
Performance of Parallel Architectures for CORBA-Based 
Systems 

Ming Huo 
Department of System and Computer Engineering 

Carleton University 
1125 Colonel by Drive, Ottawa Canada, K1S 5B6 

Shikharesh Majumdar 
Department of System and Computer Engineering 

Carleton University 
1125 Colonel by Drive, Ottawa Canada, K1S 5B6 

maiumdar~sce.carleton.ca 

A B S T R A C T  
This research is concerned with achieving high performance on 
middleware-based inter-operable distributed object computing 
systems. This paper reports a preliminary investigation of the 
impact of using parallel architectures that use concurrent server 
invocations to improve performance. One of these architectures is 
observed to lead to a substantial performance improvement in 
comparison to the conventional sequential interaction 
architecture. 
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architectures. 

1. I N T R O D U C T I O N  
Distributed Object Computing (DOC) is a very popular paradigm 
for system implementation; it combines the attractive features of 
distributed computing such as reliability and concurrency with 
the well-known reusability properties of Object Oriented (OO) 
systems. Heterogeneity is natural in DOC systems. Different 
system components are often written in different programming 
languages and run on different operating systems. Middleware 
provides inter-operability in such heterogeneous DOC systems 
and enables a client written in a particular programming 
language running on top of a specific platform to communicate 
with a server implemented using a different programming 
language and platform. Common Object Request Broker 
Architecture (CORBA) is a middleware standard proposed by the 
Object Management Group (OMG) [7]. A number of 
Commercial-Off-The Shelf (COTS) middleware products that 
conform to the general CORBA standard are available. Although 
middleware provides inter-operability, if not designed carefully, 
a middleware-based system can incur a severe performance 
penalty. Engineering high performance is important in the 
context of a variety of different systems. High scalability and low 
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latency are crucial in many applications that include 
telecommunication products, process control systems, and other 
performance demanding applications. This paper addresses these 
performance issues in CORBA-based systems. 

Both the clients and servers in a CORBA-based system use a 
common standard Interface Definition Language (IDL) for 
interfacing with the Object Request Broker (ORB) that provides 
client-server inter-communication as well as a number of other 
facilities such as location and trading services through the ORB 
agent. Before invoking a method in a server object, the client 
binds with the object first. The binding request sent by the client 
is mapped by the ORB agent to a handle that is subsequently 
used by the client to contact the server. 

A large body of research exists in the field of client-server 
systems. A representative set of previous work that has focused 
on CORBA is discussed. A detailed survey is available in [4]. A 
general description of the CORBA in terms of its concepts, roles 
and behaviors as well as its use in enterprise computing are 
presented in [9]. Its usage in Network Management System is 
discussed in [3]. Extending CORBA to real-time systems is also 
receiving attention from researchers [8]. High performance 
computing has concerned the concurrent processing of different 
parts of large data sets. Using CORBA for a parallel application 
for WZ matrix factorization is reported in [2]. A specification for 
"Data Parallel CORBA" is being developed by OMG for parallel 
processing applications [6]. The parallel architectures described 
in this paper, however, are primarily useful for exploiting control 
parallelism. 

Many performance demanding systems that include 
telecommunication and embedded systems do not need absolute 
guarantees for meeting deadlines, but low latency and high 
scalability are highly desirable attributes of these systems. This 
research focuses on such performance demanding systems based 
on the general CORBA specifications. Our previous work on 
CORBA performance has demonstrated three different ways of 
performance optimization: guidelines for application design [10], 
effective client-middleware-server interaction architecture [1] 
and techniques that exploit limited heterogeneity in systems [ 11 ]. 
Since this research focuses on the second approach, a more 
detailed discussion of the client-middleware server interaction 
architectures is presented in the following section. 

The relationship between software architecture and performance 
is the subject of attention for system designers and users. This 
paper presents a preliminary analysis of a number of parallel 
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client-agent-server interaction architectures that use concurrency 
in server execution for improving performance. The 
performances of these architectures are compared with that of the 
traditional sequential architecture. Exploitation of parallelism at 
the hardware and operating system level is well known. To the 
best of our knowledge there is no existing research that has 
analyzed the impact of parallel interaction architectures for 
CORBA middleware-based systems on performance. Using 
performance prototypes based on Iona's E2A ASP version 5.1 
middleware [5] we have analyzed the performances of the 
parallel architectures deployed over a number of Linux PC's. The 
results demonstrate the superiority of some of the parallel 
interaction architectures especially at low to medium load. 

