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Abstract

We propose a variational method for segmenting image
sequences into spatio-temporal domains of homogeneous
motion. To this end, we formulate the problem of motion
estimation in the framework of Bayesian inference, using a
prior which favors domain boundaries of minimal surface
area. We derive a cost functional which depends on a sur-
face in space-time separating a set of motion regions, as
well as a set of vectors modeling the motion in each region.

We propose a multiphase level set formulation of this
functional, in which the surface and the motion regions are
represented implicitly by a vector-valued level set function.
Joint minimization of the proposed functional results in an
eigenvalue problem for the motion model of each region and
in a gradient descent evolution for the separating interface.

Numerical results on real-world sequences demonstrate
that minimization of a single cost functional generates a
segmentation of space-time into multiple motion regions.

1. Introduction and Related Work

Segmenting images into semantically significant com-
ponents has been a focus of computer vision research in
the last decades. An important requirement of a segmen-
tation approach is that it needs to deal with noise present in
most real-world image data. However, a denoising process
should conserve the boundaries of objects of interest and
therefore implicitly assumes the segmentation to be known.
Mumford and Shah [12] suggested that the problems of de-
noising and segmentation are closely interlaced and should
therefore be solved simultaneously. In their approach, the
denoising amounts to approximating the intensities in the
segmented regions by a piecewise smooth or piecewise con-
stant function. By minimizing a single functional, one si-
multaneously generates a segmentation of the image and an
approximation of the gray values in each region. This idea
was extended to color and texture images in [23].

In the present paper, we demonstrate that a similar rea-
soning can be applied to the case of segmenting moving
objects in video sequences.

Many researchers have investigated the problem of mo-
tion estimation. Two seminal methods were proposed by
Horn and Schunck [7] and by Lucas and Kanade [9]. These
methods are based on a least-squares criterion for the optic
flow constraint and global or local smoothness assumptions
on the estimated flow field. In general, flow fields are not
smooth. The boundaries of moving objects correspond to
discontinuities in the motion field. Such motion discontinu-
ities have been modeled implicitly by non-quadratic robust
estimators [1, 10, 8, 21]. Alternatively, it was proposed to
separately estimate the motion in disjoint sets and optimize
the motion boundaries [14, 19, 22, 2, 13, 5].

In [4], we presented a variational approach calledmotion
competitionwhich jointly solves the problems of motion es-
timation and segmentation for two consecutive frames from
a sequence in a similar way as the Mumford-Shah approach
does for denoising and segmenting gray value images. Cou-
pling the two problems of segmentation and approximation
is even more important in the case of motion segmentation:
Beyond being corrupted by noise, local motion information
is not available at all in directions of constant intensity, a
limitation which is referred to as theaperture problem.

In this work, we generalize this approach to segmenting
the motion in an entire sequence. Rather than segmenting
the image plane into a set of disjoint regions, we propose
to segment the spatio-temporal volume into a set of disjoint
phases of homogeneous motion. Compared to the iteration
of the two-frame model, this introduces an additional tem-
poral regularity of the estimated motion boundaries.

In Sections 2-4, we formulate the problem of image se-
quence segmentation as one of Bayesian inference. We de-
rive a cost functional which depends on parameter vectors
modeling the motion in a set of disjoint regions and on a sur-
face separating these regions in the spatio-temporal domain.
In Sections 5 and 6, we propose a multiphase level set for-
mulation [3, 18] of this functional. The implicit representa-
tion of the separating interface by a vector-valued level set
function permits to segment several (possibly multiply con-
nected) motion phases. In Section 7, we present numerical
results which highlight different properties of our approach.
In Section 8, we discuss limitations and possible extensions.



