
Gaining Efficiency in Transport Services by
Appropriate Design and Implementation
Choices

RICHARD W. WATSON

Lawrence Livermore National Laboratory

and
SANDY A. MAMRAK
The Ohio State University

End-to-end transport protocols continue to be an active area of research and development involving
(1) design and implementation of special-purpose protocols, and (2) reexamination of the design and
implementation of general-purpose protocols. This work is motivated by the perceived low bandwidth
and high delay, CPU, memory, and other costs of many current general-purpose transport protocol
designs and implementations. This paper examines transport protocol mechanisms and implemen-
tation issues and argues that general-purpose transport protocols can be effective in a wide range of
distributed applications because (1) many of the mechanisms used in the special-purpose protocols
can also be used in general-purpose protocol designs and implementations, (2) special-purpose designs
have hidden costs, and (3) very special operating system environments, overall system loads,
application response times, and interaction patterns are required before general-purpose protocols
are the main system performance bottlenecks.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Pro-
tocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems-distributed applications, network operating systems; C.4 [Performance of Systems]: design
studies; D.4.4 [Operating Systems]: Communications Management-message sending, network
communication; D.4.7 [Operating Systems]: Organization and Design--distributed systems

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Interprocess communication, performance of communication
protocols, transport layer protocols-design and implementation

1. INTRODUCTION

Communication between distributed programs (processes) requires mechanisms
to transport data end-to-end between source and destination with appropriate
error control, resource management, security, and other services. This data may
be requests for service from a client process to a server process, a corresponding

This work was performed by Lawrence Livermore National Laboratory under contract number
W-7405-Eng-48 under the auspices of the U.S. Department of Energy.
Authors’ addresses: R. W. Watson, Lawrence Livermore National Laboratory, P.O. Box 808, Liver-
more, CA 94550; S. A. Mamrak, The Ohio State University, Columbus, OH 43210.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1987 ACM 0734-2071/87/0500-0097 $00.75

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987, Pages 97-120.

98 l R. W. Watson and S. A. Mamrak

reply, terminal messages, or a large file. At one end of a spectrum of designs are
the clearly identifiable transport protocols operating in a range of network
environments and capable of supporting a wide variety of application or interface
semantics [3,13,14,33,36]. At the other end of the spectrum are more specialized
transport mechanisms, possibly distributed among many modules in an end node,
that are tailored to specific network environments and application or interface
semantics [l, 2, 4, 21, 26, 28, 301. For the purposes of this paper we call the
former general-purpose (full functionality) transport protocols and the latter
special-purpose or problem-oriented (reduced functionality) transport protocols.

In either case, certain end-to-end issues must be dealt with: (1) deciding what
abstractions are being communicated (i.e., messages, packets, byte streams),
(2) identifying the communicating parties, (3) detecting and recovering from
possible errors, (4) dealing with the management of resources such as buffer
space, (5) synchronizing the communicating parties, and (6) protecting the
information against unwanted access or modification [32]. One transport service
requirement is to move uninterpreted application data units, called messages.
Whereas some transport designs include a mechanism to match request and reply
messages or related strings of requests and replies, we assume this function to be
primarily a higher level protocol issue. We focus here on the functions of
connection management, error and flow control, and message segmentation/
reassembly because these have been of most concern to date. The mechanisms
available for implementing transport functionality are largely independent of the
wide range of communication interface primitives and associated semantics that
exist to support distributed applications [l, 2, 9, 11, 12, 18, 19, 28, 30, 321.

The work on special-purpose protocols has been motivated by the perception,
with which we concur, that many current general-purpose transport protocol
designs and/or implementations are not as efficient as desired for many distrib-
uted system applications. Even in the areas of file transfer and virtual terminal
access, application-specific implementations of general-purpose protocols or
application-specific protocol designs have been felt necessary to achieve the
desired efficiency [8, 241. The term efficiency covers a range of characteristics:
CPU and packet exchange overhead affecting throughput and delay, code size,
and the size of state space.

In general, there are three basic ways to improve efficiency: (1) use improved
protocol mechanisms to achieve a given functionality, (2) eliminate unneeded
functionality, or (3) use better implementation techniques (these are usually
independent of functionality).

Efforts to gain transport service efficiency have used all three approaches. We
argue that general-purpose protocol designs and implementations can be made
as, or nearly as, efficient as special-purpose ones by new syntheses of improved
protocol mechanisms and implementation techniques; that strategies to gain
efficiency by reducing functionality result in designs and implementations that
have several drawbacks; and that there are few or no effective global system
performance gains in a majority of currently existing operating environments.

If our arguments are valid, this question can be asked: Why have researchers
in distributed systems, who have judged existing general-purpose protocols un-
satisfactory, given more attention to developing special-purpose protocols rather
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 99

than designing new or improving existing general-purpose ones and their imple-
mentations? Further, why are the performance numbers reported in the special-
purpose literature usually so much better than general-purpose numbers? One
can only speculate on some answers that we believe to be historical, technical,
sociological, and organizational.

Historically, most general-purpose protocols have been designed and imple-
mented by people with a communication orientation for relatively slow, higher
error rate, wide-area networks, where the dominant applications have been long-
lived and session-oriented, virtual terminal, and file transfer connections. The
programming interface has been of secondary interest and has usually been based
on a device I/O model. This group has focused more on connection-oriented
(virtual circuit) protocol architectures, with designs and implementations tuned
to this model [38].

Most of the special-purpose protocols, on the other hand, are being developed
by people with a language, distributed operating system, or distributed application
orientation for high performance local networks, where important applications
require short-lived, transaction-oriented request/reply, or page-level file-access
style interactions. In the distributed operating system paradigm, terminal access
and file transfer are special cases of requests to servers [3, 321. This group has
usually built on a procedure call-like interaction model to which they have tuned
their designs and implementations. Remote procedure-call style systems can, of
course, also be built on general-purpose protocols [20, 351.

One technical result of these differences is that many general-purpose protocols
use more packet exchanges than are felt necessary to reliably exchange a request
and a reply. Another technical difference is that the general-purpose implemen-
tations are often tuned for bandwidth not latency, as is required for a request/
reply style of interaction. Further, most existing general-purpose protocols do
not offer the mechanisms that could allow their functionality to be dynamically
optimized to the needs of specific application or interface semantics. We argue
below that these are not inherent problems with general-purpose protocols.

An important sociological and organizational factor is that existing designs
and implementations of general-purpose protocols are not usually under the
control of those doing distributed systems research. Often the designs are con-
trolled by a large research community, government standards, or corporate
organization; therefore, it is difficult to experiment with them. Similarly, existing
general-purpose protocol implementations are often controlled by others, tuned
to other applications, difficult to change, and unnecessarily complex and therefore
difficult to understand. Even if existing implementations are open to change,
such change is viewed as a secondary research interest. It is usually a good
research strategy to simplify the factors being studied, and this simplification
often leads to the development of special-purpose protocols.

Finally, developers of special-purpose protocols have often had control of the
operating system (including device drivers), communication interface, protocol,
and even microcode design and implementation. They then compare their per-
formance gains against general-purpose protocols implemented by others that
have not been tuned for their application. There is a growing awareness that
protocol performance depends as much, and usually more, on the implementation

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

100 * R. W. Watson and S. A. Mamrak

than on the design [6,16,24]. Owing to this dependency, it is difficult to evaluate
design approaches for lack of well-controlled implementation and environment
experiments. For example, some performance numbers reported for special-
purpose protocols assume very special case low-level implementations or unique
network interface hardware not widely available. They ignore factors common
under real operational environments: user-to-system context switches, processor
multiplexing for system tasks other than network access, checking of access
rights, interrupt handing, limitations of commercially available network inter-
faces, data copies required in most existing operating environments, and so forth.

