
Extended Virtual SynchronyL. E. Moser, Y. Amir, P. M. Melliar-Smith, D. A. AgarwalDepartment of Electrical and Computer EngineeringUniversity of California, Santa Barbara, CA 93106Abstract. We formulate a model of extended vir-tual synchrony that de�nes a group communicationtransport service for multicast and broadcast com-munication in a distributed system. The model ex-tends the virtual synchrony model of the Isis systemto support continued operation in all components ofa partitioned network. The signi�cance of extendedvirtual synchrony is that, during network partition-ing and remerging and during process failure and re-covery, it maintains a consistent relationship betweenthe delivery of messages and the delivery of con�gu-ration changes across all processes in the system andprovides well-de�ned self-delivery and failure atomic-ity properties. We describe an algorithm that imple-ments extended virtual synchrony and construct a �l-ter that reduces extended virtual synchrony to virtualsynchrony.1 IntroductionIn many applications in distributed systems messagesmust be disseminated to multiple destinations. Toachieve better performance, protocols have been de-veloped to exploit the multicast or broadcast capabil-ities of existing local-area network hardware [1, 3, 5,9, 11, 13]. The process group paradigm [7] is a usefuland appropriate addressing mechanism for multicastand broadcast communication.Within the process group paradigm, virtual syn-chrony [4, 5, 6, 14] ensures that processes perceiveprocess failures and other con�guration changes as oc-curring at the same logical time. The model of vir-tual synchrony handles omission faults and fail-stopfaults, and regards recovered processes as new proc-esses. When network partitioning occurs, the virtualsynchrony model also ensures that processes in at mostone connected component of the network, the primarycomponent, are able to make progress; processes in theother components of the network are blocked.Unfortunately, if a process fails and can recoverwith stable storage intact, then inconsistenicies canarise. Consider, for example, the failure of a processThis work was supported by the National Science Founda-tion, Grant No. NCR-9016361, by the Advanced ResearchProject Agency, Grant No. N00174-93-K-0097, by RockwellCMC through the State of California MICRO program, GrantNo. 92-101, and by the United States-Israel Binational ScienceFoundation, Grant No. 92-00189.The address of Y. Amir is Computer Science Department, TheHebrew University of Jerusalem, 91904, Israel.

that was responsible for deciding the order of mes-sages and informing other processes of that order. Itmay decide an order and deliver messages locally inthat order but fail to communicate that order to otherprocesses. After removing the failed process from thecon�guration, the other processes may determine anorder without knowing the order chosen by the failedprocess. If the failed process can recover with stablestorage intact and if the contents of its stable storagecan be a�ected by the order of delivery of messages,the model of virtual synchrony must be extended.Gateways, bridges and wireless communication in-crease the probability of network partitioning, whichmay also result in inconsistencies. For example, if theprocess responsible for determining the order of mes-sages becomes detached, it may continue to order anddeliver messages locally after it has become detachedbut before it learns that it has become detached. Theorder in which it delivers messages before becomingdetached may be inconsistent with the order in whichother processes deliver messages; a problem can ariseif a detached process can resume operation and re-merge with the primary component. The extendedvirtual synchrony model guarantees that processes inall components of a partitioned network have a con-sistent, though perhaps incomplete, history of thesystem.Moreover, in some applications it is not acceptableto block processes that are not in the primary com-ponent. The application should be allowed to deter-mine which processing, if any, is appropriate while thenetwork is partitioned. To illustrate this point, wepresent the following examples:� An airline reservation system must continue tosell tickets even if the system becomes parti-tioned. Airlines have devised heuristics for usein non-primary components, based only on localdata, that aim to maximize the number of tick-ets that can be sold while minimizing the risk ofoverbooking.� An ATM machine, operating in a fully connectedsystem, records each transaction in its database,checking that cumulative withdrawals do not ex-ceed the account balance. When operating in anon-primary component, however, it consults asmall database to authorize a withdrawal withoutchecking for cumulative withdrawals at di�erentlocations, and delays posting the transaction untilthe system becomes reconnected.

� A radar system combines a number of sensors,as well as a number of displays, in di�erent lo-cations. The most accurate available informa-tion, obtained from the sensor with the best viewshould be displayed to the operator. In the caseof a network partition, however, it is better to dis-play lower quality information from the connectedsensors than to do nothing.In the design of the Totem protocol [3, 12], basedon our experience with the Trans and Total proto-cols [11] and the Transis system [1, 2], we have ex-tended the virtual synchrony model [4, 5, 6] of theIsis system to handle network partitioning and remerg-ing, as well as process failure and recovery. Extendedvirtual synchrony establishes a consistent relationshipbetween delivery of messages and delivery of con�gu-ration changes across all processes in the system, andprovides well-de�ned self-delivery and failure atomic-ity properties.2 The Model and Services ProvidedA distributed system is a �nite set of processes thatcommunicate over a network by sending messages.Each of the processes in the system has a unique iden-ti�er. A process may fail and may subsequently re-cover after an arbitrary amount of time with its sta-ble storage intact. When a process recovers, it has thesame identi�er as before the failure. The network maypartition into some �nite number of components. Theprocesses in a component can receive messages broad-cast by other processes in the same component, butprocesses in two di�erent components are unable tocommunicate with each other. Two or more compo-nents may subsequently merge to form a larger com-ponent.Each process executes a low-level membership al-gorithm to determine the processes that are membersof its component. This membership, together with aunique identi�er, is called a con�guration. The mem-bership algorithm ensures that all processes in a con-�guration agree on the membership of that con�gu-ration. The application is informed of changes in thecon�guration by the delivery of con�guration changemessages.Each process also executes a reliable broadcast-ing and ordering algorithm that associates an ordinalnumber with each message. These ordinals impose atotal order on messages broadcast within a con�gura-tion. Processes deliver messages to the application inthe order imposed by these ordinal numbers, an or-dering that preserves causality. As an alternative tothe total ordering algorithm, we can consider an or-dering algorithm that only imposes a partial order onmessages.We distinguish between receipt of a message overthe communication medium, which may be out oforder, and delivery of a message to the application,which may be delayed until prior messages in the orderhave been delivered. Three message delivery servicesare de�ned:� Causal delivery, de�ned in the context of networkpartitioning and remerging (cbcast in Isis)

