
Distributed System V IPC in Locus:
A Design and Implementation Retrospective

Brett D. Fleisch
University of California, Los Angeles

ABSTRACT

This paper describes new interprocess communications
facilities that have been added to the Locus system[POPEK
8l]pALKER 831. The facilities improve Locus’s interpro-
cess communication repertoire by providing distributed sup-
port for three separate subsystems from System V UNIX: mes-
sages, semaphores, and shared memory. Here we describe
these subsystems and their integration into in the Locus archi-
tecture.

1 Interprocess Communication

Interprocess communication (IPC) has been studied for
many years. Historically, the study began in single processor
systems. Numerous communication and synchronization
mechanisms were developed. Among these, test-and-set,
semaphores, shared memory, message passing, and monitors
have been used widely. IPC has formed the basis for extend-
ing many operating systems into distributed operating systems;
communications mechanisms were selected to adapt single
machine systems to interact with each other. Typically a spe-
cial process, called a “network server”, provided host-to-host
communication and encapsulated the details of the network
protocols. In many systems, the interface to the network
server used the system’s standard IPC calls. This approach ap-
pears to be much simpler than building a truly distributed OS
kernel. Throughout IPC has been used as an encapsulation or
abstraction mechanism.

In distributed systems the development of mechanisms
for communication and synchronization has traditionally taken
one of two approaches: language oriented or system oriented.
This paper will examine the latter approach in the context of a
UNIX-based system called Locus. First, however, we must
turn our attention to the UNIX system and examine the inter-
process communication mechanisms that have been traditional-
ly provided.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1.1 IPC in UNIX

Historically, interprocess communication (IPC) has
been supported in UNIX using both pipes and signals.
Pipes[RITCHIE 781 provide a basic facility by which streams
of data may be passed between programs. Pipes are a synchro-
nous one-way communication mechanism; the output of one or
more programs can be directed to the input of one or more pro-
grams through a pipe. A signal, on the other hand, is a
mechanism by which one process can inform another about
some condition. Thus, pipes are basically a first-in, first-out
stream of bytes; signals are a simple asynchronous software in-
terrupt system. Pipes and signals and a transparent distributed
implementation have been available in Locus for some
time[POPEK 831.

Pipes and signals are not entirely suitable for all forms
of communication. While simple and straightforward to use,
pipes are limited in functionality and are difficult to use when
asynchronous conditions or asynchronous communication
must be performed. Signals, on the other hand, may be used
for synchronization but not data exchange. Combining pipes
and signals to achieve a desirable asynchronous notification
and data exchange facility is difficult and inconvenient.

To ameliorate the situation and provide compatibility
with System V UNIX, three new facilities have been added to
Locus: messages, semaphores, and shared memory. Messages
permit structured communication in discrete packets, providing
lightweight packet switching among processes in the network.
Shared memory, by contrast, provides undisciplined high per-
formance communication; the shared memory subsystem im-
plements shared segments using the underlying virtual
memory management hardware. Semaphores address data ac-
cess synchronization problems; they can be used to synchron-
ize access to a variety of resources, such as shared memory.

The System V IPC model is a substantial improvement
over pipes and signals. One may choose interprocess com-
munication that is more flow controlled and structured; alter-
nately, one may choose IPC that is less flow controlled, less
disciplined and exploits the advantages of hardware support.
Both approaches go a long way toward improving the rudi-
mentary facilities in standard UNIX systems.

0 1986 ACM 0-89791-201-2/86/0800-0386 7% 386

All these facilities are integrated in Locus in a manner
entirely compatible with Unix System V IPC. Moreover,
Locus supports all but the shared memory facility transparently
within an entire network; messages and semaphore sets have a
distributed implementation.

1.2 System V IPC versus Berkeley IPC

Recently, major UNIX development has been pursued
by both AT&T and at the University of California, Berkeley.
Berkeley 4.2 UNIX features a version of IPC well understood
within academic and industrial circlesbEPFLER 831.
AT&T’s System V IPC is less familiar, because fewer
academic sites use this version of LJNIX. Here we examine the
two different models of IPC to gain an understanding of why
one would choose one model over the other.