Experience with many existing operating systems, designed before the impor-
tance of interprocess communication was fully recognized, indicates that the
dominant overhead (as high as 80 to 90 percent in our experience) is in the
operating system structure, the interface-imposed overhead, and in the lower
level network device drivers, rather than in the transport protocol algorithm
16, 7, 16, 241. These operating systems suffer from poor to nonexistent support
for asynchronous I/O system calls, lightweight tasking, memory sharing, inter-
process communication, and efficient timer and buffer management. Therefore,
there has been little motivation to improve the protocols.

Now that established operating systems must work in local network and
distributed system environments, their functionality, implementations, and in-
terface semantics in support of communication are evolving. As a result, there is
renewed activity in transport protocol design and implementation, although much
of the new work has come from specialized protocol design and implementation.
We argue that what is needed is the incorporation of the insights gained from
the latter excellent work, as well as experience with existing general-purpose
protocol designs and implementations, into more efficient and flexible general-
purpose designs and implementations. We would also like to encourage wider
publication of protocol implementation and performance experience. Only re-
cently have papers discussing protocol implementations in local network envi-
ronments begun to appear [2, 3, 5-8, 12, 16, 20, 24, 37, 391.

Our discussion is organized as follows. Section 2 discusses transport service
mechanisms with an emphasis on improving general-purpose transport protocol
efficiency, thus removing some of the major problems special-purpose protocol
designers have found with general-purpose designs. Section 3 describes various
implementation strategies for making efficient execution available to both general
and special-purpose protocols. Section 4 summarizes our argument. The Appen-
dix contains some measurement data on a particular transport protocol and
implementation used to support our analyses.

2. TRANSPORT SERVICE MECHANISMS

Figure 1 summarizes families of mechanisms available for implementing trans-
port protocol functionality. Each is briefly discussed below.

Two costly aspects of packet communication are packet handling and state
retention. Packet handling is expensive because of possible user/system context
switching, data copying, protocol processing, checksumming, buffer management,
and device driver overhead and so forth. State retention is expensive because of
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services - 101

Function Mechanism

Connection management
Handshake-based
Explicit timer-based
Implicit timer-based

Errors

Checksums for damage
Explicit acks to prevent loss
Implicit acks (e.g., application-level replies to requests) to prevent loss
Sequence numbers or other identifiers to prevent duplication and

missequencing.

Explicit sliding window

Flow-control
Implicit (e.g., one outstanding request/reply at a time)
Assumptions about relative sender and receiver transmission rates, with

discard on overflow
Transmission-rate based

Message size
Message and packet segmentation/reassembly
Small, fixed, or maximum-size messages and packets

Fig. 1. Mechanisms for implementing transport functionality.

memory requirements (of less importance, given today’s large low-cost memories).
Control packets (associated with protocol operation) and data packets are both
expensive to handle, although the former are less expensive because they may
not require user-to-system context switches and data copying or checksumming.
Designers of special-purpose protocols have tried to reduce packet exchange
overhead by minimizing the number of packet exchanges required for connection
management and acknowledgment. Owing to the expense of packet handling, it
is widely recognized that to maximize data throughput the largest possible packet
sizes should be used. Unfortunately, many implementations of network interfaces
restrict packet size (e.g., 1,500 bytes for Ethernet). The reduction of the state
required and the interval over which it must be retained has focused on reducing
protocol functionality, improving connection management mechanisms, and
sharing of connections. These issues are discussed in the following sections.

2.1 Connection Management Mechanisms

Connection management deals with the subtle end-to-end issue of allocating,
synchronizing, and deallocating state, primarily identifiers needed for error and
flow control [29, 311. It also involves negotiating modes of operation and needed
resources such as packet or buffer sizes [8]. Unless an error and crash-free
environment is assumed, connection management issues must be dealt with at
some level. The connection management error control problem that must be
solved is that receivers maintain state long enough (timer-based) or check with
the sender (handshake-based) so that duplicate packets cannot cause duplicate
data to be accepted. The ambiguity problem to be solved is assuring that senders
maintain state long enough to receive all acknowledgments of data sent, and
receivers stay open long enough to receive and acknowledge (ack) all possible
retransmissions. This eliminates ambiguity about whether or not data were

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

102 l R. W. Watson and S. A. Mamrak

received, except when an end node crashes or the network is partitioned. Recovery
from these problems requires a higher level mechanism [Xi, 22, 251. One must
also assure that duplicate acknowledgments from old connections cannot ac-
knowledge data sent on a current connection. Reliable connection management,
for both general and special-purpose protocols, can be achieved using combina-
tions of message exchange (handshaking), timer, and unique connection identifier
mechanisms. Special-purpose protocols eliminate unnecessary connection-
management packet exchanges by using assumptions about network error char-
acteristics and a combination of the above mechanisms [l, 2, 26,301.

2.1.1 Packet-Exchange Based Connection Management. Most existing general-
purpose transport protocols utilize explicit connection opening and closing packet
exchanges [29]. The opening packet exchange guards against opening due to
duplicate packets and allows resource negotiation; the closing exchange assures
that all data have been received, and both parties are prepared to close. Hand-
shake-based connection management is expensive in terms of packet exchange
overhead, delay (depending on assumptions about possible network errors, re-
quests and data may not be reliably delivered until the third packet of the opening
exchange), and the extra overhead and implementation complexity required to
cycle through the opening and closing handshake states.

If one assumes a general network environment where packets may be duplicated
and missequenced, then five packets plus the timer mechanism are required to
reliably handle connection management for the exchange of a request and reply
[29, 311. If one assumes no network duplication and missequencing, the number
can be reduced to a three packet exchange plus the use of unique connection
identifiers and a timer mechanism [l, 21. When designing special-purpose pro-
tocols, one must be explicitly aware that they depend for correct operation on
such a mechanism and error assumptions. The combination of unique identifier,
handshake, and timer-based approaches commonly used in special-purpose pro-
tocols is discussed further in Section 2.2.

However, even when handshake-based connection management is used, careful
implementation can minimize the number of exchanges used. For example, while
theoretically the Transmission Control Protocol (TCP) can safely exchange a
request and reply using five packets, many implementations require nine
[13, 291. The costs of handshake packet exchanges may be acceptable or even
desirable in many environments because (1) the patterns of communication may
allow these costs to be spread over several data exchanges, (2) the intervals
between requests or request and response may be long relative to opening and
closing overhead, (3) the system as a whole may be lightly loaded, and (4) the
communicating parties can achieve improved overall performance by negotiating
transfer parameters and resource allocations.

2.1.2 Timer-Based Connection Management. Reliable connection management
can be achieved with no extra packet exchanges by using a timer-based mecha-
nism [3, lo]. Timer-based connection management mechanisms have the advan-
tages of requiring no extra delay before data delivery, minimizing packet
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 103

exchange, small implementation size (see the Appendix), and minimizing
state retention when connections are inactive, since state is automatically
allocated and deallocated. Timer-based connection management can be used in
either special or general-purpose protocols.