� Agreed delivery, which guarantees a total orderof message delivery within each component andallows a message to be delivered as soon as allof its predecessors in the total order have beendelivered (abcast in Isis)� Safe delivery, which guarantees that, if anyprocess within a component delivers a message,then that message has been received and will bedelivered by every other process in that compo-nent unless that process fails (all-stable abcast inIsis).Causal delivery applies only to messages broadcastin the same con�guration and does not extend back toprior con�gurations. Agreed and safe delivery imposesevere requirements on the algorithms in the presenceof network partitioning and remerging and of processfailure and recovery. Process p guarantees to deliverevery message broadcast for delivery in agreed order incon�guration c that precedes the con�guration changemessage delivered by p to terminate c. Delivery in safeorder is even more demanding because it guarantees,in addition, that a message delivered in safe order by pwill be delivered by every other process in c unless thatprocess fails. In this paper we focus on safe messages.To achieve safe delivery in the presence of networkpartitioning and remerging and of process failure andrecovery, the extended virtual synchrony algorithmpresents to the application two types of con�gurations.In a regular con�guration new messages are broad-cast and delivered. In a transitional con�guration nonew messages are broadcast but the remaining mes-sages from the prior regular con�guration are deliv-ered. Those messages did not satisfy the safe or causaldelivery requirements in the regular con�guration and,thus, could not be delivered in that con�guration.A regular con�guration may be immediately fol-lowed by several transitional con�gurations (one foreach component of the partitioned network) and maybe immediately preceded by several transitional con-�gurations when several components merge together.A transitional con�guration, in contrast, is immedi-ately followed by a single regular con�guration andis immediately preceded by a single regular con�g-uration. A transitional con�guration consists of themembers of the next regular con�guration that havethe same preceding regular con�guration. Messagescan be delivered as safe in a transitional con�gurationeven though they cannot be delivered as safe in thepreceding regular con�guration, so long as the appli-cation is informed of the con�gurations in which themessages are delivered. It is then up to the applicationto determine how to proceed with this information.Each process in a transitional or regular con�gu-ration delivers a con�guration change message to theapplication to terminate the prior con�guration andinitiate the new con�guration. Delivery of a con�gura-tion change message that initiates a new con�gurationfollows delivery of every message in the con�gurationthat it terminates and precedes delivery of every mes-sage in the con�guration that it initiates. The con-�guration change message that initiates a transitionalcon�guration de�nes the membership within which it

is possible to guarantee safe delivery of the remainingmessages of the prior regular con�guration.For a process p that is a member of a regular con-�guration c, we de�ne transp(c) to be the transitionalcon�guration that follows c at p, if such a con�gu-ration exists. For a process p that is a member of atransitional con�guration c, transp(c) = c. For a proc-ess p that is a member of a transitional con�gurationc, we de�ne regp(c) to be the regular con�gurationthat immediately precedes c. For a process p that is amember of a regular con�guration c, regp(c) = c. Wede�ne comp(c) to be either one of the con�gurationsregp(c) or transp(c). We use c to refer to a single spe-ci�c con�guration. If both p and q are members of c,then regp(c) = regq(c). However, transp(c) is not nec-essarily equal to transq(c) and, thus, comp(c) is notnecessarily equal to comq(c).The speci�cation of extended virtual synchrony isde�ned in terms of four types of events:� deliver confp(c): process p delivers a con�gura-tion change message initiating con�guration c,where p is a member of c� sendp(m; c): process p sends (originates) messagem while p is a member of con�guration c� deliverp(m; c): process p delivers messagem whilep is a member of con�guration c� failp(c): process p fails while p is a member ofcon�guration c.The failp(c) event is the actual failure of process p incon�guration c and is distinct from a deliver confq(c0)event that removes p from con�guration c. After afailp(c) event, process p may remain failed forever ormay recover with a deliver confp(c00) event, where themembership of c00 is fpg.The precedes relation, !, de�nes a global partialorder on all events in the system, and the ord function,from events to natural numbers, de�nes a virtual orlogical total order on those events. The ord function isnot one-to-one, because some events in di�erent proc-esses are required to occur at the same logical time.The speci�cations for extended virtual synchrony be-low de�ne the ! relation and the ord function.2.1 The Extended Virtual SynchronyModelThe model of extended virtual synchrony consists ofSpeci�cations 1-7 below, which are expressed in termsof the partial order relation, !, and the total orderfunction, ord. The causal delivery requirements, givenby Speci�cation 5, apply only to messages sent (orig-inated) within a single con�guration.Speci�cations 1-5 are illustrated in Figures 1-5.Speci�cations 6 and 7 are more di�cult to depict andso are not shown. In these �gures vertical lines corre-spond to processes, an open circle represents an eventthat is assumed to exist, a star represents an eventthat is asserted to exist, a light edge without an arrowrepresents a precedes relation that holds because ofsome other speci�cation, a medium edge with an ar-row represents a precedes relation that is assumed to

