Extended Virtual Synchrony

L. E. Moser, Y. Amir, P. M. Melliar-Smith, D. A. Agarwal
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106

Abstract. We formulate a model of extended vir-
tual synchrony that defines a group communication
transport service for multicast and broadcast com-
munication in a distributed system. The model ex-
tends the virtual synchrony model of the Isis system
to support continued operation in all components of
a partitioned network. The significance of extended
virtual synchrony is that, during network partition-
ing and remerging and during process failure and re-
covery, it maintains a consistent relationship between
the delivery of messages and the delivery of configu-
ration changes across all processes in the system and
provides well-defined self-delivery and failure atomic-
ity properties. We describe an algorithm that imple-
ments extended virtual synchrony and construct a fil-
ter that reduces extended virtual synchrony to virtual
synchrony.

1 Introduction

In many applications in distributed systems messages
must be disseminated to multiple destinations. To
achieve better performance, protocols have been de-
veloped to exploit the multicast or broadcast capabil-
ities of existing local-area network hardware [1, 3, 5,
9, 11, 13]. The process group paradigm [7] is a useful
and appropriate addressing mechanism for multicast
and broadcast communication.

Within the process group paradigm, virtual syn-
chrony [4, 5, 6, 14] ensures that processes perceive
process failures and other configuration changes as oc-
curring at the same logical time. The model of vir-
tual synchrony handles omission faults and fail-stop
faults, and regards recovered processes as new proc-
esses. When network partitioning occurs, the virtual
synchrony model also ensures that processes in at most
one connected component of the network, the primary
component, are able to make progress; processes in the
other components of the network are blocked.

Unfortunately, if a process fails and can recover
with stable storage intact, then inconsistenicies can
arise. Consider, for example, the failure of a process

This work was supported by the National Science Founda-
tion, Grant No. NCR-9016361, by the Advanced Research
Project Agency, Grant No. N00174-93-K-0097, by Rockwell
CMC through the State of California MICRO program, Grant
No. 92-101, and by the United States-Israel Binational Science
Foundation, Grant No. 92-00189.

The address of Y. Amir is Computer Science Department, The
Hebrew University of Jerusalem, 91904, Israel.

that was responsible for deciding the order of mes-
sages and informing other processes of that order. It
may decide an order and deliver messages locally in
that order but fail to communicate that order to other
processes. After removing the failed process from the
configuration, the other processes may determine an
order without knowing the order chosen by the failed
process. If the failed process can recover with stable
storage intact and if the contents of its stable storage
can be affected by the order of delivery of messages,
the model of virtual synchrony must be extended.

Gateways, bridges and wireless communication in-
crease the probability of network partitioning, which
may also result in inconsistencies. For example, if the
process responsible for determining the order of mes-
sages becomes detached, it may continue to order and
deliver messages locally after it has become detached
but before it learns that 1t has become detached. The
order in which it delivers messages before becoming
detached may be inconsistent with the order in which
other processes deliver messages; a problem can arise
if a detached process can resume operation and re-
merge with the primary component. The extended
virtual synchrony model guarantees that processes in
all components of a partitioned network have a con-
sistent, though perhaps incomplete, history of the
system.

Moreover, in some applications it is not acceptable
to block processes that are not in the primary com-
ponent. The application should be allowed to deter-
mine which processing, if any, is appropriate while the
network is partitioned. To illustrate this point, we
present the following examples:

e An airline reservation system must continue to
sell tickets even if the system becomes parti-
tioned. Airlines have devised heuristics for use
in non-primary components, based only on local
data, that aim to maximize the number of tick-
ets that can be sold while minimizing the risk of
overbooking.

e An ATM machine, operating in a fully connected
system, records each transaction in its database,
checking that cumulative withdrawals do not ex-
ceed the account balance. When operating in a
non-primary component, however, it consults a
small database to authorize a withdrawal without
checking for cumulative withdrawals at different
locations, and delays posting the transaction until
the system becomes reconnected.

e A radar system combines a number of sensors,
as well as a number of displays, in different lo-
cations. The most accurate available informa-
tion, obtained from the sensor with the best view
should be displayed to the operator. In the case
of a network partition, however, it 1s better to dis-
play lower quality information from the connected
sensors than to do nothing.

In the design of the Totem protocol [3, 12], based
on our experience with the Trans and Total proto-
cols [11] and the Transis system [1, 2], we have ex-
tended the virtual synchrony model [4, 5, 6] of the
Isis system to handle network partitioning and remerg-
ing, as well as process failure and recovery. Extended
virtual synchrony establishes a consistent relationship
between delivery of messages and delivery of configu-
ration changes across all processes in the system, and
provides well-defined self-delivery and failure atomic-
ity properties.

2 The Model and Services Provided

A distributed system is a finite set of processes that
communicate over a network by sending messages.
Each of the processes in the system has a unique iden-
tifier. A process may fail and may subsequently re-
cover after an arbitrary amount of time with its sta-
ble storage intact. When a process recovers, it has the
same identifier as before the failure. The network may
partition into some finite number of components. The
processes In a component can receive messages broad-
cast by other processes in the same component, but
processes in two different components are unable to
communicate with each other. Two or more compo-
nents may subsequently merge to form a larger com-
ponent.

Each process executes a low-level membership al-
gorithm to determine the processes that are members
of its component. This membership, together with a
unique identifier, is called a configuration. The mem-
bership algorithm ensures that all processes in a con-
figuration agree on the membership of that configu-
ration. The application is informed of changes in the
configuration by the delivery of configuration change
messages.

Each process also executes a reliable broadcast-
ing and ordering algorithm that associates an ordinal
number with each message. These ordinals impose a
total order on messages broadcast within a configura-
tion. Processes deliver messages to the application in
the order imposed by these ordinal numbers, an or-
dering that preserves causality. As an alternative to
the total ordering algorithm, we can consider an or-
dering algorithm that only imposes a partial order on
messages.