2. Bayesian Formulation

Let Ω ⊂ R2 denote the image plane and let

f : Ω× [0, T ] −→ R+ (1)

be a gray value image sequence, which is assumed to be dif-
ferentiable. We denote the spatio-temporal image gradient
by

∇3f =
(

∂f

∂x
,

∂f

∂y
,

∂f

∂t

)t

, (2)

Let

v : D → R3, v(x, t) = (u(x, t), w(x, t), 1)t, (3)

be the velocity vector in homogeneous coordinates defined
on the domainD = Ω× [0, T ] . Given the spatio-temporal
image gradient at each point and time, the Bayesian esti-
mate for the motion in the sequence is given by the velocity
field v which maximizes the posterior probability

P (v |∇3f) =
P (∇3f | v) P (v)

P (∇3f)
. (4)

Assuming the intensity of a moving point to be constant
as it moves, we obtain the optic flow constraint equation:

d

dt
f(x, t) =

∂f

∂x
u +

∂f

∂y
w +

∂f

∂t
= ∇3f

tv = 0, (5)

Geometrically, this constraint states that the spatio-temporal
image gradient∇3f must either vanish or be orthogonal
to the homogeneous velocity vectorv = (u, w, 1)t. This
constraint has been employed in many motion estimation
approaches. Commonly – for example in the seminal work
of Horn and Schunck [7] and many subsequent works1 –
the square of this constraint is used as a fidelity term. In
contrast, we suggest to use the angleα between the two
vectors as a measure of the orthogonality.

To this end, let(x, t) ∈ D be a point with spatio-
temporal derivative∇3f , and letDi ⊂ D be a domain
of the image sequence with homogeneous velocityvi. We
model the probability that(x, t) is part of the domainDi

by:

P (∇3f | vi) ∝ e− cos2(α) = exp
(
− (vt

i ∇3f)2

|vi|2 |∇3f |2

)
. (6)

This probability has the following properties:

• It is maximal if the vectorsvi and∇3f are orthogonal.

• It is minimal if the two vectors are parallel.

1For a discussion of some alternative approaches, we refer to [16].

• It only depends on theangle between the spatio-
temporal image gradient and the homogeneous veloc-
ity vector, andnot on the magnitudeof these vectors.

In particular, this last property is crucial for the case of mo-
tion segmentationconsidered here. In contrast, the proba-
bility associated with the classical least squares formulation
in the approach of Horn and Schunckdependson the length
of the two vectors. Firstly, this induces a bias toward ve-
locities of larger magnitude when segmenting several dif-
ferently moving regions. And secondly, this implies that
a spatio-temporal gradient which is not orthogonal tovi is
less likely the larger its magnitude.

To account for the case where the spatio-temporal gradi-
ent vanishes, we introduce the regularization

|∇3f | → |∇3f |+ ε (7)

in the denominator of (13). The small constantε > 0 can be
interpreted as a noise scale of the image gradient. We did
not observe a noticeable influence of the precise choice ofε
in numerical experiments.

We discretize the velocity field on a set of disjoint re-
gionsDi ⊂ D, separated by a surfaceS:

v(x, t) = {vi, if (x, t) ∈ Di}. (8)

Moreover, we assume a priorP(v) on the velocity field
which only depends on the separating interfaceS and fa-
vors interfaces of minimal surface area|S|:

P(v) ∝ exp(−ν|S|). (9)

3. Piecewise Parametric Motion

In the above formulation, we restricted the motion model
(8) to spatio-temporal domains of piecewise constant mo-
tion. However, the same geometric reasoning can be gener-
alized to piecewise parametric motion models. The velocity
on the domainDi is then permitted to vary in space and time
according to a predefined model of the form:

vi(x, t) = M(x, t) pi, (10)

whereM is a matrix depending only on space and time and
pi is the parameter vector associated with each region. Par-
ticular examples are the case ofspatially affine motionwith
the matrix

M(x, t) =

 x y 1 0 0 0 0
0 0 0 x y 1 0
0 0 0 0 0 0 1

 , (11)

and a parameter vectorpi = (ai, bi, ci, di, ei, fi, 1) for each
domainDi, and the case ofaccelerated motionwith

M(x, t) =

 1 0 t 0 0
0 1 0 t 0
0 0 0 0 1

 , (12)



andpi = (u, w, au, aw, 1) modeling an accelerated motion
in each domain. Combinations of such models are conceiv-
able to capture accelerated rotations and other kinds of mo-
tion.