The rest of the paper is organized as follows. The following 
section presents the parallel interaction architectures. The 
experimental environment used for their performance comparison 
is presented in Section 3. The following section describes the 
results of the experiments. Our conclusions are presented in 
Section 5. 

2. INTERACTION ARCHITECTURES 
Client-middleware-server interaction architectures can have a 
profound effect on system performance [1]. In this paper we have 
considered three different types of parallel architectures and a 
sequential architecture that are presented next. The synchronous 
parallel interaction architecture described in Section 2.3 
corresponds to an architecture described in [1]. The other two 
parallel architectures are introduced in this paper. 

Consider a system with multiple clients and four servers A, B, C, 
and D. A client runs cyclically and needs multiple server 
invocations to complete a job in each cycle. Each client calls two 
of these servers in the first cycle (Server A and one to Server B 
for example) and the other two servers in the second. This set of 
operations is repeated: the first set of servers is called in the third 
cycle followed by calls to the second set in the fourth cycle and 
SO on .  

Note that in the conventional systems the two servers are invoked 
sequentially in a cycle. A method in A is invoked first. When the 
client receives the results of the operation it invokes a method in 
B. When a request is made the client remains blocked until the 
result of the operation arrives from the server. This conventional 
interaction architecture is referred to as a Sequential architecture 
(S) in this paper. Note that 12 messages are interchanged in a 
client cycle with this architecture. For each server interaction 6 
messages are required: 2 for requesting and receiving the handle 
of the desired server object from the ORB agent, 2 for handle 
verification (sending of the verification message by client and the 
acknowledgment from the server), and 2 for invoking the method 
in the server and receiving the results. 

In many situations the operations performed by the two servers, 
Server A and Server B for example, are independent of each 
other and can be performed concurrently. This research focuses 
on using such parallel server invocations to improve system 
performance. Three different interaction architectures are 
proposed and their performances are evaluated. Each of these 
architectures uses a CORBA daemon that communicates with the 
client. The three architectures called the Handle Driven PP- 

Daemon-based architecture (HP), the Forwarding PP-Daemon- 
based architecture (FP) and the Synchronous PP-Daemon-based 
architecture (SP) are described in the following paragraphs. The 
main difference between the Sequential and these PP-daemon- 
based architectures is that the ORB agent is replaced by a PP- 
daemon that often provides additional functionality in 
comparison to the ORB agent that simply performs a name to 
handle mapping. Ideally a single program should be used to 
implement the PP-daemon. Since the source code of the 
middleware product E2 ASP is not available the PP-daemon is 
implemented as a process that is distinct from then ORB agent. 
Upon startup the PP-daemon obtains the handles of all the 
servers and renews them in a fixed interval. Note that this 
operation is not required in a system built from scratch in which 
the PP-daemon performs the duties of the ORB agent. 

The Handle Driven PP-Daemon-based Architecture: 
This architecture is similar to the sequential architecture in 
which the PP-daemon replaces the ORB agent. At the beginning 
of each cycle the tagged client sends a single request asking for 
the handles of Server A and Server B from the PP-daemon. After 
receiving the handles, the client uses the handles to invoke the 
servers concurrently. The client is multi-threaded: each thread 
uses a separate synchronous CORBA method invocation. The 
multithreading used in the client increases the code complexity 
slightly. By using an additional thread, the client can do other 
work while waiting for the results to arrive. After the client gets 
all the results, it will process them and obtain the result for the 
complete job. 

This architecture leads to 10 messages in a client cycle. 2 
messages are interchanged between the client and the PP- 
daemon: the client requesting all the server handles required for 
a job and the PP-daemon sending the handles back to the client. 
As in the case of the Sequential architecture 4 messages are 
required for the invocation of each server, leading to a total of 8 
messages being exchanged between the client and the servers. 

The Forwarding PP-Daemon-based Architecture: 
With this architecture, the client sends the entire job consisting 
of multiple requests to servers to the PP-daemon. The requests 
are forwarded by the PP-daemon to the appropriate servers that 
execute concurrently. Each of the servers sends the result of the 
method invocation directly to the client. The client processes 
these results and obtains the final result corresponding to the 
entire job. 

