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Abstract

This paper presents a general trainable framework
for object detection in static images of cluttered scenes.
The detection technique we develop is based on a
wavelet representation of an object class derived from a
statistical analysis of the class instances. By learning
an object class in terms of a subset of an overcomplete
dictionary of wavelet basis functions, we derive a com-
pact representation of an object class which is used as
an input to a support vector machine classifier. This
representation overcomes both the problem of in-class
variability and provides a low false detection rate in
unconstrained environments.

We demonstrate the capabilities of the technique in
two domains whose inherent information content dif-
fers significantly. The first system is face detection
and the second is the domain of people which, in con-
trast to faces, vary greatly in color, texture, and pai-
terns. Unlike previous approaches, this system learns
from ezamples and does not rely on any a priori (hand-
crafted) models or motion-based segmentation. The
paper also presents a motion-based extension to en-
hance the performance of the detection algorithm over
video sequences. The results presented here suggest
that this architecture may well be quite general.

1 Introduction

This paper presents a novel framework for object
detection in cluttered scenes, based on the use of an
overcomplete dictionary of basis functions and com-
bined with statistical learning techniques. The detec-
tion of real-world objects of interest, such as faces and
people, poses challenging problems: these objects are
difficult to model, there is significant variety in color
and texture, and the backgrounds against which the
objects lie are unconstrained. In contrast to the case
of pattern classification where we need to decide be-
tween well-defined classes, the detection problem re-
quires us to differentiate between the object class and
the rest of the world. As a result, the class model must
accommodate the intra-class variability without com-
promising the discriminative power in distinguishing
the object within cluttered scenes. We also cannot as-
sume that there are a certain number of objects, if any,
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in the image; MAP or maximum likelthood methods
will not work since the classification of each pattern
in an image is done independently. This paper also
introduces an extension that uses motion cues to im-
prove detection accuracy over video sequences. This
motion module is a general one that can be used with
many detection algorithms and does not compromise
the ability of the system to detect non-moving objects.

Initial work on the detection of rigid objects in
static images, such as street signs or faces, Betke &
Makris[1], Yuille, et. al.[21], used template match-
ing approaches with a set of rigid templates or hand-
crafted parameterized curves. These approaches are
difficult to extend to more complex objects such as
people, since they involve a significant amount of prior
information and domain knowledge. In recent re-
search, more closely related to our system, the detec-
tion problem is solved using learning-based techniques
that are data driven. This approach was used by Sung
&PoggioPS] and Vaillant, et al.[18] for the detection
of frontal faces in cluttered scenes, with similar archi-
tectures presented by Moghaddam and A. Pentland
[9], Rowley, et. al.[14], and Osuna et al.[11].

Most previous systems that detect objects in video
sequences focused on using motion and 3D models or
constraints to find people: Tsukiyama & Shirai[17],
Leung & Yang[6], Hogg[4], Rohr[13], Wren, et al.[20],
Heisele, et. al.[3], McKenna & Gong[8]. These sys-
tems suffer from restrictive assumptions on the scene
structure, for instance, a single object in the scene or a
stationary camera and a sequence of frames. In some
of these motion-based systems, the focus is on model
fitting, tracking and motion interpretation. In con-
trast, our work addresses the issue of detection in sin-
gle static images in unconstrained environments with
cluttered backgrounds, while making no assumption
on the scene structure.

One of the major issues in developing a system that
will handle complex classes of objects is finding an
appropriate image representation. To illustrate the
importance of an appropriate visual coding, Figure 1
shows images of people and their corresponding edge
maps. It is clear that both the pixel and edge-based
representations are inadequate; the pedestrian images
vary greatly in color and texture and the edge maps



Figure 3: Examples of faces used for training. The images are gray level of size 19 x 19 pixels.
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Figure 4: Ensemble average values of the wavelet coefficients for faces coded using color. Each basis function is
displayed as a single square in the images above. Coefficients whose values are close to the average value of 1
are coded gray, the ones which are above the average are coded using red and below the average are coded using
blue. We can observed strong features in the eye areas and the nose. Also, the cheek area is an area of almost

uniform intensity, ie. below average coefficients.
of images of faces. (d)-(f) vertical, horizontal an

Figure 5: The significant basis functions for face detec-
tion that are uncovered through our learning strategy,
overlayed on an example image of a face.

the normalized coefficients over the entire set of ex-
amples. The normalization has the property that the
average value of coefficients of random patterns will be
1. If the average value of a coefficient is much greater
than 1, this indicates that the coefficient is encoding a
boundary between two regions that is consistent along
the examples of the class; similarly, if the average value
of a coefficient is much smaller than 1, that coefficient
encodes a uniform region.

