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End-to-end transport protocols continue to be an active area of research and development involving 
(1) design and implementation of special-purpose protocols, and (2) reexamination of the design and 
implementation of general-purpose protocols. This work is motivated by the perceived low bandwidth 
and high delay, CPU, memory, and other costs of many current general-purpose transport protocol 
designs and implementations. This paper examines transport protocol mechanisms and implemen- 
tation issues and argues that general-purpose transport protocols can be effective in a wide range of 
distributed applications because (1) many of the mechanisms used in the special-purpose protocols 
can also be used in general-purpose protocol designs and implementations, (2) special-purpose designs 
have hidden costs, and (3) very special operating system environments, overall system loads, 
application response times, and interaction patterns are required before general-purpose protocols 
are the main system performance bottlenecks. 

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Pro- 
tocols-protocol architecture; C.2.4 [Computer-Communication Networks]: Distributed Sys- 
tems-distributed applications, network operating systems; C.4 [Performance of Systems]: design 
studies; D.4.4 [Operating Systems]: Communications Management-message sending, network 
communication; D.4.7 [Operating Systems]: Organization and Design--distributed systems 

General Terms: Design, Experimentation, Measurement, Performance 

Additional Key Words and Phrases: Interprocess communication, performance of communication 
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1. INTRODUCTION 

Communication between distributed programs (processes) requires mechanisms 
to transport data end-to-end between source and destination with appropriate 
error control, resource management, security, and other services. This data may 
be requests for service from a client process to a server process, a corresponding 
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reply, terminal messages, or a large file. At one end of a spectrum of designs are 
the clearly identifiable transport protocols operating in a range of network 
environments and capable of supporting a wide variety of application or interface 
semantics [3,13,14,33,36]. At the other end of the spectrum are more specialized 
transport mechanisms, possibly distributed among many modules in an end node, 
that are tailored to specific network environments and application or interface 
semantics [l, 2, 4, 21, 26, 28, 301. For the purposes of this paper we call the 
former general-purpose (full functionality) transport protocols and the latter 
special-purpose or problem-oriented (reduced functionality) transport protocols. 

In either case, certain end-to-end issues must be dealt with: (1) deciding what 
abstractions are being communicated (i.e., messages, packets, byte streams), 
(2) identifying the communicating parties, (3) detecting and recovering from 
possible errors, (4) dealing with the management of resources such as buffer 
space, (5) synchronizing the communicating parties, and (6) protecting the 
information against unwanted access or modification [32]. One transport service 
requirement is to move uninterpreted application data units, called messages. 
Whereas some transport designs include a mechanism to match request and reply 
messages or related strings of requests and replies, we assume this function to be 
primarily a higher level protocol issue. We focus here on the functions of 
connection management, error and flow control, and message segmentation/ 
reassembly because these have been of most concern to date. The mechanisms 
available for implementing transport functionality are largely independent of the 
wide range of communication interface primitives and associated semantics that 
exist to support distributed applications [l, 2, 9, 11, 12, 18, 19, 28, 30, 321. 

The work on special-purpose protocols has been motivated by the perception, 
with which we concur, that many current general-purpose transport protocol 
designs and/or implementations are not as efficient as desired for many distrib- 
uted system applications. Even in the areas of file transfer and virtual terminal 
access, application-specific implementations of general-purpose protocols or 
application-specific protocol designs have been felt necessary to achieve the 
desired efficiency [8, 241. The term efficiency covers a range of characteristics: 
CPU and packet exchange overhead affecting throughput and delay, code size, 
and the size of state space. 

In general, there are three basic ways to improve efficiency: (1) use improved 
protocol mechanisms to achieve a given functionality, (2) eliminate unneeded 
functionality, or (3) use better implementation techniques (these are usually 
independent of functionality). 

Efforts to gain transport service efficiency have used all three approaches. We 
argue that general-purpose protocol designs and implementations can be made 
as, or nearly as, efficient as special-purpose ones by new syntheses of improved 
protocol mechanisms and implementation techniques; that strategies to gain 
efficiency by reducing functionality result in designs and implementations that 
have several drawbacks; and that there are few or no effective global system 
performance gains in a majority of currently existing operating environments. 

If our arguments are valid, this question can be asked: Why have researchers 
in distributed systems, who have judged existing general-purpose protocols un- 
satisfactory, given more attention to developing special-purpose protocols rather 
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than designing new or improving existing general-purpose ones and their imple- 
mentations? Further, why are the performance numbers reported in the special- 
purpose literature usually so much better than general-purpose numbers? One 
can only speculate on some answers that we believe to be historical, technical, 
sociological, and organizational. 

Historically, most general-purpose protocols have been designed and imple- 
mented by people with a communication orientation for relatively slow, higher 
error rate, wide-area networks, where the dominant applications have been long- 
lived and session-oriented, virtual terminal, and file transfer connections. The 
programming interface has been of secondary interest and has usually been based 
on a device I/O model. This group has focused more on connection-oriented 
(virtual circuit) protocol architectures, with designs and implementations tuned 
to this model [38]. 

Most of the special-purpose protocols, on the other hand, are being developed 
by people with a language, distributed operating system, or distributed application 
orientation for high performance local networks, where important applications 
require short-lived, transaction-oriented request/reply, or page-level file-access 
style interactions. In the distributed operating system paradigm, terminal access 
and file transfer are special cases of requests to servers [3, 321. This group has 
usually built on a procedure call-like interaction model to which they have tuned 
their designs and implementations. Remote procedure-call style systems can, of 
course, also be built on general-purpose protocols [20, 351. 

One technical result of these differences is that many general-purpose protocols 
use more packet exchanges than are felt necessary to reliably exchange a request 
and a reply. Another technical difference is that the general-purpose implemen- 
tations are often tuned for bandwidth not latency, as is required for a request/ 
reply style of interaction. Further, most existing general-purpose protocols do 
not offer the mechanisms that could allow their functionality to be dynamically 
optimized to the needs of specific application or interface semantics. We argue 
below that these are not inherent problems with general-purpose protocols. 

An important sociological and organizational factor is that existing designs 
and implementations of general-purpose protocols are not usually under the 
control of those doing distributed systems research. Often the designs are con- 
trolled by a large research community, government standards, or corporate 
organization; therefore, it is difficult to experiment with them. Similarly, existing 
general-purpose protocol implementations are often controlled by others, tuned 
to other applications, difficult to change, and unnecessarily complex and therefore 
difficult to understand. Even if existing implementations are open to change, 
such change is viewed as a secondary research interest. It is usually a good 
research strategy to simplify the factors being studied, and this simplification 
often leads to the development of special-purpose protocols. 

