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The Visual Hull Concept for Silhouette-Based
Image Understanding

Aldo Laurentini

Abstract— Many algorithms for both identifying and recon-
structing a 3-D object are based on the 2-D silhouettes of the ob-
ject. In general, identifying a nonconvex object using a silhouette-
based approach implies neglecting some features of its surface as
identification clues. The same features cannot be reconstructed
by volume intersection techniques using multiple silhouettes of
the object.

This paper addresses the problem of finding which parts
of a nonconvex object are relevant for silhouette-based image
understanding. For this purpose, the geometric concept of visual
hull of a 3-D object is introduced. The visual hull of a 3-D object
S is the closest approximation of S that can be obtained with the
volume intersection approach. An equivalent statement, relative
to object identification, is that the visual hull of S is the maximal
object silhouette-equivalent to S, i.e., which can be substituted
for S without affecting any silhouette. Only the parts of the
surface of S that also lie on the surface of the visual hull can
be reconstructed or identified using silhouette-based algorithms.
The visual hull of an object depends not only on the object itself
but also on the region allowed to the viewpoint. Two main viewing
regions can be considered, resulting in the external and internal
visual hull. In the former case the viewing region is related to
the convex hull of S, in the latter it is bounded by S itself. The
internal visual hull also admits an interpretation not related to
silhouettes: the features of the surface of S' that is not coincident
with the surface of the internal visual hull cannot be observed
from any viewpoint lying outside the convex hull.

After a general discussion of the visual hull and its properties,
algorithms for computing the internal and external visual hulls
of 2-D objects and 3-D planar face objects are presented and
their complexity analyzed. In general, the visual hull of a 3-D
planar face object turns out to be bounded by planar and curved
patches. A precise statement of the concept of visual hull appears
to be novel, as is the problem of its computation.

Index Terms— Computer vision, image understanding, shape
recognition, silhouettes, shape from contour, volume intersection,
convex hull, visual hull.

I. INTRODUCTION

O understand the 3-D content of a scene is a central

problem in computer vision, since it can allow computer-
driven equipment to perform tasks such as navigation, ma-
nipulation, and visual recognition. Many approaches have
been proposed for identifying or reconstructing 3-D objects
when 2-D images are available; these approaches are usually
categorized as shape-from-X, according to the information
used.
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Fig. 1. The volume intersection approach to object reconstruction.

Among other image cues, the silhouettes of a 3-D object
S can be selected as sources of shape information. The
2-D silhouette, obtained as a parallel or perspective pro-
jection of S onto the image plane, has been indicated as
an effective psychophysical clue to shape understanding [1].
Object recognition based on silhouettes has been performed
for many years by human observers. Referring to computer-
based systems, obtaining the 2-D silhouette is usually a
computationally simple task, one that can be most often
performed by thresholding an intensity image. The algorithms
for obtaining the silhouettes, or their boundaries, usually also
perform well with degraded images. For these reasons, the
sithouette is a favorite cue for image understanding.

A number of silhouette-based algorithms have been pro-
posed for object identification [2]-[9]; many industrial vision
systems also identify objects or their attitude using silhouettes.

Object reconstruction can be performed using the volume
intersection approach, which recovers the volumetric descrip-
tion of the object from multiple silhouettes. This approach,
proposed in [10] by Martin and Aggarwal, and used by
many object reconstruction algorithms [11]-[17], consists in
intersecting the solid regions of space in which the object
is constrained to lie by each silhouette. These regions are
cones obtained by back projecting from a viewpoint V the
corresponding silhouette for perspective projections (see Fig.
1), or cylinders obtained by sweeping the silhouette along a
line parallel to the viewing direction for orthographic pro-
jections. In the following, as the orthographic projection can
be considered a limit case of perspective projection, we will
always refer to these regions as cones. The boundary of each
cone, which consists of all the half-lines starting at V' and
tangent to S, will be referred to as the circumscribed cone of
S relative to V.

As the number of cones increases, the object is reconstructed
with higher precision, Some papers also address the problem
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Fig. 2. Two objects that cannot be distinguished using silhouettes

of specifying the viewpoints that optimize the construction,
without a priori information on the object [18].

In spite of their attractive features, silhouettes can be
insufficient clues for fully understanding 3-D shapes. It is
clear that identification algorithms based on silhouettes are not
always able to discriminate different nonconvex objects. For
instance, no silhouette-based algorithm appears to be able to
tell one of the two objects 57 and Sz in Fig. 2 from the other.
The difference between S7 and S5 consists in a small cube that
lies in a concavity. It is easy to understand that this cube does
not manifest itself in any possible silhouette of the objects, at
least considering viewpoints not too near to the object.

The silhouette-based approach to object identification there-
fore raises questions like the following.

* Which part of the surface of a 3-D object S can affect

the silhouettes of the object?

* To what extent can the complementary part of the sur-
face of S take different shapes without affecting any
silhouette?

The algorithms based on the volume intersection approach
are not able to exactly reconstruct any possible object, not even
performing infinite intersections. Here and in the following,
“to exactly reconstruct” means “to reconstruct with arbitrarily
high precision,” which is the correct statement referring to the
reconstruction of general solids, e.g. a sphere. It is not difficult
to recognize that none of the simple polyhedral objects S;
and S in Fig. 2, and S3 and Sy in Fig. 3, can be exactly
reconstructed using volume intersection, at least considering
viewpoints not “too near” the object.

The silhouette-based approach to object reconstruction
raises therefore questions such as the following.

* Which part of the surface of a 3-D S object can be exactly

reconstructed with volume intersection?

* When S cannot be exactly reconstructed, which is the
closest approximation of S that can be obtained using
volume intersection techniques?

Precise answers to all the previous questions will be pro-
vided in the following sections. Here we will acquire some
insight into the problem by inspecting the planar face object
Sy in Fig. 3. This object is sufficiently simple to answer the
previous questions by an intuitive analysis.

