
Performance of Parallel Architectures for CORBA-Based
Systems

Ming Huo
Department of System and Computer Engineering

Carleton University
1125 Colonel by Drive, Ottawa Canada, K1S 5B6

Shikharesh Majumdar
Department of System and Computer Engineering

Carleton University
1125 Colonel by Drive, Ottawa Canada, K1S 5B6

maiumdar~sce.carleton.ca

A B S T R A C T
This research is concerned with achieving high performance on
middleware-based inter-operable distributed object computing
systems. This paper reports a preliminary investigation of the
impact of using parallel architectures that use concurrent server
invocations to improve performance. One of these architectures is
observed to lead to a substantial performance improvement in
comparison to the conventional sequential interaction
architecture.

K e y w o r d s
CORBA performance, high performance middleware, interaction
architectures.

1. I N T R O D U C T I O N
Distributed Object Computing (DOC) is a very popular paradigm
for system implementation; it combines the attractive features of
distributed computing such as reliability and concurrency with
the well-known reusability properties of Object Oriented (OO)
systems. Heterogeneity is natural in DOC systems. Different
system components are often written in different programming
languages and run on different operating systems. Middleware
provides inter-operability in such heterogeneous DOC systems
and enables a client written in a particular programming
language running on top of a specific platform to communicate
with a server implemented using a different programming
language and platform. Common Object Request Broker
Architecture (CORBA) is a middleware standard proposed by the
Object Management Group (OMG) [7]. A number of
Commercial-Off-The Shelf (COTS) middleware products that
conform to the general CORBA standard are available. Although
middleware provides inter-operability, if not designed carefully,
a middleware-based system can incur a severe performance
penalty. Engineering high performance is important in the
context of a variety of different systems. High scalability and low

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP'04 January 14-16, 2004, Redwood City, California.
Copyright 2004 ACM 1-58113 -673 -0/04/0001 ...$5.00.

latency are crucial in many applications that include
telecommunication products, process control systems, and other
performance demanding applications. This paper addresses these
performance issues in CORBA-based systems.

Both the clients and servers in a CORBA-based system use a
common standard Interface Definition Language (IDL) for
interfacing with the Object Request Broker (ORB) that provides
client-server inter-communication as well as a number of other
facilities such as location and trading services through the ORB
agent. Before invoking a method in a server object, the client
binds with the object first. The binding request sent by the client
is mapped by the ORB agent to a handle that is subsequently
used by the client to contact the server.

A large body of research exists in the field of client-server
systems. A representative set of previous work that has focused
on CORBA is discussed. A detailed survey is available in [4]. A
general description of the CORBA in terms of its concepts, roles
and behaviors as well as its use in enterprise computing are
presented in [9]. Its usage in Network Management System is
discussed in [3]. Extending CORBA to real-time systems is also
receiving attention from researchers [8]. High performance
computing has concerned the concurrent processing of different
parts of large data sets. Using CORBA for a parallel application
for WZ matrix factorization is reported in [2]. A specification for
"Data Parallel CORBA" is being developed by OMG for parallel
processing applications [6]. The parallel architectures described
in this paper, however, are primarily useful for exploiting control
parallelism.

Many performance demanding systems that include
telecommunication and embedded systems do not need absolute
guarantees for meeting deadlines, but low latency and high
scalability are highly desirable attributes of these systems. This
research focuses on such performance demanding systems based
on the general CORBA specifications. Our previous work on
CORBA performance has demonstrated three different ways of
performance optimization: guidelines for application design [10],
effective client-middleware-server interaction architecture [1]
and techniques that exploit limited heterogeneity in systems [11].
Since this research focuses on the second approach, a more
detailed discussion of the client-middleware server interaction
architectures is presented in the following section.

The relationship between software architecture and performance
is the subject of attention for system designers and users. This
paper presents a preliminary analysis of a number of parallel

249

client-agent-server interaction architectures that use concurrency
in server execution for improving performance. The
performances of these architectures are compared with that of the
traditional sequential architecture. Exploitation of parallelism at
the hardware and operating system level is well known. To the
best of our knowledge there is no existing research that has
analyzed the impact of parallel interaction architectures for
CORBA middleware-based systems on performance. Using
performance prototypes based on Iona's E2A ASP version 5.1
middleware [5] we have analyzed the performances of the
parallel architectures deployed over a number of Linux PC's. The
results demonstrate the superiority of some of the parallel
interaction architectures especially at low to medium load.

The rest of the paper is organized as follows. The following
section presents the parallel interaction architectures. The
experimental environment used for their performance comparison
is presented in Section 3. The following section describes the
results of the experiments. Our conclusions are presented in
Section 5.