Finally, developers of special-purpose protocols have often had control of the 
operating system (including device drivers), communication interface, protocol, 
and even microcode design and implementation. They then compare their per- 
formance gains against general-purpose protocols implemented by others that 
have not been tuned for their application. There is a growing awareness that 
protocol performance depends as much, and usually more, on the implementation 
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than on the design [6,16,24]. Owing to this dependency, it is difficult to evaluate 
design approaches for lack of well-controlled implementation and environment 
experiments. For example, some performance numbers reported for special- 
purpose protocols assume very special case low-level implementations or unique 
network interface hardware not widely available. They ignore factors common 
under real operational environments: user-to-system context switches, processor 
multiplexing for system tasks other than network access, checking of access 
rights, interrupt handing, limitations of commercially available network inter- 
faces, data copies required in most existing operating environments, and so forth. 

Experience with many existing operating systems, designed before the impor- 
tance of interprocess communication was fully recognized, indicates that the 
dominant overhead (as high as 80 to 90 percent in our experience) is in the 
operating system structure, the interface-imposed overhead, and in the lower 
level network device drivers, rather than in the transport protocol algorithm 
16, 7, 16, 241. These operating systems suffer from poor to nonexistent support 
for asynchronous I/O system calls, lightweight tasking, memory sharing, inter- 
process communication, and efficient timer and buffer management. Therefore, 
there has been little motivation to improve the protocols. 

Now that established operating systems must work in local network and 
distributed system environments, their functionality, implementations, and in- 
terface semantics in support of communication are evolving. As a result, there is 
renewed activity in transport protocol design and implementation, although much 
of the new work has come from specialized protocol design and implementation. 
We argue that what is needed is the incorporation of the insights gained from 
the latter excellent work, as well as experience with existing general-purpose 
protocol designs and implementations, into more efficient and flexible general- 
purpose designs and implementations. We would also like to encourage wider 
publication of protocol implementation and performance experience. Only re- 
cently have papers discussing protocol implementations in local network envi- 
ronments begun to appear [2, 3, 5-8, 12, 16, 20, 24, 37, 391. 

Our discussion is organized as follows. Section 2 discusses transport service 
mechanisms with an emphasis on improving general-purpose transport protocol 
efficiency, thus removing some of the major problems special-purpose protocol 
designers have found with general-purpose designs. Section 3 describes various 
implementation strategies for making efficient execution available to both general 
and special-purpose protocols. Section 4 summarizes our argument. The Appen- 
dix contains some measurement data on a particular transport protocol and 
implementation used to support our analyses. 

2. TRANSPORT SERVICE MECHANISMS 

Figure 1 summarizes families of mechanisms available for implementing trans- 
port protocol functionality. Each is briefly discussed below. 

Two costly aspects of packet communication are packet handling and state 
retention. Packet handling is expensive because of possible user/system context 
switching, data copying, protocol processing, checksumming, buffer management, 
and device driver overhead and so forth. State retention is expensive because of 
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Function Mechanism 

Connection management 
Handshake-based 
Explicit timer-based 
Implicit timer-based 

Errors 

Checksums for damage 
Explicit acks to prevent loss 
Implicit acks (e.g., application-level replies to requests) to prevent loss 
Sequence numbers or other identifiers to prevent duplication and 

missequencing. 

Explicit sliding window 

Flow-control 
Implicit (e.g., one outstanding request/reply at a time) 
Assumptions about relative sender and receiver transmission rates, with 

discard on overflow 
Transmission-rate based 

Message size 
Message and packet segmentation/reassembly 
Small, fixed, or maximum-size messages and packets 

Fig. 1. Mechanisms for implementing transport functionality. 

memory requirements (of less importance, given today’s large low-cost memories). 
Control packets (associated with protocol operation) and data packets are both 
expensive to handle, although the former are less expensive because they may 
not require user-to-system context switches and data copying or checksumming. 
Designers of special-purpose protocols have tried to reduce packet exchange 
overhead by minimizing the number of packet exchanges required for connection 
management and acknowledgment. Owing to the expense of packet handling, it 
is widely recognized that to maximize data throughput the largest possible packet 
sizes should be used. Unfortunately, many implementations of network interfaces 
restrict packet size (e.g., 1,500 bytes for Ethernet). The reduction of the state 
required and the interval over which it must be retained has focused on reducing 
protocol functionality, improving connection management mechanisms, and 
sharing of connections. These issues are discussed in the following sections. 

2.1 Connection Management Mechanisms 

Connection management deals with the subtle end-to-end issue of allocating, 
synchronizing, and deallocating state, primarily identifiers needed for error and 
flow control [29, 311. It also involves negotiating modes of operation and needed 
resources such as packet or buffer sizes [8]. Unless an error and crash-free 
environment is assumed, connection management issues must be dealt with at 
some level. The connection management error control problem that must be 
solved is that receivers maintain state long enough (timer-based) or check with 
the sender (handshake-based) so that duplicate packets cannot cause duplicate 
data to be accepted. The ambiguity problem to be solved is assuring that senders 
maintain state long enough to receive all acknowledgments of data sent, and 
receivers stay open long enough to receive and acknowledge (ack) all possible 
retransmissions. This eliminates ambiguity about whether or not data were 
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received, except when an end node crashes or the network is partitioned. Recovery 
from these problems requires a higher level mechanism [Xi, 22, 251. One must 
also assure that duplicate acknowledgments from old connections cannot ac- 
knowledge data sent on a current connection. Reliable connection management, 
for both general and special-purpose protocols, can be achieved using combina- 
tions of message exchange (handshaking), timer, and unique connection identifier 
mechanisms. Special-purpose protocols eliminate unnecessary connection- 
management packet exchanges by using assumptions about network error char- 
acteristics and a combination of the above mechanisms [l, 2, 26,301. 

2.1.1 Packet-Exchange Based Connection Management. Most existing general- 
purpose transport protocols utilize explicit connection opening and closing packet 
exchanges [29]. The opening packet exchange guards against opening due to 
duplicate packets and allows resource negotiation; the closing exchange assures 
that all data have been received, and both parties are prepared to close. Hand- 
shake-based connection management is expensive in terms of packet exchange 
overhead, delay (depending on assumptions about possible network errors, re- 
quests and data may not be reliably delivered until the third packet of the opening 
exchange), and the extra overhead and implementation complexity required to 
cycle through the opening and closing handshake states. 

If one assumes a general network environment where packets may be duplicated 
and missequenced, then five packets plus the timer mechanism are required to 
reliably handle connection management for the exchange of a request and reply 
[29, 311. If one assumes no network duplication and missequencing, the number 
can be reduced to a three packet exchange plus the use of unique connection 
identifiers and a timer mechanism [l, 21. When designing special-purpose pro- 
tocols, one must be explicitly aware that they depend for correct operation on 
such a mechanism and error assumptions. The combination of unique identifier, 
handshake, and timer-based approaches commonly used in special-purpose pro- 
tocols is discussed further in Section 2.2. 

