
Robust Word Recognition for Museum Archive Card Indexing

S. M. Lucas∗, A.C. Tams∗∗, Sung J. Cho+, Sungho Ryu+ , A.C. Downton∗∗
∗Dept. of Computer Science

∗∗Dept. of Electronic Systems Engineering
University of Essex, Colchester CO4 3SQ, UK

+AI Lab, Division of Computer Science, KAIST, Taejon, South Korea

Abstract

This paper describes a novel robust approach to en-
able efficient searching of the type-written text on museum
archive cards. Depending on such factors as the state of
the typewriter and its ribbon, these text images may be faint
with parts of the character missing, or be in heavy type with
adjacent characters merging together. Both these problems
can make this kind of text hard to read with conventional
OCR methods that rely on the use of a limited number of
segmentation hypotheses prior to recognition. Our method
involves sliding a classifier over the entire word or card im-
age, such that we get a set of recognition hypotheses for
each possible window position which gives rise to a large
character hypothesis graph. We then apply a graph reduc-
tion followed by an efficient graph search method to search
for words in the reduced graph. Results so far are promis-
ing, with our system achieving 45% word recognition ac-
curacy compared to the 25% achieved by a leading com-
mercial package. However, searching the original larger
graphs is much slower but yields 85% accuracy, so fur-
ther work is needed either in improving the graph reduction
method, or in improving the efficiency with which we can
search the larger graph.

A. Introduction

This paper describes a novel robust method for word
recognition that is especially appropriate for indexing mu-
seum archive cards. The quality and typography of the tex-
tual information on such cards varies, but typically may be
characterised like this:

• Most information is machine printed, although hand-
written annotations are common.

• Machine-printed information has often been created
using a type-writer with a fixed-space font.

• The quality and thickness of the type varies, but may
contain faded or broken characters, or over-heavy

touching characters. These can make segmentation
difficult.

• Much of the information may be assumed to come
from known dictionaries. For example, in the current
Pyrolidea archive we are using, the set of all species
is known in advance (but which cards they occur on is
not known).

• A significant minority of words are outside any cur-
rently available dictionary; however, methods that can
cope with very large dictionaries (e.g. formed by tak-
ing the union of many different dictionaries) may still
be appropriate.

When dictionaries are not available it should be possible
to exploit statistical methods such as n-gram techniques[10,
5] for index construction and searching. This paper, how-
ever, deals exclusively with the dictionary-based approach.

Given the accuracy of current commercial off-the-shelf
(COTS) OCR packages, one might assume that converting
the machine print on these archive cards would be a solved
problem. This, however, is not the case. Most COTS sys-
tems seem to be too brittle to handle difficult cases. We
believe the reasons for this are as follows:

• Touching or broken characters cause segmentation
problems, and most existing systems appear to con-
sider only a limited number of segmentation hypothe-
ses.

• The OCR engine is generally used in ahardclassifica-
tion mode, where it only returns the top few character
hypotheses.

• Dictionary search (if done) is done sub-optimally.

On the other hand, there are hand-writing recognition
systems[2, 4] that are designed from the outset to cope with
hard-to-segment images, and like the method we propose
here are based heavily on graph-search algorithms.

The method we propose does not involve any prior seg-
mentation, and considers any number of recognition hy-
potheses (up to the size of the alphabet) at each point in

1



the image. This overcomes the first two problems. We then
use a highly efficient method to search the character hy-
pothesis graph for then best scoring paths, where each of
these paths satisfies the constraint that its concatenated arc
labels form a word in the dictionary. This graph-based dic-
tionary search method has been described previously[6, 7]
and here we shall just treat it as a black box. The main
features of the technique are that it offers best-first retrieval
and it scales well in the sense that retrieval speed is indepen-
dent of the size of the dictionary. This should be contrasted
with more conventional approaches that either get slower
linearly with respect to the size of a flat dictionary [9] or
with respect to the size of a Trie structured dictionary [3].
On the other hand, lexical knowledge can be applied in an
approximate way in constant time [8] (again, with respect
to dictionary size) just by considering the best recognition
candidate in each position, with the occasional use of a wild
card for places where the recognizer fails. We are more in-
terested, however, in how we can apply lexical constraints to
optimally interpret the outputs of the sliding window OCR
process.

The rest of this paper is as follows: the next Section de-
scribes the method with the aid of an example; Section C
describes the experimental setup; Section D reports some
initial results; Section E concludes.

B. Mapping Text Images to Character Hypoth-
esis Graphs

In this Section we describe with the aid of an example the
process of mapping a text image into a character hypothe-
sis graph. An example hard-to-segment image is shown in
Figures 1 and 2. These Figures show the the same image
displayed in our sliding window recognition tool. This tool
allows an investigator to position the OCR window (shown
by the rectangle) at any point on the image. The contents
of the OCR window are immediately displayed in the lower
panel, and clicking a mouse button fires the recognition en-
gine, which produces a sorted set of character hypotheses
(in best-first order) as shown in the right-hand panel.