We distinguish between receipt of a message over
the communication medium, which may be out of
order, and delivery of a message to the application,
which may be delayed until prior messages in the order
have been delivered. Three message delivery services
are defined:

e Causal delivery, defined in the context of network
partitioning and remerging (cbcast in TIsis)

e Agreed delivery, which guarantees a total order
of message delivery within each component and
allows a message to be delivered as soon as all
of its predecessors in the total order have been
delivered (abcast in Isis)

e Safe delivery, which guarantees that, if any
process within a component delivers a message,
then that message has been received and will be
delivered by every other process in that compo-
nen)t unless that process fails (all-stable abcast in
Isis).

Causal delivery applies only to messages broadcast
in the same configuration and does not extend back to
prior configurations. Agreed and safe delivery impose
severe requirements on the algorithms in the presence
of network partitioning and remerging and of process
failure and recovery. Process p guarantees to deliver
every message broadcast for delivery in agreed order in
configuration c that precedes the configuration change
message delivered by p to terminate c¢. Delivery in safe
order 1s even more demanding because it guarantees,
in addition, that a message delivered in safe order by p
will be delivered by every other process in ¢ unless that
process fails. In this paper we focus on safe messages.

To achieve safe delivery in the presence of network
partitioning and remerging and of process failure and
recovery, the extended virtual synchrony algorithm
presents to the application two types of configurations.
In a regular configuration new messages are broad-
cast and delivered. In a transitional configuration no
new messages are broadcast but the remaining mes-
sages from the prior regular configuration are deliv-
ered. Those messages did not satisfy the safe or causal
delivery requirements in the regular configuration and,
thus, could not be delivered in that configuration.

A regular configuration may be immediately fol-
lowed by several transitional configurations (one for
each component of the partitioned network) and may
be immediately preceded by several transitional con-
figurations when several components merge together.
A transitional configuration, in contrast, is immedi-
ately followed by a single regular configuration and
1s immediately preceded by a single regular config-
uration. A transitional configuration consists of the
members of the next regular configuration that have
the same preceding regular configuration. Messages
can be delivered as safe in a transitional configuration
even though they cannot be delivered as safe in the
preceding regular configuration, so long as the appli-
cation is informed of the configurations in which the
messages are delivered. It is then up to the application
to determine how to proceed with this information.

Each process in a transitional or regular configu-
ration delivers a configuration change message to the
application to terminate the prior configuration and
initiate the new configuration. Delivery of a configura-
tion change message that initiates a new configuration
follows delivery of every message in the configuration
that it terminates and precedes delivery of every mes-
sage in the configuration that it initiates. The con-
figuration change message that initiates a transitional
configuration defines the membership within which it

is possible to guarantee safe delivery of the remaining
messages of the prior regular configuration.

For a process p that is a member of a regular con-
figuration ¢, we define trans,(¢) to be the transitional
configuration that follows ¢ at p, if such a configu-
ration exists. For a process p that is a member of a
transitional configuration c, transp(c) = ¢. For a proc-
ess p that is a member of a transitional configuration
¢, we define reg,(c) to be the regular configuration
that immediately precedes ¢. For a process p that is a
member of a regular configuration ¢, reg,(c) = ¢. We
define com,(c) to be either one of the configurations
regp(c) or trans,(c). We use ¢ to refer to a single spe-
cific configuration. If both p and ¢ are members of ¢,
then reg,(c) = reg,(c). However, trans,(c) is not nec-
essarily equal to trans,(c) and, thus, com,(c) is not
necessarily equal to comg(e).

The specification of extended virtual synchrony is
defined in terms of four types of events:

o deliver_conf,(c): process p delivers a configura-
tion change message initiating configuration ¢,
where p is a member of ¢

e send,(m, c): process p sends (originates) message
m while p is a member of configuration ¢

o deliver,(m, ¢): process p delivers message m while
p 1s a member of configuration ¢

o fail,(¢): process p fails while p is a member of
configuration c.

The fail,(c) event is the actual failure of process p in
configuration ¢ and is distinct from a deliver_conf,(¢')
event that removes p from configuration ¢. After a
fail,(¢) event, process p may remain failed forever or
may recover with a deliver_conf,(¢'’) event, where the
membership of ¢’ is {p}.

The precedes relation, —, defines a global partial
order on all events in the system, and the ord function,
from events to natural numbers, defines a virtual or
logical total order on those events. The ord function is
not one-to-one, because some events in different proc-
esses are required to occur at the same logical time.
The specifications for extended virtual synchrony be-
low define the — relation and the ord function.

2.1 The Extended Virtual Synchrony
Model

The model of extended virtual synchrony consists of
Specifications 1-7 below, which are expressed in terms
of the partial order relation, —, and the total order
function, ord. The causal delivery requirements, given
by Specification 5, apply only to messages sent (orig-
inated) within a single configuration.

Specifications 1-5 are illustrated in Figures 1-5.
Specifications 6 and 7 are more difficult to depict and
so are not shown. In these figures vertical lines corre-
spond to processes, an open circle represents an event
that is assumed to exist, a star represents an event
that is asserted to exist, a light edge without an arrow
represents a precedes relation that holds because of
some other specification, a medium edge with an ar-
row represents a precedes relation that is assumed to

hold, a heavy edge with an arrow represents a precedes
relation that is asserted to hold, and a cross through
an event (relation) indicates that the event (relation)
does not occur.