2. INTERACTION ARCHITECTURES
Client-middleware-server interaction architectures can have a
profound effect on system performance [1]. In this paper we have
considered three different types of parallel architectures and a
sequential architecture that are presented next. The synchronous
parallel interaction architecture described in Section 2.3
corresponds to an architecture described in [1]. The other two
parallel architectures are introduced in this paper.

Consider a system with multiple clients and four servers A, B, C,
and D. A client runs cyclically and needs multiple server
invocations to complete a job in each cycle. Each client calls two
of these servers in the first cycle (Server A and one to Server B
for example) and the other two servers in the second. This set of
operations is repeated: the first set of servers is called in the third
cycle followed by calls to the second set in the fourth cycle and
SO on .

Note that in the conventional systems the two servers are invoked
sequentially in a cycle. A method in A is invoked first. When the
client receives the results of the operation it invokes a method in
B. When a request is made the client remains blocked until the
result of the operation arrives from the server. This conventional
interaction architecture is referred to as a Sequential architecture
(S) in this paper. Note that 12 messages are interchanged in a
client cycle with this architecture. For each server interaction 6
messages are required: 2 for requesting and receiving the handle
of the desired server object from the ORB agent, 2 for handle
verification (sending of the verification message by client and the
acknowledgment from the server), and 2 for invoking the method
in the server and receiving the results.

In many situations the operations performed by the two servers,
Server A and Server B for example, are independent of each
other and can be performed concurrently. This research focuses
on using such parallel server invocations to improve system
performance. Three different interaction architectures are
proposed and their performances are evaluated. Each of these
architectures uses a CORBA daemon that communicates with the
client. The three architectures called the Handle Driven PP-

Daemon-based architecture (HP), the Forwarding PP-Daemon-
based architecture (FP) and the Synchronous PP-Daemon-based
architecture (SP) are described in the following paragraphs. The
main difference between the Sequential and these PP-daemon-
based architectures is that the ORB agent is replaced by a PP-
daemon that often provides additional functionality in
comparison to the ORB agent that simply performs a name to
handle mapping. Ideally a single program should be used to
implement the PP-daemon. Since the source code of the
middleware product E2 ASP is not available the PP-daemon is
implemented as a process that is distinct from then ORB agent.
Upon startup the PP-daemon obtains the handles of all the
servers and renews them in a fixed interval. Note that this
operation is not required in a system built from scratch in which
the PP-daemon performs the duties of the ORB agent.

The Handle Driven PP-Daemon-based Architecture:
This architecture is similar to the sequential architecture in
which the PP-daemon replaces the ORB agent. At the beginning
of each cycle the tagged client sends a single request asking for
the handles of Server A and Server B from the PP-daemon. After
receiving the handles, the client uses the handles to invoke the
servers concurrently. The client is multi-threaded: each thread
uses a separate synchronous CORBA method invocation. The
multithreading used in the client increases the code complexity
slightly. By using an additional thread, the client can do other
work while waiting for the results to arrive. After the client gets
all the results, it will process them and obtain the result for the
complete job.

This architecture leads to 10 messages in a client cycle. 2
messages are interchanged between the client and the PP-
daemon: the client requesting all the server handles required for
a job and the PP-daemon sending the handles back to the client.
As in the case of the Sequential architecture 4 messages are
required for the invocation of each server, leading to a total of 8
messages being exchanged between the client and the servers.

The Forwarding PP-Daemon-based Architecture:
With this architecture, the client sends the entire job consisting
of multiple requests to servers to the PP-daemon. The requests
are forwarded by the PP-daemon to the appropriate servers that
execute concurrently. Each of the servers sends the result of the
method invocation directly to the client. The client processes
these results and obtains the final result corresponding to the
entire job.

Except for the returning of results, all the interaction between
clients, the PP-daemon and servers are asynchronous without any
return value and only IP level acknowledgements are returned.
The stringified client handle is sent along with the request to the
PP-daemon and gets forwarded to the servers. The servers use
this client handle to send the results back to the client. The client
can do other work while waiting for the results to arrive. Each
server calls a designated method in the client to return the results
generated by the method invoked by the client. This architecture
leads to 11 messages in a client cycle. 1 message is used for the
sending of the request by the client, 2 messages are sent by the
PP-daemon for forwarding the requests to the servers. Each
server needs 4 messages (2 related to the method invocation and
2 for client handle verification) for invoking a method in the

250

client that receives the results of the desired operations, leading
to 8 messages in total being exchanged between the client and
the servers.