Let us assume that the possible viewpoints are not too
near the object (we will specify in the following the precise
meaning of this statement). It is not difficult to realize that the
surface highlighted in Fig. 4(a) can be reconstructed by volume
intersection. This is also the surface relevant for the silhouettes
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Two objects that cannot be reconstructed using volume intersection.
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Fig. 4. The behavior of Sy with respect to silhouette-based identification and
reconstruction. (a) The silhouette-active and inactive surfaces of Sy. (b)S4 can
assume any shape inside P without affecting any silhouette. (c) The closest
approximation of Sy that can be obtained with volume intersection.

of Sy. Let this surface be the silhouette-active surface of Sy.
The complementary silhouette-inactive surface of S, is also
shown in Fig. 4(a). This surface can take any shape, without
affecting any silhouette, inside the pentahedron P shown in
Fig. 4(b), bounded by the contour-inactive surface and the
rectangle ABCD. The closest approximation of Sy, i.e., the
smallest object that can be obtained using volume intersection
techniques, is the object in Fig. 4(c), which is the union of S,
and the pentahedron P.

The limits of the contour-based approach for understanding
nonconvex shapes have been qualitatively recognized in many
papers (see for instance [10] and [11]). Until now, however,
to the author’s knowledge this topic has not been thoroughly
discussed, and no general answers to the previously stated
questions are available,

The purpose of this paper is to develop a general geometric
tool for dealing in a simple and straightforward way with the
questions raised for nonconvex objects by the silhouette-based
approach to image understanding. This tool will be called the
visual hull of an object S. Referring the reader to the following
section for more precise definitions, here we introduce the
general idea of visual hull. Broadly speaking, the visual hull
of an object S is the envelope of all the possible circumscribed
cones of S. An equivalent intuition is that the visual hull is
the maximal object that gives the same silhouette of S from
any possible viewpoint. For instance, the visual hull of the
sample object Sy is shown in Fig. 4(c). Its surface consists of
two parts: the contour-active surface of Sy, and the rectangle
ABCD. We can consider this second surface as produced by
all the visual rays tangent to S at the segments AB and
atCD.

The visual hull idea has been first introduced by the author
in [19], together with a preliminary algorithm for its compu-
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tation in 2-D. An algorithm for computing the visual hull of
a solid of revolution is described in [20].

The content of this paper is as follows. In Section II, precise
definitions of visual hull are stated and its general properties
analyzed. With reference to the possible regions that contain
the viewpoints, two main cases are considered and the external
and internal visual hulls are defined. In Section III, efficient
algorithms for computing both the internal and external visual
hulls in 2-D are described. An algorithm for the computation
of the silhouette-active surface of a 3-D polyhedral object,
based on the 2-D algorithm of Section III, is presented in
Section IV. In Section V, the problem of computing the visual
hull of a general polyhedron is addressed. The surfaces that
are potential boundaries of the external and internal visual
hulls of polyhedral objects are determined. It turns out that the
visual hulls of polyhedra are bounded by planar and quadric
surfaces. Finally, algorithms are presented for finding both
visual hulls.

II. THE VISUAL HULL: DEFINITIONS
AND GENERAL PROPERTIES

This section is organized as follows. In Section II-A a
formal definition of the visual hull of S relative to a viewing
region is given. It is shown that this definition conforms
to the intuitive discussion of Section I, and the questions
there presented admit simple answers in terms of visual hull.
In Section II-B, considering viewpoints outside the convex
hull of the object, we show that there is a unique visual
hull, not exceeding the convex hull, for any viewing region
completely enclosing S. We refer to this main case as the
external visual hull. Section II-C deals with an unrestricted
viewing region. The corresponding internal visual hull also
supplies information on the part of surface of S that is not
observable from points outside its convex hull.

A. The Visual Hull of an Object Relative to a Viewing Region

Let R be the viewing region of 3-D Euclidean space that
contains the viewpoints that are allowed for observing the
object S. We must take into account the position allowed to
the viewpoint V, and we define the visual hull as dependent
not only on S but also on R. We give the following simple
geometric definition, which characterizes the points belonging
to the visual hull.

Definition 1: The visual hull VH(S,R) of an object S
relative to a viewing region R is a region of E® such that,
for each point P € VH(S, R) and each viewpoint V € R,
the half-line starting at V' and passing through P contains at
least a point of S.

We see obviously that S < V H(S), since any point of S
satisfies this definition. It is immediately possible to verify that
Definition 1 satisfies the intuitive idea of visual hull stated in
the introduction. In fact, the two following propositions can
be obtained.

Proposition 1: 'V H(S, R) is the maximal object silhouette-
equivalent to .S with respect to R (i.e., that gives the same
silhouette as S when observed from any V' € R).

In fact, the following statements apply.

1) VH(S, R) is silhouette-equivalent to .S with respect to
R, since 1) according to Definition 1, the projection of
any point P € VH(S, R) from any viewpoint V € R
belongs to the silhouette of S obtained from V, and 2)
the projection of any point 2 € S from any viewpoint
V € R belongs to the silhouette of V H(S, R) obtained
from V, since S < VH(S, R).

2) VH(S,R) is the maximal silhouette-equivalent object,

since for any point P’ ¢ VH(S,R), there is at least
a line, starting at a point V' € R and passing through
P’, that does not intersect S. Therefore the projection
of P’ does not belong to the silhouette of S obtained
from V. This implies that P’ cannot belong to an object
silhouette-equivalent to S. O

Proposition 2: VH(S, R) is the closest approximation of
S that can be obtained using volume intersection techniques
with viewpoints V € R.

In fact, only points P ¢ VH(S,R) can be removed by
intersecting 3-D cones, since only such points can lie outside
some silhouette and therefore outside some 3-D cone. ]

Another property of the visual hull can be readily obtained.

Proposition 3: If R > R/, then VH(S,R) < VH(S, R').

Of course, if a wider viewing region is available, a greater
number of cones can be intersected and more points can be
removed. O

In conclusion, the definition given for the visual hull of
an object S relative to a viewing region R conforms to the
intuitions reported in the introduction. The following answers
to the questions there reported can be given in terms of visual
hull:

« sa(S, R), the silhouette-active surface of S relative to the
region R, is the part of the surface s(S) of S that also
belongs to vh(S, R), the boundary of VH(S, R).

* si(S, R), the silhouette-inactive surface of S, can assume
any shape inside the volume VH(S,R) — S without
affecting any silhouette obtained from R.