However, even when handshake-based connection management is used, careful 
implementation can minimize the number of exchanges used. For example, while 
theoretically the Transmission Control Protocol (TCP) can safely exchange a 
request and reply using five packets, many implementations require nine 
[13, 291. The costs of handshake packet exchanges may be acceptable or even 
desirable in many environments because (1) the patterns of communication may 
allow these costs to be spread over several data exchanges, (2) the intervals 
between requests or request and response may be long relative to opening and 
closing overhead, (3) the system as a whole may be lightly loaded, and (4) the 
communicating parties can achieve improved overall performance by negotiating 
transfer parameters and resource allocations. 

2.1.2 Timer-Based Connection Management. Reliable connection management 
can be achieved with no extra packet exchanges by using a timer-based mecha- 
nism [3, lo]. Timer-based connection management mechanisms have the advan- 
tages of requiring no extra delay before data delivery, minimizing packet 
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exchange, small implementation size (see the Appendix), and minimizing 
state retention when connections are inactive, since state is automatically 
allocated and deallocated. Timer-based connection management can be used in 
either special or general-purpose protocols. 

In a timer-based connection management approach, the receiver keeps state 
(e.g., sequence numbers (SNs) or connection or transaction identifiers, or re- 
sponses) until all old duplicate packets (requests) have died (including retrans- 
missions). The sender keeps state until it can receive an ack if sent (assuming a 
graceful close is desired), and, depending on the details of the protocol, possibly 
long enough to guarantee it will generate acceptable SNs or other identifiers. 
Depending on the protocol design, when a node recovers from a crash it may 
have to wait a period before sending or receiving to avoid connection management 
hazards [3, 10, 311. The main problems that must be solved are determining 
timer intervals for a given timer-based design and bounding packet lifetime. In 
an explicit timer-based design, the intervals are explicitly derived and limited on 
the basis of parameters such as maximum packet lifetime, retransmission time, 
and acknowledgment time [lo]. These intervals are simply bounded [27, 331. 
Implicit designs depend on engineering judgments made on bounds for the above 
intervals [ 1, 21. 

2.1.3 State Retention. The amount of state that must be maintained per 
connection depends on the services being supported (e.g., error control, flow 
control, encryption, multiple or only single outstanding requests) and protocol- 
independent implementation choices. As memories increase in size and become 
cheaper, state retention is becoming less of an issue. Transport level state may 
be minimized by limiting functionality or by moving functionality to higher levels 
(in which case the state still exists). It may also be minimized by multiplexing 
many conversations on one end-to-end transport connection. Performing such 
multiplexing requires some restrictions such as only allowing one active com- 
municating process per node, allowing only one outstanding request/reply trans- 
action at a time, or a willingness to suffer the delays caused by flow control 
interaction between the multiple conversations [ 1,3]. 

The length of time state is maintained depends on the connection-management 
mechanism used. In a handshake-based protocol, state may be discarded after 
completion of the closing handshake, although some handshake protocols may 
also require timer-controlled state deallocation to avoid hazards [13,29, 311. Use 
of an implicit or explicit timer-based protocol automatically allocates and deal- 
locates state without the overhead of a connection closing handshake. An explicit 
timer protocol can reduce the state-time product over an implicit approach since 
the latter must make worst-case packet lifetime assumptions. 

2.2 Error Control Mechanisms 

Information may be damaged, lost, duplicated, and missequenced. Designers of 
special-purpose transport mechanisms or transport protocols with many levels 
of service try to take advantage of the precise error tolerance of the application 
and error characteristics of the underlying network or link layer to minimize 
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mechanism. Detecting damaged information and handling lost information are 
the most expensive services in terms of mechanism or central processing unit 
time (see Appendix). Detecting and discarding damaged information at any level 
leads to its loss. Once one provides mechanisms to protect against lost informa- 
tion, duplication is possible due to retransmissions. Duplicate protection during 
data transfer is, however, quite inexpensive. Once duplicates are protected 
against, protecting against missequencing is essentially free. In our experience, 
the basic choice is between assuming an error-free lower level environment or 
providing the full range of error control services, possibly with limited options. 
The main design issue is how and at what level to provide these services. 

One argument advanced for the use of special-purpose transport mechanisms, 
implemented within the application, is that no purely transport level protocol 
can eliminate the need for related higher level services (e.g., in end node or 
network crash situations). Higher level error recovery mechanisms are required 
if such situations are to be protected against. Thus, it is argued, if higher level 
mechanisms are going to be used anyway, why introduce a duplicate mechanism 
at lower levels [23]. 

Separate lower level mechanisms cannot be justified in all cases, but the higher 
level mechanisms may be more expensive. For example, the mechanisms required 
to protect against information loss in event of node or network crash are quite 
complex and expensive and must be built into all communicating client/server 
processes [15, 22, 251. Many applications do not require such protection. Even 
when provided, lack of a lower level mechanism may result in more frequent 
than necessary invocation of the expensive higher level mechanisms, and, there- 
fore, yield potentially higher costs. 

There is clearly a trade-off between providing related services at more than 
one level or only at the highest level. We believe that this trade-off for many 
existing environments favors the use of lower level mechanisms to improve 
performance. 

2.2.1 Error Control Mechanisms: Damage. Damaged messages or packets are 
normally detected through the use of checksums and are discarded. Recovery is 
through the use of acknowledgment and retransmission. Most link-level protocols 
and some local network interfaces support checksums in hardware. Errors can 
still occur within hardware interfaces or within intermediate nodes in more 
complex topologies. Thus, end-to-end software checksums are usually provided 
in both general and special-purpose designs. Software checksums, even those 
using a simple a.rithmetic algorithm (see the Appendix), are expensive, a fact 
that argues for microcode support [28]. 

Because the undetected link level, interface, and memory error rate of some 
environments is low enough, end-to-end checksums may not be needed. Optional 
end-to-end checksums are easily supported for both special and general-purpose 
protocols [13, 14, 331. 

2.2.2 Error Control Mechanisms: Loss. The central error control question 
(once connection management has been dealt with) is: Can packets be lost? If 
packets can be lost, then a positive-acknowledgment retransmission mechanism 
must be supported, or the application must be such that occasional lost infor- 
mation is tolerable. Detection and recovery from lost packets is expensive and 
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complicated, requiring acknowledgments (acks), retransmission queues, and 
timeouts. Further, duplication and missequencing are possible as a result of 
retransmission. 