hold, a heavy edge with an arrow represents a precedesrelation that is asserted to hold, and a cross throughan event (relation) indicates that the event (relation)does not occur.In these speci�cations when we write \there ex-ists sendp(m; c)" we mean that there exist a proc-ess p, a message m and a con�guration c such thatprocess p sends message m in con�guration c and,similarly, for \there exists deliverp(m; c)" and \thereexists deliver confp(m; c)". Moreover, when we write\deliverp(m;comp(c))" we mean \deliverp(m;regp(c))"or \deliverp(m;transp(c))".Basic DeliverySpeci�cation 1.1 requires that the ! relation is apartial order relation (reexive,� anti-symmetric andtransitive), and Speci�cation 1.2 requires that theevents within a single process are totally ordered bythe ! relation. Speci�cation 1.3 requires that thesending of a message precedes its delivery, and thatthe delivery occurs in the con�guration in which themessage was sent or in an immediately following tran-sitional con�guration. Speci�cation 1.4 asserts thata given process does not send, or deliver, the samemessage in two di�erent con�gurations and that twodi�erent processes do not send the same message.1.1. For any event e, e ! e. If there exist events eand e0 such that e ! e0, where e 6= e0, then it is notthe case that e0 ! e. If there exist events e, e0 and e00such that e! e0 and e0 ! e00, then e! e00.1.2. If there exists an event e that is sendp(m; c),deliverp(m; c), failp(c) or deliver confp(c) and an evente0 that is sendp(m0; c0), deliverp(m0; c0), failp(c0) ordeliver confp(c0), then e ! e0 or e0 ! e.1.3. If there exists deliverp(m; c), then there ex-ists sendq(m;regq(c)) such that sendq(m;regq(c)) !deliverp(m; c).1.4. If there exists sendp(m; c), then c = regp(c)and there does not exist sendp(m; c0), where c 6=c0, or sendq (m; c00), where p 6= q. Moreover, ifthere exists deliverp(m; c), then there does not existdeliverp(m; c0), where c 6= c0.Delivery of Con�guration ChangesSpeci�cation 2.1 requires that, if a process is a mem-ber of a con�guration and does not install or doesnot remain a member of that con�guration, then theother processes install a new con�guration. In par-ticular, this means that if the process fails, then theother processes will detect the failure and install anew con�guration. Speci�cation 2.2 states that at anymoment a process is a member of a unique con�gura-tion whose events are delimited by the con�gurationchange event(s) for that con�guration. Speci�cations2.3 and 2.4 assert that an event that precedes (fol-lows) delivery of a con�guration change by one processmust also precede (follow) delivery of that con�gura-tion change by other processes.2.1. If there exists deliver confp(c), there does not�The ! relation could have been de�ned to be irreexive but,to conform to the standard mathematical de�nition of a partialorder, we de�ne the! relation to be reexive.

send (m, c)p

pdeliver (m’,c’)

pdeliver (m’,c’)

send (m, c)p
or

Specification 1.2

send (m,reg (c))q q

deliver (m,c)p

*

Specification 1.3

send (m, c)p

send (m, c’)p

qsend (m, c’’)

Specification 1.4

e

e’

e’’

Specification 1.1

Figure 1: Basic Delivery Speci�cations.exist failp(c), there does not exist deliver confp(c0)such that deliver confp(c) ! deliver confp(c0), wherec 6= c0, and if q is a member of c, then thereexists deliver confq(c), there does not exist failq(c)and there does not exist deliver confq(c00) such thatdeliver confq(c)! deliver confq(c00), where c 6= c00.2.2. If there exists an event e that is eithersendp(m; c) or deliverp(m; c) or failp(c), then there ex-ists deliver confp(c) such that deliver confp(c)! e andthere does not exist an event e0 such that e0 is failp(c)or deliver confp(c0) and deliver confp(c) ! e0 ! e,where e 6= e0 and c 6= c0.2.3. If there exist deliver confp(c), deliver confq(c)and e such that deliver confp(c) ! e, where e 6=deliver confp(c), then deliver confq(c)! e.2.4. If there exist deliver confp(c), deliver confq(c)and e such that e ! deliver confp(c), where e 6=deliver confp(c), then e! deliver confq(c).Self-DeliverySpeci�cation 3 requires that each process delivers eachmessage it sends, provided that it does not fail. Thisdelivery may occur in a transitional con�guration thatconsists of only the process that sent the message.3. If there exist sendp(m; c) and deliver confp(c0)such that sendp(m; c)! deliver confp(c0), where c0 6=transp(c), and there does not exist failp(comp(c)), then

deliver_conf (c)p

pdeliver_conf (c’)
qfail (c)

deliver_conf (c)q

deliver_conf (c)p

send (m,c)p

fail (c)p deliver_conf (c’)p

deliver_conf (c)p deliver_conf (c)q

deliver_conf (c)q

deliver_conf (c)p

*

Specification 2.1

*

Specification 2.2

Specification 2.3

e

e

Specification 2.4Figure 2: Con�guration Change Speci�cations.there exists deliverp(m;comp(c)).Failure AtomicitySpeci�cation 4 requires that, if any two processes pro-ceed together from one con�guration to the next, thenboth processes deliver the same set of messages in thatcon�guration.4. If there exist deliver confp(c), deliver confp(c000),deliver confq(c), deliver confq(c000) and deliverp(m; c)such that deliver confp(c) ! deliver confp(c000),where c 6= c000, and there does not existdeliver confp(c0) such that deliver confp(c) !deliver confp(c0) ! deliver confp(c000), where c 6= c0and c0 6= c000, and there does not exist deliver confq(c00)such that deliver confq(c) ! deliver confq(c00) !
*

send (m,c)

deliver (m, com (c))

deliver_conf (c’)

fail (com (c))