Berkeley’s IPC provides two facilities: virtual circuits
and datagrams. These facilities come from traditional net-
working concepts; we refer the reader to [WATSON 811 for
further information. Both virtual circuits and datagrams use
the underlying notion of a socket which has some of the
features of a pipe, some of an TCP/IP connection[ISO 791, and
some of an Accent port[RASHID 811. The socket is the unify-
ing abstraction in this model; communication is directed to
sockets.

Berkeley’s virtual circuits are more heavily used than
its datagram facility. Implemented primarily with TCP/lP as
underlying protocol, virtual circuits and the Internet addressing
domain are the only implementations fully developed.
Predominant use of the virtual circuit facilities using TCP/lP,
suggest Berkeley’s IPC is best suited for “long haul” environ-
ments. Layers of protocol overhead would be wasteful for lo-
cal area interprocess communication or local communication
on the same processor. Nontheless, Berkeley’s IPC may be
used in any of these situations.

Some have argued that Berkeley’s IPC merely provides
convenient ARPA TCP/lP style networking similar to facilities
long been available on many TOPS-10 and TOPS-20 systems.
This tradition of communication has less than desirable perfor-
mance characteristics; layered protocols add a significant ex-
pense to communication. This increases the cost per message
transmitted or received. We believe these additional costs
make Berkeley IPC most suitable for long-haul communication
rather than local area network communication. As an example,
when Berkeley 4.2 pipes were built pairing two sockets togeth-
er, performance of 4.2 pipes was substantially Worse than 4.1
pipes in the local case. This is because of the overheads intrin-
sic in the model. Other performance reports seem to substan-
tiate this claim[GURWITZ 8.51.

At the other extreme are System V UNIX’s facilities.
Described briefly in the previous section, the three components
of the System V IPC were built for a single system image
model of computation. Extending such a model of computa-
tion to a distributed environment should reap the benefit of
lower costs than a similar conversion for a “long haul” model.
Such a system would provide a more lightweight IPC than
Berkeley’s IPC. Implemented well, this lightweight model

would be ideally suited for local area network communication.

1.3 Introduction to the Locus System

Locus is a distributed version of UNIX that provides a
superset of UNIX services. Support for the underlying net-
work is almost entirely invisible to users and applications pro-
grams. The system supports a very high degree of network
rransparency, that is, it makes the network of machines appear
to users and programs as a single computer; machine boun-
daries are completely hidden during normal operation.

Locus provides a fully transparent file system and facil-
ities for distributed processes. In a LOCUS network, which may
consist of machines of various cpu types, both files and pro-
grams may be moved without effect on naming and correct
operation. Local operations and remote operations appear the
same in Locus. Process creation and migration are permissible
and easily controlled by programs and users.

Central to the design of the Locus architecture is the
underlying distributed file system. The file system supports a
number of high-reliability facilities, including a more robust
facility than that of conventional UNIX systems, and support
for interprocess communication using pipes. Communication
in Locus through network pipes operates with exactly the same
effect as local pipes. In addition, Locus supports named and
unnamed pipes.

When Locus activities must be performed remotely, lo-
cal system calls are intercepted, a network messuge formatted
with necessary arguments and data, and this message transmit-
ted to the remote site. Locus services remote requests by pro-
viding a set of lightweight server processes which are
processes that have no nonprivileged address space. The code
and stack of server processes are resident in the operating sys-
tem nucleus. As remote requests arrive in the form of network
messages, these requests are placed in a system queue, and
when a server processes finishes an operation, it looks for
more work to do in the queue. Each server process serially
serves a request. The system is configured with some number
of theses processes at initialization time, but that number is au-
tomatically and dynamically altered during system execution.
The distinction between server processes and application-level
user processes is an important one to which we will refer later.

Another aspect of the Locus design relates to a dynam-
ic network environment. In such an environment, network
failures and site failures may happen from time to time. These
changes in network topology effect the correct operation of
protocols in Locus. In particular, any time a site is connected
or disconnected from the current partition in a network, Locus
executes a reconfiguration protocol called ropology change.
The present strategy splits the reconfiguration into two stages:
first, a partition protocols runs to find fully connected subnet-
works; a merge protocol runs to merge serveral such subnet-
works into a full partition. This protocol detects all site and
communications failures and cleans up all effected multisite
data structures. Locus assumes a fully connected network,
where if host A can talk to host C, and host B can talk to C,
then A can talk to 8. We will refer to this topology change

387

mechanism later in this paper.