The Synchronous PP-daemon-Based Architecture:

As in case of the forwarding architecture, the request for the
entire job is sent to the PP-daemon. The PP-daemon invokes the
servers concurrently. The servers reply to the PP-daemon that
combines the results and send a reply for the entire job back to
the client. This architecture leads to 6 messages in a client cycle:
2 messages are interchanged between the client and the PP-
daemon for sending the request and receiving the results and 2
for invoking and receiving the results from each server. Note that
handle verification performed in the three other architectures is
not required since the PP-daemon is aware of all the server
handles.

3. EXPERIMENTAL ENVIRONMENT
Performance prototypes of these 4 architectures are constructed.
The E2A ASP version 5.1 CORBA compliant middleware from
Iona is used. The prototypes are written in C++ and run on a
network of Pentium IV and Pentium II PC's under Linux 7.2.
These that are PC's interconnected by a 100 MBPS Ethemet form
the "quiet network" in our lab where experiments can run in
isolation without any interference from other users. Each client is
implemented by a separate thread on a single PC. Since most of
the time spent by a client is in waiting for a response to its
request, a single PC is adequate for handling the maximum
number (10) of clients used in the experiment. Each of the
servers and the PP-daemon is allocated on a separate PC. The
results of the experiments are expected to be independent of the
type of equipment used and the conclusions derived reflect the
relative performances of the client-daemon-server interaction
architectures that this paper focuses on.

A synthetic workload is used. Such a workload is appropriate for
answering "what if ' questions that are important in the context of
this research. As described in Section 2, each client runs
cyclically and performs two method invocations in a cycle for
competing a job. The servers bum a predefined amount of CPU
time to simulate the service demand. We ran a number of
experiments with different workload parameters. A
representative set of results is presented in this paper. More data
will be available in [4]. The important factors used to control the
workload of the experimental system are briefly described.

Number of clients (N): The total number of active clients.

Request Service Demands (DA, DB, DC, DD): Unless mentioned
otherwise, a fixed distribution with a given mean (SA, SB, SC,
or SD) is used for modelling server execution times. With a fixed
distribution the execution time for a server is equal to its mean
and does not vary from one invocation to another. For the sake of
simplicity we have fixed the server demand SA=SC and SB=SD.
To investigate the impact of variability in execution times an
exponential distribution is used in the experiments described in
Section 4.2

Message Size (L): The length of the message used for sending the
request as well as for sending back the reply are represented by

L. In each experiment the size of the messages propagating
among all participating processes was held at a fixed value.

3.1 Performance Measures
The performance measures of interest are briefly summarized

The Mean Client Response Time (R): This is the mean total
elapsed time from the instant the client starts its request cycle to
the time the final reply is received from the last server used in
the cycle. This parameter is a measure of the latency for the
system.

The Overall Mean System Throughput 00: This is the average
total system throughput, which is obtained by the summation of
the mean throughputs of all the clients. The throughput of a
client is the average number of cycles executed per second. This
parameter is a measure of capacity for the system. The
throughput and response time are related by Little's law: N = XR
where N is the mean number of clients in the system.

4. RESULTS OF EXPERIMENTS
A number of experiments for different combinations of the
factors is run. Each experiment is run multiple times so as to
produce a confidence interval of +- 2.5% at a confidence level of
95% for the desired performance measure of interest. Only a
representative set of results is reported in this paper. More
results are available in [4].

Figure 1 and Table 1 present the performances achieved with the
different architectures. N, the number of clients is the variable
factor. DA (DC) and DB (DD) are fixed at 50 ms and 55 ms
respectively. The length of the messages L is held at 50 bytes.

Two performance attributes, latency and scalability are of
interest. At low load the performance measure of interest is the
mean client response time that represents the latency properties
of the architectures. At medium to high load the overall mean
system throughput is used to study the scalability properties of
these architectures.

Table 1. Performance Comparison of the Architectures
(DA=DC= 50 ms, DB=DD=55 ms, L =50 bytes)

S HP FP SP

R (ms): N=i 118.5 64.0 76.6 57.6

X (cycles/sec): N=10 34.6 34.6 27.1 17.2

Lo w Load:

At N=I, the best performance is achieved with the Synchronous
PP-Daemon-based architecture. It demonstrates the shortest
response time that produces an over 100°,4 improvement in
performance in comparison to the conventional Sequential
architecture (see Table 1). All the architectures that deploy
parallelism in server execution lead to a shorter response time in
comparison to the Sequential architecture. Among the parallel
architectures the Synchronous PP-Daemon-based architecture
uses the lowest number of messages in a client cycle (see Table
2) and achieves the best performance. The Forwarding PP-
Daemon-based architecture uses the highest number of messages

251

and demonstrates the highest response time at N=I. However, by
using concurrent server invocations, the Forwarding PP-Daemon-
based architecture demonstrates a superior performance in
comparison to the Sequential architecture. Note that although
some of these message initiations are concurrent at the
application level, they may be serialized at the operating system
or network level. Moreover, the total number of messages
reflects the message related total resource demand made by an
architecture and is thus an important characteristic of the
architecture.