Specification 3

p

pp

p p

pFigure 3: Self Delivery Speci�cation

*

deliver_conf (c)

deliver (m,c)
deliver_conf (c’)

deliver_conf (c’’’)

deliver_conf (c)

deliver (m,c)

deliver_conf (c’’’)

deliver_conf (c’’)

Specification 4

p

p

p

p

q

q

q

qFigure 4: Failure Atomicity Speci�cation
*

send (m,c)

send (m’,c) deliver (m, com (c))

deliver (m’, com (c))

q

p

r

r

Specification 5

r

rFigure 5: Causal Delivery Speci�cations.deliver confq(c000), where c 6= c00 and c00 6= c000, thenthere exists deliverq(m; c).Causal DeliveryUnlike other researchers, we model causality so that itis local to a single con�guration and is terminated by amembership change. Simpler formulations of causalityare not appropriate when a network may partition andremerge or when a process may fail and restart withstable storage intact and with the same identi�er.The causal relationship between messages is ex-pressed in Speci�cation 5 as a precedes relation be-tween the sending of two messages in the same con-�guration. This precedes relation is contained in thetransitive closure of the precedes relations establishedby Speci�cations 1.1-1.3.Speci�cation 5 requires that if one message is sentbefore another in the same con�guration and if a pro-cess delivers the second of those messages, then it alsodelivers the �rst.5. If there exist sendp(m; c), sendq(m0; c) anddeliverr(m0;comr(c)) such that sendp(m; c) !sendq(m0; c), then there exists deliverr(m;comr(c))such that deliverr(m;comr(c)) ! deliverr(m0;comr(c)).Totally Ordered DeliveryThe following speci�cations constrain the de�nition ofthe ord function. Speci�cation 6.1 requires the totalorder to be consistent with the partial order. Spec-i�cation 6.2 asserts that processes deliver con�gura-tion change messages for the same con�guration atthe same logical time and that they deliver the samemessage at the same logical time. Speci�cation 6.3requires that processes deliver messages in order ex-cept that, in the transitional con�guration, there is noobligation to deliver messages sent by processes not inthe transitional con�guration.6.1. If there exist events e and e0 such that e! e0,where e 6= e0, then ord(e) < ord(e0).

6.2. If there exist events e and e0 that are eitherdeliver confp(c) and deliver confq(c) or deliverp(m; c)and deliverq(m; c0), then ord(e) = ord(e0).6.3. If there exist deliverp(m;comp(c)), deliverp(m0;comp(c)), deliverq(m0; c0), sendr(m;regr(c0)) such thatord(deliverp(m;comp(c))) < ord(deliverp(m0;comp(c)))and r is a member of c0, then there existsdeliverq(m;comq(c0)).Note that the relationship between c and c0 in Spec-i�cation 6 can only be one of the following: either theyare the same regular or transitional con�guration orthey are di�erent transitional con�gurations for thesame regular con�guration, or one is a regular con�g-uration and the other is a transitional con�gurationthat follows it.Safe DeliverySpeci�cation 7.1 requires that, if any process deliversa message in a con�guration, then each process in thatcon�guration delivers the message unless that processfails. Speci�cation 7.2 asserts that, if any process de-livers a safe message in a regular con�guration, thenall processes in that con�guration deliver con�gura-tion change messages for that con�guration.7.1. If there exists deliverp(m; c) for a safe mes-sage m, then for all members q of c there existsdeliverq(m;comq(c)) or failq(comq(c)).7.2. If there exists deliverp(m;regp(c)) for a safemessage m, then for all members q of regp(c) thereexists deliver confq(regp(c)).Finally, note that the Basic Delivery Speci�cation1.2, when restricted to a single con�guration, ex-presses causality of events within a single process.Also note that, if we modify Speci�cation 5 by replac-ing sendp(m; c) by deliverq(m; c), then the modi�edspeci�cation follows from the existing Speci�cation 5and Speci�cation 1.3.Speci�cations 5 through 7 represent increasing lev-els of service. Some systems may operate withoutthe causal order requirement; other systems need thecausal order requirement and may add a total orderrequirement and/or a safe delivery requirement as ap-propriate for the application.2.2 The Primary Component ModelThe properties required of the history H of primarycomponents are de�ned below, where C, C 0 and C 00represent primary components.UniquenessThe history H of primary components is totally or-dered by the ! relation.1. If there exist deliver confp(C), deliver confq(C0)in H, then deliver confp(C) ! deliver confq(C0) ordeliver confq(C0) ! deliver confp(C).ContinuityFor each pair of consecutive primary compo-nents in the history H, at least one process isa member of both.2. If there exist deliver confp(C), deliver confr(C 00)in H and there does not exist deliver confq(C 0) inH such that deliver confp(C) ! deliver confq(C 0) !