» sa(S,R) is the part of s(S) that can be exactly recon-
structed by volume intersection using sithouettes obtained
from R.

+ VH(S,R) is the closest approximation of S that can
be obtained by volume intersection using silhouettes
obtained from R.

Using the visual hull concept, other synthetic statements
referring to silhouette-based image understanding can be
formulated. For instance, the following rules apply.

+ Two objects S and S’ can be discriminated using
their silhouettes observed from a viéwing region R iff
VH(S,R) # VH(S',R).

* An object S can be exactly reconstructed by volume
intersection techniques using silhouettes observed from
a viewing region R iff S = VH(S, R).

Let us make a final remark:

Proposition 4: The silhouette-active surface sa(S, R) of an
object uniquely determines its visual hull VH(S, R).

This proposition follows immediately from the fact that all
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Fig. 5. The visual hull relative to regions completely enclosing S belongs

to its convex hull.

the circumscribed cones relative to an object are determined
uniquely by its silhouette-active surface.

B. The Main Case: The External Visual Hull

According to definition 1, there is an infinite set of visual
hulls of an object S, one for each possible viewing region R.
This seems to reduce in some way the effectiveness of the
idea. Actually, we will show that for each object S there is
a main case of visual hull, to which the majority of practical
cases can be referred. In addition, we will see that this main
case is related to C'H(S), the convex hull of S.

Observe first that in many practical cases 1) the object to
be identified or reconstructed can assume any attitude with
respect to the viewpoint V, and 2) V lies at some distance
from the unknown object.

Let us consider therefore the visual hull VH (S, R') relative
to a region I’ that completely encloses S. Let us also suppose
that

R € R, =E*~ CH(S)

i.e., no viewpoint is allowed inside the convex hull of the
object. It is easy to show that the following proposition holds.
Proposition 5:

VH(S.R') < CH(S).

To prove this statement, let us consider a point > ¢ CH(S).
We can easily find viewpoints such that the viewline passing
through {? does not intersect S. Viewpoints of this kind lie
on the plane p passing through I’ and normal to the segment
P, where () is the point of CH(S) closest to I. In fact, by
contradiction, let us suppose that the viewline V P, lying on
p. intersects C'H(S) at point T (see Fig. 5). Point R, which
belongs to the convex hull as a linear combination of () and
T, and such that I’R? is normal to Q7, would be closer to P
than (), against the hypothesis. |
Let us now consider another viewing region R”, which like
R’ encloses S and lies outside the convex hull. We have
Proposition 6:

VH(S.R)=VH(S.R").

In fact, for any point Q € VH(S. '), and for any half-line
passing through (2 and starting at V/ € R’, it is possible to find
a point V" € R” on the same half-line. Vice-versa, for any
point ) € VH(S. ") and for any half-line passing through
Q starting at V” € R”, it is possible to find a point V/ € R’
on the same half-line (see Fig. 6). Therefore, according to
definition 1, any point  belonging to V H (S, R’) also belongs
to VH(S.R") and vice-versa. O
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Fig. 6. All the visual hulls of S relative to regions completely enclosing
S are equal.
Fig. 7. The visual hulls relative to R'" and R’ are different.

Observe that proposition 6 is no more guaranteed to hold if
one or both viewing regions have parts inside the convex hull,
since one of these regions can have points inside the visual hull
of the other. As an example, let us consider the 2-D case of Fig.
7, where the region R’ has a part inside the convex hull of S.
It can be easily verified by inspection that V H(S, R') contains
the quadrangular region ABCD, and V H(S, R") contains the
pentagonal region ABCDE. This is because the viewpoints of
R that also belong to VH(S. R') “dig” the visual hull relative
to R’, deleting the triangular region ADE.

In conclusion, there is a unique visual hull, not exceeding
the convex hull of S, relative to all the viewing regions that
enclose S and do not enter its convex hull.

Definition 2: VH(S. R.) is defined as the external visual
hull, or simply the visual hull of S, V H(S), without any other
specification.

The surface of S coincident with the surface vh(S) of
V H(S) will be said to be the external silhouette-active surface
of S or, briefly, the silhouette-active surface sa(S). Actually,
according to the above discussion, the viewing region relative
to the visual hull can extend also inside the convex hull, as long
as it does not enter the visual hull itself. This suggests another
definition of external (or narural) visual hull: VH(S) is the
largest visual hull of S whose viewing region is bounded by
the visual hull itself.

V H(S), which we made implicit reference to in the intro-
duction considering viewpoints “not too near” to the object,
has other interesting properties. Let us consider any viewing
region R, that is a subset of R. and does not include S.
The visual hull VH(S. R,) relative to this region is strictly
related to VH(S). In fact, VH(S. R,) contains V H(S), and
its surface vh(S. R,) is equal to the surface vh(S) of VH(S)



154 1EEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 2, FEBRUARY 1994

Rs
B VH(S,Rc)
B3 .8 VH(S,Rs)

Fig. 8. The visual hull relative to R, can be obtained from the visual hull
relative to R...

at the points of tangency to VH(S) of lines passing through
R,. The remaining part of vh(S, R,) is bounded by the lines
tangent to both R, and V H(S), as it is shown by the example
of Fig. 8, where 2-D sections of R, VH(S) and VH(S, R;)
are presented.

A point @ € VH(S) can be characterized very simply
in terms of lines passing through . In fact, we have the
following proposition.

Proposition 7: @ belongs to VH(S) iff any line passing
through P contains at least one point of S.

This statement will be used in the following for computing
the visual hull.

C. The Internal Visual Hull

If the boundary of the viewing region is S itself, we have
another case worth considering. Let R; = E® — S.

Definition 3 VH(S, R;) is defined as the internal visual
hull of S, IVH(S).

The surface of S coincident with the surface ivh(S) of
IVH(S) will be said to be the internal silhouette-active
surface of S, isa(S). Also, let the complementary surface be
the internal silhouette-inactive surface, isi(S).

The points belonging to the internal visual hull can be
simply characterized in terms of half-lines:

Proposition 8: () belongs to IVH(S). iff any half-line
passing through  contains at least one point of S.

This statement, like the previous one relative to the visual
hull, will be used for constructing the internal visual hull.