40

35

30

& 25

z0

..~ 15

l0

2~5

- - - O - - - S

ge• & • •

l

2 4 6 8 10 12

N u m b e r o f Cl ients

- ~ - H P - - - • - - - FP)< S P

Figure 1. Performance of the Architectures (SA = SC = 50
ms, SB = SD = 55 ms, L = 50 bytes)

Table 2. Number of Messages Used in the Architectures

Interaction Architecture Number of Messages

Sequential 12

Handle Driven PP-Daemon- 10
based

Forwarding PP-Daemon-based 11

Synchronous PP-Daemon-based 6

Medium to High Load:

For most of the architectures, as the number of clients increases
the system throughput increases at first and then flattens off at
N=6 (see Figure 1). The best performance is demonstrated by the
Handle Driven PP-Daemon-based architecture. Although the
Forwarding PP-Daemon-based architectures performs the second
best initially, it is overtaken by the Sequential Architecture at
N=4. The Synchronous PP-Daemon-based architecture that
performed the best at N=I demonstrates a poor performance at
high load. At N=10, both the Sequential and The Handle-Driven-
PP-Daemon-based architectures attain a throughput of 34.6
cycles/sec whereas the Forwarding PP-Daemon-based
architecture attains throughput of 27.1 cycles/sec followed by the
Synchronous PP-Daemon-based architecture that achieves a
throughput of 17.2 cycles/sec (see Table 1). The rationale for the
system behavior is presented next.

The Synchronous PP-Daemon-based architecture processes one
job at a time. During the processing of a job the synchronous PP-
daemon can remain blocked for a substantial period of time,
waiting for the two servers to respond. Once both the replies are
available, the PP-daemon sends the result back to the client and
then picks up the next job for service. As a result, the PP-
daemon process gets saturated at higher loads: it remains busy
100% of the time in processing and waiting for the servers to
respond while the underlying CPU is kept idle. This phenomenon
is called software bottlenecking and a software bottleneck is said
to have occurred at the PP-daemon. The software bottleneck
introduces large queueing delays to client requests leading to
poor system performance. Note that for the parameters used in
this experiment the PP-daemon saturates at N>I. For other
parameter values, the saturation can occur at higher values of N.
The Forwarding PP-Daemon-based architecture performs better
than the Sequential architecture at medium load but saturates
earlier, at N=4. This is due to the additional work performed by
the servers in verifying the client handles in the Forwarding-PP-
Daemon-based architecture. An interesting observation is that
although the Sequential architecture performs the worst at low
load (N=I), its performance improves linearly with an increase in
N as it attains the same throughput achieved by the highest
performer, the Handle-Driven-PP-Daemon-based architecture.

4.1 Impact of Multi-Threading
An important observation described in the previous section is the
formation of performance limiting software bottlenecks. Multi-
threading the bottleneck process is an effective way of alleviating
the problem. Performances of the three parallel architectures
observed with a multi-threaded PP-daemon are presented in
Figure 2. Performance of the Sequential architecture is included
for the sake of comparison. The Synchronous PP-daemon-based
architecture displays a dramatic improvement in performance
when the PP-daemon is multithreaded. The performances of the
other architectures remain unaltered. This indicates the absence
of a software bottleneck at the PP-daemon for these architectures;
consequently no further improvement accrues from multi-
threading the PP-daemon process. As shown in Figure 2 the
Synchronous PP-Daemon-based architecture demonstrates the
best performance at all loads. Another important observation
made from Figure 1 and Figure 2 is that the benefits of parallel
processing are evident at low to medium system load. At high
system load the Sequential architecture displays a performance
that is comparable to that of the best performing parallel
architecture.

4.2 The Effect of Variability in Service Demands
The results of the experiments presented earlier correspond to a
fixed distribution for service demands. The impact of variability
in service demands as captured by an exponential distribution is
presented in Table 3. The mean server demands SA (SC) and SB
(SD) are held at 50ms and 55ms respectively. The PP-daemon is
multi-threaded. Except for the Forwarding PP-daemon-based
architecture, the ranking of the performances of the strategies
remains the same as captured in Figure 2: SP performs the best
followed by, HP, FP and S. The Forwarding PP-Daemon-based
architecture performs much better in comparison to the system
with fixed service demands. The benefit that accrues from using

252

parallelism in server invocation is reflected in the performance
difference between SP and S. In comparison to a system with a
fixed distribution for service time, the benefit of parallelism as
captured in the ratio between X achieved with SP and S for
example, seems to be reduced at low load (N=i). At high load
(N=10) however, a larger performance difference is observed
between SP and S when an exponential distribution-based
service demands are used.