deliver confr(C00), where C 6= C 0 and C 0 6= C 00, thenthere exists a process s that is a member of both Cand C00.3 An Algorithm for ImplementingExtended Virtual SynchronyWe now present an algorithm that implements ex-tended virtual synchrony for safe delivery of totallyordered messages on top of the message transmis-sion, membership, and total ordering algorithms. TheTotem protocol [3] incorporates these algorithms andprovides extended virtual synchrony. The steps of theextended virtual synchrony algorithm, executed by anindividual process, are as follows.1. In a regular con�guration, this process sendsand receives messages, holding in a message bu�er anymessages that it has received but cannot yet deliver.The process delivers a message as safe when it has de-livered all of the messages that precede the messagein the total order and has received acknowledgmentsfor the message from all of the other processes in thecon�guration. An acknowledgment indicates that aprocess has received and will deliver the message un-less it fails.In a regular con�guration, this process records thatthere are no processes to which it is obligated. Aprocess p is obligated to a process q when p has trans-mitted an acknowledgment for a message m sent (orig-inated) by q that enables another process to deliver mas safe. The set of processes to which p is obligated isreferred to as its obligation set.When this process has been informed by the under-lying membership algorithm of the membership andidenti�er of a proposed new con�guration, it com-mences to perform the following steps, which consti-tute the recovery algorithm.2. Bu�er or reject all new messages from the ap-plication until this process delivers a con�gurationchange message for a regular con�guration to the ap-plication. Bu�er any messages received for the pro-posed new con�guration.3. Exchange information with each process ofthe proposed new con�guration. In particular, eachprocess supplies the identi�er of its last regular con-�guration, the identi�er of the last safe message itdelivered, and its obligation set.4.a. Determine the members of the proposed tran-sitional con�guration of this process, i.e. the membersof the new regular con�guration whose previous reg-ular con�guration is the same as the previous regularcon�guration of this process.b. Determine the messages to be rebroadcast be-cause some process in the proposed transitional con-�guration of this process has not acknowledged receiptof those messages.5.a. Rebroadcast messages as required by Step 4.band acknowledge receipt of such messages.b. Continue Step 5.a until all processes in theproposed transitional con�guration of this processacknowledge having received all of the rebroadcastmessages.c. If during Step 5.a this process acknowledges hav-

ing received all of the rebroadcast messages, it includesthe members of the proposed transitional con�gura-tion and their obligation sets in its obligation set.6.a. Discard all messages, except those sent by amember of the obligation set of this process, that fol-low the �rst unavailable message in the total order.Such messages must be discarded because they may becausally dependent on an unavailable message. Theobligation set includes all members of the proposedtransitional con�guration of this process.b. Deliver to the application in order all of therebroadcast messages that are safe in the precedingregular con�guration up to but not including the �rsttotally ordered message for which a predecessor inthe total order is unavailable, or the �rst message forwhich safe delivery was requested but for which someprocess in the preceding regular con�guration has notacknowledged receipt.c. Deliver a �rst con�guration change message thatintroduces the transitional con�guration.d. Deliver in order, from the remaining undeliveredmessages, all messages whose predecessors in the totalorder have been delivered, and all messages sent by aprocess in the obligation set of this process.e. Deliver a second con�guration change message toterminate the transitional con�guration and install thenew regular con�guration reported by the underlyingmembership algorithm.The parts of Step 6 are performed locally as anatomic action without communication with any otherprocess. If a failure occurs during execution of therecovery algorithm, then the membership algorithmis invoked and the recovery algorithm is restarted atStep 2.3.1 An Example of Con�guration Changesand Message DeliveryConsider the example shown in Figure 6. Here a regu-lar con�guration containing processes p, q and r parti-tions and p becomes isolated while q and r merge into aregular con�guration with processes s and t. Processesq and r deliver two con�guration change messages, oneto shift from the old regular con�guration fp; q; rg tothe transitional con�guration fq; rg and the other toshift from the transitional con�guration fq; rg to thenew regular con�guration fq; r; s; tg.Processes q and r may not be able to deliver allof the messages broadcast in the regular con�gurationfp; q; rg. In particular, they cannot deliver any mes-sage for which the causal or safe delivery requirementfor fp; q; rg is not satis�ed.If process p sends message m after sending messagel but q and r did not receive l before a con�gurationchange occurred, then q cannot deliver m because itscausal predecessor l is not available.By the self-delivery property (Speci�cation 3), qand r must each deliver the messages they themselvessent in fp; q; rg. Of course, each process q and r hasits own messages and also any messages that causallyprecede its own messages, since it must have deliveredsuch messages before it sent its own messages.After the message exchange for the transitional con-

{ p, q, r }

{ q, r } { s, t }

{ s, t }

{ q, r, s, t }

{ p }Figure 6: Con�guration Changes and Message Delivery.�guration fq; rg has been completed, both q and rhave all messages sent by q or r and all the causalpredecessors of such messages. Furthermore, all suchmessages are safe in fq; rg and, consequently, can bedelivered in the transitional con�guration.If process r sends message n for safe deliverybut does not receive an acknowledgment for n fromboth p and q before a con�guration change occurs,then r cannot deliver n in the regular con�gura-tion fp; q; rg. If, however, r receives an acknowl-edgment for n from q, then r can deliver n in thetransitional con�guration fq; rg.3.2 Proof that the Algorithm Satis�esExtended Virtual SynchronySpeci�cation 1.1 states that the! relation is a partialorder. The reexive property is a matter of de�nition.The transitive and acyclic properties are assumptionsthat we are making about the real world. Speci�cation1.2 expresses the fact that a process has a single threadof control. Speci�cations 1.3 and 1.4 follow from theunderlying broadcast mechanisms.Speci�cations 2.1-2.4 follow from the underlyingmembership algorithm.Speci�cation 3 requires that a process delivers itsown messages, provided that it does not fail. In par-ticular, when a process considers the undelivered mes-sages in Step 6 of the extended virtual synchrony re-covery algorithm, no message sent by any memberof the transitional con�guration is discarded on thegrounds that it is causally dependent on an unavail-able message. All of the preceding messages must havebeen available to the process that sent the messageand, thus, are available to all members of the transi-tional con�guration after the message exchange.Speci�cation 4 requires that processes deliver thesame set of messages in a regular con�guration andthe same set of messages in a transitional con�gura-tion. After the message exchange in Step 5 of theextended virtual synchrony recovery algorithm, allprocesses in the transitional con�guration have thesame set of messages and apply the same algorithm todetermine message delivery in the regular and transi-tional con�gurations.Speci�cation 5 follows immediately if m0 is deliv-ered in a regular con�guration. If m0 is deliveredin a transitional con�guration, then q is a memberof that con�guration or of the obligation set. Sincesendp(m; c)! sendq(m0; c), either p = q or m was de-livered by q before q sent m0 and, thus, m is safe in c.