Two variants of positive-acknowledgment retransmission protocols exist. The 
most common is to use an ack to acknowledge all data received up to a given 
sequence number. The loss of one packet can result in retransmission of that 
packet and all packets sent after it. Another approach is selective acknowledg- 
ment or negative acknowledgment (nak), wherein specific packets can be 
acknowledged or be identified for retransmission. This approach has been widely 
used on long delay networks such as satellite networks. This approach has been 
proposed to improve the performance of bulk data transfer for local networks 
also [3, 8, 37, 391. 

We know of no pract,ical proposal for network communication that has suc- 
cessfully assumed no information loss, even for local network environments (local 
network interfaces can have high losses [16, 39]), unless the expensive loss 
protection mechanism has just been moved to a higher or lower level. The lost 
event may be rare, but it occurs. Once its occurrence is assumed, most applications 
require mechanism be provided to protect against it. 

Because packet handling is expensive, one common approach of special-purpose 
protocols is to try to reduce the number of required acks by using the receipt of 
an application level reply to provide the ack of the corresponding request. Acks 
may be saved, but the expensive retry queue and timeout mechanism is also just 
moved to the higher level. 

The problem still remains of acknowledging the response. Because reponses 
can be lost, the connection-management mechanism is required since duplicate 
requests will be generated. State must be retained to detect the duplication and 
retransmit the response, or request duplication must be acceptable (i.e., requests 
must be idempotent). With assumptions that there is no network duplication or 
missequencing and that only a single outstanding request is allowed at a time, 
the connection management mechanism often adopted by special-purpose pro- 
tocol designers is the following. They use receipt of the next request, if it follows 
soon enough, to be an implicit ack of the last response, or otherwise use an 
explicit ack of the response so that the responder can know when to discard state 
[l, 2, 3, 281. We expect the latter explicit ack to be required in most situations 
because it is only for applications with a small expected interval between requests 
that the former could be used. Since the response-ack can be lost, the implicit or 
explicit timer mechanism is ultimately required to know when the state can be 
safely discarded. If responses or acks can be duplicated, then requesters must 
hold state until they expire or use unique SNs, connection, or transaction 
identifiers so that the old duplicates cannot ack new requests or data sent. 

Another serious loss recovery problem is determining the appropriate timeout 
for retransmissions, a complicated problem in both wide and local area networks 
[ 16,371. Ack or reply generation time is more variable if handled at the application 
level because delays are more dependent on the application, system load, and 
system resource scheduling characteristics. Thus, it may lead to large topology 
or application-dependent retry timeout tables, long timeout periods (drastically 
affecting throughput or delay when even small percentages of packets are lost), 
or unnecessary retries. Since transport level acks are still required to avoid such 
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problems, most special-purpose protocols contain a rather complicated special- 
case timeout and explicit ack-generation mechanism [l, 2, 301. 

The special assumptions and mechanism used to avoid acks may not improve 
overall system performance. Depending on the implementation, ack generation 
and processing may be quite inexpensive. Processing acks will not cause detri- 
mental system delay and CPU overhead if their generation and processing can 
be overlapped with data copying [39], waiting for responses at the client end, or 
waiting for I/O at the server end. Acks are not a problem if the time intervals 
between remote operations or service reponse times are long, relative to the times 
required to generate and process an ack. Finally, ack expense is less significant 
if applications run under operating systems in which system call overhead is 
already unavoidably high. We believe that many distributed applications or 
environments have one or more of the characteristics above. 

In fact, it is precisely in the high-load situation, claimed to benefit from special- 
purpose protocols, where lack of low-level acks may result in unnecessary retries 
or another recovery mechanism being invoked, these approaches further end 
node load and network congestion. For this reason, Casey [2] abandoned use of 
replies as acks of requests and instead adopted explicit transport level acks of 
both requests and replies. 

One should also recognize that explicit acks have utility. If they are not 
supported in a special-case protocol, then connection management hazards may 
exist. They can reduce the time required to hold state, including requests or 
replies being held for retransmission. They can, as mentioned, reduce retrans- 
missions and their packet handling load and thus reduce congestion during 
periods of high server load. Once provided, they make support for arbitrary-sized 
messages and intra and intermessage flow control quite inexpensive. Generating 
and processing a transport level ack can be less-CPU expensive (by a factor of 
three in the example in the Appendix) than an ack for requests or replies. This 
is due primarily to the fact that acks carry no data that must be copied, 
checksummed, or placed on a retransmission queue. Nor are context switches 
between user and system space required in kernel implementations. 

If minimizing acks is determined to be important, general-purpose transport 
protocol designs or implementations can do so in at least two ways. One alter- 
native is for the receiver to delay the ack. This increases the probability that the 
ack can be piggybacked with the response to a request (usually difficult to achieve 
[6, 71) or that a single ack can acknowledge several received packets. A delayed 
ack mechanism can be provided in the implementation with no change to protocol 
functionality. If the delays to process a request or generate another request are 
such that a separate ack is required (we expect this to be the normal case in most 
applications), then the overhead of the additional ack is probably inconsequential, 
as already mentioned. Delaying the ack can, however, seriously reduce perform- 
ance if the sender is using smaller buffer space than the receiver and will not 
release buffers for new data to be sent until it receives the ack. 

Another design alternative is to place in the transport level interface send 
function a boolean parameter indicating whether or not the transport level ack 
and retransmission mechanism needs to be used for this buffer or message. 
This flag can then be propagated in the transport protocol header to provide 
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information to the receiving protocol module about whether or not to generate 
an acknowledgment [36]. The Versatile Message Transaction Protocol (VMTP) 
provides several control flags to precisely control when acknowledgments should 
be generated [3]. Such flexibility, however, requires additional higher level 
mechanism and complexity for effective use. 

2.2.3 Error Control Mechanisms: Duplication. Duplication results primarily 
from retransmission at various protocol levels to recover from lost information. 
Efficient detection of duplicates requires use of an SN either from a contiguous 
or at least monotonically increasing space. Detecting duplicates requires minimal 
state and a simple comparison of the received SN against the next expected SN 
or some acceptable lower bound. Duplicates are discarded, and an acknowledg- 
ment (ack or reply) is retransmitted. The main, and often subtle, issues associated 
with duplicate detection are those of connection management discussed above. 

It is sometimes argued that for certain classes of request, called idempotent, 
duplication causes no difficulty (e.g., reading or overwriting data as opposed to 
incrementing data) [30]. Unfortunately, many types of request cannot be for- 
mulated in this form, or many special cases must be handled. Even when 
idempotent requests can be appropriately formulated, certain subtle synchroni- 
zation problems are possible owing to concurrently executing duplicate requests 
(orphans) [26]. To eliminate these problems one must eliminate duplicates, 
provide synchronization mechanisms to assure receipt of only the reply to the 
last request, or provide a mechanism, usually expensive, to kill duplicate executing 
requests. Whether with respect to the issues of connection management, data 
transfer, or orphans, no mechanism is saved by performing duplicate detection 
at a higher level. 