Due to space limitations a discussion of the impact of a number
of other factors on performance could not be included. A more
complete analysis of system performance is presented in [4].

40

35

~30

~25

~2o
15

E ~1o
r~

5

~ x

/ ¢ T
/ p , / ~ , _ _ .
/" . / • ,L

¢

2 4 6 8 10

N u m b e r o f C l i en t s

- - ~-- - S - - 1 - - H P - - - A - - - F P)¢ S P

Figure 2. The Effect of Mult i -Threading on Performance (SA
= SC = 50 ms, SB = SD = 55 ms, L = 50 bytes)

Table 3. System Throughput (cycles/sec) for Exponential ly
Distributed Service Times (SA=SC = 50 ms, SB=SD=55ms,

L=50 bytes)

N S HP FP SP

1 8.55 11.72 10.56 12.38

4 20.29 24.71 23.79 25.47

10 27.57 30.78 29.17 31.58

5.CONCLUSIONS
Three different parallel interaction architectures are proposed
and their performances are compared with that of a traditional
sequential architecture. Based on E2A ASP, a COTS CORBA
compliant middleware, prototypes are constructed and
experiments are run on a network of PC's. The results of a set of
experiments have led to valuable insights into system behavior
and the relative performances of these architectures. These are
briefly summarized.

Performance of the Parallel Architectures: A substantial
performance benefit accrues from using a parallel architecture
especially at low to medium load. The multi-threaded
Synchronous PP-Daemon-based architecture displays the best
performance followed by the Handle Driven PP-Daemon-based
architecture.

Software Bottleneck." A potential problem with the Synchronous
PP-Daemon-based architecture that uses synchronous
communication is the formation of a software bottleneck at the
PP-daemon. Multi-threading can effectively solve the problem.
But on a thread-constrained system, a Handle Driven PP-
Daemon-based architecture may be a better choice.

Variability in Service Times: Introducing variability in service
times leads to a lower performance benefit for the parallel
processing architectures at low load.

This paper presented a preliminary analysis of parallel
interaction architectures. A more detailed analysis of the
relationship between system performance and workload
parameters is presented in [4].

ACKNOWLEDGMENTS

Financial support for this research was provided by the Natural
Sciences and Engineering Research Council of Canada, the
province of Ontario and Nortel Networks.

REFERENCES
[1] I. Abdul-Fatah, S. Majumdar, "Performance Comparison of
Architectures for Client-Server interactions in CORBA," IEEE
Trans. on Parallel and Distributed Systems, Feb 2002, pp. 111-
127.

[2] D. Dhoutat, D. Layimani, "A CORBA-Based Application for
Parallel Applications: Experimentation with the WZ Matrix
Factofization", Laboratoire de Inforrnatique du Parallelisme,
Ecole Normale Superieure de Lyon, France, 2001.

[3] P. Haggerty and K. Seeharrnan, "The Benefits of CORBA-
based Network Management," Communications of the ACM,
Vol. 41, No. 10. Oct 1998, pp. 73-79.

[4] M. Hun, M.A.Sc. Thesis, Dept. of Systems and Computer
Eng., Carleton University, Ottawa, CANADA K1S 5B6
(expected).

[5] IONA Technologies PLQ E2A ASP Users Guide 2002.

[6] Object Management Group, Data Parallel CORBA
Specification, Nov 2001.

[7] Object Management Group, The Common Object Request
Broker: Architecture and Specification, ver 3.0.2, Dec 2002.

[8] D. C. Schrnidt, D. L. Levine, S. Mungee, "The Design of the
TAO Real-Time Object Request Broker," Computer
Communications, Vol. 21, No. 4, April 1998, pp. 294-324.

[9] J. Siegel, "OMG Overview: CORBA and the OMA in
Enterprise Computing," Communications of the ACM, Vol. 41.
No. 10, Oct 1998, pp. 37-43.

[10] W. Tao, S. Majumdar, "Application Level Performance
Optimizations for CORBA-Based Systems", Proc. International
Workshop on Software and Performance (WOSP02), Rome, July
2002, pp. 95-103.

[11] W.-K. Wu, S. Majumdar, "Engineering CORBA-Based
Systems for High Performance", International Conference on
Parallel Processing (ICPP02), August 2002 Vancouver, pp.
473 -482.

253