Except for the returning of results, all the interaction between 
clients, the PP-daemon and servers are asynchronous without any 
return value and only IP level acknowledgements are returned. 
The stringified client handle is sent along with the request to the 
PP-daemon and gets forwarded to the servers. The servers use 
this client handle to send the results back to the client. The client 
can do other work while waiting for the results to arrive. Each 
server calls a designated method in the client to return the results 
generated by the method invoked by the client. This architecture 
leads to 11 messages in a client cycle. 1 message is used for the 
sending of the request by the client, 2 messages are sent by the 
PP-daemon for forwarding the requests to the servers. Each 
server needs 4 messages (2 related to the method invocation and 
2 for client handle verification) for invoking a method in the 
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client that receives the results of the desired operations, leading 
to 8 messages in total being exchanged between the client and 
the servers. 

The Synchronous PP-daemon-Based Architecture: 

As in case of the forwarding architecture, the request for the 
entire job is sent to the PP-daemon. The PP-daemon invokes the 
servers concurrently. The servers reply to the PP-daemon that 
combines the results and send a reply for the entire job back to 
the client. This architecture leads to 6 messages in a client cycle: 
2 messages are interchanged between the client and the PP- 
daemon for sending the request and receiving the results and 2 
for invoking and receiving the results from each server. Note that 
handle verification performed in the three other architectures is 
not required since the PP-daemon is aware of all the server 
handles. 

3. EXPERIMENTAL ENVIRONMENT 
Performance prototypes of these 4 architectures are constructed. 
The E2A ASP version 5.1 CORBA compliant middleware from 
Iona is used. The prototypes are written in C++ and run on a 
network of Pentium IV and Pentium II PC's under Linux 7.2. 
These that are PC's interconnected by a 100 MBPS Ethemet form 
the "quiet network" in our lab where experiments can run in 
isolation without any interference from other users. Each client is 
implemented by a separate thread on a single PC. Since most of 
the time spent by a client is in waiting for a response to its 
request, a single PC is adequate for handling the maximum 
number (10) of clients used in the experiment. Each of the 
servers and the PP-daemon is allocated on a separate PC. The 
results of the experiments are expected to be independent of the 
type of equipment used and the conclusions derived reflect the 
relative performances of the client-daemon-server interaction 
architectures that this paper focuses on. 

A synthetic workload is used. Such a workload is appropriate for 
answering "what if '  questions that are important in the context of 
this research. As described in Section 2, each client runs 
cyclically and performs two method invocations in a cycle for 
competing a job. The servers bum a predefined amount of CPU 
time to simulate the service demand. We ran a number of 
experiments with different workload parameters. A 
representative set of results is presented in this paper. More data 
will be available in [4]. The important factors used to control the 
workload of the experimental system are briefly described. 

Number of clients (N): The total number of active clients. 

Request Service Demands (DA, DB, DC, DD): Unless mentioned 
otherwise, a fixed distribution with a given mean (SA, SB, SC, 
or SD) is used for modelling server execution times. With a fixed 
distribution the execution time for a server is equal to its mean 
and does not vary from one invocation to another. For the sake of 
simplicity we have fixed the server demand SA=SC and SB=SD. 
To investigate the impact of variability in execution times an 
exponential distribution is used in the experiments described in 
Section 4.2 

Message Size (L): The length of the message used for sending the 
request as well as for sending back the reply are represented by 

L. In each experiment the size of the messages propagating 
among all participating processes was held at a fixed value. 

3.1 Performance Measures 
The performance measures of interest are briefly summarized 

The Mean Client Response Time (R): This is the mean total 
elapsed time from the instant the client starts its request cycle to 
the time the final reply is received from the last server used in 
the cycle. This parameter is a measure of the latency for the 
system. 

The Overall Mean System Throughput 00: This is the average 
total system throughput, which is obtained by the summation of 
the mean throughputs of all the clients. The throughput of a 
client is the average number of cycles executed per second. This 
parameter is a measure of capacity for the system. The 
throughput and response time are related by Little's law: N = XR 
where N is the mean number of clients in the system. 