In a timer-based connection management approach, the receiver keeps state
(e.g., sequence numbers (SNs) or connection or transaction identifiers, or re-
sponses) until all old duplicate packets (requests) have died (including retrans-
missions). The sender keeps state until it can receive an ack if sent (assuming a
graceful close is desired), and, depending on the details of the protocol, possibly
long enough to guarantee it will generate acceptable SNs or other identifiers.
Depending on the protocol design, when a node recovers from a crash it may
have to wait a period before sending or receiving to avoid connection management
hazards [3, 10, 311. The main problems that must be solved are determining
timer intervals for a given timer-based design and bounding packet lifetime. In
an explicit timer-based design, the intervals are explicitly derived and limited on
the basis of parameters such as maximum packet lifetime, retransmission time,
and acknowledgment time [lo]. These intervals are simply bounded [27, 331.
Implicit designs depend on engineering judgments made on bounds for the above
intervals [1, 21.

2.1.3 State Retention. The amount of state that must be maintained per
connection depends on the services being supported (e.g., error control, flow
control, encryption, multiple or only single outstanding requests) and protocol-
independent implementation choices. As memories increase in size and become
cheaper, state retention is becoming less of an issue. Transport level state may
be minimized by limiting functionality or by moving functionality to higher levels
(in which case the state still exists). It may also be minimized by multiplexing
many conversations on one end-to-end transport connection. Performing such
multiplexing requires some restrictions such as only allowing one active com-
municating process per node, allowing only one outstanding request/reply trans-
action at a time, or a willingness to suffer the delays caused by flow control
interaction between the multiple conversations [1,3].

The length of time state is maintained depends on the connection-management
mechanism used. In a handshake-based protocol, state may be discarded after
completion of the closing handshake, although some handshake protocols may
also require timer-controlled state deallocation to avoid hazards [13,29, 311. Use
of an implicit or explicit timer-based protocol automatically allocates and deal-
locates state without the overhead of a connection closing handshake. An explicit
timer protocol can reduce the state-time product over an implicit approach since
the latter must make worst-case packet lifetime assumptions.

2.2 Error Control Mechanisms

Information may be damaged, lost, duplicated, and missequenced. Designers of
special-purpose transport mechanisms or transport protocols with many levels
of service try to take advantage of the precise error tolerance of the application
and error characteristics of the underlying network or link layer to minimize

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

104 * R. W. Watson and S. A. Mamrak

mechanism. Detecting damaged information and handling lost information are
the most expensive services in terms of mechanism or central processing unit
time (see Appendix). Detecting and discarding damaged information at any level
leads to its loss. Once one provides mechanisms to protect against lost informa-
tion, duplication is possible due to retransmissions. Duplicate protection during
data transfer is, however, quite inexpensive. Once duplicates are protected
against, protecting against missequencing is essentially free. In our experience,
the basic choice is between assuming an error-free lower level environment or
providing the full range of error control services, possibly with limited options.
The main design issue is how and at what level to provide these services.

One argument advanced for the use of special-purpose transport mechanisms,
implemented within the application, is that no purely transport level protocol
can eliminate the need for related higher level services (e.g., in end node or
network crash situations). Higher level error recovery mechanisms are required
if such situations are to be protected against. Thus, it is argued, if higher level
mechanisms are going to be used anyway, why introduce a duplicate mechanism
at lower levels [23].

Separate lower level mechanisms cannot be justified in all cases, but the higher
level mechanisms may be more expensive. For example, the mechanisms required
to protect against information loss in event of node or network crash are quite
complex and expensive and must be built into all communicating client/server
processes [15, 22, 251. Many applications do not require such protection. Even
when provided, lack of a lower level mechanism may result in more frequent
than necessary invocation of the expensive higher level mechanisms, and, there-
fore, yield potentially higher costs.

There is clearly a trade-off between providing related services at more than
one level or only at the highest level. We believe that this trade-off for many
existing environments favors the use of lower level mechanisms to improve
performance.

2.2.1 Error Control Mechanisms: Damage. Damaged messages or packets are
normally detected through the use of checksums and are discarded. Recovery is
through the use of acknowledgment and retransmission. Most link-level protocols
and some local network interfaces support checksums in hardware. Errors can
still occur within hardware interfaces or within intermediate nodes in more
complex topologies. Thus, end-to-end software checksums are usually provided
in both general and special-purpose designs. Software checksums, even those
using a simple a.rithmetic algorithm (see the Appendix), are expensive, a fact
that argues for microcode support [28].

Because the undetected link level, interface, and memory error rate of some
environments is low enough, end-to-end checksums may not be needed. Optional
end-to-end checksums are easily supported for both special and general-purpose
protocols [13, 14, 331.

2.2.2 Error Control Mechanisms: Loss. The central error control question
(once connection management has been dealt with) is: Can packets be lost? If
packets can be lost, then a positive-acknowledgment retransmission mechanism
must be supported, or the application must be such that occasional lost infor-
mation is tolerable. Detection and recovery from lost packets is expensive and

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 105

complicated, requiring acknowledgments (acks), retransmission queues, and
timeouts. Further, duplication and missequencing are possible as a result of
retransmission.

Two variants of positive-acknowledgment retransmission protocols exist. The
most common is to use an ack to acknowledge all data received up to a given
sequence number. The loss of one packet can result in retransmission of that
packet and all packets sent after it. Another approach is selective acknowledg-
ment or negative acknowledgment (nak), wherein specific packets can be
acknowledged or be identified for retransmission. This approach has been widely
used on long delay networks such as satellite networks. This approach has been
proposed to improve the performance of bulk data transfer for local networks
also [3, 8, 37, 391.

We know of no pract,ical proposal for network communication that has suc-
cessfully assumed no information loss, even for local network environments (local
network interfaces can have high losses [16, 39]), unless the expensive loss
protection mechanism has just been moved to a higher or lower level. The lost
event may be rare, but it occurs. Once its occurrence is assumed, most applications
require mechanism be provided to protect against it.

Because packet handling is expensive, one common approach of special-purpose
protocols is to try to reduce the number of required acks by using the receipt of
an application level reply to provide the ack of the corresponding request. Acks
may be saved, but the expensive retry queue and timeout mechanism is also just
moved to the higher level.

The problem still remains of acknowledging the response. Because reponses
can be lost, the connection-management mechanism is required since duplicate
requests will be generated. State must be retained to detect the duplication and
retransmit the response, or request duplication must be acceptable (i.e., requests
must be idempotent). With assumptions that there is no network duplication or
missequencing and that only a single outstanding request is allowed at a time,
the connection management mechanism often adopted by special-purpose pro-
tocol designers is the following. They use receipt of the next request, if it follows
soon enough, to be an implicit ack of the last response, or otherwise use an
explicit ack of the response so that the responder can know when to discard state
[l, 2, 3, 281. We expect the latter explicit ack to be required in most situations
because it is only for applications with a small expected interval between requests
that the former could be used. Since the response-ack can be lost, the implicit or
explicit timer mechanism is ultimately required to know when the state can be
safely discarded. If responses or acks can be duplicated, then requesters must
hold state until they expire or use unique SNs, connection, or transaction
identifiers so that the old duplicates cannot ack new requests or data sent.

Another serious loss recovery problem is determining the appropriate timeout
for retransmissions, a complicated problem in both wide and local area networks
[16,371. Ack or reply generation time is more variable if handled at the application
level because delays are more dependent on the application, system load, and
system resource scheduling characteristics. Thus, it may lead to large topology
or application-dependent retry timeout tables, long timeout periods (drastically
affecting throughput or delay when even small percentages of packets are lost),
or unnecessary retries. Since transport level acks are still required to avoid such

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

106 - R. W. Watson and S. A. Mamrak

problems, most special-purpose protocols contain a rather complicated special-
case timeout and explicit ack-generation mechanism [l, 2, 301.