To illustrate this analysis, we code the coefficients’
values using grey-scale in Figure 4, where each coeffi-
cient, or basis function, is drawn as a distinct square
in the image. The arrangement of the squares cor-
responds to the spatial location of the basis func-
tions, where strong coefficients (large average values)
are coded by darker grey levels and weak coeflicients
(small average values) are coded by lighter grey levels.
It is important to note that in Figure 4, a basis func-
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(Sa)-(c) vertical, horizontal and diagonal coefficients of scale 4 x 4
diagonal coefficients of scale 2 x 2 of images of faces.

tion corresponds to a single square in each image and
not the entire image. It 1s interesting to observe how
the different types of wavelets — vertical, horizontal,
and diagonal — capture various facial features, such as
the eyes, nose, and mouth.

From this statistical analysis, we derive a set of
37 coefficients, from both the coarse and finer scales,
that capture the significant features of the face. These
significant bases consist of 12 vertical, 14 horizontal,
and 3 diagonal coefficients at the scale of 4 x 4 and
3 vertical, 2 horizontal, and 3 corner coefficients at
the scale of 2 x 2. Figure 5 shows a typical human
face from our training database with the significant
37 coefficients drawn in the proper configuration.

For the task of pedestrian detection, we use a
database of 924 color images of people (Figure 1).
A similar analysis of the average values of the coef-
ficients was done for the pedestrian class and Figure
6 shows the grey-scale coding similar to Figure 4. We
refer the interested reader to [10] for the details. It
is interesting to observe that for the pedestrian class,
there are no strong internal patterns as in the face
class; rather, the significant basis functions are along
the exterior boundary of the class, indicating a dif-
ferent type of significant visual information. Through
the same type of analysis, we choose 29 significant
coefficients from the initial, overcomplete set of 1326
wavelet coefficients. These basis functions are shown
overlayed on an example pedestrian in Figure 7.

It should be observed, that from the viewpoint of
the classification task, we could use the whole set of
coefficients as a feature vector. However, using all the
wavelet functions that describe a window of 128 x 64
pixels in the case of pedestrians would yield vectors of
very high dimensionality, s we mentioned earlier. The
training of a classifier with such a high dimensionality,
on the order of 1000, would in turn require too large
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and 3 diagonal coefficients at the scale of 4 x 4 and
3 vertical, 2 horizontal, and 3 corner coefficients at
the scale of 2 x 2. Figure 5 shows a typical human
face from our training database with the significant
37 coefficients drawn 1n the proper configuration.

For the task of pedestrian detection, we use a
database of 924 color images of people (Figure 1).
A similar analysis of the average values of the coef-
ficients was done for the pedestrian class and Figure
6 shows the grey-scale coding similar to Figure 4. We
refer the interested reader to [10] for the details. It
is interesting to observe that for the pedestrian class,
there are no strong internal patterns as in the face
class; rather, the significant basis functions are along
the exterior boundary of the class, indicating a dif-
ferent type of significant visual information. Through
the same type of analysis, we choose 29 significant
coefficients from the initial, overcomplete set of 1326
wavelet coefficients. These basis functions are shown
overlayed on an example pedestrian in Figure 7.

It should be observed, that from the viewpoint of
the classification task, we could use the whole set of
coefficients as a feature vector. However, using all the
wavelet functions that describe a window of 128 x 64
pixels in the case of pedestrians would yield vectors of
very high dimensionality, »s we mentioned earlier. The
training of a classifier with such a high dimensionality,
on the order of 1000, would in turn require too large
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Figure 6: Ensemble average values of the wavelet coefficients coded using gray level. Coefficients whose values
are above the template average are darker, those below the average are lighter. (a) vertical coefficients of random
scenes. (b)-(d) vertical, horizontal and corner coefficients of scale 32 x 32 of images of people. (e)-(g) vertical,
horizontal and corner coefficients of scale 16 x 16 of images of people.

Figure 7: The significant basis functions for pedestrian
detection that are uncovered through our learning
strategy, overlayed on an example image of a pedes-
trian. : :

an example set. This dimensionality reduction stage
serves to select the basis functions relevant for this
task and to reduce their number considerably.