An inspection of all the sample objects so far considered
shows that their internal visual hulls are equal to the corre-
sponding objects.

It is not likely that an attempt will be made to recognize or
reconstruct objects using silhouettes from a viewpoint lying
inside their convex hull. However, the internal visual hull
admits another interesting visual interpretation not related to
silhouettes. In fact, from proposition 8 the following follows
immediately.

Proposition 9: isi(S), the internal silhouette-inactive sur-
face, cannot be observed from any viewpoint V ¢ CH(S).

Therefore, the geometric concept of internal visual hull can
be used for determining which features (edges, textures, etc.)
of a 3-D nonconvex object will never appear on any image

of the object obtained from points outside the convex hull.
Observe that to be V outside CH(S) is a sufficient condition
for proposition 9 to hold; #s¢(S) could be unobservable also
from points belonging to CH(S).

Since the viewing region relative to IV H(S) is the largest
among the possible viewing regions, from proposition 3 we
obtain the following.

Proposition 10:

IVH(S) < VH(S).

III. THE COMPUTATION OF V H(S) AND OF IVH(S) IN 2-D

An effective use of the visual hull idea requires algorithms
for its computation. The visual hull is basically a 3-D entity;
algorithms for finding visual hulls in 2-D could appear of little
use. Actually, the 2-D algorithms are able to deal with 2.5-D
sweep solids. In addition, the 2-D algorithms and concepts are
useful for solving the 3-D problem for planar face objects,
as we will see in the following. Also, the algorithms for
computing both visual hulls of solids of revolution presented
in [20] stems from the 2-D algorithms.

The content of this section is as follows. In III-A an
algorithm for computing the visual hull of a set of polygons
SP is presented. The algorithm is based on the simple
observation that a point does not belong to the visual hull if
there are lines passing through this point that do not intersect
SP. It will be shown that these visual lines can be arranged
into families, and the plane can be divided into polygonal
zones such that the visual lines passing through every point of
each zone can be arranged into the same number of families.
After constructing this partition of the plane, the visnal hull
can be obtained visiting all the zones and merging the zones
having zero families of visual lines.

In ITI-B we present an algorithm for computing the internal
visual hull. This algorithm is derived from the previous one,
with suitable modifications.

A. An Efficient Algorithm for Computing the 2-D Visual Hull

Let us consider a set of polygons SP in a plane p. To
consider a nonconnected set of polygons is clearly a necessary
condition for obtaining VH{SP) # CH(SP). Let us define
a visual line as a straight line belonging to p that does not
intersect SP. The visual lines passing through a point @ can
be grouped into a number of families, like those shown in
Fig. 9.

Definition 4: The visual number VN(Q, SP) of a point Q
relative to SP is defined as the number of families of visual
lines passing through Q.

It is clear that VN(Q, SP) cannot exceed the number of
nonconnected components of SP. Referring to proposition 7,
we have the following.

Proposition 11: A point () belongs to V H(SP) if and only
if itis VN(Q,SP) = 0.

The basic idea of the algorithm for finding VH consists
of dividing the plane into regions containing points with the
same visual number, and in merging all the regions whose
visual number is zero.
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Fig. 9. Through @ pass two families of visual lines.

To obtain this partition of the plane, we will use a number of
active straight lines. A line is defined to be active if it contains
one Or more active segments; an active segment is a part of a
line that is the boundary between points whose visual numbers
differ by one. In the following, with the words tangent to a
polygon (or polyhedron) S we will specify straight lines that
share with the boundary and only the boundaries of S any
number of points. It is clear that active lines must be searched
among the lines that are tangent to SP at two points and do
not intersect SP at any other point. Analyzing these lines, we
find the cases of active lines shown in Fig. 10, where these
principles apply.

1) The active segments are highlighted with a thicker line.

2) The arrows at both ends of the active lines indicate that
these lines do not cross SP at any other point.

3) The arrows crossing the active segments mark the posi-
tive directions, that is the directions toward the positive
side of each segment, containing a region whose visual
number is higher.

4) In each of the three cases, a point ) on the positive
side of an active segment is shown, together with the
boundary lines of the family of visual lines that will
disappear if the point () crosses the active segment
toward the negative side.

It must be observed that case (c) has been introduced for
the sake of the algorithm, which also visits regions inside SP.

Exceptional alignment conditions of some vertexes of S,
which lead to cases of multiple tangency, will not be analyzed
in detail. In fact, these cases can be easily reduced to com-
binations of the cases with two tangency points, as can be
appreciated from the example shown in Fig. 11. Exceptional
vertexes that are common to more than one pair of edges need
not be considered for finding active lines.

The outline of the algorithm for computing VH(SP) is as
follows.

1) Compute all the active segments.

2) Construct a partition of the plane produced by these
segments using a plane-sweep algorithm [21].

3) Starting from a region inside SP, whose visual number
is 0, traverse the partition in order of adjacent regions
and compute the visual number of each region of the
partition, subtracting or adding one to the number of the

Fig. 10. The three cases (a), (b), and (c) of active lines and their active
segments.

(a)

(©)

Example of decomposition of a case of tangency at three points (a)
into two cases of tangency at two points (b) and (c).

Fig. 11.

previous region, according to the crossing direction of
each active segment.
4) Merge the regions whose VN is zero.

In the following each step will be described in detail and
the complexity of the algorithm analyzed.

Let n be the number of vertexes of S P, which has therefore
O(n) edges. The algorithm that we are presenting is, in
general, more efficient than the algorithm presented in [19]. In
the current case, we compute the active segments and perform
their intersections with a plane sweep algorithm. This allows
us to make the computation time of the algorithm sensitive to
the size of the output. This approach has been recently applied
by Gigus, Canny, and Seidel for constructing a partition of the
plane with segments of straight lines and conics [22].