Figure 1 shows a correct character (‘C’) at the head of
the list with a confidence of 0.839. Figure 2, on the other
hand, shows an incorrect character (‘M’) at the head of the
list with a confidence of 0.812. Note that this value of 0.812
is higher than many of the correct recognition scores for
this image. This indicates that a simplistic ’peak-picking’
segmentation strategy is unlikely to succeed.

Figure 3 shows the intensity map created by mapping
the maximum OCR output at each point in the ’ACHROIA’
image of Figure 1 to a grey level in the range 0 (black) to 1
(white).

Figure 4 shows the maximum of each column of the in-
tensity map of Figure 3 plotted against its horizontal offset.
This again illustrates the difficulties in making simplistic
segmentations of this kind of image.

Figure 1. An example window position pro-
ducing a good response.

Figure 2. An example window position pro-
ducing a spurious response.

B.1. Creating the Graph

We have now covered all the concepts necessary for our
graph construction algorithm. The current algorithm we use
can be outlined as follows.

1. Apply a soft classifier to each possible window posi-
tion defined by the its top-left corner at point(x, y) in
the word image. The output of the classifier is a vec-
tor whoseith dimension is its ‘confidence’ in theith
class being present at that point and is stored in a table
r[x][y][i]. Figure 3 shows the maximum response over
all classes at each(x, y) point as an intensity map.

2. Create a tablea[x][i] indexed onx coordinate and class
i whereaxi = MAX h

y=1(rxyi) ; h being the maximum
value ofy.

3. Create a table of maximum responses in each column
over all classesm[x] = MAX n

i=1(axi) where there are
n classes. Figure 4 plots this.

4. Group the recognition hypotheses according to spatial
considerations as explained below. Each group will
form a node in our graph. The confidence in theith
class in the group is again themaxover all the hypothe-
ses for that class.

2



Figure 3. Intensity map showing level of
maxmimum OCR response for each window
position.

0 20 41 62 83 104
0.

0.18

0.36

0.55

0.73

0.91

Max Resp.

Figure 4. Plot of maximum OCR response ver-
sus horizontal pixel offset.

5. To simplify the graph, prune all hypotheses at a node
that either fall below a certain confidence level or a
certain rank.

6. Create a graph where all the recognition hypotheses in
a node are made into arcs connecting all the nodes that
pass aconnectabletest, described below.

This leaves two critical features unspecified: how we form
the groups (nodes) and how we judge two nodes to be con-
nectable.

For the experiments described below we did this as fol-
lows. Group-divides were placed wherevermx fell below
a critical cutoff - we chose 0.8 for all the experiments run
here. We considered groups (nodes) connectable according
to the following test: Two nodes N1 and N2 were deemed
connectable if:

minDiff := N2.min - N1.max;
maxDiff := N2.max - N1.min;
connect if ((minDiff <= 14) AND

(maxDiff >= 11))

If two nodes were connectable, then all the hypotheses on
the first node were made into arcs to connect to the second
node. Keeping only the best five hypotheses in each node,
we get the graph shown in Figure 5. Each arc label has two
parts: a character hypothesis and a probability or confidence
value (truncated for display purposes). There is an implied
order in that the graph should be traversed from left-to-right.
This graph can then be used directly with our dictionary
search system.

Using this graph, the search system failed to find any
dictionary words in it starting at nodes 0 or 1 and finishing
at nodes 10 or 11. However, another image (‘ALPHEIAS’)
that is nearly as hard to segment and is shown in the bottom
row of Figure 6 was recognized perfectly.

C. Experimental Setup

The image data comes from a set of about 30,000 Py-
rolidea archive cards we scanned in as part of a joint project
with the Natural History Museum, London. In general we
use four datasets to define a trainable dictionary word recog-
nition experiment:

OCR training set: a set of isolated single character images
similar in nature to the set of characters found in whole
words in the test set - but disjoint from that set;

Whole word training set: a set of whole word images to-
gether with the true word represented in the image
(given as a character string).

dictionary: ideally this is the set of all words that we might
wish to recognise on the cards;

test set: a set of whole-word images where each image is
tagged with a transcription of the word (represented
as a sequence of ASCII characters) contained in the
image.

For the experiments given below however, our sys-
tem had no word-level adjustable parameters (which
should be used to optimise the graph-construction pro-
cess), and so we did not use a whole-word training set.

We created a training set of individual characters by
manually tagging data using a fixed size window of 14 by
16 pixels. We manually tagged all the type-written charac-
ters on five cards, and then looked through some more cards
in order to find at least one example of each character. The
result of this process was a highly skewed training set with
1063 character images spread over 62 classes (digits plus
upper and lower case alphabetic). The number of charac-
ters per class varied between one (upper case ‘X’) and 36
(lower-case ‘n’).