In either case, m is delivered before m0 in the regularor transitional con�guration.Speci�cations 6.1 and 6.2 follow from the de�nitionof the ord function and from the consistency providedby Step 6 of the extended virtual synchrony recov-ery algorithm and by the message total ordering algo-rithm. In addition, Speci�cation 6.1 depends on thefact that a process has a single thread of control.Speci�cation 6.3 follows by an argument similar tothat for Speci�cation 3. In Step 6.a of the extendedvirtual synchrony recovery algorithm, messages fromprocesses not in the transitional con�guration may bedropped, but messages from members of the transi-tional con�guration are delivered in order.Speci�cation 7.1 is obvious if all processes completethe extended virtual synchrony recovery algorithm. If,however, further processes fail or a further partitionoccurs during the recovery algorithm, more care isrequired. Some processes may not complete the re-covery algorithm but may instead receive a furthermembership change from the underlying membershipalgorithm, causing them to restart the recovery algo-rithm. If such a process has acknowledged receipt ofall of the rebroadcast messages, it is possible that someother process may have completed the recovery algo-rithm and installed the next regular con�guration be-fore the failure occurred. The other process may havedelivered messages as safe in the transitional con�g-uration, relying on the acknowledgment supplied bythis process. The concept of obligation ensures thatthese messages are indeed delivered by all of the proc-esses needed to satisfy the safe delivery requirement.Speci�cation 7.2 follows directly from Step 6.e ofthe extended virtual synchrony recovery algorithm.Termination PropertyNote that the termination of the recovery algorithmis dependent on the termination of the membershipalgorithm. The underlying membership algorithmwilleventually terminate if it has the property that, if thenext proposed regular con�guration is not installedwithin a bounded time, then the membership of thatcon�guration is reduced. The Totem protocol and theTransis system preserve extended virtual synchronyand contain a membership algorithm that terminateswithin a bounded time.4 The Virtual Synchrony ModelWe now summarize Birman's model of virtual syn-chrony, as it is presented in [6] where more discussionand details can be found. We then show in Section5 how virtual synchrony can be implemented on topof extended virtual synchrony. This model of virtualsynchrony is based on Lamport's causality relation,!, de�ned in [10], i.e. the transitive closure of� e! e0, where e and e0 are local to a process� send(m) ! deliver(m)The events local to a process are send(m), deliver(m)and stop. In addition, the virtual synchrony modelhas the group events: viewi(g), cbcast(g;m) andabcast(g;m), where g is a group, i is a process andm is a message.

A history H is said to be complete ifC1. For each event e0 2 H and for all e! e0, e 2 H.C2. For each send(m) 2 H, there is a correspondingdeliver(m) 2 H.C3. Each multicast message m, that is delivered bya process in view gx, is delivered by all other membersof gx, where x denotes the xth instance of group g.A complete history H is said to be legal if it satis�esthe following constraints:L1. Each event e 2 H can be labelled with aglobal time, time(e), that respects the causal order ofevents, i.e. for any two events e and e0, e! e0 impliestime(e) < time(e0).L2. Distinct events of the same process have dis-tinct times.L3. Membership change events for the same viewbut distinct processes have the same logical time, i.e.time(viewi(gx)) = time(viewj(gx)).L4. Deliver events of a multicast message m occurin the same view gx for each process that delivers m,i.e. for each process i that delivers m the most re-cent membership change event preceding deliveri(m)is viewi(gx).L5. For any two events deliveri(m) and deliverj(m)of an abcast message m, time(deliveri(m)) =time(deliverj(m)).Extend(H) is de�ned to be the set of histories ob-tained by extending the local process histories withinthe history H by appending any missing deliverand view events that correspond to unpaired send,cbcast, abcast and view events in H.Failure of a process is modeled by the distinguished�nal event, stop. The history of a failed process isextended by prepending the missing events before thestop event, but after any other events executed by thefailed process prior to the failure.A system execution is acceptable if, for any historyH, there exists a history H 0 2 extend(H) that is cor-rect and legal.A system is virtually synchronous if deliver(m) andview(g) events appear to occur simultaneously in theprocesses in which they occur.4.1 The Failure ModelBirman assumes that failures respect the fail-stopmodel, and adopts a primary partition model in whichat most one primary partitiony is permitted to con-tinue execution. A membership service noti�es mem-bers of the primary partition when failures occur. Thefailed process is then removed from the primary par-tition. If a failed process subsequently recovers andreconnects to the primary partition, it does so with anew identi�er.A failure appears as a stop event that satis�es thefollowing properties:yWe use the term \component" to refer to a set of processesthat can communicate among themselves and that are not ableto communicate with processes in other components, and \par-tition" to refer to the collection of components that comprisethe system. Thus, a primary partition in Birman's terminologyis a primary component in our terminology.