Step 1: To determine the active segments requires consider-
ing O(n?) pairs of vertexes. Some pruning of these cases can
be performed. Concave vertexes can be discarded. Some of the
lines joining two vertexes can be pruned away in constant time,
testing whether they cross SP at one of the vertexes. Since
the visual hull does not exceed the convex hull (proposition
5), a further pruning can be performed. The potentially active
lines of type (b) in Fig. 10 have potentially active segments
that extend outside the convex hull. The convex hull can
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VH(SP)-SP

Active segments

Fig. 12.  An example of visual hull in 2-D.

be computed in O(nlogn) time [21], and the parts of the
potentially active segments that lie outside the convex hull
can be pruned away in O(n) time for each line. The remaining
lines—or parts of lines—must be checked for intersection with
the O(n) edges of SP. The time bound for finding O(n?)
active segments is O(n?3).

Step 2: Using a plane sweep algorithm we can construct a
data structure containing the vertexes and edges of the partition
in O(mlogm) time, where m is the number of vertexes of the
partition. For each edge we store the positive direction.

Step 3. In this step, we start from a region inside SP whose
visual number is zero and traverse the partition computing the
visual number for each region. The time required for traversing
the partition is O(m), the same required for visiting the dual
graph with a depth-first algorithm [23).

Step 4: Merging the adjacent regions that belong to the
visual hull, for obtaining a more synthetic representation,
requires deleting from the partition all the edges but those
separating regions whose VN are zero and one. The time
required is linear with the size of the partition, as is the time
for outputting the results.

Adding up, the time bound for the algorithm is O(n® +
mlogm), while the bound for the algorithm given in [20]
was O(n*). An example of visual hull is shown in Fig. 12,
where the active segments are highlighted with thicker lines
and each region outside SP is labeled with its visual number.

B. An Algorithm for Computing the 2-D Internal Visual Hull

The basic ideas of this algorithm are similar to those of the
previous one. Observe that for obtaining IV H(SP) # SP it
is not necessary to consider an unconnected SP, as for V H.
Let a visual half-line be a half-line of p that does not intersect
SP. The visual half-lines starting at a point Q can be divided
into a number of families (see Fig. 13).

Definition 5: The internal visual number IVN(Q, SP) is
the number of families of visual half-lines of @ with respect
to SP.

Fig. 13. The internal visual number of Q is three.

T g
(a)
Q
(b)

Fig. 14.  Active lines and active segments for the internal visual number.

It is clear that, according to proposition 8, we have the
following proposition.

Proposition 12: A point () belongs to IVH(SP) if and
only if it is JVN(Q,SP) = 0.

Active segments of active lines separate points whose inter-
nal visual number differ by one. In Fig. 14 the two cases of
active lines are illustrated, with the conventions already used
in Fig. 8. Observe that, unlike the previous case, we do not
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introduce the edges of SP among the active segments. This is
because the IV N of a point lying immediately outside SP can
assume any integer value. Therefore, crossing the boundary of
SP when traversing the partition would require recomputing
IVN.

Another difference with the V H case is that only the active
segment of case (b) in Fig. 14 can bound IV H. It is easy
to understand that the active segments in Fig. 14(a) cannot
bound IV H, since when @ crosses the active segment toward
the negative side there is always another family of visual half
lines in the direction opposite to the family that disappears.
This is not the case of the active lines of the V H algorithm,
which all can bound V H. Let us observe that segments of type
(a), though not possible boundaries of IV H, are necessary for
computing IV N with an algorithm that visits the partition in
O(n) time.

The outline of the algorithm is similar to the one of the
V H algorithm.

1) Compute all the segments active with regard to IV H.

2) Construct a partition of the plane produced by these
segments and by the edges of SP using a plane-sweep
algorithm.

3) Traverse the partition in order of adjacent regions, com-
puting the internal visual number of each region of the
partition and subtracting or adding one to the number of
the previous region, according to the crossing direction
of each active segment. The boundary of SP should not
be crossed. This permits reaching all the regions that
are connected together. Any unconnected regions, that
is, “holes” in SP, belong to the visual hull.

4) Merge the regions whose IV N is zero.

The steps of the algorithm are similar to those of the VH
algorithm and therefore will not be described in detail. One
difference is that, after computing the active segments in step
1, we can check whether all the lines belong to case (a) or
not. In the former case the algorithm halts, since we have that
IVH(SP) = SP. This happens for instance to the object in
Fig. 12. In addition, it must be observed that, since we do not
traverse regions inside S P, we must compute the IV H of the
starting region. This requires 1) computing all the lines joining
a point P chosen at random in the region with any vertex V;
of SP, and 2) intersecting the lines with the boundary of SP.
Any line that intersects SP only at V; bounds a family of
internal visual lines, and therefore the IV N is the half of the
number of these lines.

In conclusion, to compute the IV N of the starting region
requires O(n?) time and does not affect the time bound for
the whole algorithms, which is O(n® + mlogm), as in the
VH case.

An example of internal visual hull is shown in Fig. 15,

IV. COMPUTING THE SILHOUETTE-ACTIVE
SURFACES OF POLYHEDRAL OBJECTS

In this section, after discussing some features of the
silhouette-active surface sa(S) of a 3-D object S with
respect to image understanding, we present an algorithm for
computing sa(S) when S is a polyhedron. For doing this, we
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Fig. 15.  An example of internal visual hull.

Fig. 16. A solid S (a) and its section (b) with the plane p. The surface of
S can be exactly reconstructed, but the object reconstructed is larger than S.

will show that it is sufficient to apply the 2-D VH algorithm
of the previous section in all the planes supporting a face of S.

The knowledge of the silhouette-active surface of a 3-D
object gives partial insight into its behavior with regard to
silhouette-based recognition or reconstruction, since sa(S)
implies uniquely the visual hull (see proposition 4). For
instance, we can state that two objects S’ and S”, observed
from the viewing region R., can be distinguished one from the
other using silhouettes iff sa(S’) # sa(S"), or that an object
S can be exactly reconstructed using volume intersection iff
s(S) = sa(S).

The latter statement requires some remarks. In general, the

.visual hull of an object also consists of parts not connected to S,

which do not belong to S. Therefore, we can have situations
where:

1) The surface of S can be exactly reconstructed;
2) The object reconstructed is larger than S, consisting of
S plus some unconnected parts.

An example of this situation for a 3-D object is shown in
Fig. 16. Of course, the computation of the visual hull of S
allows us to discover if the object reconstructed contains such
nonconnected parts.