2.2.4 Error Control Mechanisms: Missequencing. Missequencing is caused by 
transport level loss and retransmissions if multiple messages can be outstanding, 
or by lower level network store and forward delays and alternate routing. It is 
assumed that one of the simplifications introduced by many local network 
topologies or a single request/reply interaction is that missequencing cannot 
occur. This assumption has been used to try to simplify connection management 
[2] and packet acceptance handling. However, the CPU time and mechanism to 
deal with missequencing, ignoring connection management, is trivial, particularly 
once packet loss and duplication must be dealt with. We argued above that 
duplication must be dealt with if the retransmission mechanism is used in end 
or intermediate nodes. The additional requirement imposed to handle mis- 
sequencing is the use of a contiguous, rather than simply a monotonically 
increasing, SN space. This may require additional state space at the sender 
because a single monotonically increasing state variable cannot be used across 
all conversations. 

2.3 Flow Control Mechanisms 

Flow control mechanisms include a priori or negotiated agreements, special 
messages, or state piggybacked on acks. Since the implementation of buffer and 
ack generation management interact strongly with flow control, implementation 
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complexity and performance problems are created that special-purpose protocol 
designers have tried to minimize. An example given earlier was the interaction 
of sender and receiver buffer sizes, window flow control, and use of delayed acks. 
Another example is the silly window syndrome in which the interaction of buffer, 
window, and ack strategies can result in very small packets being sent [5 1. Simple 
changes to an implementation can solve both problems [3, 51. 

Four restrictions and corresponding optimizations have been used in various 
combinations to simplify the interactions of the above factors with flow control 
and to minimize state and acks: (1) a priori or negotiated agreement on the 
maximum size of buffers, packets, or request or reply messages transmitted (e.g., 
assume the receiver can buffer all packets or messages received up to a given 
amount of data), (2) specify a priori agreement on the number of messages 
allowed to be outstanding at a time (e.g., most commonly use a stop-and-wait 
protocol that only allows one message or packet to be outstanding at a time), (3) 
use a blast protocol that allows one large message or buffer, sent as many packets, 
to be outstanding and generates one ack at the end of this message or buffer (it 
may use rate-based flow control to control the intramessage packet arrival rate; 
the appropriate rate can be negotiated between sender and receiver or be adap- 
tively determined [3, S]), and (4) use no flow control and simply discard a packet 
buffer or message if a receiver has not allocated space for it, and depend on loss 
recovery to handle the problem. 

Discard seems particularly unacceptable because it is precisely in the heavy 
load situations assumed favorable to special-purpose protocols that flow control 
is needed to reduce congestion. Discard will lead the requesting end to invoke 
expensive loss recovery, for example, and to poll by retransmitting until an ack 
or reply is received, thus increasing packet handling overhead and congestion. 

If size restrictions are too small in cases 1 and 2, data throughput is limited. It 
has been argued that in a low-delay, high-bandwidth local network a stop-and- 
wait protocol can achieve throughput competitive with sliding window or blast 
protocols [l]. This is not the case, as shown by Zwaenepoel’s studies in which 
sliding window and blast protocols achieve significantly better throughput in a 
local network than stop-and-wait protocols (sliding window and blast protocols 
achieve roughly equivalent results) [39]. Sliding window and blast protocols 
achieved their advantage by being able to make use of data pipelining and 
concurrent sending and receiving at each end. If a stop-and-wait protocol is used 
for requests/replies, then a separate transport mechanism may be required to 
achieve acceptable bulk data transfer rates [4]. This use of multiple protocols 
leads, in our view, to unnecessary, extra conceptual and implementation 
complexity. 

One of the arguments for use of the stop-and-wait mechanism and assumptions 
on maximum packet or message size is that they help eliminate the need for 
extra flow control messages or explicit acks. We argued earlier that eliminating 
acks may be detrimental under high loads and provide little overall system gain 
under low loads. One view of assumptions on the use of large buffers, in case 1, 
and the use of blast protocol mechanism, in case 3, is that this is just a special 
case of a sliding window protocol with a large default window and delayed ack 
generation. The stop-and-wait mechanism can also be viewed as a special case of 
a sliding window mechanism with a window for one packet or message. 
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Thus, performance problems with sliding window mechanisms do not seem to 
be inherent; that is, they should be able to achieve good performance for a variety 
of applications. Instead, the problem seems to be in getting the implementation 
correct so as to minimize the negative interaction of buffer and ack management 
with advertised windows [5, 81. Achieving such an implementation would seem 
to require hints at the user interface as to the nature of the application’s message 
size and interaction characteristics [16]. Further, to achieve good performance, 
both ends need to get it right. Implementation experience to date indicates that 
this is a difficult task. Much of the problem seems to result from a difficulty in 
synchronizing or coordinating, in both design and implementation, the interac- 
tions of the abstractions used at the different levels; the application deals with 
application-level buffers or messages, most lower level mechanisms deal with 
their own buffers and buffer management strategies, and sliding-window flow- 
control protocols specify flow control on yet different abstractions such as bits, 
bytes, or packets. 

Our conclusion is that some explicit form of flow control is desirable especially 
under high loads. Because of the subtle interactions of flow control, buffer, ack 
generation, and other mechanisms, we feel flow control and its implementation 
is still an area not adequately understood and in need of new ideas and more 
modeling and implementation experimentation. The blast mechanism appears 
promising for both general and special-purpose use, given the ability to assume 
large default send and receive buffers, although most of its basic concepts can be 
included in sliding-window protocol implementations with appropriate ack and 
nak mechanism and management. 

2.4 Message Size 

If messages can be restricted in length and fit in a single packet, then no 
mechanism is required to handle the error and flow control problems of intra- 
message segmentation. The transport mechanisms can then deal with the mes- 
sage, rather than the packet, as the abstraction to be transported, and the 
protocol does not need mechanism for error and flow control for pieces of a 
message or to support a message segmentation/reassembly mechanism. 

It is our experience (see Appendix) that the overall cost of dealing with message 
segmentation/reassembly and intramessage error and flow control is not signifi- 
cant. Assuming that all messages are less than some fixed packet size (often 
512 bytes or less) places restrictions on higher level application and service design 
or implementation. It may just move segmentation/reassembly to a higher level. 
It also implies that bulk data transfers must be handled using many pairs of 
requests and replies, reducing performance, or requiring a separate mechanism. 
Provision of support for arbitrary message sizes and intramessage flow control 
(either sliding windows or rate based) leads to more efficient data movement 
[3,391. 