4. RESULTS OF EXPERIMENTS 
A number of experiments for different combinations of the 
factors is run. Each experiment is run multiple times so as to 
produce a confidence interval of +- 2.5% at a confidence level of 
95% for the desired performance measure of interest. Only a 
representative set of results is reported in this paper. More 
results are available in [4]. 

Figure 1 and Table 1 present the performances achieved with the 
different architectures. N, the number of clients is the variable 
factor. DA (DC) and DB (DD) are fixed at 50 ms and 55 ms 
respectively. The length of the messages L is held at 50 bytes. 

Two performance attributes, latency and scalability are of 
interest. At low load the performance measure of interest is the 
mean client response time that represents the latency properties 
of the architectures. At medium to high load the overall mean 
system throughput is used to study the scalability properties of 
these architectures. 

Table 1. Performance Comparison of the Architectures 
(DA=DC= 50 ms, DB=DD=55 ms, L =50 bytes) 

S HP FP SP 

R (ms): N=i 118.5 64.0 76.6 57.6 

X (cycles/sec): N=10 34.6 34.6 27.1 17.2 

Lo w  Load: 

At N=I, the best performance is achieved with the Synchronous 
PP-Daemon-based architecture. It demonstrates the shortest 
response time that produces an over 100°,4 improvement in 
performance in comparison to the conventional Sequential 
architecture (see Table 1). All the architectures that deploy 
parallelism in server execution lead to a shorter response time in 
comparison to the Sequential architecture. Among the parallel 
architectures the Synchronous PP-Daemon-based architecture 
uses the lowest number of messages in a client cycle (see Table 
2) and achieves the best performance. The Forwarding PP- 
Daemon-based architecture uses the highest number of messages 
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and demonstrates the highest response time at N=I. However, by 
using concurrent server invocations, the Forwarding PP-Daemon- 
based architecture demonstrates a superior performance in 
comparison to the Sequential architecture. Note that although 
some of these message initiations are concurrent at the 
application level, they may be serialized at the operating system 
or network level. Moreover, the total number of messages 
reflects the message related total resource demand made by an 
architecture and is thus an important characteristic of the 
architecture. 
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Figure 1. Performance  of  the Architectures (SA = SC = 50 
ms, SB = SD = 55 ms, L = 50 bytes) 

Table 2. Number  of Messages Used in the Architectures 

Interaction Architecture Number  of Messages 

Sequential 12 

Handle Driven PP-Daemon- 10 
based 

Forwarding PP-Daemon-based 11 

Synchronous PP-Daemon-based 6 

Medium to High Load: 

For most of the architectures, as the number of clients increases 
the system throughput increases at first and then flattens off at 
N=6 (see Figure 1). The best performance is demonstrated by the 
Handle Driven PP-Daemon-based architecture. Although the 
Forwarding PP-Daemon-based architectures performs the second 
best initially, it is overtaken by the Sequential Architecture at 
N=4. The Synchronous PP-Daemon-based architecture that 
performed the best at N=I demonstrates a poor performance at 
high load. At N=10, both the Sequential and The Handle-Driven- 
PP-Daemon-based architectures attain a throughput of 34.6 
cycles/sec whereas the Forwarding PP-Daemon-based 
architecture attains throughput of 27.1 cycles/sec followed by the 
Synchronous PP-Daemon-based architecture that achieves a 
throughput of 17.2 cycles/sec (see Table 1). The rationale for the 
system behavior is presented next. 

The Synchronous PP-Daemon-based architecture processes one 
job at a time. During the processing of a job the synchronous PP- 
daemon can remain blocked for a substantial period of time, 
waiting for the two servers to respond. Once both the replies are 
available, the PP-daemon sends the result back to the client and 
then picks up the next job for service. As a result, the PP- 
daemon process gets saturated at higher loads: it remains busy 
100% of the time in processing and waiting for the servers to 
respond while the underlying CPU is kept idle. This phenomenon 
is called software bottlenecking and a software bottleneck is said 
to have occurred at the PP-daemon. The software bottleneck 
introduces large queueing delays to client requests leading to 
poor system performance. Note that for the parameters used in 
this experiment the PP-daemon saturates at N>I. For other 
parameter values, the saturation can occur at higher values of N. 
The Forwarding PP-Daemon-based architecture performs better 
than the Sequential architecture at medium load but saturates 
earlier, at N=4. This is due to the additional work performed by 
the servers in verifying the client handles in the Forwarding-PP- 
Daemon-based architecture. An interesting observation is that 
although the Sequential architecture performs the worst at low 
load (N=I), its performance improves linearly with an increase in 
N as it attains the same throughput achieved by the highest 
performer, the Handle-Driven-PP-Daemon-based architecture. 