In these specifications when we write “there ex-
ists send,(m,c)” we mean that there exist a proc-
ess p, a message m and a configuration ¢ such that
process p sends message m in configuration ¢ and,
similarly, for “there exists deliver,(m,¢)” and “there
exists deliver_confy,(m, ¢)”. Moreover, when we write
“deliver, (m,com,(c))” we mean “deliver,(m,regy,(c))”
or “deliver,(m,trans,(c))”.

Basic Delivery

Specification 1.1 requires that the — relation is a
partial order relation (reflexive,* anti-symmetric and
transitive), and Specification 1.2 requires that the
events within a single process are totally ordered by
the — relation. Specification 1.3 requires that the
sending of a message precedes its delivery, and that
the delivery occurs in the configuration in which the
message was sent or in an immediately following tran-
sitional configuration. Specification 1.4 asserts that
a given process does not send, or deliver, the same
message in two different configurations and that two
different processes do not send the same message.

1.1. For any event e, e — e. If there exist events e
and ¢’ such that e — ¢’ where e # ¢’ then it is not
the case that ¢’ — e. If there exist events e, ¢/ and e”
such that e — ¢’ and ¢/ — ¢, then e — €.

1.2. If there exists an event e that is send,(m, ¢),
deliver, (m, ¢), fail,(¢) or deliver_conf,(¢) and an event
¢/ that is send,(m/,¢'), deliver,(m’, '), fail,(¢') or
deliver_conf,(¢’), then e — &’ or ¢/ — e.

1.3. If there exists deliver,(m,c), then there ex-
ists send,(m reg,(c)) such that send,(m,reg,(c)) —
deliver,(m, ¢).

1.4. If there exists send,(m,c), then ¢ = reg,(c)
and there does not exist send,(m,¢'), where ¢ #
¢, or send,(m,c”’), where p # ¢. Moreover, if
there exists deliver,(m, ¢), then there does not exist
deliver,(m, ¢’), where ¢ # ¢/.

Delivery of Configuration Changes

Specification 2.1 requires that, if a process is a mem-
ber of a configuration and does not install or does
not remain a member of that configuration, then the
other processes install a new configuration. In par-
ticular, this means that if the process fails, then the
other processes will detect the failure and install a
new configuration. Specification 2.2 states that at any
moment a process is a member of a unique configura-
tion whose events are delimited by the configuration
change event(s) for that configuration. Specifications
2.3 and 2.4 assert that an event that precedes (fol-
lows) delivery of a configuration change by one process
must also precede (follow) delivery of that configura-
tion change by other processes.

2.1. If there exists deliver_conf,(c), there does not

*The — relation could have been defined to be irreflexive but,
to conform to the standard mathematical definition of a partial
order, we define the — relation to be reflexive.

€
&
Specification 1.1
sendp(m,) delivengm‘ ,.c)
or
deliverém’ ,C) sendp(m, ©)

Specification 1.2

/ send(myreg (c))

del ivergm,c)

Specification 1.3

d(m,
senp(mc)

=)

Specification 1.4

e

Figure 1: Basic Delivery Specifications.

exist fail,(¢), there does not exist deliver_conf,(c¢’)
such that deliver_conf,(¢) — deliver_conf,(¢’), where
¢ # ¢, and if ¢ is a member of ¢, then there
exists deliver_confy(c), there does not exist faily(c)
and there does not exist deliver_confy(¢”) such that
deliver_conf,(¢) — deliver_conf, (¢"'), where ¢ # ¢”.

2.2. If there exists an event e that is either
send, (m, ¢) or deliver,(m, ¢) or fail,(¢), then there ex-
ists deliver_conf, (¢) such that deliver_conf,(¢) — e and
there does not exist an event e’ such that ¢’ is fail, (¢)
or deliver_conf,(¢’) and deliver_conf,(¢) — & — e,
where ¢ # ¢’ and ¢ # ¢/.

2.3. If there exist deliver_conf,(c), deliver_conf,(c)
and e such that deliver_conf,(¢) — e, where ¢ #
deliver_conf,(c), then deliver_conf,(c) — e.

2.4. If there exist deliver_conf,(c), deliver_conf,(c)
and e such that e — deliver_conf,(c), where e #
deliver_conf,(c), then e — deliver_conf,(c).
Self-Delivery

Specification 3 requires that each process delivers each
message 1t sends, provided that it does not fail. This
delivery may occur in a transitional configuration that
consists of only the process that sent the message.

3. If there exist send,(m,c) and deliver_conf,(¢’)
such that send,(m, ¢) — deliver_conf,(¢’), where ¢/ #
trans, (¢), and there does not exist fail,(com,(c)), then

del iver_coan;c) deliver_conf q(c)

fai Iq(c)
deliver_conf r;c’)

Specification 2.1

* deliver_conf F;c)

fa}@ de|ive>¢\{nf 4c)

d (m,
sen p(m c)
Specification 2.2
deliver_conf F;c) deliver_conf q(c)
e
Specification 2.3

e

deliver_conf F;c)

Specification 2.4

Figure 2: Configuration Change Specifications.

there exists deliver,(m,com,(c)).

Failure Atomicity

Specification 4 requires that, if any two processes pro-
ceed together from one configuration to the next, then
both processes deliver the same set of messages in that
configuration.