3. IMPLEMENTATION STRATEGIES FOR GAINING EFFICIENT EXECUTION 

Good performance requires careful implementations of both general-purpose or 
special-purpose protocols. In fact, the implementation seems more important 
than the design. (We are familiar with implementations of the TCP [13] and 
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IS0 transport protocols [14] in which implementation size and throughput can 
vary by an order of magnitude for the same protocol implemented by different 
groups for the same operating system.) Several areas of implementation optimi- 
zation have been suggested or tried and are reviewed below. The same implemen- 
tation optimization techniques are available to both classes of protocol 
implementors, 

3.1 Layered Architectures 

Design decisions on modularization and placement of protocol processing can 
significantly affect performance. General-purpose layered protocol architectures 
have often been implemented with separate (often user-level) processes per 
protocol layer or connection. This can lead to inefficient operation. Such a 
modularization is an implementation design choice and is not inherent in general- 
purpose protocols. That is, a common mistake is to take a layered design as a 
requirement for a correspondingly layered implementation. 

One of the claims often made for special-purpose protocols is that they are not 
layered and therefore are more efficient. In fact, examination of their designs 
shows that they are cleanly layered, at least at a logical level of abstraction sense. 
What they seem to be saying is that, whereas they are designed in a functional 
sense in a modular layered fashion, these protocols are not necessarily imple- 
mented on layer boundaries. It seems important to us to make a sharp distinction 
between design and implementation [6,7,33]. It is important to understand well- 
defined layers of abstraction. If it is useful to combine functions of two or more 
layers into one or more asynchronous tasks to achieve efficient operation, then 
that can be done without loss of the ability to multiplex two or more layer n + 1 
protocols on a layer n protocol. 

3.2 Use of Microcode 

A related argument is that special-purpose protocols are simple enough to permit 
their implementations to be pushed into the operating system kernel or even to 
be placed in microcode for further efficiency [28]. This is true of general-purpose 
protocols as well, unless their functional design dictates such a large implemen- 
tation that kernel or microcode memory space limitations preclude such optimi- 
zation. As shown in [3] and in the Appendix, it is possible to design general- 
purpose transport protocols that can be implemented within small memory space 
requirements. 

3.3 Lightweight Processes and Context Switching 

An expensive operation in remote communications is context switching from the 
user to the system environment and the software checking that is often required 
when that boundary is crossed; this operation thus argues for kernel implemen- 
tations. Even context switching within the system kernel can be expensive, 
depending on machine and operating system architecture. Arguments are made 
that the provision of lightweight processes or tasks, which can be efficiently 
created, destroyed, scheduled, and context switched, support the use of special- 
purpose protocols. Our experience and that of others shows that, because of the 
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high level of concurrency involved in communication, explicit support for light- 
weight tasking in the kernel is generally essential to protocol implementations 
[4, 7, 241. Lightweight tasking can and should be provided within user-level 
processes as well, if protocols are implemented at that level. Such mechanism 
aids both performance and understanding through a cleaner implementation 
structure. 

3.4 Data Copying and Buffer Management 

Data copying is expensive and often found in several places such as user-to- 
system, protocol-module-to-protocol-module, and system-to-network interfaces. 
Many protocol implementations have suffered because the implementation did 
not minimize data copying. The ideal is to support data transfer directly from 
user memory space to the network hardware and vice versa [39]. This may not 
be possible because (1) the machine’s I/O architecture or the network interface 
adapter’s architecture would not allow this, for example, because data chaining 
was not supported, and thus data and protocol headers could not be appropriately 
separated or combined, (2) the host operating system’s protection, virtual mem- 
ory, buffering, or other structures required copying; and (3) the protocol imple- 
mentation modularization required multiple copies. 

The protocol implementer has control over (3) and often (2) but not usually 
(1). We hope that protocol implementation experience can be fed back into the 
architecture and implementations of (1) and (2) so that they no longer dictate 
unnecessary copies [ 171. 

As mentioned in Section 2.3, flow control, buffer and ack management, and 
other mechanisms strongly interact. Choice of a buffer management strategy is 
an area where implementer control exists. Saltzer et al. discuss how their choices 
facilitated efficiency gains for a TCP implementation for terminal access and for 
a simple file transfer from a personal computer [24]. Lantz discusses buffer 
management strategies for a TCP [16]. Miller and Souza implemented a remote 
procedure call interface twice, once with a special-purpose transport protocol 
and, again, on top of a TCP. They indicate a slight preference for the latter 
approach in their environment, particularly if they tune the TCP buffer manage- 
ment implementation and other areas [20]. Zwaenepoel demonstrates again the 
utility of double buffering [ 391. 

Since the best buffer management strategy may be application dependent, 
optimum performance may be facilitated by allowing hints at the user interface 
[16]. This method may be seen as extra implementation or user interface 
complexity, but it would seem less complex than requiring separate request/reply 
and bulk data transfer protocols that are needed by some special-purpose systems. 

3.5 Caching 

Table lookup to perform network level routing or find connection records and 
other state is another source of overhead. Often state may be kept in user space, 
and a context switch may be required. Additional efficiency can be gained if the 
communication user interface and protocol implementation support caching of 
frequently accessed state. 
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4. SUMMARY 

Generltpurpose transport protocols have the advantages that they are portable 
across environments, can be used with a wide spectrum of applications, can 
support environmental evolution, and only one protocol suite need be maintained 
for a broad range of network and application environments, We have seen no 
evidence that they necessarily imply larger implementations than is possible with 
special-purpose protocols. Their main disadvantage is that their performance can 
be expected to be somewhat less efficient than that of special-purpose protocols. 
There is also a potential increased complexity in the area of flow control that 
may make it more difficult to obtain correct and optimum implementations. 
Their complexity in the areas of connection management and error control may 
be less because their correctness depends on general principles rather than on 
many special-case environment assumptions. Their performance penalty is 
mainly a function of which protocol mechanisms are used and of how they are 
implemented. We argued that a variety of design mechanisms and implementa- 
tion optimization strategies exist that are applicable to both general and special- 
purpose designs. These are summarized below. 

The primary advantage of special-purpose protocols is their potential for more 
efficient execution and low delay. The efficiency advantages, from a system point 
of view, are only realizable in restricted operational environments. The charac- 
teristics of these environments, along with a brief explanation of why the 
characteristic is required, are summarized in Figure 2. They are primarily required 
to realize savings from special-purpose connection management and ack reduc- 
tion mechanisms. 

Special-purpose designs have the disadvantage that they are closely tied to 
particular network or application architectures and create difficulties when 
portability across environments or environmental evolution is desired. We con- 
sider this an important disadvantage because our experience is that the under- 
lying network topology and environment is constantly evolving because of the 
rapid change in technology, constant pressure to create wider interconnection, 
and growing application needs. Special-purpose protocols also have the disadvan- 
tages of potentially introducing complexity due to special-case mechanisms or of 
failing to guard adequately against all error cases, particularly those associated 
with connection management. 