The special assumptions and mechanism used to avoid acks may not improve
overall system performance. Depending on the implementation, ack generation
and processing may be quite inexpensive. Processing acks will not cause detri-
mental system delay and CPU overhead if their generation and processing can
be overlapped with data copying [39], waiting for responses at the client end, or
waiting for I/O at the server end. Acks are not a problem if the time intervals
between remote operations or service reponse times are long, relative to the times
required to generate and process an ack. Finally, ack expense is less significant
if applications run under operating systems in which system call overhead is
already unavoidably high. We believe that many distributed applications or
environments have one or more of the characteristics above.

In fact, it is precisely in the high-load situation, claimed to benefit from special-
purpose protocols, where lack of low-level acks may result in unnecessary retries
or another recovery mechanism being invoked, these approaches further end
node load and network congestion. For this reason, Casey [2] abandoned use of
replies as acks of requests and instead adopted explicit transport level acks of
both requests and replies.

One should also recognize that explicit acks have utility. If they are not
supported in a special-case protocol, then connection management hazards may
exist. They can reduce the time required to hold state, including requests or
replies being held for retransmission. They can, as mentioned, reduce retrans-
missions and their packet handling load and thus reduce congestion during
periods of high server load. Once provided, they make support for arbitrary-sized
messages and intra and intermessage flow control quite inexpensive. Generating
and processing a transport level ack can be less-CPU expensive (by a factor of
three in the example in the Appendix) than an ack for requests or replies. This
is due primarily to the fact that acks carry no data that must be copied,
checksummed, or placed on a retransmission queue. Nor are context switches
between user and system space required in kernel implementations.

If minimizing acks is determined to be important, general-purpose transport
protocol designs or implementations can do so in at least two ways. One alter-
native is for the receiver to delay the ack. This increases the probability that the
ack can be piggybacked with the response to a request (usually difficult to achieve
[6, 71) or that a single ack can acknowledge several received packets. A delayed
ack mechanism can be provided in the implementation with no change to protocol
functionality. If the delays to process a request or generate another request are
such that a separate ack is required (we expect this to be the normal case in most
applications), then the overhead of the additional ack is probably inconsequential,
as already mentioned. Delaying the ack can, however, seriously reduce perform-
ance if the sender is using smaller buffer space than the receiver and will not
release buffers for new data to be sent until it receives the ack.

Another design alternative is to place in the transport level interface send
function a boolean parameter indicating whether or not the transport level ack
and retransmission mechanism needs to be used for this buffer or message.
This flag can then be propagated in the transport protocol header to provide
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services - 107

information to the receiving protocol module about whether or not to generate
an acknowledgment [36]. The Versatile Message Transaction Protocol (VMTP)
provides several control flags to precisely control when acknowledgments should
be generated [3]. Such flexibility, however, requires additional higher level
mechanism and complexity for effective use.

2.2.3 Error Control Mechanisms: Duplication. Duplication results primarily
from retransmission at various protocol levels to recover from lost information.
Efficient detection of duplicates requires use of an SN either from a contiguous
or at least monotonically increasing space. Detecting duplicates requires minimal
state and a simple comparison of the received SN against the next expected SN
or some acceptable lower bound. Duplicates are discarded, and an acknowledg-
ment (ack or reply) is retransmitted. The main, and often subtle, issues associated
with duplicate detection are those of connection management discussed above.

It is sometimes argued that for certain classes of request, called idempotent,
duplication causes no difficulty (e.g., reading or overwriting data as opposed to
incrementing data) [30]. Unfortunately, many types of request cannot be for-
mulated in this form, or many special cases must be handled. Even when
idempotent requests can be appropriately formulated, certain subtle synchroni-
zation problems are possible owing to concurrently executing duplicate requests
(orphans) [26]. To eliminate these problems one must eliminate duplicates,
provide synchronization mechanisms to assure receipt of only the reply to the
last request, or provide a mechanism, usually expensive, to kill duplicate executing
requests. Whether with respect to the issues of connection management, data
transfer, or orphans, no mechanism is saved by performing duplicate detection
at a higher level.

2.2.4 Error Control Mechanisms: Missequencing. Missequencing is caused by
transport level loss and retransmissions if multiple messages can be outstanding,
or by lower level network store and forward delays and alternate routing. It is
assumed that one of the simplifications introduced by many local network
topologies or a single request/reply interaction is that missequencing cannot
occur. This assumption has been used to try to simplify connection management
[2] and packet acceptance handling. However, the CPU time and mechanism to
deal with missequencing, ignoring connection management, is trivial, particularly
once packet loss and duplication must be dealt with. We argued above that
duplication must be dealt with if the retransmission mechanism is used in end
or intermediate nodes. The additional requirement imposed to handle mis-
sequencing is the use of a contiguous, rather than simply a monotonically
increasing, SN space. This may require additional state space at the sender
because a single monotonically increasing state variable cannot be used across
all conversations.

2.3 Flow Control Mechanisms

Flow control mechanisms include a priori or negotiated agreements, special
messages, or state piggybacked on acks. Since the implementation of buffer and
ack generation management interact strongly with flow control, implementation

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

108 - FL W. Watson and S. A. Mamrak

complexity and performance problems are created that special-purpose protocol
designers have tried to minimize. An example given earlier was the interaction
of sender and receiver buffer sizes, window flow control, and use of delayed acks.
Another example is the silly window syndrome in which the interaction of buffer,
window, and ack strategies can result in very small packets being sent [5 1. Simple
changes to an implementation can solve both problems [3, 51.

Four restrictions and corresponding optimizations have been used in various
combinations to simplify the interactions of the above factors with flow control
and to minimize state and acks: (1) a priori or negotiated agreement on the
maximum size of buffers, packets, or request or reply messages transmitted (e.g.,
assume the receiver can buffer all packets or messages received up to a given
amount of data), (2) specify a priori agreement on the number of messages
allowed to be outstanding at a time (e.g., most commonly use a stop-and-wait
protocol that only allows one message or packet to be outstanding at a time), (3)
use a blast protocol that allows one large message or buffer, sent as many packets,
to be outstanding and generates one ack at the end of this message or buffer (it
may use rate-based flow control to control the intramessage packet arrival rate;
the appropriate rate can be negotiated between sender and receiver or be adap-
tively determined [3, S]), and (4) use no flow control and simply discard a packet
buffer or message if a receiver has not allocated space for it, and depend on loss
recovery to handle the problem.

Discard seems particularly unacceptable because it is precisely in the heavy
load situations assumed favorable to special-purpose protocols that flow control
is needed to reduce congestion. Discard will lead the requesting end to invoke
expensive loss recovery, for example, and to poll by retransmitting until an ack
or reply is received, thus increasing packet handling overhead and congestion.

If size restrictions are too small in cases 1 and 2, data throughput is limited. It
has been argued that in a low-delay, high-bandwidth local network a stop-and-
wait protocol can achieve throughput competitive with sliding window or blast
protocols [l]. This is not the case, as shown by Zwaenepoel’s studies in which
sliding window and blast protocols achieve significantly better throughput in a
local network than stop-and-wait protocols (sliding window and blast protocols
achieve roughly equivalent results) [39]. Sliding window and blast protocols
achieved their advantage by being able to make use of data pipelining and
concurrent sending and receiving at each end. If a stop-and-wait protocol is used
for requests/replies, then a separate transport mechanism may be required to
achieve acceptable bulk data transfer rates [4]. This use of multiple protocols
leads, in our view, to unnecessary, extra conceptual and implementation
complexity.