3.2 Stage 2: Learning the Class Model

Once we have identified the important basis func-
tions we can use various classification techniques to
learn the relationships between the wavelet coefficients
that define the object class. The classification tech-
nique we use is the support vector machine (SVM)
developed by Vapnik et al.[2][19]. This recently devel-
oped technique has the appealing features of having
very few tunable parameters and using structural risk
minimization which minimizes a bound on the gener-
alization error (see’[11] [12]).
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We train our systems using databases of positive ex-
amples gathered from outdoor and indoor scenes. The
initial negative examples in the training database are
patterns from natural scenes not containing people or
faces. While the target class is well-defined, there are
no typical examples of the negative class. To overcome
this problem of defining this extremely large negative
class, we use the idea of “bootstrapping” training [16}‘
In the context of the pedestrian detection system, af-
ter the initial training, we run the system over arbi-
trary images that do not contain any people, adding
false detections into the training set as examples of the
negative class, and retraining the classifier (Figure 8).
This incremental refinement of the decision surface 1s
iterated until satisfactory performance is achieved.

Initial Training Set

y

Classifier

l

Pedestrian
Detection
System

False Positives

Figure 8: Incremental bootstrapping.to improve the
system performance.
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Figure 9: ROC curves for the detection systems. The detection rate is plotted against the false detection rate,
measured on a logarithrnic scale. The false detection rate is defined as the number of false detections per inspected
window; (a) Face Detection: System A was trained with equal penalty for missed positive examples and false
“detections; systems B and C were trained with penalties for missed positive examples that were 1 and 2 orders
of magnitude greater than the penalty for false detections, (b) People Detection: System A penalizes incorrect
classifications of positive and negative examples equally, system B penalizes incorrectly classified positive examples

5 times more than negative examples.

4 The Experimental Results

The system detects objects in arbitrary positions in
the image and in different scales. Once the training
phase in Section 3 is complete, the system can detect
objects at arbitrary. positions by scanning all possible
locations in the image by shifting the detection win-
dow. This is combined with iteratively resizing the
image to achieve multi-scale detection. For our exper-
iments with faces, we detected faces from the minimal
size of 19 x 19 to 5 times this size by scaling the novel
image from 0.2 to 1.0 times its original size, at incre-
ments of 0.1. For pedestrians, the image is scaled from
0.2 to 2.0 times its original size, again in increments
of 0.1. At any given scale, instead of recomputing the
wavelet coefficients for every window in the image, we
compute the transform for the whole image and do the
shifting in the coeflicient space.

4.1 Face Detection

To evaluate the face detection system performance,
we start with a database of 2429 positive examples
and 1000 negative examples. To understand the effect
of different penalties in the Support Vector training
(see [11] [12]), we train several systems using differ-
ent penalties for misclassification. The systems un-
dergo the bootstrapping cycle detailed in Section 3,
and end up with between 4500 and 9500 negative ex-
amples. Out-of-sample performance is evaluated us-
ing a set of 131 faces and the rate of false detections
is determined by running the system over approxi-
mately 900, 000 patterns from images of natural scenes
that do not contain either faces or people. To give a
complete characterization of the systems, we generate
ROC curves that illustrate the accuracy/false detec-

tion rate tradeoffs, rather than give a single perfor-
mance tesult. This is accomplished by varying the
classification threshold in the support vector machine.
The ROC curves are shown in Figure 9a and indicate
that even higher penalties for missed positive exam-
ples may result in better performance. We can see
that, if we allow one false detection per 7,500 windows
»ex;mined, the rate of correctly detected faces reaches
75%. h

In Figure 10 we show the results of running the face
detection system over example images.. The missed
detections are due to higher degrees of rotations than.
were present in the training database; with further
training on an appropriate set of rotated examples,
these types of rotations could be detected. In the im-
age in the lower right, there are several incorrect de-
tections. Again, we expect that with further training,
this can be eliminated.

4.2 People Detection

The frontal and rear pedestrian detection system
starts with 924 positive examples and 789 negative ex-
amples and goes through 9 bootstrapping steps ending
up with a set of 9726 patterns that define the non-
pedestrian class. We measure performance on novel
data using a set of 105 pedestrian images that are close
to frontal or rear views; it should be emphasized that
we do not choose test images of pedestrians in per-
fect frontal or rear poses, rather, many of these test
images represent slightly rotated or walking views of
pedestrians. We use a set of 2,800, 000 patterns from
natural scenes to measure the false detection rate. We
give the ROC curves for the pedestrian detection sys-
tem in Figure 9b; as with faces, these curves indicate
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Figure 10: Results from the face detection system. The missed instances are due to higher degrees of rotation
than were present in the training database; false detections can be eliminated with additional training.

that even larger penalty terms for missed positive ex-
amples may improve accuracy significantly. From the
curve, we can see, for example, that if we have a tol-
erance of one false positive for every 15,000 windows
examined, we can achieve a detection rate of 70%.
Figure 11 exhibits some typical images that are pro-
cessed by the pedestrian detection system; the images
are very cluttered scenes crowded with complex pat-
terns. These images show that the architecture is able
to effectively handle detection of people with different
¢lothing under varying illumination conditions.