A general approach for computing sa(S) consists of com-
puting VH(S) and finding the common boundary of S and
VH(S). Finding VH(S) can be a computationally complex
task, as we will see in the following section. We will show in
this section that, if S is a polyhedral object, the computation
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sa(S1)=sa(S2)

(a)
Fig. 17. 'The silhouette-active surface of both (a) S1 and $2 and (b) a section PSS of S| made by the plane containing the top face of the small cube.

of se(S) can be performed using a simple algorithm based on
the 2-D algorithm of the previous section.

As in 2-D, let a visual line relative to a polyhedron S be
a straight line that does not intersect S; the points lying on a
visual line do not belong to the visual hull. Let » be the number
of vertexes of S, which has therefore O(n) edges and faces.
Finally, let p; be the plane supporting a face F; of S and let
PS; indicate the polygonal intersection of p; and S, excluding
F; itself. For finding which part of Fj, if any, lies on sa(S),
let us consider a point @ lying on F;. @ belongs to sa(S)
if there is a visual line passing outside S at an infinitesimal
distance from (); this visual line therefore must be parallel to
F;. We immediately draw the following conclusion.

Proposition 13: A point Q of a face F; belongs to sa(S)
iff it does not belongs to VH(PS;).

Therefore we can use the following simple algorithm for
computing sa(S). For each face,

13)

2)

Find PSi, the intersection of p; and S, minus F; itself;
Compute V H(PS,), using the 2-D algorithm described
in Section III;

Determine F; — V H(PS;), which is the part of F; that
belongs to sa(S).

In more detail, the computation can be arranged as fol-
lows. First, some pruning can be performed by computing
in O(nlogn) time [21] the convex hull of S and selecting
immediately for membership to sa(S) the faces that belong to
the surface of CH(S). For each of the remaining faces, the
computation of PS; can be performed in O(n) time. Some

3)

further pruning can be performed by merging steps (2) and

(3) above in the following way. When computing the active
segments for the 2-D visual hull algorithm in the plane p;, we
consider only the parts of the active segments that are inside
F;. The subsequent steps of the algorithm—that is, computing
and visiting the partition—are therefore limited to the region
enclosed by Fj, where each region whose visual number is
not zero belongs to sa(S).

Visiting each face requires computing a starting visual
number. This can be performed in O(n?) time, computing
all the lines joining a point of the starting region with the
vertexes, and intersecting each line with the edges of SP. The
number of the lines that touch SP only at a vertex, divided
by two, gives the starting visual number.

For each face the time required is therefore O(n®+k log k),
where & is the size of the partition of the face.
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The time bound for the whole algorithm is therefore O(n* +
np), where p is the average value of klogk. As an example,
let us apply this algorithm to the objects S; and S5 of Fig. 2.
The resulting surface is the same for both objects and is shown
in Fig. 17(a). The faces of the small cube inside the concavity
of S; do not belong to the active surface, as we can verify
for instance from Fig. 17(b), where a section of the object
made with the plane supporting the upper face of the cube
is shown. Since sa(S1) = sa(S2), we have proven formally
that we cannot tell S; from Sy using silhouettes obtained from
viewpoints outside the convex hull of the objects.

Let us conclude this section observing that, unfortunately,
it is not possible to extend the results just obtained for
constructing a similar 2-D algorithm for computing isa(S),
since the visual half-lines starting at a point whose distance
from a face F; is infinitesimal need not to be parallel to F;

V. COMPUTING VH AND IVH FOR POLYHEDRAL OBJECTS

In this section we tackle the problem of computing the visual
hulls of unrestricted polyhedra. For doing this, in V-A we
extend in 3-D the concept of visual number. In V-B we show
that 3-D regions with different visual numbers are separated
by planar or quadric surfaces, which can be easily computed
from the geometry of the object. Instances of visual hulls
of simple polyhedra are presented in V-C. The relationship
between visual hull and aspect graph of polyhedra is discussed
in V-D. A general algorithm for computing the visual hull
of a polyhedron is presented in V-E. As in the 2-D case,
the algorithm constructs a partition of the space into zones
containing points with the same 3-D visual number, computes
the visual numbers, and selects all the zones whose visual
number is zero. Finally, in V-F the features of the internal
visual hull of a polyhedron are briefly discussed and an
algorithm for its computation is outlined.

A. The 3-D Visual Number

For constructing a general algorithm able to compute the
visual hull of a polyhedron S, we will extend in 3-D the
concept of visual number. VN3D(Q,S), the 3-D visual
number of a point ) with respect to S, should be defined
in such a way that the following hold true.

1) Its value determines the membership of Q@ to VH(S).

2) It is possible to compute from the geometry of S a

partition of R® into regions containing points with the
same visual number.
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Fig. 18. Examples of two situations in which an edge of the visual cone
disappears. In (a) E; and E; share the vertex 1; in (b) they do not have a
common vertex.

Let us consider a point @ ¢ S and all the visual lines
relative to S passing through P. These lines fill an infinite
conical volume that we define as the visual cone of () relative
to S.

The boundary of the visual cone consists of a number of
infinite planar faces that will be referred to as visual angles.
Each visual angle is generated by the lines passing through P
and tangent to S at an edge E;, or part of it. We define the
3-D visual number as follows.

Definition 6: VN3D(Q,S) is the number of edges (or
faces) of the visual cone of @) relative to S.

It is clear that this definition satisfies the above requirement
1. We have in fact the following.

Proposition 14: VN3D(Q,S) = 0 if and only if @ €
VH(S).

In the following we will show that definition 6 also satisfies
requirement 2.

B. The Active Surfaces

Let the active surfaces, as the active lines in 2-D, be the
surfaces that contain active segments. The active segments are
parts of surfaces that separate points of B3 whose V N3D are
different, and are therefore potential boundaries of V H(S).

Consider an edge E of the visual cone of a point P relative
to S, and let E; and E; be the edges of .S which originate the
visual angles that intersect at 2. Two cases are possible.

1) E; and E; have a common vertex V.
2) E; and E; have no common vertex.

For finding which are the active surfaces, we will imagine
continuously displacing P until the edge F is removed from
the boundary of the visual cone.