4. If there exist deliver_conf,(¢), deliver_conf, ("),
deliver_conf,(¢), deliver_conf,(¢'”") and deliver,(m, ¢c)
such that deliver_conf,(¢) — deliver_cont,(c"),
where ¢ # ¢, and there does not exist
deliver_conf,(¢’) such that deliver_conf,(¢) —
deliver_conf,(¢’) — deliver_conf,(¢’”’), where ¢ # ¢
and ¢’ # ¢'’’, and there does not exist deliver_conf,(¢”)
such that deliver_conf,(¢) — deliver_conf,(¢”) —

send p(m,c)

fail p%c))

* dellverp(m, comp(c))

del iver_confp(c’)

Specification 3

Figure 3: Self Delivery Specification

deliver_conf ID(c)

dglu@_{onf)
del |verp (m,c)

deliver_conf q(c)

deliver-Conf €

* deliver (m,c)
deliver_conf p(c’) q

deliver_conf q(c’)

Specification 4

Figure 4: Failure Atomicity Specification

deliver, (m, com (c))

O deliverr (m’, com, ©)

Specification 5

Figure 5: Causal Delivery Specifications.

deliver_conf, (¢'"'), where ¢ # ¢ and ¢ # ¢ then
there exists delivery(m, ¢).

Causal Delivery

Unlike other researchers, we model causality so that it
is local to a single configuration and is terminated by a
membership change. Simpler formulations of causality
are not appropriate when a network may partition and
remerge or when a process may fail and restart with
stable storage intact and with the same identifier.

The causal relationship between messages is ex-
pressed in Specification 5 as a precedes relation be-
tween the sending of two messages in the same con-
figuration. This precedes relation is contained in the
transitive closure of the precedes relations established
by Specifications 1.1-1.3.

Specification b requires that if one message is sent
before another in the same configuration and if a pro-
cess delivers the second of those messages, then it also
delivers the first.

5. If there exist send,(m,c), send,(m’,¢) and
deliver,(m/,com,(¢)) such that send

p(m,c) —
sendy(m’,¢), then there exists dehverr(m comT())
c

such that deliver,(m,com,(c)) — deliver,(m’,com,(¢)).

Totally Ordered Delivery

The following specifications constrain the definition of
the ord function. Specification 6.1 requires the total
order to be consistent with the partial order. Spec-
ification 6.2 asserts that processes deliver configura-
tion change messages for the same configuration at
the same logical time and that they deliver the same
message at the same logical time. Specification 6.3
requires that processes deliver messages in order ex-
cept that, in the transitional configuration, there is no
obligation to deliver messages sent by processes not in
the transitional configuration.

6.1. If there exist events e and ¢’ such that e — €',

where e # ¢, then ord(e) < ord(e’).

6.2. If there exist events e and e’ that are either
deliver_conf,(c¢) and deliver_conf,(¢) or deliver,(m,¢c)
and delivery(m, ¢’), then ord(e) = ord(e’

6.3. If there exist deliver,(m,com,(c)), deliver,(m
comp(c)), delivery(m/, ¢’), send, (m,reg, (¢')) such that
ord(dehverp(m comy(c))) < ord(deliver,(m’,comy(c)))
and r 1s a member of ¢, then there exists
deliver,(m,com,(c’)).

Note that the relationship between ¢ and ¢’ in Spec-
ification 6 can only be one of the following: either they
are the same regular or transitional configuration or
they are different transitional configurations for the
same regular configuration, or one is a regular config-
uration and the other is a transitional configuration
that follows it.

Safe Delivery

Specification 7.1 requires that, if any process delivers
a message in a configuration, then each process in that
configuration delivers the message unless that process
fails. Specification 7.2 asserts that, if any process de-
livers a safe message in a regular configuration, then
all processes in that configuration deliver configura-
tion change messages for that configuration.

7.1. If there exists deliver,(m,¢) for a safe mes-
sage m, then for all members ¢ of ¢ there exists
deliver,(m,com,(c)) or faily(com,(c)).

7.2. If there exists deliver,(m,regy(c)) for a safe
message m, then for all members ¢ of reg,(c) there
exists deliver_conf, (reg,(c)).

Finally, note that the Basic Delivery Specification
1.2, when restricted to a single configuration, ex-
presses causality of events within a single process.
Also note that, if we modify Speciﬁcation 5 by replac-
ing send, (m, c) by deliver,(then the modified
speciﬁcatlon follows from Qhe eXlstmg Specification 5
and Specification 1.3.

Specifications b through 7 represent increasing lev-
els of service. Some systems may operate without
the causal order requirement; other systems need the
causal order requirement and may add a total order
requirement and/or a safe delivery requirement as ap-
propriate for the application.

2.2 The Primary Component Model

The properties required of the history H of primary
components are defined below, where ', ¢’ and C”
represent primary components.

Uniqueness

The history H of primary components is totally or-
dered by the — relation.

L. If there exist deliver_conf,(C'), deliver_conf,(C")
in H, then deliver_conf,(C) — deliver_conf,(C’) or
dehver confy(C") — deliver_conf, (C).

Cont1nu1ty

For each pair of consecutive primary compo-
nents in the history H, at least one process is
a member of both.

2. If there exist deliver_conf,(C), deliver_conf,(C")
in H and there does not exist deliver_conf,(C") in
H such that deliver_conf,(C) — deliver_conf, (C’") —

deliver_conf, (C"), where C' # C' and C' # C"| then
there exists a process s that is a member of both C

and C".

3 An Algorithm for Implementing
Extended Virtual Synchrony

We now present an algorithm that implements ex-
tended virtual synchrony for safe delivery of totally
ordered messages on top of the message transmis-
sion, membership, and total ordering algorithms. The
Totem protocol [3] incorporates these algorithms and
provides extended virtual synchrony. The steps of the
extended virtual synchrony algorithm, executed by an
individual process, are as follows.

1. In a regular configuration, this process sends
and receives messages, holding in a message buffer any
messages that it has received but cannot yet deliver.
The process delivers a message as safe when it has de-
livered all of the messages that precede the message
in the total order and has received acknowledgments
for the message from all of the other processes in the
configuration. An acknowledgment indicates that a
process has received and will deliver the message un-
less it fails.