Inserting model (10) into the optic flow constraint (5)
gives a relation which – again interpreted geometrically –
states that the the vectorM t∇3f must either vanish or be
orthogonal to the parameter vectorpi. We model the con-
ditional probability that the point(x, t) ∈ D belongs to the
domainDi by:

P (∇3f | pi) ∝ exp
(
− (pt

i M t∇3f)2

|pi|2 |M t∇3f |2

)
. (13)

4. Variational Sequence Segmentation

Maximizing the conditional probability (4) is equivalent
to minimizing its negative log likelihood. With formulas (9)
and (13), we obtain an energy of the form:

E(S, {pi}) =
∑

i

∫
Di

|p t
i M∇3f |2

|pi|2|M∇3f |2
dx dt + ν |S|. (14)

This functional couples region-based motion information
and boundary information in a similar way as does the
Mumford-Shah functional [12] for the case of gray value
segmentation.

Simultaneous minimization with respect to the motion
parameterspi and the separating surfaceS jointly solves
the problems of motion estimation and segmentation of an
image sequence. The motion in the sequence is approxi-
mated by a piecewise parametric motion over a set of spatio-
temporal domainsDi. Note that the proposed functional
contains only one free parameterν, representing a scale pa-
rameter which is fundamental to all segmentation methods
(cf. [11]).

5. A Multiphase Level Set Framework

In this section, we propose to implement the separating
hypersurfaceS ⊂ R3 in a multiphase level set framework
which is based on the corresponding gray value model of
Chan and Vese [3]. Compared to alternative multiphase
models, this one permits to compactly represent up ton mo-
tion phases by onlylog2(n) level set functions. Moreover,
it does not suffer from overlap or vacuum formation, since
all points are by definition ascribed to one ofn phases.

Let Φ denote a vector-valued level set function:

Φ = (φ1, . . . , φm) , whereφi : D ⊂ R3 → R, (15)

and letH(Φ) = (H(φ1), . . . ,H(φm)) be the associated
vector Heaviside function, with:

H(φi) =
{

1 if φi ≥ 0
0 if φi < 0 . (16)

The functionHΦ maps each point(x, t) in space-time to a
binary vector. It therefore permits to encode a set ofn = 2m

phases defined by:

Di = {(x, t) ∈ D | H
(
Φ(x, t)

)
= constant}, (17)

with the separating hypersurface given by:

S = {(x, t) ∈ D
∣∣ ∃ i with φi(x, t) = 0}. (18)

With this representation, the cost functional (14) can be re-
placed by themultiphase functional:

E(Φ, {pi}) =
n∑

i=1

∫
D

p t
i T pi

|pi|2
χi(Φ) dx dt

+ ν
m∑

j=1

∫
D

∣∣∇H(φj)
∣∣ dx dt (19)

whereχi denotes the indicator function for the regionDi

and the matrixT is given by:

T (x, t) =
M t∇3f ∇3f

tM

|M t∇3f |2
. (20)

For illustrative purposes, we will detail this for thetwo-
phase modelwhich is given by:

E(φ, p1, p2) =
∫
D

p t
1Tp1

|p1|2
H(φ) dx dt

+
∫
D

p t
2Tp2

|p2|2
(
1−H(φ)

)
dx dt

+ ν

∫
D

∣∣∇H(φ)
∣∣ dx dt, (21)

with a single level set functionφ separating two spatio-
temporal motion phases

D1 = {(x, t) |φ ≥ 0}, D2 = {(x, t) |φ < 0}, (22)

with motion parametersp1 andp2.

6. Motion Competition in Space-Time

The cost functional (19) must be simultaneously mini-
mized with respect to the level set functionsφi and with
respect to the motion parameterspi. We implement this
minimization by alternating the two fractional steps of:

• Motion estimation

For fixedΦ, minimization with respect to the motion
parameterspi results in a generalized eigenvalue prob-
lem of the form:

pi = arg min
p

pt Ti p

ptp
, (23)



whereTi denotes the matrixT in (20) integrated over
regionDi:

Ti =
∫
D

T (x, t) χi dx dt . (24)

Therefore,pi is given by the eigenvector associated
with the smallest eigenvalue ofTi, normalized so that
its third component is1. Note that the motion is esti-
mated over the largest supporting region, namely over
the entire regionDi. This is an important property
of our approach, because it permits to circumvent the
problem of estimating motion locally.