In both cases 1 and 2 the edge E disappears when it
intersects S at an edge Ej. The difference is that in case 1),
E is the line passing through P and V; in case 2), the edge
E intersects F; and E; at different points for each position of
P. Examples of these two situations are shown in Fig. 18(a)
and (b), respectively, as seen from a point lying on E on one
side of E;, E; and Ej.

Let us consider case 1. The active surface for this case is
generated by all the lines that pass through the vertex V and
the edge Ey (or part of it) and do not share with S any other
point, but for the case in which V' and E} belong to the same
face of S. If this happens, the lines that form the active surface
share some segment with this face. Let the active infinite planar
surfaces relative to case 1 be the V' F surfaces.

In case 2, the active surface is generated by all the lines
tangent to S at three edges E;, Ej;, and Fy. It is a curved
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surface. In fact, from basic 3-D analytic geometry we have
that the lines passing through three lines skew to each other
form a hyperboloid of one sheet or a hyperbolic paraboloid.
The second case takes place when the three lines are all parallel
to a plane. We define these curved active surfaces as EEE
surfaces.

In conclusion, we have found two kinds of surfaces that
are active with respect to VN3D and are therefore potential
boundaries of VH(S). All these surfaces are ruled surfaces,
generated by lines tangent to S and sharing with it at least two
points. A main result of the previous discussion is as follows.

Proposition 15: The boundary of the visual hull of a planar-
face object in general is not planar and consists of planar and
quadric patches.

Actually, not all the VE and EEF surfaces that are active
with respect to VN3D can also be boundaries of VH. As an
example, consider the two cases of Fig. 19(a) and (c). The
edges of S that determine the active surfaces are observed
from a viewpoint lying on a line L of the active surface and
are projected onto an image plane normal to this line. In the
first case, relative to a V' E surface, let us analyze the situation
in the plane ¢ passing through L, whose trace in the image
plane is shown in Fig. 19(a). This situation is shown in Fig.
19(b), where the dotted lines indicate visual lines passing on
both sides of every part of L. Therefore, L and the whole
V E surface cannot belong to the boundary of V H(S). In the
second case we analyze three 2-D situations, in three planes
a,b and c passing through L. It is clear (see Fig. 19(d)) that
in plane @ we can construct visual lines on both sides of the
external segments of L, in plane b on both sides of the segment
E»Es, and in plane ¢ on both sides of the segment E;Es.
Therefore neither L nor the EEE surface that contains L can
be boundaries of VH(S). We will not analyze here in detail
all the possible cases, since this is not necessary for the brute-
force algorithm for computing V H(S) that we will present
later in this paper.

C. Examples of Visual Hulls of Simple Polyhedra

This subsection is devoted to clarifying the items presented
so far by discussing some simple examples. Let us consider
first the polyhedron S3, one of the objects in Fig. 3. In Fig.
20(a) S3 is shown together with the part of the active surface
due to F; and Vi that is inside the convex hull. When a
point crosses this surface in the direction shown in figure,
its VN3D changes from 0 to 3. In fact, a visual cone is
generated that is bounded by the three visual angles relative
to Ey, E5, and E3. Therefore, this surface is a boundary of
V H(S3), which is shown in Fig. 20(b). In the same figure
another active surface is shown. It is the V E surface due to
E5 and V3. Crossing this surface in the direction shown in
the figure, VN3D is incremented by one, since the visual
cone acquires a new visual angle relative to E;.

Let us now consider the objects S; and S, of Fig. 2. We
have already found their silhouette-active surface (see Fig.
17). Tt is not difficult to determine the visual hull shown
in Fig. 21(a). There are many active surfaces, some of them
overlapping because of parallel edges. For instance, the surface
pointed at by the arrow in the figure is due to two active VE
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(a) A VE surface and its section made by (b) the plane ¢, showing that the surface cannot bound V' H(.S). Also, the
EEFE surface in (c) cannot bound V H(S), as is shown in (d).

Fig. 19.
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(a)

ACTIVE SURFACES

(b)

Fig. 20. The polyhedron S3 and an active surface (a) that adds three to Y'N3D; V' H(S3) and another active surface (b),
which adds 1 to VN3D.

(2)

ACTIVE SURFACES
(c)

Fig. 21. (a) The visual hull of both S; and S2. The face pointed at by the arrow is generated by two partially overlapping
active surfaces, shown in (b) and (c).

surfaces generated by the pairs vertex-edge (V1, E1), (V3, Ey)
(see Fig. 21(b) and (c)). Crossing this surface in the direction
opposite to the arrow changes V N3D from 0 to 4.

Another object with a slightly more complex concavity is
shown in Fig. 22(a). To determine by inspection its visual hull,
shown in Fig. 22(b), takes some more reflection.

The objects so far considered have no lines tangent at three
points, and therefore no cubic patch belongs to the boundary of
their visual hulls. A cubic patch, on the other hand, is present in
the boundary of the visual hull (Fig. 23(b)) of the polyhedron
in Fig. 23(a). The boundary of the visual hull consists of four

patches, P, P>, P;, and Py, in addition to the silhouette-
active surface. Some of the planar patches are generated by
more than one active surface because of parallel edges. P; is a
segment of the quadric surface generated by the lines tangent
at £y, Ey, and Fj.

D. The Visual Hull and the Aspect Graphs

In this subsection we will discuss briefly the relationship
between the visual hull and the aspect graph. The aspect graph
and its computation have recently become popular research
topics. In short, the aspect graph of a 3-D object stores at
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(a) (b)

(a) An object with a more complex concavity and (b) its visual hull.
Some dotted lines of construction are also shown.

Fig. 22.

AN\

Eq

(a) (®)

Fig. 23. (a) A polyhedron S and (b) its visual hull. P3 is a segment of
a quadric surface produced by the lines tangent to S at the edges E, Fa,
and Ej.

the vertexes of a graph all the topologically distinct line
drawings of an object. The edges of the graph represent visual
events—that is, topological changes in the views. Algorithms
for computing the aspect graph have been given for polygons,
polyhedra, solids of revolution, and other curved objects. For
further details on this matter, the interested reader is referred
to [22] and [24], quoted elsewhere in this paper, and to the
survey paper [25] of Bowyer and Dyer.