The design of a general-purpose protocol and its implementation will determine 
the range of its applicability. Unfortunately, we agree that many existing general- 
purpose transport protocol designs and implementations do not support the 
performance desirable and potentially possible for many applications. This fact 
has been the motivation for the excellent work on special-purpose transport 
mechanisms and implementations. 

We can summarize our arguments for why we believe general-purpose protocols 
can be designed and implemented to be competitive with special-purpose ones. 

Minimizing connection management packet exchanges. 
Special-purpose protocols tend to use implicit timer-based connection manage- 

ment to eliminate or minimize the need for explicit packet exchanges. Explicit 
timer-based connection management and bounding of packet lifetimes achieves 
the same goal for general-purpose protocols with little additional cost. 
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Environment Characteristic Why Required 

Static application or network environ- 
ment 

Primarily homogeneous 

High CPU load, short request queues 

Frequent remote requests 

Very low service response times 

Very low service request intervals 

Owing to special case assumptions, there may be per- 
formance or correct operation penalties for change. 

Complexity of customization grows quickly as more 
special cases must be introduced. 

Otherwise, there is sufficient time to the overlap gen- 
eration and processing of acks if spare CPU cycles 
exist (long queues (high load) and lack of explicit 
acks can compound congestion problems inherent in 
this case). 

Ack overhead is inconsequential for infrequent 
requests. 

Unnecessary retransmission of requests is very expen- 
sive; long service times imply acks are needed anyway 
and overhead is inconsequential. 

Low service request intervals are necessary to enable 
requests to ack responses, otherwise explicit 
response-acks are probably required. 

Fig. 2. Optimal operating environment for special-purpose protocols. 

Minimizing a&s. 
Special-purpose protocols minimize acks in two main ways: (1) by using 

application-level requests and replies to ack each other instead of explicit trans- 
port-level acks, or (2) by using a single transport-level ack to acknowledge several 
packets. General-purpose protocols can support interface control over ack gen- 
eration to achieve the first solution, or can implement appropriate ack manage- 
ment to achieve the second. Our analysis, however, questions the need for the 
former because in most environments ack generation and processing is less 
expensive than data transfer and can be overlapped with data copying, waiting 
for I/O, or waiting for a response, and because, in high load environments, lack 
of explicit transport-level acks will likely lead to more packet exchanges and 
corresponding congestion (see Figure 2). 

Assumptions about network error characteristics. 
Special-purpose protocols simplify mechanism based on assumptions that 

networks may not damage, lose, duplicate, or missequence packets. Checksum- 
ming to protect against damage is expensive and is found in both classes of 
protocols, but can inexpensively be made optional in either class. Local area 
networks have good packet loss characteristics, but often poor interface-loss 
characteristics under heavy load if buffers are overrun [16, 391. Therefore, both 
special and general-purpose protocols need to protect against loss for most 
applications. This need leads to equally expensive loss detection and recovery 
mechanism and potential duplication, and thus requires a connection manage- 
ment mechanism and sequence numbers or other identifiers. Handling duplicates 
and missequencing are a low-cost comparison operation. 

Flow control and maximum packet or message size. 
Special-purpose protocols tend to combine flow control and a maximum packet 

of message-size restrictions. They either offer no flow control, depending on 
discard and recovery by retransmission, or only allow a single outstanding packet 
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or request at a time. The former creates severe problems under a heavy load 
assumed favorable to special-case protocols, while the latter limits applicability 
or performance, or requires segmentation/reassembly at a higher level. Segmen- 
tation/reassembly is not expensive. Improved general approaches are, however, 
required for flow control and buffer and ack management. This currently means 
either more carefully specifying how sliding-window flow control, buffer and ack 
management, and other protocol mechanisms are to be designed, implemented, 
and used [3, 5, 161 or using a priori assumptions on the availability of large 
receiver and sender buffers in conjunction with a blast protocol mechanism [3, 
8,37,39]. Many of the insights gained in the latter can be applied to the former. 
The area of flow control and buffer management, however, still seems in need of 
new ideas and additional analysis, modeling, and implementation experience. 

Implementation optimization. 
Special-purpose protocol implementers have used a variety of mechanisms, 

outlined in Section 3, to achieve efficient implementation. These mechanisms 
are also available to general-purpose protocol implementers. 

These observations lead us to the conclusion that the choice of a special or 
general-purpose protocol should be based on the assumptions that can be made 
about the environment in which the protocols must operate. If it meets the 
conditions of Figure 2 (expected to be rare), then special-purpose protocols should 
be seriously considered. Otherwise, it may be best to adapt or use a general- 
purpose transport protocol. We hope more data will be published characterizing 
applications and system loads commonly experienced. We also hope that the 
experience gained with special-purpose protocols and through measurement and 
analysis of existing general-purpose protocol implementations will be fed back 
into new, improved generations of general-purpose transport protocol designs 
and implementations. 

APPENDIX 

In order to investigate the code size and CPU cycle cost of implementing a 
general-purpose transport layer protocol, a detailed instrumentation was made 
of an implementation of a full-service timer-based transport protocol, Delta-t, 
[lo, 341 on a DEC VAX 11/750. The statistics below are based on an early 
implementation in BLISS under VMS 2.5 for handling 1,024 byte data packets. 
While some tuning was performed, no attempt was made to improve performance 
by reducing use of procedures, since this would affect modularity. A procedure 
call and return in BLISS takes about 20-50 microseconds (variable, depending 
on number of parameters). The instrumentation allowed for isolation and meas- 
urement of individual code segments. 

The data were used to support several observations made in the main body of 
the paper. These observations include the following: 

(1) general-purpose transport protocol implementations can be relatively small 
(2,800 bytes for the transport protocol); 

(2) acks are relatively expensive, but less expensive than data sending or 
receiving (20-30 percent of the cost to send or receive a message); 
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987. 



Gaining Efficiency in Transport Services l 115 

Table I. Code and Data Sizes 

Code Data Sizes 

Delta-t (transport protocol) module 
Nontransport protocol code (includes user interface, 

packet buffer management, network protocol modules, 
and a link-level protocol interface, plus 500 bytes to 
bypass Delta-t when both origin and destination are on 
the same machine). 

2,800 bytes 
3,650 bytes; a link-level protocol mod- 

ule would add 1,500 bytes. 