One of the arguments for use of the stop-and-wait mechanism and assumptions
on maximum packet or message size is that they help eliminate the need for
extra flow control messages or explicit acks. We argued earlier that eliminating
acks may be detrimental under high loads and provide little overall system gain
under low loads. One view of assumptions on the use of large buffers, in case 1,
and the use of blast protocol mechanism, in case 3, is that this is just a special
case of a sliding window protocol with a large default window and delayed ack
generation. The stop-and-wait mechanism can also be viewed as a special case of
a sliding window mechanism with a window for one packet or message.
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 198’7.

Gaining Efficiency in Transport Services l 109

Thus, performance problems with sliding window mechanisms do not seem to
be inherent; that is, they should be able to achieve good performance for a variety
of applications. Instead, the problem seems to be in getting the implementation
correct so as to minimize the negative interaction of buffer and ack management
with advertised windows [5, 81. Achieving such an implementation would seem
to require hints at the user interface as to the nature of the application’s message
size and interaction characteristics [16]. Further, to achieve good performance,
both ends need to get it right. Implementation experience to date indicates that
this is a difficult task. Much of the problem seems to result from a difficulty in
synchronizing or coordinating, in both design and implementation, the interac-
tions of the abstractions used at the different levels; the application deals with
application-level buffers or messages, most lower level mechanisms deal with
their own buffers and buffer management strategies, and sliding-window flow-
control protocols specify flow control on yet different abstractions such as bits,
bytes, or packets.

Our conclusion is that some explicit form of flow control is desirable especially
under high loads. Because of the subtle interactions of flow control, buffer, ack
generation, and other mechanisms, we feel flow control and its implementation
is still an area not adequately understood and in need of new ideas and more
modeling and implementation experimentation. The blast mechanism appears
promising for both general and special-purpose use, given the ability to assume
large default send and receive buffers, although most of its basic concepts can be
included in sliding-window protocol implementations with appropriate ack and
nak mechanism and management.

2.4 Message Size

If messages can be restricted in length and fit in a single packet, then no
mechanism is required to handle the error and flow control problems of intra-
message segmentation. The transport mechanisms can then deal with the mes-
sage, rather than the packet, as the abstraction to be transported, and the
protocol does not need mechanism for error and flow control for pieces of a
message or to support a message segmentation/reassembly mechanism.

It is our experience (see Appendix) that the overall cost of dealing with message
segmentation/reassembly and intramessage error and flow control is not signifi-
cant. Assuming that all messages are less than some fixed packet size (often
512 bytes or less) places restrictions on higher level application and service design
or implementation. It may just move segmentation/reassembly to a higher level.
It also implies that bulk data transfers must be handled using many pairs of
requests and replies, reducing performance, or requiring a separate mechanism.
Provision of support for arbitrary message sizes and intramessage flow control
(either sliding windows or rate based) leads to more efficient data movement
[3,391.

3. IMPLEMENTATION STRATEGIES FOR GAINING EFFICIENT EXECUTION

Good performance requires careful implementations of both general-purpose or
special-purpose protocols. In fact, the implementation seems more important
than the design. (We are familiar with implementations of the TCP [13] and

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

110 l R. W. Watson and S. A. Mamrak

IS0 transport protocols [14] in which implementation size and throughput can
vary by an order of magnitude for the same protocol implemented by different
groups for the same operating system.) Several areas of implementation optimi-
zation have been suggested or tried and are reviewed below. The same implemen-
tation optimization techniques are available to both classes of protocol
implementors,

3.1 Layered Architectures

Design decisions on modularization and placement of protocol processing can
significantly affect performance. General-purpose layered protocol architectures
have often been implemented with separate (often user-level) processes per
protocol layer or connection. This can lead to inefficient operation. Such a
modularization is an implementation design choice and is not inherent in general-
purpose protocols. That is, a common mistake is to take a layered design as a
requirement for a correspondingly layered implementation.

One of the claims often made for special-purpose protocols is that they are not
layered and therefore are more efficient. In fact, examination of their designs
shows that they are cleanly layered, at least at a logical level of abstraction sense.
What they seem to be saying is that, whereas they are designed in a functional
sense in a modular layered fashion, these protocols are not necessarily imple-
mented on layer boundaries. It seems important to us to make a sharp distinction
between design and implementation [6,7,33]. It is important to understand well-
defined layers of abstraction. If it is useful to combine functions of two or more
layers into one or more asynchronous tasks to achieve efficient operation, then
that can be done without loss of the ability to multiplex two or more layer n + 1
protocols on a layer n protocol.

3.2 Use of Microcode

A related argument is that special-purpose protocols are simple enough to permit
their implementations to be pushed into the operating system kernel or even to
be placed in microcode for further efficiency [28]. This is true of general-purpose
protocols as well, unless their functional design dictates such a large implemen-
tation that kernel or microcode memory space limitations preclude such optimi-
zation. As shown in [3] and in the Appendix, it is possible to design general-
purpose transport protocols that can be implemented within small memory space
requirements.

3.3 Lightweight Processes and Context Switching

An expensive operation in remote communications is context switching from the
user to the system environment and the software checking that is often required
when that boundary is crossed; this operation thus argues for kernel implemen-
tations. Even context switching within the system kernel can be expensive,
depending on machine and operating system architecture. Arguments are made
that the provision of lightweight processes or tasks, which can be efficiently
created, destroyed, scheduled, and context switched, support the use of special-
purpose protocols. Our experience and that of others shows that, because of the
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 111

high level of concurrency involved in communication, explicit support for light-
weight tasking in the kernel is generally essential to protocol implementations
[4, 7, 241. Lightweight tasking can and should be provided within user-level
processes as well, if protocols are implemented at that level. Such mechanism
aids both performance and understanding through a cleaner implementation
structure.

3.4 Data Copying and Buffer Management

Data copying is expensive and often found in several places such as user-to-
system, protocol-module-to-protocol-module, and system-to-network interfaces.
Many protocol implementations have suffered because the implementation did
not minimize data copying. The ideal is to support data transfer directly from
user memory space to the network hardware and vice versa [39]. This may not
be possible because (1) the machine’s I/O architecture or the network interface
adapter’s architecture would not allow this, for example, because data chaining
was not supported, and thus data and protocol headers could not be appropriately
separated or combined, (2) the host operating system’s protection, virtual mem-
ory, buffering, or other structures required copying; and (3) the protocol imple-
mentation modularization required multiple copies.

The protocol implementer has control over (3) and often (2) but not usually
(1). We hope that protocol implementation experience can be fed back into the
architecture and implementations of (1) and (2) so that they no longer dictate
unnecessary copies [171.

As mentioned in Section 2.3, flow control, buffer and ack management, and
other mechanisms strongly interact. Choice of a buffer management strategy is
an area where implementer control exists. Saltzer et al. discuss how their choices
facilitated efficiency gains for a TCP implementation for terminal access and for
a simple file transfer from a personal computer [24]. Lantz discusses buffer
management strategies for a TCP [16]. Miller and Souza implemented a remote
procedure call interface twice, once with a special-purpose transport protocol
and, again, on top of a TCP. They indicate a slight preference for the latter
approach in their environment, particularly if they tune the TCP buffer manage-
ment implementation and other areas [20]. Zwaenepoel demonstrates again the
utility of double buffering [391.