Here we will point out that the active surfaces that we have
found in relation to the 3-D visual number are well known in
the field of the computation of the aspect graph of polyhedral
objects. In fact, VE and EEE surfaces are a subset of the
surfaces that divide the viewing space into regions such that
each viewpoint of the region gives topologically equivalent
views. More specifically, the active surfaces relative to VN3D
are the same surfaces relative to the aspect graph that are due
to the visual events on the boundary of the line drawing of the
polyhedron. We could also say that these surfaces generate the
silhouette or contour aspect graph of an object.

E. A Brute-Force Algorithm for Computing the Visual Hull

The computation of the visual hull of a polyhedron S can
be. performed as follows.

1) Compute all the potentially active surfaces.

2) Construct the partition of R* generated by the potentially

active surfaces.

3) Compute VN3D for each cell of the partition.

4) Merge together all the cells whose visual number is zero.
In the first step O(n?) surfaces are computed in O(n?) time,
considering O(r?) V — E pairs and O(n3) EEE triplets.

161

m algebraic surfaces divide R* in O(m3) cells. In our case,
therefore, the partition has O(n®) cells, faces, edges, and
vertexes. The construction of the partition can be performed
in O(n®logn) time using an incremental algorithm, as shown
by Plantinga and Dyer in [24].

The VN3D of a point () chosen at random in a cell can
be computed as follows. Compute first in O(n?) time the
polygonal intersections INT; of O(n) potential visual angle
with the O(n) faces of S. For each visual angle, compute the 2-
D visual number of () relative to INT;. VN3D is obtained by
adding up all the 2-D visual numbers. Since the computation
of each 2-D visual number takes O(n?) time, the VN3D of
each zone is obtained in O(n®) time.

The bound for the computation time of step 3 results
therefore in O(n!2), which is also the bound for the whole
algorithm, since step 4 can be performed in time linear with the
size of the partition. We will not mention some trivial pruning
actions that do not affect the time bound of the algorithm.

F. The Computation of the Internal Visual Hull

- We can deal with the internal visual hull of a polyhedral
object S as we did with the external visual hull, introducing
some suitable modifications. Let us first define the internal 3-
D visual number. Consider a point Q ¢ S and all the visual
half-lines relative to S, starting at P. A visual half-line is a
half-line that does not intersect S. These lines fill an infinite
half-conical volume that we define to be the visual half-cone
of @) relative to S.

The boundary of the visual half-cone, which is coincident
with the circumscribed cone, consists of a number of infinite
planar faces that will be referred to as visual half-angles. Each
visual half-angle is generated by the half-lines starting at Q
and tangent to S at an edge F;, or part of it. We give the
following definition.

Definition 7: IVN3D(Q, S), the internal 3-D visual num-
ber of a point @ relative to S, is the number of edges (or
faces) of the circumscribed cone.

The following proposition becomes clear.

Proposition 15: IVN3D(Q,S) = 0 if and only if Q €
IVH(S).

Since the potentially active surfaces relative to JVN3D
are the same surfaces of the VN3D case, we can use the
same brute-force algorithm for computing IV H, the only
difference being the computation of IV N3D(Q, S) instead
of VN3D(Q,S) for a point Q of each cell. It is easy
to see that this computation can be performed by adding
O(n) 2-D internal visual numbers, each relative to @ and
to the intersections of S with each potential visual half-angle.
Therefore the computation of IV N3D takes O(n?) time, so
the overall time bound of the algorithm is O(n!2) again.

VI. CONCLUSION

We have addressed the problem of finding which parts of
a nonconvex object are relevant for silhouette-based image
understanding. A new geometric entity, the visual hull, has
been introduced. We have shown that the knowledge of the
visual hull of an object provides a full solution to this problem.
The visual hull V H(S, R) of an object S is the maximal object
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silhouette-equivalent to S with respect to a viewing region R.
VH(S,R) also is the closest approximation of S that can
be obtained applying the volume intersection technique with
viewpoints belonging to R.

Analyzing the possible viewing regions, the existence of
a main case relative to the external, or natural, visual hull
V H(S) has been recognized. V H(S) is the visual hull relative
to the region R., which is complementary to the convex hull
of S; it also is the visual hull of any viewing region that is
a subset of R, and completely encloses S. In addition, the
visual hull relative to any region that is a subset of R. can be
constructed starting from VH(S).

The case of the largest possible viewing region, bounded by
S itself, has been also considered. The corresponding internal
visual hull IV H(S) also allows us to find which features of
the surface of S cannot appear on any image of the object
obtained from viewpoints not belonging to the convex hull.

Two efficient algorithms have been described for computing
the visual hull and the internal visual hull of 2-D objects. These
algorithms divide the plane into regions that either entirely
belong to the visual hulls or to its complement. The time
bound of both these algorithms is O(n® + mlogm), where
7n is the size of the partition and n is the number of algebraic
curves defining the boundary of the object. The 2-D algorithms
allow us to find the visual hulls of 2% — D sweep solids and
provide the basis for an algorithm described elsewhere for
dealing with solids of revolution.

The silhouette-active surface of a 3-D object gives a partial
insight into the behavior of the object under silhouette-based
recognition algorithms. For instance, two objects can be dis-
criminated using silhouettes if their silhouette-active surfaces
are different. We have shown that for a polyhedron the external
silhouette-active surface can be computed applying the 2-D al-
gorithm in each of the planes supporting a face of S. No similar
algorithm is possible for the internal silhouette-active surface.

We have also addressed the problem of computing the whole
external visual hull and the internal visual hull of a general
polyhedron. By extending in 3-D some concepts used in the
2-D algorithm, we have been able to find which surfaces
are potential boundaries of both visual hulls. The result is
planar and ruled quadric surfaces, so that the boundary of the
visual hull of a general polyhedron may be nonplanar. These
surfaces also are a subset of the surfaces used by the algorithms
for computing the aspect graph of a polyhedron. Brute-force
algorithms for computing in O(n!2) time the visual hulls of
general polyhedra have been given.

To be able to compute the visual hull of objects with curved
surfaces would enhance the effectiveness of the visual hull
idea. This topic is currently under investigation, together with
efficient algorithms for the polyhedral case.
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