The dictionary supplied did not have complete cover-
age of all words in the test set. For these experiments we
extended the dictionary where necessary to include all the
words in the test set. The augmented dictionary contained
16769 words with an average length of 9.4 characters and a
maximum length of 19 characters.

We created a test set of 100 words, again by manually
tagging them. These were captured from an entirely dif-
ferent batch of cards to the batch used to create the single
character training images. The tagging was done at the level
of a whole word corresponding to the entire image of that
word e.g. no positional information of individual characters
within the image was recorded.

3



A:0.9

P:0.8
M:0.8

X:0.8

I:0.8

A:0.9

P:0.8

M:0.8

X:0.8

I:0.8
C:0.8

O:0.7
G:0.7

D:0.7

0:0.7

X:0.8

H:0.8
W:0.8

M:0.8

Z:0.7

M:0.8

X:0.8
S:0.8

W:0.8

H:0.7

M:0.8

X:0.8

S:0.8

W:0.8

H:0.7

M:0.8

X:0.8

S:0.8

W:0.8

H:0.7
X:0.8

W:0.6

V:0.6

R:0.6

5:0.6

X:0.8

W:0.6

V:0.6

R:0.6

5:0.6
C:0.8

0:0.8

O:0.8

D:0.7

G:0.7

C:0.8

0:0.8

O:0.8

D:0.7

G:0.7
X:0.8

D:0.8

H:0.8

C:0.7

E:0.7

X:0.8

D:0.8

H:0.8

C:0.7

E:0.7
U:0.8

M:0.7

C:0.7

N:0.6

A:0.6
V:0.8

X:0.8
I:0.8

D:0.8

R:0.8

V:0.8

X:0.8

I:0.8

D:0.8

R:0.8

V:0.8

X:0.8

I:0.8

D:0.8

R:0.8

A:0.8

X:0.8
I:0.8

S:0.8

E:0.7

A:0.8

X:0.8

I:0.8

S:0.8

E:0.7
L:0.9

F:0.8
R:0.8

Z:0.8

P:0.8

0 1 2 3 4 5 6 7 8 9 10 11

Figure 5. A character hypothesis graph for the ‘ACHROIA’ image in Figure 1.

D. Initial Results

We have tested the system, using the simple graph con-
struction procedure outlined in Section B, on the first 100
images of the test set. We used a simple hamming distance
nearest-neighbour classifier as our OCR engine. We chose
this classifer by testing it against a support vector machine
and an n-tuple classifier. The nearest neighbour method was
the most accurate and also the fastest, probably due to the
small size of the training set. The test accuracy of our near-
est neighbour classifier when trained on 80% of the training
data was around 91%, though it returned the correct charac-
ter within the top five candidates in over 99% of cases.

A sample of the recognition results can be seen in Fig-
ure 6. Results on this set were 45% whole-word accuracy,
compared with 25% for a leading COTS package.

Figure 6. Sample recognition results. Left col-
umn shows the word image; middle and right
columns show the true transcription and our
system transcription respectively.

At present, our system is much slower than the COTS
package, with timing figures for the processing stages as
follows for a Java implementation of all the algorithms
running on a 450 MHz Pentium III. For the example
‘ACHROIA’ image from Section B sliding the classifier
over the window (which involved applying the 62-class
classifier at about 2,000 different points in the image) took
about 25s. Building the graph then took about 0.1s. Load-
ing the graph into the graph search system took about 0.4s,
and getting the best 10 retrievals took about 0.05s. Clearly,
the sliding OCR takes the vast majority of the time. Al-
though this may at first appear to be a significant disadvan-
tage of the approach, this is only true when we naively ap-
ply the OCR engine independently to each point in the im-
age (as we do currently). We are also investigating special
scanning n-tuple methods that work by shifting each line of
the image through a recognition buffer and then connect-
ing these vertically to generate recognition hypotheses in a
much more efficient manner.

D.1 Searching the Larger Hypothesis Graph

On inspection it appeared that the main source of error
was in the graph reduction process i.e. the mapping of the
large hypothesis graph that can be obtained directly from
sliding the OCR engine over the word image into the re-
duced graph of the kind shown in Figure 5. Our current im-
plementation of the fast dictionary search method reported
in [7] would not fit in RAM (128Mb on the current machine)
when searching graphs of this size.