In a regular configuration, this process records that
there are no processes to which it i1s obligated. A
process p is obligated to a process ¢ when p has trans-
mitted an acknowledgment for a message m sent (orig-
inated) by ¢ that enables another process to deliver m
as safe. The set of processes to which p is obligated is
referred to as its obligation set.

When this process has been informed by the under-
lying membership algorithm of the membership and
identifier of a proposed new configuration, it com-
mences to perform the following steps, which consti-
tute the recovery algorithm.

2. Buffer or reject all new messages from the ap-
plication until this process delivers a configuration
change message for a regular configuration to the ap-
plication. Buffer any messages received for the pro-
posed new configuration.

3. Exchange information with each process of
the proposed new configuration. In particular, each
process supplies the identifier of its last regular con-
figuration, the identifier of the last safe message it
delivered, and its obligation set.

4.a. Determine the members of the proposed tran-
sitional configuration of this process, i.e. the members
of the new regular configuration whose previous reg-
ular configuration is the same as the previous regular
configuration of this process.

b. Determine the messages to be rebroadcast be-
cause some process in the proposed transitional con-
figuration of this process has not acknowledged receipt
of those messages.

5.a. Rebroadcast messages as required by Step 4.b
and acknowledge receipt of such messages.

b. Continue Step b.a until all processes in the
proposed transitional configuration of this process
acknowledge having received all of the rebroadcast
messages.

c. If during Step 5.a this process acknowledges hav-

ing received all of the rebroadcast messages, it includes
the members of the proposed transitional configura-
tion and their obligation sets in its obligation set.

6.a. Discard all messages, except those sent by a
member of the obligation set of this process, that fol-
low the first unavailable message in the total order.
Such messages must be discarded because they may be
causally dependent on an unavailable message. The
obligation set includes all members of the proposed
transitional configuration of this process.

b. Deliver to the application in order all of the
rebroadcast messages that are safe in the preceding
regular configuration up to but not including the first
totally ordered message for which a predecessor in
the total order is unavailable, or the first message for
which safe delivery was requested but for which some
process in the preceding regular configuration has not
acknowledged receipt.

c. Deliver a first configuration change message that
introduces the transitional configuration.

d. Deliver in order, from the remaining undelivered
messages, all messages whose predecessors in the total
order have been delivered, and all messages sent by a
process in the obligation set of this process.

e. Deliver a second configuration change message to
terminate the transitional configuration and install the
new regular configuration reported by the underlying
membership algorithm.

The parts of Step 6 are performed locally as an
atomic action without communication with any other
process. If a failure occurs during execution of the
recovery algorithm, then the membership algorithm
is invoked and the recovery algorithm is restarted at
Step 2.

3.1 An Example of Configuration Changes
and Message Delivery

Consider the example shown in Figure 6. Here a regu-
lar configuration containing processes p, ¢ and r parti-
tions and p becomes isolated while ¢ and r merge into a
regular configuration with processes s and t. Processes
q and r deliver two configuration change messages, one
to shift from the old regular configuration {p,¢,r} to
the transitional configuration {q,7} and the other to
shift from the transitional configuration {q,r} to the
new regular configuration {g¢,r,s,t}.

Processes ¢ and r may not be able to deliver all
of the messages broadcast in the regular configuration
{p,q,r}. In particular, they cannot deliver any mes-
sage for which the causal or safe delivery requirement
for {p, q,r} is not satisfied.

If process p sends message m after sending message
! but ¢ and r did not receive [before a configuration
change occurred, then ¢ cannot deliver m because its
causal predecessor [is not available.

By the self-delivery property (Specification 3), g
and r must each deliver the messages they themselves
sent in {p,q,7}. Of course, each process ¢ and r has
its own messages and also any messages that causally
precede 1ts own messages, since it must have delivered
such messages before it sent its own messages.

After the message exchange for the transitional con-

{par} {st}

{p} {q,l’} {S,t}

{aqrst}

Figure 6: Configuration Changes and Message Delivery.

figuration {¢,r} has been completed, both ¢ and »
have all messages sent by ¢ or r and all the causal
predecessors of such messages. Furthermore, all such
messages are safe in {¢,r} and, consequently, can be
delivered in the transitional configuration.

If process r sends message n for safe delivery
but does not receive an acknowledgment for n from
both p and ¢ before a configuration change occurs,
then r cannot deliver n in the regular configura-
tion {p,q,r}. 1If, however, r receives an acknowl-
edgment for n from ¢, then r can deliver n in the
transitional configuration {q,r}.

3.2 Proof that the Algorithm Satisfies
Extended Virtual Synchrony

Specification 1.1 states that the — relation is a partial
order. The reflexive property is a matter of definition.
The transitive and acyclic properties are assumptions
that we are making about the real world. Specification
1.2 expresses the fact that a process has a single thread
of control. Specifications 1.3 and 1.4 follow from the
underlying broadcast mechanisms.

Specifications 2.1-2.4 follow from the underlying
membership algorithm.

Specification 3 requires that a process delivers its
own messages, provided that it does not fail. In par-
ticular, when a process considers the undelivered mes-
sages in Step 6 of the extended virtual synchrony re-
covery algorithm, no message sent by any member
of the transitional configuration is discarded on the
grounds that it is causally dependent on an unavail-
able message. All of the preceding messages must have
been available to the process that sent the message
and, thus, are available to all members of the transi-
tional configuration after the message exchange.

Specification 4 requires that processes deliver the
same set of messages in a regular configuration and
the same set of messages in a transitional configura-
tion. After the message exchange in Step 5 of the
extended virtual synchrony recovery algorithm, all
processes in the transitional configuration have the
same set of messages and apply the same algorithm to
determine message delivery in the regular and transi-
tional configurations.