Considering the complexity of these scenes and the
difficulties of object detection in cluttered scenes, we
consider the above. detection rates to be high. We
believe that additional training and refinement of the
current systems will reduce the false detection rates
further.

Motion Extension

In the case of video sequences, we can utilize mo-
tion information to enhance the robustness of the de-
tection; we use the pedestrian detection system as a
testbed. We compute the optical flow between con-
secutive images and detect discontinuities in the flow
field that indicate probable motion of objects relative
to the background. We then grow these regions of
discontinuity using morphological operators, to define
the full regions of interest. In these regions of motion,
the likely class of objects is limited, so we can relax the
strictness of the classifier. It is important to observe
that, unlike most person detection systems, we do not
assume a static camera nor do we need to recover cam-
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era ego-motion, but rather we use the dynamic mo-
tion information to assist the classifier. Additionally,
the use of motion information does not compromise
the ability of the system to detect non-moving people.
Figure 12 demonstrates how the motion cues enhance
the performance of the system.

We test the system over a sequence of 208 frames;
the detection results are shown in Table 1. Out of
a possible 827 pedestrians in the video sequence — in-
cluding side views for which the system is not trained —
the base system correctly detects 360 (43.5%) of them
with a false detection rate of 1 per 236,500 windows.
The system enhanced with the motion module detects
445 (53.8%) of the pedestrians, a 23.7 % increase in
detection accuracy, while maintaining a false detection
rate of 1 per 90,000 windows. It is important to iter-
ate that the detection accuracy for non-moving objects
1s not compromised; in the areas of the image where
there is no motion, the classifier simply runs as before.
Furthermore, the majority of the false positives in the
motion enhanced system were partial body detections,
ie. a detection with the head ¢ut off, which were still
counted as false detections. Taking this factor into
account, the false detection rate is even lower.

This relaxation paradigm has difficulties when there
are a large number of moving bodies in the frame or
when the pedestrian motion is very small when com-
pared to the camera motion. Based on our results,
though, we feel that this integration of a trained clas-
sifier with the module that provides motion cues could
be extended to other systems as well.



Figure 11: Results from the pedestrian detection system. These are typical images of relatively complex scenes
that are used to test the system. Missed examples of pedestrians are usually due to the figure being merged with

the background.

Detection | False Posttive
Rate Rate (per window)
Base system 43.5% 1:236,500
Motion extension || 53.8% 1:90,000

Table 1: Performance of the pedestrian detection sys-
tem with the motion-based extensions, compared to
the base system.

6 Conclusion

In this paper, we describe the idea of an overcom-
plete wavelet representation and demonstrate how it
can be learned and used for object detection in a clut-
tered scene. This representation yields not only a com-
putationally efficient algorithm but an effective learn-
ing scheme as well.

We have decomposed the learning of an object class
into a two-stage learning process. In the first stage,
we perform a dimensionality reduction where we iden-
tify the most important basis functions from an orig-
inal overcomplete set of basis functions. The rela-
tionships between the basis functions which define the
class model are learned in the second stage using a
support vector machine (SVM). Without this dimen-
sionality reduction stage, the training on the original
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overcomplete set would be difficult, if not intractable.
Most of the basis functions in the original full set do
not necessarily convey relevant information about the
object class we are learning, but, by starting with a
large overcomplete dictionary, we would not sacrifice
details or spatial accuracy. The learning step extracts
the most prominent features and results in a signifi-
cant dimensionality reduction.

We also present an extension that uses motion cues
to improve pedestrian detection accuracy over video
sequences. This module is appealing in that, unlike
most systems, it does not totally rely on motion to ac-
complish detection; rather, it takes advantage of the
a priorl knowledge that the class of moving objects
is limited while not compromising performance in de-
tecting non-moving pedestrians.

The strength of our system comes from the expres-
sive power of the overcomplete set of basis functions
- this representation effectively encodes the intensity
relationships of certain pattern regions that define a
complex object class. The encouraging results of our
system in two different domains, faces and people, sug-
gest that the approach described in this paper may
well generalize to several other object detection tasks.
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