This led us to make some experiments on searching the
larger graph, using a dynamic programming procedure[1]
to find the best path through thr graph for each dictionary
word independently. The larger graph is created by apply-
ing the OCR engine to every point in the image, then taking
the maximum output for each class in each column i.e. the
a[x][i] array from Section B.1 step 3. We create a node in
the graph labelled with the integerx for every columnx in
the array, then add arcs to the graph between each nodex
and node(x+13) labelled with every pattern classi together
weighta[x][i]. Furthermore, we also add a ‘skip’ arc with a
weight of 0.95 between all adjacent nodes. This skip-weight

4



should really be estimated from the whole-word training
data, of course.

We performed an independent match between this graph
and every word in our dictionary. We defined the score for
a path as the product of all the arc weights for that path,
and defined the match score for a word as being the score of
the best (highest scoring) path for that word. This is consis-
tent with a probabilistic interpretation of the OCR class out-
puts, although in fact the class score output by our nearest-
neighbour classifier was simply the ratio of the number of
matching pixels to the total number of pixels in the charac-
ter image for the best matching image in that class.

This matching process is relatively slow, and takes about
3 minutes per word on average to score all the words in
our 16k word dictionary (i.e. about 11ms per individual
dictionary word match). It should be possible to speed this
up significantly by storing the dictionary in a trie structure.

After each word has been scored we sort them into order
of best-score first. Table 1 shows some word images where
both the COTS package and our fast reduced-graph method
fail to recognise the word. It is notable that the large-
graph matching method correctly recognises the ACHROIA
image, which appears to be very difficult. This method
achieved 85% word recognition accuracy on the 100 word
set (compared with 25% and 45% for the COTS and fast
match methods respectively). Nonetheless, the system still
fails in some cases that look to be relatively easy, but this
may be due to the poor quality of the OCR training data.

E. Discussion and Conclusions

This paper has presented a simple method for
segmentation-free word recognition which is especially ap-
propriate for indexing the type-written text on museum
archive cards.

The approach is novel in two ways. First, in the method
of applying an OCR engine in ‘sliding window mode’ to
every point in a word image; this may be seen as an extreme
form of over-segmentation. Second, in application of the
fast dictionary search method reported in [7] to finding the
best matching dictionary word in the graph.

There are many ratherad hocfeatures to our graph con-
struction method that cause it to mis-recognise images that
can be recognised correctly by dealing directly with the

Word Image True Word Top Three Matches (in order)

ACHROIA ACHROIA, ACHROEA, ASEMIA

MELIPHORA MELIPHORA, MELITTIA, MELITENE

obscurevitella obscuripennis, coenulentella, obscurevitella

Table 1. Sample test word images and their
large graph recognition results.

unreduced graph, as we showed in Section D.1. We are cur-
rently investigating better ways of reducing the graph, and
also more efficient methods for searching the larger unre-
duced graph.

References

[1] R. Bellman. Dynamic Programming. Princeton University
Press, (1957).

[2] T. M. Breuel. A system for off-line recognition of hand-
written text. InProceedings of 12th International Confer-
ence on Pattern Recognition (ICPR), pages 129 – 134 vol 2,
1994.

[3] D. Chen, J. Mao, and K. Mohiuddin. An efficient algo-
rithm for matching a lexicon with a segmentation graph. In
W. Lea, editor,Proceedings of the Fifth International Con-
ference on Document Analysis and Recognition, pages 543
– 546. IEEE, 1999.

[4] G. Dzuba, A. Filatov, and A. Volgunin. Handwritten zip
code recognition. InProceedings of the 4th IEEE Int. Conf.
on Document Analysis and Recognition, pages 766–770,
Ulm, Germany, 1997.

[5] J. Hull and S. Srihari. Experiments in text recognition with
binaryn-grams and viterbi algorithms.IEEE Transactions
on Pattern analysis and Machine Intelligence, 4(5):520 –
530, (1982).

[6] S. Lucas. Efficient best-first dictionary search given graph-
based input. Proceedings of International Conference on
Pattern Recognition, 2:471–474, 2000.

[7] S. Lucas. Efficient graph-based dictionary search and its ap-
plication to text-image searching.Pattern Recognition Let-
ters, 22:551 – 562, 2001.

[8] S. Madhvanath, S. McCauliff, and K. Mohiuddin. Extracting
patron data from check images. InProceedings of Interna-
tional Conference on Document Analysis and Recognition
(ICDAR), pages 519 – 522, 1999.

[9] M. Mohamed and P. Gader. Handwritten word recogni-
tion using segmentation-free hidden markov modeling and
segmentation-based dynamic programming.IEEE Transa-
tions on Pattern Analysis and Machine Intelligence, 5:548 –
554, (1996).

[10] C. Suen.n-gram statistic for natural language understanding
and text processing.IEEE Transactions on Pattern analysis
and Machine Intelligence, 1(2):164 – 172, (1979).

Acknowledgements This work was funded under BB-
SRC/EPSRC Grant 84/BIO11933 and builds on earlier
work funded by The Post Office (UK).

5