• Surface evolution

Conversely, for fixed motion parameters{pi}, mini-
mization of (19) with respect to the separating hyper-
surfaceS can be implemented by iterating a gradient
descent for the level set functionsφi:

∂φi

∂t
= − ∂E

∂φi
. (25)

We will illustrate this for the case of the two-
phase model (21), the extension to multiple phases is
straightforward. Forn = 2 phases, the embedding
function evolves according to:

∂φ

∂t
= δ(φ)

[
ν div

(
∇φ

|∇φ|

)
+ e2 − e1

]
. (26)

While the first term aims at minimizing the area of the
separating hypersurface, the last two terms can be in-
terpreted in that neighboring domains compete for the
separating surface in terms of their motion energy den-
sitiesei given by

ei(x, t) =
p t

i T (x, t) pi

p t
i pi

. (27)

This competition process is what gave rise to the term
motion competition.

As suggested in [3], we implement the delta function
δ(φ) = d

dφH(φ) by a smooth approximation of finite
width τ :

δτ (s) =
1
π

τ

τ2 + s2
. (28)

7. Numerical Results

In the following, we will present a number of results
which are chosen to highlight different properties of our ap-
proach. These results are based on a model of piecewise
constant motion. We found no improvement in the results
by reverting to more general classes of motion fields. On
the contrary, preliminary results indicate that increasing the
number of parameters to model the motion of each region
tends to decrease the robustness of boundary evolutions.

7.1. Intensity versus Motion Segmentation

Although conceptually similar to the Mumford-Shah
functional for gray value segmentation, the motion segmen-
tation functional (14) induces fundamentally different seg-
mentation results. Figure 1 shows one frame from a se-
quence showing a rabbit moving on a table.

Superimposed on the image is the evolution of the sepa-
rating interface (with a particular initialization) and the cor-
responding estimated piecewise constant motion field, ob-
tained with the two-phase model. Note that during the opti-
mization of the domain boundary the motion estimates are
gradually improved.

The segmentation process obtained for one of the frames
from the sequence using the corresponding piecewise con-
stant gray value functional [3] is shown in Figure 2. Due to
the difficult lighting conditions, intensity-based segmenta-
tion fails to capture the object of interest.

7.2. Dependence on Initialization

The cost functional (14) is generally not convex. There-
fore, the final segmentation will depend on the initializa-
tion. Figure 3 shows the evolution of motion estimates and
boundary obtained for the rabbit sequence by minimizing
the two-phase model with an initialization which is shifted
to the right. Note that the final segmentation and motion es-
timate are fairly similar. The comparison of Figures 1 and 3
demonstrates how the fundamental limitations of motion es-
timation imposed by the aperture problem are compensated
by the regularization of the separating interface: Regions
of weak gray value structure are associated with one or the
other motion region according to the area constraint on the
motion boundary.

7.3. Multiphase Motion Segmentation

The above examples showed segmentation results ob-
tained for the two-phase model. Moreover, only one object
was moving in an otherwise static scene. In the following,
we will apply our approach to the flower garden sequence
which shows a complex scene filmed by a moving camera.
Different parts of the image plane are undergoing different
two-dimensional motion, depending on their relative posi-
tion to the camera.

Figure 4 shows the evolving boundary and motion esti-
mate obtained by minimizing the two-phase model. Note
that the final segmentation clearly separates the tree in the
foreground from the remainder of the image which is asso-
ciated with an average background velocity.

A more detailed segmentation of the motion in this se-
quence is obtained by minimizing the four-phase model.
The corresponding evolution of motion estimates and region



Figure 1. Motion segmentation. Evolution of the estimated motion field and motion boundary, superimposed on
one frame of a sequence showing a rabbit moving to the left. By minimizing a single cost functional, both the domain
boundary and the estimated motion are progressively improved. The final segmentation captures the shape of the rabbit
and the motion of object and background.