Specification 5 follows immediately if m’ is deliv-
ered in a regular configuration. If m’ is delivered
in a transitional configuration, then ¢ is a member
of that configuration or of the obligation set. Since
send,(m, ¢) — send, (m/, ¢), either p = ¢ or m was de-
livered by ¢ before q sent m’ and, thus, m is safe in c.

In either case, m is delivered before m’ in the regular
or transitional configuration.

Specifications 6.1 and 6.2 follow from the definition
of the ord function and from the consistency provided
by Step 6 of the extended virtual synchrony recov-
ery algorithm and by the message total ordering algo-
rithm. In addition, Specification 6.1 depends on the
fact that a process has a single thread of control.

Specification 6.3 follows by an argument similar to
that for Specification 3. In Step 6.a of the extended
virtual synchrony recovery algorithm, messages from
processes not in the transitional configuration may be
dropped, but messages from members of the transi-
tional configuration are delivered in order.

Specification 7.1 is obvious if all processes complete
the extended virtual synchrony recovery algorithm. If,
however, further processes fail or a further partltlon
occurs durmg the recovery algorithm, more care is
required. Some processes may not complete the re-
covery algorithm but may instead receive a further
membership change from the underlying membership
algorithm, causing them to restart the recovery algo-
rithm. If such a process has acknowledged receipt of
all of the rebroadcast messages, 1t is possible that some
other process may have completed the recovery algo-
rithm and installed the next regular configuration be-
fore the failure occurred. The other process may have
delivered messages as safe in the transitional config-
uration, relying on the acknowledgment supplied by
this process. The concept of obligation ensures that
these messages are indeed delivered by all of the proc-
esses needed to satisfy the safe delivery requirement.

Specification 7.2 follows directly from Step 6.e of
the extended virtual synchrony recovery algorithm.
Termination Property
Note that the termination of the recovery algorithm
is dependent on the termination of the membership
algorithm. The underlying membership algorithm will
eventually terminate if it has the property that, if the
next proposed regular configuration is not installed
within a bounded time, then the membership of that
configuration is reduced. The Totem protocol and the
Transis system preserve extended virtual synchrony
and contain a membership algorithm that terminates
within a bounded time.

4 The Virtual Synchrony Model

We now summarize Birman’s model of virtual syn-
chrony, as it is presented in [6] where more discussion
and details can be found. We then show in Section
5 how virtual synchrony can be implemented on top
of extended virtual synchrony. This model of virtual
synchrony is based on Lamport’s causality relation,
—, defined in [10], i.e. the transitive closure of

e ¢ — ¢’ where e and ¢’ are local to a process

e send(m) — deliver(m)

The events local to a process are send(m), deliver(m)
and stop. In addition, the virtual synchrony model
has the group events: view;(g), cbcast(g,m) and
abcast(g, m), where g is a group, ¢ is a process and
m is a message.

A history H is said to be complete if

C1. For each event ¢’ € H and foralle — ¢’,e € H.

C2. For each send(m) € H, there is a corresponding
deliver(m) € H.

C3. Each multicast message m, that is delivered by
a process in view g%, is delivered by all other members
of g%, where x denotes the xzth instance of group g¢.

A complete history H is said to be legalif it satisfies
the following constraints:

L1. Each event e € H can be labelled with a
global time, time(e), that respects the causal order of
events, 7.e. for any two events e and ¢’, e — ¢’ implies
time(e) < time(e’).

L2. Distinct events of the same process have dis-
tinct times.

L3. Membership change events for the same view
but distinct processes have the same logical time, ¢.e.
time(view;(¢”)) = time(view;(g")).

L4. Deliver events of a multicast message m occur
in the same view ¢” for each process that delivers m,
t.e. for each process ¢ that delivers m the most re-
cent membership change event preceding deliver;(m)
is view;(¢").

L5. For any two events deliver;(m) and deliver;(m)
of an abcast message m, time(deliver;(m)) =
time(deliver;(m)).

Extend(H) is defined to be the set of histories ob-
tained by extending the local process histories within
the history H by appending any missing deliver
and view events that correspond to unpaired send,
cbcast, abcast and view events in H.

Failure of a process 1s modeled by the distinguished
final event, stop. The history of a failed process is
extended by prepending the missing events before the
stop event, but after any other events executed by the
failed process prior to the failure.

A system execution is acceptable if, for any history
H, there exists a history H' € extend(H) that is cor-
rect and legal.

A system is wvirtually synchronous if deliver(m) and
view(g) events appear to occur simultaneously in the
processes in which they occur.

4.1 The Failure Model

Birman assumes that failures respect the fail-stop
model, and adopts a primary partition model in which
at most one primary partition' is permitted to con-
tinue execution. A membership service notifies mem-
bers of the primary partition when failures occur. The
failed process is then removed from the primary par-
tition. If a failed process subsequently recovers and
reconnects to the primary partition, it does so with a
new identifier.

A failure appears as a stop event that satisfies the
following properties:

tWe use the term “component” to refer to a set of processes
that can communicate among themselves and that are not able
to communicate with processes in other components, and “par-
tition” to refer to the collection of components that comprise
the system. Thus, a primary partition in Birman’s terminology
is a primary component in our terminology.

1. The membership service behaves like a single,
continuously operational process. If a partition oc-
curs, progress is permitted in only one partition, if
any.

2. A failed process will be dropped from any groups
to which it belongs, i.e. if P;[t] = stop, then there
exists ¢’ > ¢ such that, for all groups ¢, P; € g[t] =
Pz’ ¢ g[t/]. .

3. After a process has been observed to fail, no
additional messages will be received from it.

4.2 Multicast Delivery Guarantees

A uniform multicast is a multicast m such that if any
process delivers m in ¢” then, even if that process
fails, all processes deliver m in ¢”. A multicast m
that does not guarantee this uniformity property is a

non-uniform multicast.