Since the best buffer management strategy may be application dependent,
optimum performance may be facilitated by allowing hints at the user interface
[16]. This method may be seen as extra implementation or user interface
complexity, but it would seem less complex than requiring separate request/reply
and bulk data transfer protocols that are needed by some special-purpose systems.

3.5 Caching

Table lookup to perform network level routing or find connection records and
other state is another source of overhead. Often state may be kept in user space,
and a context switch may be required. Additional efficiency can be gained if the
communication user interface and protocol implementation support caching of
frequently accessed state.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

112 l R. W. Watson and S. A. Mamrak

4. SUMMARY

Generltpurpose transport protocols have the advantages that they are portable
across environments, can be used with a wide spectrum of applications, can
support environmental evolution, and only one protocol suite need be maintained
for a broad range of network and application environments, We have seen no
evidence that they necessarily imply larger implementations than is possible with
special-purpose protocols. Their main disadvantage is that their performance can
be expected to be somewhat less efficient than that of special-purpose protocols.
There is also a potential increased complexity in the area of flow control that
may make it more difficult to obtain correct and optimum implementations.
Their complexity in the areas of connection management and error control may
be less because their correctness depends on general principles rather than on
many special-case environment assumptions. Their performance penalty is
mainly a function of which protocol mechanisms are used and of how they are
implemented. We argued that a variety of design mechanisms and implementa-
tion optimization strategies exist that are applicable to both general and special-
purpose designs. These are summarized below.

The primary advantage of special-purpose protocols is their potential for more
efficient execution and low delay. The efficiency advantages, from a system point
of view, are only realizable in restricted operational environments. The charac-
teristics of these environments, along with a brief explanation of why the
characteristic is required, are summarized in Figure 2. They are primarily required
to realize savings from special-purpose connection management and ack reduc-
tion mechanisms.

Special-purpose designs have the disadvantage that they are closely tied to
particular network or application architectures and create difficulties when
portability across environments or environmental evolution is desired. We con-
sider this an important disadvantage because our experience is that the under-
lying network topology and environment is constantly evolving because of the
rapid change in technology, constant pressure to create wider interconnection,
and growing application needs. Special-purpose protocols also have the disadvan-
tages of potentially introducing complexity due to special-case mechanisms or of
failing to guard adequately against all error cases, particularly those associated
with connection management.

The design of a general-purpose protocol and its implementation will determine
the range of its applicability. Unfortunately, we agree that many existing general-
purpose transport protocol designs and implementations do not support the
performance desirable and potentially possible for many applications. This fact
has been the motivation for the excellent work on special-purpose transport
mechanisms and implementations.

We can summarize our arguments for why we believe general-purpose protocols
can be designed and implemented to be competitive with special-purpose ones.

Minimizing connection management packet exchanges.
Special-purpose protocols tend to use implicit timer-based connection manage-

ment to eliminate or minimize the need for explicit packet exchanges. Explicit
timer-based connection management and bounding of packet lifetimes achieves
the same goal for general-purpose protocols with little additional cost.
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 113

Environment Characteristic Why Required

Static application or network environ-
ment

Primarily homogeneous

High CPU load, short request queues

Frequent remote requests

Very low service response times

Very low service request intervals

Owing to special case assumptions, there may be per-
formance or correct operation penalties for change.

Complexity of customization grows quickly as more
special cases must be introduced.

Otherwise, there is sufficient time to the overlap gen-
eration and processing of acks if spare CPU cycles
exist (long queues (high load) and lack of explicit
acks can compound congestion problems inherent in
this case).

Ack overhead is inconsequential for infrequent
requests.

Unnecessary retransmission of requests is very expen-
sive; long service times imply acks are needed anyway
and overhead is inconsequential.

Low service request intervals are necessary to enable
requests to ack responses, otherwise explicit
response-acks are probably required.

Fig. 2. Optimal operating environment for special-purpose protocols.

Minimizing a&s.
Special-purpose protocols minimize acks in two main ways: (1) by using

application-level requests and replies to ack each other instead of explicit trans-
port-level acks, or (2) by using a single transport-level ack to acknowledge several
packets. General-purpose protocols can support interface control over ack gen-
eration to achieve the first solution, or can implement appropriate ack manage-
ment to achieve the second. Our analysis, however, questions the need for the
former because in most environments ack generation and processing is less
expensive than data transfer and can be overlapped with data copying, waiting
for I/O, or waiting for a response, and because, in high load environments, lack
of explicit transport-level acks will likely lead to more packet exchanges and
corresponding congestion (see Figure 2).

Assumptions about network error characteristics.
Special-purpose protocols simplify mechanism based on assumptions that

networks may not damage, lose, duplicate, or missequence packets. Checksum-
ming to protect against damage is expensive and is found in both classes of
protocols, but can inexpensively be made optional in either class. Local area
networks have good packet loss characteristics, but often poor interface-loss
characteristics under heavy load if buffers are overrun [16, 391. Therefore, both
special and general-purpose protocols need to protect against loss for most
applications. This need leads to equally expensive loss detection and recovery
mechanism and potential duplication, and thus requires a connection manage-
ment mechanism and sequence numbers or other identifiers. Handling duplicates
and missequencing are a low-cost comparison operation.

Flow control and maximum packet or message size.
Special-purpose protocols tend to combine flow control and a maximum packet

of message-size restrictions. They either offer no flow control, depending on
discard and recovery by retransmission, or only allow a single outstanding packet

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

114 - R. W. Watson and S. A. Mamrak

or request at a time. The former creates severe problems under a heavy load
assumed favorable to special-case protocols, while the latter limits applicability
or performance, or requires segmentation/reassembly at a higher level. Segmen-
tation/reassembly is not expensive. Improved general approaches are, however,
required for flow control and buffer and ack management. This currently means
either more carefully specifying how sliding-window flow control, buffer and ack
management, and other protocol mechanisms are to be designed, implemented,
and used [3, 5, 161 or using a priori assumptions on the availability of large
receiver and sender buffers in conjunction with a blast protocol mechanism [3,
8,37,39]. Many of the insights gained in the latter can be applied to the former.
The area of flow control and buffer management, however, still seems in need of
new ideas and additional analysis, modeling, and implementation experience.

Implementation optimization.
Special-purpose protocol implementers have used a variety of mechanisms,

outlined in Section 3, to achieve efficient implementation. These mechanisms
are also available to general-purpose protocol implementers.

These observations lead us to the conclusion that the choice of a special or
general-purpose protocol should be based on the assumptions that can be made
about the environment in which the protocols must operate. If it meets the
conditions of Figure 2 (expected to be rare), then special-purpose protocols should
be seriously considered. Otherwise, it may be best to adapt or use a general-
purpose transport protocol. We hope more data will be published characterizing
applications and system loads commonly experienced. We also hope that the
experience gained with special-purpose protocols and through measurement and
analysis of existing general-purpose protocol implementations will be fed back
into new, improved generations of general-purpose transport protocol designs
and implementations.

APPENDIX

In order to investigate the code size and CPU cycle cost of implementing a
general-purpose transport layer protocol, a detailed instrumentation was made
of an implementation of a full-service timer-based transport protocol, Delta-t,
[lo, 341 on a DEC VAX 11/750. The statistics below are based on an early
implementation in BLISS under VMS 2.5 for handling 1,024 byte data packets.
While some tuning was performed, no attempt was made to improve performance
by reducing use of procedures, since this would affect modularity. A procedure
call and return in BLISS takes about 20-50 microseconds (variable, depending
on number of parameters). The instrumentation allowed for isolation and meas-
urement of individual code segments.