Figure 2. Intensity segmentation. Boundary evolution for one frame of the rabbit sequence, obtained with the
corresponding two-phase gray value model [3]. Due to the difficult lighting conditions, the object is not well-defined
in terms of constant intensity. The respective segmentation process therefore fails to capture the object of interest.

Figure 3. Dependence on initial contour. Evolution of estimated motion field and motion boundary for the same
sequence used in Figure 1, but with an initialization which is shifted to the right. The final segmentation and motion
estimate obviously depend on the initialization: Regions which are not sufficiently structured to permit reliable motion
estimation are ascribed to one or the other domain, according to the area constraint on the separating interface.

boundaries is shown in Figure 5. The zero level sets of the
two functionsφ1 andφ2 (represented by the black and the
white contour) progressively separate foreground, midplane
and background, based exclusively on their relative motion.
In the final segmentation, the estimated regions model the
motion of the tree, the grass, and the background. The sky
region does not contain sufficient gray value structure and
is therefore ascribed to one of the regions according to the

boundary constraint. Both the segmentation and the esti-
mated motion for foreground, midplane and background are
quite accurate, given that we merely minimize a single cost
functional defined on the spatio-temporal image gradients.
In contrast, most alternative approaches to layer extraction
perform extensive preprocessing such as local disparity es-
timation, camera calibration and prior rectification of the
individual frames (cf. [17, 15]).



Figure 4. Two motion phases. Motion segmentation of the flower garden sequence generated by minimizing
the two-phase model (21). The two motion regions separate the tree in the foreground from the differently moving
background.

Figure 5. Four motion phases. Segmentation of the flower garden sequence with the four-phase model. Compared
to the result with the two-phase model shown in Figure 4, this model generates a more detailed reconstruction of the
background layers. The final segmentation separates the tree in the foreground, the grass in the midplane and the houses
and smaller trees in the background. Note that both the boundary information and the motion estimates are obtained by
simultaneously minimizing an appropriate cost functional which is defined on the spatio-temporal image derivatives.
Unlike most alternative approaches to layer extraction, no preprocessing is applied to the image data.

7.4. Spatio-temporal Motion Segmentation

In the previous figures, we have only shown the segmen-
tation and motion estimates for one frame of the sequences.
Yet, our approach generates a segmentation of the entire
spatio-temporal volume. For the four-phase model, Figure
6 shows the evolution of the surfaces separating the motion
regions in space-time (top rows). The lower rows depict the
temporal slices of these surfaces associated with the frames
2, 5 and 8 of the sequence. During energy minimization, the
surfaces propagate to the final segmentation both in space
and in time. The final segmentation clearly separates fore-
ground, midplane and background. For better visibility, the
simultaneously estimated motion fields are not shown.

8. Limitations and Future Work

Although the results presented here are quite promis-
ing, the proposed approach relies on a number of assump-
tions. Firstly, the optic flow constraint (5) holds for small

displacements only. Given larger displacements (i.e. faster
moving objects or a slower frame rate of the camera), one
may need to revert to multiscale formulations (cf. [6, 20]).

Secondly, the results presented here are approximations
of the image motion by piecewise constant motion fields.
However, we found that extending the model complexity of
motion models tends to reduce the robustness of boundary
evolutions. As in all model fitting problems, one therefore
has to find a trade-off between model simplicity and suffi-
cient generality.

We want to point out that our approach does not make
any assumptions about the relation between the estimated
region motion and the estimated boundary motion. This
turns out to be important for modeling multiple motion and
occlusion in the example of the flower garden sequence.
Another example in which region and boundary do not un-
dergo the same motion is that of a rotating cylinder in a 2d
projection. On the other hand, explicit modeling of the mo-
tion of occluding boundaries may be worth investigating.



9. Summary and Conclusions

We presented a variational method for segmenting a
video sequence into spatio-temporal domains of homoge-
neous motion. To this end, we formulated the problem
of motion estimation as one of Bayesian inference. We
proposed a geometric interpretation of the optic flow con-
straint in terms of the angle between the spatio-temporal
gradient and the homogeneous velocity vector. We argued
that the associated conditional probability on the spatio-
temporal gradient is superior to the commonly considered
least-squares criterion in the context of motionsegmenta-
tion. Our approach constitutes a generalization of themo-
tion competitionframework [4] to the space-time domain.