4.1 Impact of Multi-Threading 
An important observation described in the previous section is the 
formation of performance limiting software bottlenecks. Multi- 
threading the bottleneck process is an effective way of alleviating 
the problem. Performances of the three parallel architectures 
observed with a multi-threaded PP-daemon are presented in 
Figure 2. Performance of the Sequential architecture is included 
for the sake of comparison. The Synchronous PP-daemon-based 
architecture displays a dramatic improvement in performance 
when the PP-daemon is multithreaded. The performances of the 
other architectures remain unaltered. This indicates the absence 
of a software bottleneck at the PP-daemon for these architectures; 
consequently no further improvement accrues from multi- 
threading the PP-daemon process. As shown in Figure 2 the 
Synchronous PP-Daemon-based architecture demonstrates the 
best performance at all loads. Another important observation 
made from Figure 1 and Figure 2 is that the benefits of parallel 
processing are evident at low to medium system load. At high 
system load the Sequential architecture displays a performance 
that is comparable to that of the best performing parallel 
architecture. 

4.2 The Effect of Variability in Service Demands 
The results of the experiments presented earlier correspond to a 
fixed distribution for service demands. The impact of variability 
in service demands as captured by an exponential distribution is 
presented in Table 3. The mean server demands SA (SC) and SB 
(SD) are held at 50ms and 55ms respectively. The PP-daemon is 
multi-threaded. Except for the Forwarding PP-daemon-based 
architecture, the ranking of the performances of the strategies 
remains the same as captured in Figure 2: SP performs the best 
followed by, HP, FP and S. The Forwarding PP-Daemon-based 
architecture performs much better in comparison to the system 
with fixed service demands. The benefit that accrues from using 
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parallelism in server invocation is reflected in the performance 
difference between SP and S. In comparison to a system with a 
fixed distribution for service time, the benefit of parallelism as 
captured in the ratio between X achieved with SP and S for 
example, seems to be reduced at low load (N=i). At high load 
(N=10) however, a larger performance difference is observed 
between SP and S when an exponential distribution-based 
service demands are used. 

Due to space limitations a discussion of the impact of a number 
of other factors on performance could not be included. A more 
complete analysis of system performance is presented in [4]. 
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Figure 2. The Effect of Mult i -Threading on Performance (SA 
= SC = 50 ms, SB = SD = 55 ms, L = 50 bytes) 

Table 3. System Throughput  (cycles/sec) for Exponential ly  
Distributed Service Times (SA=SC = 50 ms, SB=SD=55ms,  

L=50 bytes) 

N S HP FP SP 

1 8.55 11.72 10.56 12.38 

4 20.29 24.71 23.79 25.47 

10 27.57 30.78 29.17 31.58 

5.CONCLUSIONS 
Three different parallel interaction architectures are proposed 
and their performances are compared with that of a traditional 
sequential architecture. Based on E2A ASP, a COTS CORBA 
compliant middleware, prototypes are constructed and 
experiments are run on a network of PC's. The results of a set of 
experiments have led to valuable insights into system behavior 
and the relative performances of these architectures. These are 
briefly summarized. 

Performance of  the Parallel Architectures: A substantial 
performance benefit accrues from using a parallel architecture 
especially at low to medium load. The multi-threaded 
Synchronous PP-Daemon-based architecture displays the best 
performance followed by the Handle Driven PP-Daemon-based 
architecture. 

Software Bottleneck." A potential problem with the Synchronous 
PP-Daemon-based architecture that uses synchronous 
communication is the formation of a software bottleneck at the 
PP-daemon. Multi-threading can effectively solve the problem. 
But on a thread-constrained system, a Handle Driven PP- 
Daemon-based architecture may be a better choice. 

Variability in Service Times: Introducing variability in service 
times leads to a lower performance benefit for the parallel 
processing architectures at low load. 

This paper presented a preliminary analysis of parallel 
interaction architectures. A more detailed analysis of the 
relationship between system performance and workload 
parameters is presented in [4]. 
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