The data were used to support several observations made in the main body of
the paper. These observations include the following:

(1) general-purpose transport protocol implementations can be relatively small
(2,800 bytes for the transport protocol);

(2) acks are relatively expensive, but less expensive than data sending or
receiving (20-30 percent of the cost to send or receive a message);
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 115

Table I. Code and Data Sizes

Code Data Sizes

Delta-t (transport protocol) module
Nontransport protocol code (includes user interface,

packet buffer management, network protocol modules,
and a link-level protocol interface, plus 500 bytes to
bypass Delta-t when both origin and destination are on
the same machine).

2,800 bytes
3,650 bytes; a link-level protocol mod-

ule would add 1,500 bytes.

Connection record size
VMS unit control block
Packet receive buffers
Packet send buffers

100 bytes per association
150 bytes per association
8K fixed
Dynamically allocated

Table II. Summary of Times for Sending and Receiving Data (1,024 bytes)
and Ack Packets (in Microseconds) on Delta-t

Send a data packet
u/s = 1,167
s/t = 1,133
At = 565

n/l = 1,326

t=4,191
Receive a data packet

u/s = 1,167
s/t = 1,102
At = 346

n/l = 1,578

t = 4,193

Send an ack packet
u/s = 0
s/t = 150
At = 189

n/l = 842

t = 1,181
Receive an ack packet

u/s = 0
s/t = 468
A.t = 543

n/l = 1,114

t = 2,125

Legend: User/system interface time-u/s
System/transport interface time-s/t
Delt,a-t transport protocol time-At
Network and lower level protocol time-n/l
Total time--t

(3) context-switches and system-call software checks are relatively expensive
(about 30 percent of the total cost of either sending or receiving a message);

(4) most transport level services are relatively inexpensive; the transport-
protocol execution time itself comprises a small proportion of the total time
needed to send and receive packets;

(5) since each protocol service was organized in one or more procedures, the
procedure call/return overhead is significant.

The user/system interface time is the time for a context switch from user to
system and vice versa and for performing checks by VMS. It is a host-architecture
dependent time.

The system/transport interface supports the largely protocol-independent send
and receive buffer queues, packet buffer and connection-record space manage-
ment, and copying of data from user space to packet buffers or vice versa.

The transport protocol algorithm is isolated in the Delta-t procedure and could
be replaced with minor changes elsewhere by another transport protocol.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

116 - R. W. Watson and S. A. Mamrak

Table III. Detailed Measurement Data for Sending a Data Packet

System Component Action
Execution
Time (WS)

User/system interface
(give system an empty buffer)

context switch and VMS QIO systems call over-
head

schedule user software interrupt when send
completes

System/transport interface (send
queue management)

Delta-t
(transport protocol)

Network and lower levels (packet
arrives)

compute next message size
get connection record
get empty packet buffer
call to Delta-t to send packet
move 1,024 bytes to packet buffer
update send queue data structure

decide if and how much data to send (e.g., flow
control)

send timer management
form data packet header
set up retry record (loss protection)

adjust packet lifetime
data checksum (damage protection)
header checksum (damage protection)
VAX machine-dependent byte adjustment (due

to byte ordering in VAX words)
routing and lower level functions (estimated)

831

330 -

29
124
127
42

615
196 -

113
89

123
240 -

66
464
66

1,167

1,133

565

160
550 -

1,326
Total 4,191

Delta-t executes mechanisms to handle loss, duplication, and missequencing and
supports both arbitrary message sizes and flow control.

The network and lower layers support damage detection (a Ones complement
checksum) of packet headers and data and network routing. The time includes
an estimate of link-level protocol and channel-driver time for use of an Ethernet.

Network and lower level protocol time may vary widely, depending upon the
actual networking hardware. The network/lower level protocol time for sending
a packet on a NSC HYPERchannel, for example, is 9.1 milliseconds in one
implementation on a VAX 750 running UNIX,’ which is seven times our Ethernet
estimate. The latter is based on our interpretation of some informal measurement
notes from the University of California B.s.d. 4.2 UNIX project. The network/
lower level time to receive an ack on a HYPERchannel is 3.8 milliseconds or
more than three times our estimated value.

To get some idea of what might be gained if arbitrary length messages, flow
control, damaged, lost, duplicate, or missequenced packet services were not
supported or were made optional, various labeled times could be subtracted. One
can see that most of these services are relatively quite inexpensive, particularly
once packet loss or damage protection is required. We believe a more efficient
implementation of the retransmission queue mechanism is possible.

i UNIX is a trademark of AT&T Bell Laboratories.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 117

Table IV. Detailed Measurement Data for Receiving a Data Packet

System Component Action
Execution
Time (ps)

User/system interface
(give system an empty buffer)

user context switch plus VMS QIO system call
overhead

schedule user software interrupt when data
received

System/transport interface

Delta-t (transport protocol)

Network and lower levels
(packet arrives)

wake up destination process
verify connection record has not timed out
update receive queue state
move 1,024 bytes to user buffer
decide if buffer is finished
release packet buffer

determine packet type
check packet lifetime
duplicate detection
flow control and missequence acceptance
receive timer management

routing and other lower level functions
(estimated)

set packet death time
machine-dependent byte adjustment processing
header checksum (damage protection)
data checksum (damage protection)
get connection record
setup and queue software interrupt to At

a37

330 -

135
123
106
512

68
158 -

14
41

106
100
85 -

1,167

1,102

346

550
68

136
56

457
149
162 -

1,578
Total 4,193

Table V. Detailed Measurement Data for Sending an Ack Packet

System Component Action
Execution
Time (us)

System/transport interface
(give system an empty buffer)

decision to ack or not
get an ack packet buffer

Delta-t (transport protocol) formation of ack

Network and lower levels
(packet arrives)

adjust packet lifetime
header checksum
machine-dependent byte adjustment processing
routing and other lower level functions

(estimated)

30
120 -

150
189 -

189
66
66

160

550 -
842

Total 1.181

Table I summarizes the code and data spaces sizes in the implementation.
Table II summarizes the execution time measurements. Tables III-VI present
more detailed measurement data upon which Table I is based. The data are
organized by logical layer, not by sequence of execution. The legend was chosen

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

118 - R. W. Watson and S. A. Mamrak

Table VI. Detailed Measurement Data for Receiving an Ack Packet

System Component Action
Execution
Time (as)

System/transport interface notify receiving process
verify connection record still exists
send queue management
release packet buffer

Delta-t (transport protocol)

Network and lower levels
(packet arrives)

determine type of packet
check lifetime
packet acceptance and miscellaneous
delete retry records (loss protection)
flow control processing

routing and other lower level functions
(estimated)

set packet death time
machine-dependent byte adjustment processing
header checksum
get connection record
setup and enqueue software interrupt

135
123

52
158 -

468
14
41

111
276
101 -

543

550
68

136
56

149
155 -

1,114
Total 2,125

to separate and emphasize the costs that are independent of a specific transport
protocol.

ACKNOWLEDGMENT

Alex Phillips of Lawrence Livermore National Laboratories implemented and
instrumented the transport protocol from which we obtained the measurement
data presented in the Appendix.