Connection record size 
VMS unit control block 
Packet receive buffers 
Packet send buffers 

100 bytes per association 
150 bytes per association 
8K fixed 
Dynamically allocated 

Table II. Summary of Times for Sending and Receiving Data (1,024 bytes) 
and Ack Packets (in Microseconds) on Delta-t 

Send a data packet 
u/s = 1,167 
s/t = 1,133 
At = 565 

n/l = 1,326 

t=4,191 
Receive a data packet 

u/s = 1,167 
s/t = 1,102 
At = 346 

n/l = 1,578 

t = 4,193 

Send an ack packet 
u/s = 0 
s/t = 150 
At = 189 

n/l = 842 

t = 1,181 
Receive an ack packet 

u/s = 0 
s/t = 468 
A.t = 543 

n/l = 1,114 

t = 2,125 

Legend: User/system interface time-u/s 
System/transport interface time-s/t 
Delt,a-t transport protocol time-At 
Network and lower level protocol time-n/l 
Total time--t 

(3) context-switches and system-call software checks are relatively expensive 
(about 30 percent of the total cost of either sending or receiving a message); 

(4) most transport level services are relatively inexpensive; the transport- 
protocol execution time itself comprises a small proportion of the total time 
needed to send and receive packets; 

(5) since each protocol service was organized in one or more procedures, the 
procedure call/return overhead is significant. 

The user/system interface time is the time for a context switch from user to 
system and vice versa and for performing checks by VMS. It is a host-architecture 
dependent time. 

The system/transport interface supports the largely protocol-independent send 
and receive buffer queues, packet buffer and connection-record space manage- 
ment, and copying of data from user space to packet buffers or vice versa. 

The transport protocol algorithm is isolated in the Delta-t procedure and could 
be replaced with minor changes elsewhere by another transport protocol. 
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Table III. Detailed Measurement Data for Sending a Data Packet 

System Component Action 
Execution 
Time (WS) 

User/system interface 
(give system an empty buffer) 

context switch and VMS QIO systems call over- 
head 

schedule user software interrupt when send 
completes 

System/transport interface (send 
queue management) 

Delta-t 
(transport protocol) 

Network and lower levels (packet 
arrives) 

compute next message size 
get connection record 
get empty packet buffer 
call to Delta-t to send packet 
move 1,024 bytes to packet buffer 
update send queue data structure 

decide if and how much data to send (e.g., flow 
control) 

send timer management 
form data packet header 
set up retry record (loss protection) 

adjust packet lifetime 
data checksum (damage protection) 
header checksum (damage protection) 
VAX machine-dependent byte adjustment (due 

to byte ordering in VAX words) 
routing and lower level functions (estimated) 

831 

330 - 

29 
124 
127 
42 

615 
196 - 

113 
89 

123 
240 - 

66 
464 
66 

1,167 

1,133 

565 

160 
550 - 

1,326 
Total 4,191 

Delta-t executes mechanisms to handle loss, duplication, and missequencing and 
supports both arbitrary message sizes and flow control. 

The network and lower layers support damage detection (a Ones complement 
checksum) of packet headers and data and network routing. The time includes 
an estimate of link-level protocol and channel-driver time for use of an Ethernet. 

Network and lower level protocol time may vary widely, depending upon the 
actual networking hardware. The network/lower level protocol time for sending 
a packet on a NSC HYPERchannel, for example, is 9.1 milliseconds in one 
implementation on a VAX 750 running UNIX,’ which is seven times our Ethernet 
estimate. The latter is based on our interpretation of some informal measurement 
notes from the University of California B.s.d. 4.2 UNIX project. The network/ 
lower level time to receive an ack on a HYPERchannel is 3.8 milliseconds or 
more than three times our estimated value. 

To get some idea of what might be gained if arbitrary length messages, flow 
control, damaged, lost, duplicate, or missequenced packet services were not 
supported or were made optional, various labeled times could be subtracted. One 
can see that most of these services are relatively quite inexpensive, particularly 
once packet loss or damage protection is required. We believe a more efficient 
implementation of the retransmission queue mechanism is possible. 

i UNIX is a trademark of AT&T Bell Laboratories. 
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Table IV. Detailed Measurement Data for Receiving a Data Packet 

System Component Action 
Execution 
Time (ps) 

User/system interface 
(give system an empty buffer) 

user context switch plus VMS QIO system call 
overhead 

schedule user software interrupt when data 
received 

System/transport interface 

Delta-t (transport protocol) 

Network and lower levels 
(packet arrives) 

wake up destination process 
verify connection record has not timed out 
update receive queue state 
move 1,024 bytes to user buffer 
decide if buffer is finished 
release packet buffer 

determine packet type 
check packet lifetime 
duplicate detection 
flow control and missequence acceptance 
receive timer management 

routing and other lower level functions 
(estimated) 

set packet death time 
machine-dependent byte adjustment processing 
header checksum (damage protection) 
data checksum (damage protection) 
get connection record 
setup and queue software interrupt to At 

a37 

330 - 

135 
123 
106 
512 

68 
158 - 

14 
41 

106 
100 
85 - 

1,167 

1,102 

346 

550 
68 

136 
56 

457 
149 
162 - 

1,578 
Total 4,193 

Table V. Detailed Measurement Data for Sending an Ack Packet 

System Component Action 
Execution 
Time (us) 

System/transport interface 
(give system an empty buffer) 

decision to ack or not 
get an ack packet buffer 

Delta-t (transport protocol) formation of ack 

Network and lower levels 
(packet arrives) 

adjust packet lifetime 
header checksum 
machine-dependent byte adjustment processing 
routing and other lower level functions 

(estimated) 

30 
120 - 

150 
189 - 

189 
66 
66 

160 

550 - 
842 

Total 1.181 

Table I summarizes the code and data spaces sizes in the implementation. 
Table II summarizes the execution time measurements. Tables III-VI present 
more detailed measurement data upon which Table I is based. The data are 
organized by logical layer, not by sequence of execution. The legend was chosen 
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Table VI. Detailed Measurement Data for Receiving an Ack Packet 

System Component Action 
Execution 
Time (as) 

System/transport interface notify receiving process 
verify connection record still exists 
send queue management 
release packet buffer 

Delta-t (transport protocol) 

Network and lower levels 
(packet arrives) 

determine type of packet 
check lifetime 
packet acceptance and miscellaneous 
delete retry records (loss protection) 
flow control processing 

routing and other lower level functions 
(estimated) 

set packet death time 
machine-dependent byte adjustment processing 
header checksum 
get connection record 
setup and enqueue software interrupt 

135 
123 

52 
158 - 

468 
14 
41 

111 
276 
101 - 

543 

550 
68 

136 
56 

149 
155 - 

1,114 
Total 2,125 

to separate and emphasize the costs that are independent of a specific transport 
protocol. 
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the United States Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government thereof, 
and shall not be used for advertising or product endorsement purposes. 
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