5 An Algorithm for Implementing
Virtual Synchrony on Top of
Extended Virtual Synchrony

We now provide an algorithm for implementing virtual
synchrony on top of our basic model, the extended vir-
tual synchrony algorithm, and a primary component
algorithm (Figure 7). We construct a filter on a sys-
tem that maintains extended virtual synchrony and
show that all of the runs produced by this filter are ac-
ceptable executions according to the virtual synchrony
model.

The primary component algorithm receives config-
uration change messages from the membership algo-
rithm. Tt delivers these messages to the application
with an indication as to whether the new configuration
is a primary component. A simple primary component
algorithm is easily constructed; we are currently de-
veloping an algorithm that has a greater probability
of finding a primary component and thereby reduces
the risk that all processes will be blocked.

The filter runs locally at a process within a config-
uration and is defined as follows:

1. Upon receiving a configuration change mes-
sage for a transitional configuration trans,(c), mask
this event and transform all deliver,(m,trans,(c))
events into deliver,(mreg,(c)) events until the
next deliver_config event for a regular configuration
is received.

2. Upon receiving a configuration change message
for a regular configuration that is not a primary com-
ponent, block, i.e. don’t accept any messages from the
application for sending and discard any messages or
configuration changes received until this process be-
comes a member of the primary component.

3. For a process in the primary component, upon
receiving a configuration change message for a regular
configuration that is a primary component and that
merges a non-primary component containing several
processes into the primary component, split the de-
livery of the single configuration change message into
multiple events each of which merges one process at
a time into the primary component in a deterministic
order (such as lexicographical order).

Virtua Synchrony
Virtual Synchrony Filter

Primary Component Selection
Extended Virtual

Synchrony

Extended Virtual Synchrony Algorithm

Ordering

Membership

Message Transmission

Figure 7: Virtual Synchrony and Extended Virtual Synchrony.

4. For a process in a non-primary component, upon
receiving a configuration change message for a regu-
lar configuration that is a primary component, merge
the processes in the non-primary component into the
primary component, generating configuration change
events as required in Rule 3.

In the extended virtual synchrony model a process
that fails and recovers installs a singleton configura-
tion. This singleton configuration is not the primary
component and, thus, is blocked by the filter because
of Rule 2 until the process is merged with the primary
component in Rule 4.

In the extended virtual synchrony model there is
no change in identifier of a resumed process; however,
in the virtual synchrony model a resumed process has
a new identifier. We can easily accommodate this in
Rule 4 of the filter by giving a new identifier to a
process on being merged into the primary component.

5.1 Proof that the Algorithm Satisfies
Virtual Synchrony

A run produced by this filter can be completed using
the extend mechanism of the virtual synchrony model.
We now show that the completed run is legal. Our ord
function corresponds to Birman’s time function; both
provide virtual or logical event ordering.

Property C1 corresponds to Specifications 1.3, 1.4,
2.2 and 5.

Property C2 is achieved by Specification 3 and
the extend mechanism which yields a complete his-
tory. If there were a fail,(¢) event in the filtered his-
tory, then the extend mechanism would add all of the
deliver,(m, ¢) events that correspond to unmatched
send, (m, ¢) events prior to this fail,(c) event.

Property C3 is achieved by Specification 4 and the
extend mechanism if appropriately revised to exclude
from the history messages sent by failed processes that
were not delivered by one or more processes that do
not fail.

Property L1 follows directly from our assumption
of the ord function and Specification 6.1, if we assume
that the events in L1 are distinct.

Property L2 follows from Specifications 1.1, 1.2
and 6.1.

Property L3 follows from Specification 6.2, where
the view;(¢”) event corresponds to our deliver_conf,(c)
event.

Property L4 is achieved by first applying the
extend mechanism to achieve a complete history. By
Specifications 1.3 and 1.4, for each deliver,(m,c),
there exists send,(m,reg,(c)), where ¢ = regy(c)
or transp(c) and reg,(c) = regy(c). By Specifi-
cation 2.2, there exists deliver_conf,(¢) such that
deliver_conf,(¢) — deliver,(m,c) and there does not
exist deliver_conf,(¢’), where ¢ # ¢/, such that
deliver_conf,(¢) — deliver_conf,(¢’) — deliver,(m, ¢).
Rule 1 of the filter masks all deliver_conf, (trans,(¢""))
events and transforms all deliver,(m,trans,(c"))
events into deliver, (m,reg,(¢”’)) events. Therefore, af-
ter the filter has been applied, message m is delivered
in the view in which it was sent.

Property L) follows from Specification 6.2.

5.2 Comparison of the Failure Models

The failure model of extended virtual synchrony,
which allows network partitioning and remerging and
also process failure and recovery with stable storage,
i1s more general than the fail-stop model of virtual syn-
chrony described in Section 4.1. It is possible to sim-
ulate fail-stop behavior in the extended virtual syn-
chrony model by requiring a failed process to assume
a new identity when it recovers.

The definition of a primary partition (component)
is stated as Property 1 of the failure model of virtual
synchrony. In that model as well as in our model an
algorithm for maintaining a history of primary com-
ponents may block.

Property 2 of the failure model of virtual synchrony
is stronger than (does not follow from) Specification
2.1 of the extended virtual synchrony model. We allow
a process to fail and recover sufficiently rapidly that it
can be included in the next configuration, whereas the
failure model of virtual synchrony requires the process
to be excluded from that and all future configurations.

Property 3 of the failure model of virtual synchrony
derives from Specification 2.2. After filtering and the
delivery of a configuration change, no message is de-
livered that was sent by a process that was a member
of the old configuration but not the new configuration,
in particular because that process failed.