1. The membership service behaves like a single,continuously operational process. If a partition oc-curs, progress is permitted in only one partition, ifany.2. A failed process will be dropped from any groupsto which it belongs, i.e. if Pi[t] = stop, then thereexists t0 > t such that, for all groups g, Pi 2 g[t])Pi 62 g[t0].3. After a process has been observed to fail, noadditional messages will be received from it.4.2 Multicast Delivery GuaranteesA uniform multicast is a multicast m such that if anyprocess delivers m in gx then, even if that processfails, all processes deliver m in gx. A multicast mthat does not guarantee this uniformity property is anon-uniform multicast.5 An Algorithm for ImplementingVirtual Synchrony on Top ofExtended Virtual SynchronyWe now provide an algorithm for implementing virtualsynchrony on top of our basic model, the extended vir-tual synchrony algorithm, and a primary componentalgorithm (Figure 7). We construct a �lter on a sys-tem that maintains extended virtual synchrony andshow that all of the runs produced by this �lter are ac-ceptable executions according to the virtual synchronymodel.The primary component algorithm receives con�g-uration change messages from the membership algo-rithm. It delivers these messages to the applicationwith an indication as to whether the new con�gurationis a primary component. A simple primary componentalgorithm is easily constructed; we are currently de-veloping an algorithm that has a greater probabilityof �nding a primary component and thereby reducesthe risk that all processes will be blocked.The �lter runs locally at a process within a con�g-uration and is de�ned as follows:1. Upon receiving a con�guration change mes-sage for a transitional con�guration transp(c), maskthis event and transform all deliverp(m;transp(c))events into deliverp(m;regp(c)) events until thenext deliver con�g event for a regular con�gurationis received.2. Upon receiving a con�guration change messagefor a regular con�guration that is not a primary com-ponent, block, i.e. don't accept any messages from theapplication for sending and discard any messages orcon�guration changes received until this process be-comes a member of the primary component.3. For a process in the primary component, uponreceiving a con�guration change message for a regularcon�guration that is a primary component and thatmerges a non-primary component containing severalprocesses into the primary component, split the de-livery of the single con�guration change message intomultiple events each of which merges one process ata time into the primary component in a deterministicorder (such as lexicographical order).

Virtual Synchrony Filter

Primary Component Selection

Extended Virtual Synchrony Algorithm

Ordering

Membership

Message Transmission

Virtual Synchrony

Extended Virtual
SynchronyFigure 7: Virtual Synchrony and Extended Virtual Synchrony.4. For a process in a non-primary component, uponreceiving a con�guration change message for a regu-lar con�guration that is a primary component, mergethe processes in the non-primary component into theprimary component, generating con�guration changeevents as required in Rule 3.In the extended virtual synchrony model a processthat fails and recovers installs a singleton con�gura-tion. This singleton con�guration is not the primarycomponent and, thus, is blocked by the �lter becauseof Rule 2 until the process is merged with the primarycomponent in Rule 4.In the extended virtual synchrony model there isno change in identi�er of a resumed process; however,in the virtual synchrony model a resumed process hasa new identi�er. We can easily accommodate this inRule 4 of the �lter by giving a new identi�er to aprocess on being merged into the primary component.5.1 Proof that the Algorithm Satis�esVirtual SynchronyA run produced by this �lter can be completed usingthe extend mechanism of the virtual synchrony model.We now show that the completed run is legal. Our ordfunction corresponds to Birman's time function; bothprovide virtual or logical event ordering.Property C1 corresponds to Speci�cations 1.3, 1.4,2.2 and 5.Property C2 is achieved by Speci�cation 3 andthe extend mechanism which yields a complete his-tory. If there were a failp(c) event in the �ltered his-tory, then the extend mechanism would add all of thedeliverp(m; c) events that correspond to unmatchedsendp(m; c) events prior to this failp(c) event.Property C3 is achieved by Speci�cation 4 and theextend mechanism if appropriately revised to excludefrom the history messages sent by failed processes thatwere not delivered by one or more processes that donot fail.Property L1 follows directly from our assumptionof the ord function and Speci�cation 6.1, if we assumethat the events in L1 are distinct.Property L2 follows from Speci�cations 1.1, 1.2and 6.1.Property L3 follows from Speci�cation 6.2, wherethe viewi(gx) event corresponds to our deliver confp(c)event.

Property L4 is achieved by �rst applying theextend mechanism to achieve a complete history. BySpeci�cations 1.3 and 1.4, for each deliverp(m; c),there exists sendq(m;regq(c)), where c = regp(c)or transp(c) and regp(c) = regq(c). By Speci�-cation 2.2, there exists deliver confp(c) such thatdeliver confp(c)! deliverp(m; c) and there does notexist deliver confp(c0), where c 6= c0, such thatdeliver confp(c) ! deliver confp(c0) ! deliverp(m; c).Rule 1 of the �lter masks all deliver confp(transp(c00))events and transforms all deliverp(m;transp(c00))events into deliverp(m;regp(c00)) events. Therefore, af-ter the �lter has been applied, message m is deliveredin the view in which it was sent.Property L5 follows from Speci�cation 6.2.5.2 Comparison of the Failure ModelsThe failure model of extended virtual synchrony,which allows network partitioning and remerging andalso process failure and recovery with stable storage,is more general than the fail-stop model of virtual syn-chrony described in Section 4.1. It is possible to sim-ulate fail-stop behavior in the extended virtual syn-chrony model by requiring a failed process to assumea new identity when it recovers.The de�nition of a primary partition (component)is stated as Property 1 of the failure model of virtualsynchrony. In that model as well as in our model analgorithm for maintaining a history of primary com-ponents may block.Property 2 of the failure model of virtual synchronyis stronger than (does not follow from) Speci�cation2.1 of the extended virtual synchrony model. We allowa process to fail and recover su�ciently rapidly that itcan be included in the next con�guration, whereas thefailure model of virtual synchrony requires the processto be excluded from that and all future con�gurations.Property 3 of the failure model of virtual synchronyderives from Speci�cation 2.2. After �ltering and thedelivery of a con�guration change, no message is de-livered that was sent by a process that was a memberof the old con�guration but not the new con�guration,in particular because that process failed.5.3 Comparison of theMulticast PropertiesIt is interesting to compare the di�erent approachesused by virtual synchrony and extended virtual syn-chrony to achieve an approximation to the propertythat a message is not delivered unless it is deliveredby all members of the con�guration. Perfection is notpossible as it would require common knowledge [8].The virtual synchrony approach achieves this ap-proximation in uniform multicast by extending thehistory using the extend mechanism, which assumesthat the last few events in a failed process are lostforever and, thus, can impute delivery of a uniformmulticast message to a failed process. This approachdoes not, of course, address systems that may parti-tion and remerge or processes that may fail and restartwith stable storage intact.