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial products, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government thereof,
and shall not be used for advertising or product endorsement purposes.

REFERENCES

1. BIRRELL, A. D., AND NELSON, B. J. Implementing remote procedure calls. ACM Trans. Cornput.
Syst. 2,l (Feb. 1984), 39-59.

2. CASEY, L. Remote rendezvous. Tech. Rep., Bell Northern Research, Ottawa, 1985.
3. CHERITON, D. R. VMTP: A transport protocol for the next generation of communication

systems. In Proceedings of the SZGCOMM ‘86 Symposium on Communications Architectures and
Protocol (Stowe, Vt., Aug. 5-7). ACM, New York, 1986, pp. 406-415.

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

Gaining Efficiency in Transport Services l 119

4. CHERITON, D. R., AND ZWAENEPOEL, W. The distributed V kernel and its performance for
diskless workstations. Oper. Syst. Reu. 17, 5 (Oct. 1983), 128-139.

5. CLARK, D. D. Window and acknowledgment strategy in TCP. Internet Protocol Implementation
Guide, Network Information Center, SRI International, Menlo Park, Calif. (Aug. 1982).

6. CLARK, D. D. Modularity and efficiency in protocol implementation. Internet Protocol Imple-
mentation Guide, Network Information Center, SRI International, Menlo Park, Calif.
(Aug. 1982).

7. CLARK, D. D. The structuring of systems using upcalls. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (Orcas Island, Wash. Dec. l-4) ACM, New York,
1985, pp. 171-180.

8. CLARK, D. D., LAMBERT, M. L., AND ZHANG, L. NETBLT: A bulk data transfer protocol.
DARPA Network Working Group Request for Comments 969, Network Information Center, SRI
International, Menlo Park, Calif. (Dec. 1985).

9. FELDMAN, J. A. High level programming for distributed computing. Commun. ACM 22,l (June
1979), 253-268.

10. FLETCHER, J. G., AND WATSON, R. W. Mechanisms for a reliable timer-based protocol. In
Computer Networks 2, North-Holland, Amsterdam, The Netherlands, 1978, pp. 271-290.

11. GENTLEMAN, W. M. Message passing between sequential processes: The reply primitive and
the administrator concept. Softw. Pratt. Exper. 11 (1981), 435-466.

12. HOARE, C. A. R. Communicating sequential processes. Commun. ACM 21, 8 (Aug. 1978),
666-677.

13. INFORMATION SCIENCES INSTITUTE. DOD Standard Transmission Control Protocol. Informa-
tion Sciences Institute, Marina de1 Ray, Calif. (Jan. 1980).

14. INTERNATIONAL STANDARDS ORGANIZATION. Information processing systems-open systems
interconnection-transport protocol specification. International Standards Organization,
ISO/DIS 8073, Rev., ISO/TC 97/SC 16WG 6, June 29,1984.

15. LAMPSON, B. Atomic transactions. In Distributed Systems: Architecture and Implementation,
Chap. 11, Springer-Verlag, New York, 1981.

16. LANTZ, K. A., NOWICKI, W. I., AND THEIMER, M. M. An empirical study of distributed
application performance. IEEE Trans. Softw. Eng. SE-11, 10 (Oct. 1985), 1162-1173.

17. LEACH, P. J. ET AL. The architecture of an integrated local network. IEEE J. Select. Areas
Comm. SAC-Z, 5 (Nov. 1983), 842-837.

18. LISKOV, B. Primitives for distributed computing. Oper. Syst. Reu. 13, 5 (Dec. 1979), 33-42.
19. MANNING, E., LIVESEY, N. J., AND TOKUDA, H. Interprocess communication in distributed

systems: One view. In Proceedings of ZFZP 80.
20. MILLER, S., AND SOUZA, R. UNIX and remote procedure calls: A peaceful coexistence? M.I.T.

Project Athena Tech. Rep., Massachusetts Institute of Technology, Cambridge, Mass. 1985.
21. POPEK, G., ET AL. LOCUS, A network transparent high reliability distributed system. Oper.

Syst. Reu. 15, 5 (1981), 169-177.
22. REED, D. P. Implementing atomic actions on decentralized data. ACM Trans. Comput. Syst. 1,

1 (Feb. 1983), 3-23.
23. SALTZER, J. H., READ, D. P., AND CLARK, D. D. End-to-end arguments in system design. ACM

Trans. Comput. Syst. 2, 4 (Nov. 1984), 277-288.
24. SALTZER, J. H., ET AL. The desktop computer as a network participant. IEEE J. Select. Areas

Comm. SAC-3,3 (May 1985), 468-477.
25. SHRIVASTAVA, S. K. Structuring distributed systems for recoverability and crash resistance.

ZEEE Trans. Softw. Eng. SE-7,4 (July 1981), 436-447.
26. SHRIVASTAVA, S. K., AND PANZIERI, F. The design of a reliable remote procedure call mecha-

nism. IEEE Trans. Comput. C-31,7 (July 1982), 692-697.
27. SLOAN, L. Mechanisms that enforce bounds on packet lifetimes. ACM Trans. Comput. Syst. 1,

4(Nov.1983),311-330.
28. SPECTOR, A. Z. Performing remote operations efficiently in a local computer network. Commun.

ACM 25,4 (Apr. 1982), 246-259.
29. SUNSHINE, C. A., AND DALAL, K. K. Connection management in transport protocols. Comput.

Networks 2,4/5 (Sept./Ott. 1978).
30. WALKER, B. Issues of network transparency and file replication in the distributed file system

component of LOCUS. Ph.D. dissertation, Dept. of Computer Science, Univ. of California, Los
Angeles, (1983).

ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987.

120 ’ R. W. Watson and S. A. Mamrak

31. WATSON, R. W. Timer-based mechanisms in reliable transport protocol connection manage-
ment. In Computer Networks 5, North-Holland, Amsterdam, The Netherlands 1981, pp. 47-56.

32. WATSON, R. W. IPC interface and end-to-end protocols. In Distributed Systems Architecture
and Implementation. Springer-Verlag, New York, 1981, 140-174.

33. WATSON, R. W. Delta-t protocol specification. UCID-19293, Lawrence Livermore Laboratory,
Livermore, Calif., (Apr. 1983).

34. WATSON, R. W., AND FLETCHER, J. G. An architecture for support of network operating system
services. In Computer Networks 4, North-Holland, Amsterdam, The Netherlands 1980,
pp. 33-49.

35. XEROX. Courier: The remote procedure call protocol. Xerox System Integration Standard,
Xerox Corporation, Stamford, Conn., (Dec. 1981).

36. XEROX. Internet transport protocols. Xerox System Integration Standard, XSISO28112, Xerox
Corporation, Stamford, Conn., (Dec. 1981).

37. ZHANG, L. Why TCP timers don’t work well. In Proceedings of the SZGCOMM ‘86 Symposium
on Communications Architectures and Protocols (Stowe, Vt., Aug. 5-7). ACM, New York, 1986
pp. 397-405.

38. ZIMMERMAN, H. OS1 reference model-The IS0 model of architecture for open systems
interconnection. IEEE Trans. Commun. COM-244 (Apr. 1980), 425-432.

39. ZWAENEPOEL, W. Protocols for large data transfers over local networks. In Proceedings
of the 9th Data Communications Symposium (Whistler Mountain, British Columbia, Canada,
Sept. 10-13). ACM, New York, 1985, pp. 22-32.

Received November 1984; revised November 1986; accepted November 1986