Based on a few explicitly stated assumptions, we derived
a cost functional which depends on the motion parameters
for a set of disjoint regions and on a hypersurface separating
these regions in space-time. We proposed an implementa-
tion of this functional by a multiphase level set framework,
in which a set of up ton motion regions and the separating
hypersurface are modeled implicitly by a set oflog2 n level
set functions. Minimization of the proposed cost functional
with respect to its dynamic variables results in an eigenvalue
problem for the parameters modeling the motion in each re-
gion, and in a gradient descent evolution for the level set
functions embedding the separating hypersurface.

Numerical results on real-world image sequences
demonstrate that minimizing a single cost functional can
generate a sensible segmentation of the motion in a video
sequences. Compared to alternative approaches of layer ex-
traction, we do not perform any preprocessing such as local
disparity estimation, camera calibration or prior rectifica-
tion of individual frames. Instead, all results are obtained
by minimizing a cost functional which exclusively depends
on the spatio-temporal image gradients of the sequence.

Acknowledgments

This research was supported by ONR N00014-02-1-
0720 and AFOSR F49620-03-1-0095.

References

[1] M. J. Black and P. Anandan. The robust estimation of multi-
ple motions: Parametric and piecewise–smooth flow fields.
Comp. Vis. Graph. Image Proc.: IU, 63(1):75–104, 1996.

[2] V. Caselles and B. Coll. Snakes in movement.SIAM J.
Numer. Anal., 33:2445–2456, 1996.

[3] T. Chan and L. Vese. Active contours without edges.IEEE
Trans. Image Processing, 10(2):266–277, 2001.

[4] D. Cremers. A variational framework for image segmenta-
tion combining motion estimation and shape regularization.
In C. Dyer and P. Perona, editors,IEEE CVPR, volume 1,
pages 53–58, Madison, June 2003.

[5] G. Farneb̈ack. Very high accuracy velocity estimation using
orientation tensors, parametric motion, and segmentation of
the motion field. InICCV, volume 1, pages 171–177, 2001.

[6] F. Heitz, P. Perez, and P. Bouthemy. Multiscale minimiza-
tion of global energy functions in some visual recovery prob-
lems. Comp. Vis. Graph. Image Proc.: IU, 59(1):125–134,
1994.

[7] B. Horn and B. Schunck. Determining optical flow.A.I.,
17:185–203, 1981.

[8] P. Kornprobst, R. Deriche, and G. Aubert. Image sequence
analysis via partial differential equations.J. Math. Im. Vis.,
11(1):5–26, 1999.

[9] B. D. Lucas and T. Kanade. An iterative image regis-
tration technique with an application to stereo vision. In
Proc.7th International Joint Conference on Artificial Intelli-
gence, pages 674–679, Vancouver, 1981.

[10] E. Memin and P. Perez. Dense estimation and object-based
segmentation of the optical flow with robust techniques.
IEEE Trans. on Im. Proc., 7(5):703–719, 1998.

[11] J.-M. Morel and S. Solimini.Variational Methods in Image
Segmentation. Birkhäuser, Boston, 1995.
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Evolution of the first spatio-temporal motion interface

Evolution of the second spatio-temporal motion interface

Evolution for frame number 2

Evolution for frame number 5

Evolution for frame number 8

Figure 6. Spatio-temporal sequence segmentation for the four-phase model. The top rows show the
evolution of the spatio-temporal surfaces given by the zero level sets of the embedding functionsφ1 andφ2. The lower
rows show various temporal slices of these surfaces, corresponding to the 2nd, 5th and 8th frame of the sequence.
Note that the evolving surfaces propagate both in space and time during energy minimization. Due to the level set
representation, topological changes of the evolving surface are facilitated – see the last two frames of the top row.
In the final segmentation the phases clearly separate foreground, midplane and background. For better visibility, the
simultaneously estimated piecewise constant motion field is not shown here.


