time which query block should go serial either because it is
inside a PES or because the overhead of restarting a parallel
subquery plan for each input row is too high.

5.3 Recursive and Iterative Computation
Oracle supports parallel recursive and iterative computation by
using temporary tables between DFOs. For instance, the Frequent
Itemset (FIS) Counting algorithm is natively supported by our
parallel engine and is used as the core computational routine by
Oracle Data-Mining to compute association rules. The core of the
FIS algorithm is to iteratively compute the most frequent k+1
items from the most frequent k items. This is mapped onto two
DFOs by computing the k item-set on DFO 1, repartitioning the
data rows to DFO 2, which computes the k+1 item-set, inserts the
results in parallel into a temporary table and then repartitioned
and distributed amongst PESs executing DFO 1 which switches
phases to compute the k+2 item-set. Data repartitioning happens
via the regular redistribution mechanism in one phase (DFO 1 to
2) and via dynamic partitioning of the temporary table in the next
phase (DFO 2 to 1). This general construct can be extended to
support any algorithm in need of a synchronized parallel loop.

5.4 Load-Balanced Table Queues

For data redistribution strategies like range (e.g. used in global
order-by, or create parallel index) which are sensitive to the
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statistical properties of the ordering keys in the input stream,
Oracle supports runtime techniques for dynamic sampling which
can provide better splitting elements so as to prevent data skew in
the consumer PESs.

6. Conclusions
In this paper we have focused on three main aspects of the Oracle
10g parallel execution engine.

First, we have presented the redesign and evolution of the
Oracle’s parallel SQL execution architecture to eliminate the need
for an intermediate language for function-shipping. Instead we
use a new parallel single-plan based model, which keeps our
internal architecture clean, maintainable and extensible as parallel
execution becomes more ubiquitous and transparent for the
backend. Second, we have stressed how our execution model is
completely decoupled from data-placement. This allows us to
enable novel optimizations like PES-mapping which can be used
to optimize a variety of metrics like distribution cost, memory
usage and lock contention. We have found that the shared-disk
model of parallel SQL execution has afforded us flexibility to
scale in new and ever-evolving hardware environments. This
experience runs contrary to much of conventional wisdom in
literature on parallel databases and we hope this helps future
practitioners in this area. Third, we have presented some of the
features and capabilities of our PX engine that help solve either
traditionally hard problems (e.g. DML, subqueries) or allow new
functionalities like ETL and Data-Mining to be moved from tools
into the backend.
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