The extended virtual synchrony approach achievesthis approximation in safe delivery, as de�ned by Spec-i�cations 7.1 and 7.2. It accepts that, for some mes-sages, it may be impossible to determine whether afailed process has delivered them. The key mechanismof extended virtual synchrony is reduction in the sizeof the con�guration. If it is impossible to determinewhether a process will deliver a message, because ofprocess failure or network partitioning, then a smallertransitional con�guration is created, excluding thatprocess. All processes in this smaller transitional con-�guration will deliver the message. Whether the moreprecise information provided by extended virtual syn-chrony is useful to an application program depends onthe needs and sophistication of the application.Another di�erence between the models is in thedelivery of messages. Virtual synchrony requires inProperty C1 that, for each message sent, some proc-ess delivers that message (not necessarily the onethat sent it). In contrast, extended virtual syn-chrony requires in Speci�cation 3 that each mes-sage is delivered by the process that sent it un-less that process fails. The assumption of the vir-tual synchrony model is satis�ed conceptually byextending the history using the extend mechanism,whereas the safe property of the extended virtual syn-chrony model ensures that the self-delivery require-ment is satis�ed by an actual history.6 ConclusionExtended virtual synchrony is a valuable abstractionfor a distributed system. It maintains a consistent re-lationship between the delivery of messages and thedelivery of con�guration changes across all processesin a distributed system, even in the presence of net-work partitioning and remerging and of process failureand recovery with stable storage intact.We have described an algorithm that implementsextended virtual synchrony. This algorithm is cur-rently operating in the Totem protocol at the Univer-sity of California, Santa Barbara, and in the Transissystem at the Hebrew University of Jerusalem.We have also described a �lter, running on topof extended virtual synchrony, that implements theIsis virtual synchrony model. This demonstratesthat extended virtual synchrony does indeed extendvirtual synchrony.Acknowledgment. We wish to thank Danny Dolevfor his insights and encouragement of this work.References[1] Y. Amir, D. Dolev, S. Kramer and D. Malki,\Transis: A communication sub-system for highavailability," Proceedings of the 22nd Annual In-ternational Symposium on Fault-Tolerant Com-puting, Boston, MA (July 1992), pp. 76{84.[2] Y. Amir, D. Dolev, S. Kramer and D. Malki,\Membership algorithms in broadcast domains,"Proceedings of the 6th International Workshop onDistributed Algorithms, Haifa, Israel (November

1992), Lecture Notes in Computer Science 647,pp. 292-312.[3] Y. Amir, L. E. Moser, P. M. Melliar-Smith,D. A. Agarwal and P. Ciarfella, \Fast mes-sage ordering and membership using a logicaltoken-passing ring," Proceedings of the IEEE 13thInternational Conference on Distributed Com-puting Systems, Pittsburgh, PA (May 1993),pp. 551{560.[4] K. P. Birman and T. A. Joseph, \Exploiting vir-tual synchrony in distributed systems," Proceed-ings of the ACM Symposium on Operating SystemPrinciples (1987), pp. 123-138.[5] K. P. Birman, A. Schiper and P. Stephenson,\Lightweight causal and atomic group multicast,"ACM Transactions on Computer Systems 9, 3(August 1991), pp. 272{314.[6] K. P. Birman, \Virtual synchrony model," In:Reliable Distributed Computing with the IsisToolkit, IEEE Press.[7] D. R. Cheriton and W. Zwaenepoel, \Distributedprocess groups in the V kernel," ACM Trans-actions on Computer Systems 3, 2 (May 1985),pp. 77{107.[8] J. Y. Halpern and Y. Moses, \Knowledge andcommon knowledge in a distributed environ-ment," Journal of the ACM 37, 3 (July 1990),pp. 549{587.[9] M. F. Kaashoek and A. S. Tanenbaum, \Groupcommunication in the Amoeba distributed oper-ating system," Proceedings of the IEEE 11th In-ternational Conference on Distributed ComputingSystems (May 1991), pp. 882{891.[10] L. Lamport, \Time, clocks, and the ordering ofevents in a distributed system," Communicationsof the ACM (July 1978), pp. 558{565.[11] P. M. Melliar-Smith, L. E. Moser andV. Agrawala, \Broadcast protocols for dis-tributed systems," IEEE Transactions on Paral-lel and Distributed Systems 1, 1 (January 1990),pp. 17{25.[12] P. M. Melliar-Smith, L. E. Moser and D. A. Agar-wal, \Ring-based ordering protocols," Proceed-ings of the International Conference on Infor-mation Engineering, Singapore (December 1991),pp. 882{891.[13] L. L. Peterson, N. C. Buchholz and R. D.Schlichting, \Preserving and using context in-formation in interprocess communication," ACMTransactions on Computing Systems 7, 3 (Jan-uary 1989), pp. 217{246.[14] A. Schiper and A. Sandoz, \Uniform reliable mul-ticast in a virtually synchronous environment,"Proceedings of the 13th International Conferenceon Distributed Computing Systems, Pittsburgh,PA (May 1993), pp. 561{568.