5.3 Comparison of the
Multicast Properties

It is interesting to compare the different approaches
used by virtual synchrony and extended virtual syn-
chrony to achieve an approximation to the property
that a message is not delivered unless it is delivered
by all members of the configuration. Perfection is not
possible as it would require common knowledge [8].

The virtual synchrony approach achieves this ap-
proximation in uniform multicast by extending the
history using the extend mechanism, which assumes
that the last few events in a failed process are lost
forever and, thus, can impute delivery of a uniform
multicast message to a failed process. This approach
does not, of course, address systems that may parti-
tion and remerge or processes that may fail and restart
with stable storage intact.

The extended virtual synchrony approach achieves
this approximation in safe delivery, as defined by Spec-
ifications 7.1 and 7.2. It accepts that, for some mes-
sages, 1t may be impossible to determine whether a
failed process has delivered them. The key mechanism
of extended virtual synchrony is reduction in the size
of the configuration. If it is impossible to determine
whether a process will deliver a message, because of
process failure or network partitioning, then a smaller
transitional configuration is created, excluding that
process. All processes in this smaller transitional con-
figuration will deliver the message. Whether the more
precise information provided by extended virtual syn-
chrony is useful to an application program depends on
the needs and sophistication of the application.

Another difference between the models is in the
delivery of messages. Virtual synchrony requires in
Property C1 that, for each message sent, some proc-
ess delivers that message (not necessarily the one
that sent it). In contrast, extended virtual syn-
chrony requires in Specification 3 that each mes-
sage 1s delivered by the process that sent it un-
less that process fails. The assumption of the vir-
tual synchrony model is satisfied conceptually by
extending the history using the extend mechanism,
whereas the safe property of the extended virtual syn-
chrony model ensures that the self-delivery require-
ment is satisfied by an actual history.

6 Conclusion

Extended virtual synchrony is a valuable abstraction
for a distributed system. It maintains a consistent re-
lationship between the delivery of messages and the
delivery of configuration changes across all processes
in a distributed system, even in the presence of net-
work partitioning and remerging and of process failure
and recovery with stable storage intact.

We have described an algorithm that implements
extended virtual synchrony. This algorithm is cur-
rently operating in the Totem protocol at the Univer-
sity of California, Santa Barbara, and in the Transis
system at the Hebrew University of Jerusalem.

We have also described a filter, running on top
of extended virtual synchrony, that implements the
Isis virtual synchrony model. This demonstrates
that extended virtual synchrony does indeed extend
virtual synchrony.

Acknowledgment. We wish to thank Danny Dolev
for his insights and encouragement of this work.

References

[1] Y. Amir, D. Dolev, S. Kramer and D. Malki,
“Transis: A communication sub-system for high
availability,” Proceedings of the 22nd Annual In-
ternational Symposium on Fault-Tolerant Com-
puting, Boston, MA (July 1992), pp. 76-84.

[2] Y. Amir, D. Dolev, S. Kramer and D. Malki,
“Membership algorithms in broadcast domains,”
Proceedings of the 6th International Workshop on
Distributed Algorithms, Haifa, Israel (November

[14]

1992), Lecture Notes in Computer Science 647,
pp- 292-312.

Y. Amir, L. E. Moser;, P. M. Melliar-Smith,
D. A. Agarwal and P. Ciarfella, “Fast mes-
sage ordering and membership using a logical
token-passing ring,” Proceedings of the IEEE 13th
International Conference on Distributed Com-
puting Systems, Pittsburgh, PA (May 1993),
pp. 551-560.

K. P. Birman and T. A. Joseph, “Exploiting vir-
tual synchrony in distributed systems,” Proceed-
wngs of the ACM Symposium on Operating System
Principles (1987), pp. 123-138.

K. P. Birman, A. Schiper and P. Stephenson,
“Lightweight causal and atomic group multicast,”
ACM Transactions on Computer Systems 9, 3
(August 1991), pp. 272-314.

K. P. Birman, “Virtual synchrony model,” In:
Reliable Distributed Computing with the Isis
Toolkit, IEEE Press.

D. R. Cheriton and W. Zwaenepoel, “Distributed
process groups in the V kernel,” ACM Trans-
actions on Computer Systems 3 2 (May 1985),
pp. 77-107.

J. Y. Halpern and Y. Moses, “Knowledge and
common knowledge in a distributed environ-
ment,” Journal of the ACM 37, 3 (July 1990),
pp. 549-587.

M. F. Kaashoek and A. S. Tanenbaum, “Group
communication in the Amoeba distributed oper-
ating system,” Proceedings of the IEEE 11th In-
ternational Conference on Distributed Computing

Systems (May 1991), pp. 882-891.

L. Lamport, “Time, clocks, and the ordering of
events in a distributed system,” Communications

of the ACM (July 1978), pp. 558-565.

P. M. Melliar-Smith, L. E. Moser and
V. Agrawala, “Broadcast protocols for dis-
tributed systems,” IEEE Transactions on Paral-
lel and Distributed Systems 1, 1 (January 1990),
pp. 17-25.

P. M. Melliar-Smith, L. E. Moser and D. A. Agar-
wal, “Ring-based ordering protocols,” Proceed-
wngs of the International Conference on Infor-
mation Engineering, Singapore (December 1991),
pp. 882-891.

L. L. Peterson, N. C. Buchholz and R. D.
Schlichting, “Preserving and using context in-
formation in interprocess communication,” ACM
Transactions on Computing Systems 7, 3 (Jan-

uary 1989), pp. 217-246.

A. Schiper and A. Sandoz, “Uniform reliable mul-
ticast in a virtually synchronous environment,”
Proceedings of the 13th International Conference
on Distributed Computing Systems, Pittsburgh,
PA (May 1993), pp. 561-568.