Locus has been operational for over two years on a net-
work of Digital Equipment Corporation VAXs at UCLA. Dur-
ing that time several people expressed frustration with UNIX’s
rudimentary IPC facilities. The need for more elaborate IPC
mechanisms became apparent; work commenced in the sum-
mer of 1984 towards this goal. System V IPC compatibility
was achieved by mid-summer, but the functions provided were
only available on a single site basis. Since then significant
new distributed facilities have been added to Locus which we
describe here. We begin with an overview of the design.

2 Locus System V IPC Design

We begin our discussion by examining how Locus Sys-
tem V IPC was quite naturally decomposed into two parts and
how the overall design was effected by this decomposition.
Later sections describe the components in greater detail.

The Locus System V IPC fell naturally into two parts:

1) naming components: these are used to maintain the IPC
name space. System V Unix names for interprocess
communication are not part of the general file system
name space. Locus maintains this new name space
transparently network wide.

2)functionaf components: these implement the message, sema-
phore, and shared memory subsystems.

Naming is used by all IPC subsystems; names are used to lo-
cate specific IPC communication objects. Those objects will
be described in detail later. In Locus these names must be ac-
cessible from all sites. The funcrionai components comprise
the specific subsystems including messages, semaphores, and
shared memory. Figure 1 depicts this.

Figure 1: LOCUS System V IPC Components

The separation of naming from the functional com-
ponents is a natural one. Furthermore, it has effected the
choice of implementation strategies. We have observed that
the frequency of locating and asserting an IPC name is consid-
erably less than the frequency of use of the functional opera-
tions provided by the subsystems. This is often the case in
computer systems because names are used typically to refer to

objects that will be repeatedly used. This fact permitted us to
implement the naming component outside of the kernel in a
centralized, yet reliable, manner. Design and implementation
were simplified because all of the standard kernel services
were available to the naming component. The actual database
of IPC names is stored in one special application level server
for an entire Locus network. Various IPC system calls will ac-
cess this database.

Although names are stored outside of the kernel, the
IPC subsystems themselves are directly supported by each
site’s kernel. These functional components consist of a user
and storage site component. In the case of local operations,
the user site is the storage site. However, when these are dis-
tinct, lightweight server processes perform operations at the
server site.

Storing the names outside of the kernel raises an issue
in communicating values between system calls that require
these names and the application IPC name server itself. We
have chosen to use the message subsystem itself to provide
this form of communication; the IFC name server uses the
standard System V message subsystem to communicate values
to and from the kernel. Although one system call was added to
create a special channel to the kernel, the standard set of mes-
sage system calls are used for all communication.

2.1 IPC Naming

In UNIX and Locus names are typically found through
the file system. For example, all devices are mapped through
the file system using the /dev logical directories. Locus is en-
gineered towards providing highly efficient file system opera-
tions; a natural consequence of design is that naming is tran-
sparent and efficient. Moreover, all names are uniformly
found through the file system.

Unfortunately, System V adopted a separate name
space for IPC names; IPC names are not part of the file system
naming hierarchy. Locus must support this name space to
maintain compatibility with software that uses these names.
The format of these names is described in the next section.

2.1.1 The Name Format

System V IPC uses two types of names: keys and han-
dles. A key is a 32-bit integer the user selects and associates
with a message queue, semaphore set, or shared memory seg-
ment. There is one special type of key, with a special value,
called the ipc private key. If the IPC private key is used, the
name of the object is kept private; all other keys reference ob-
jects that may be looked up publicly.

Handles operate on objects. Typically when one lo-
cates an object using a key, a handle is returned (subject to
protections see 1.6). For example, when one tries to locate key
“12332” and an invalid handle is returned, one can assume the
object does not exist. However, if a valid handle is returned,
one can manipulate the underlying object.

388

2.1.2 Name Service

System V IPC name service allows one to insert, re-
move, and query keys in the name space. The subsystems
described in subsequent sections support these operations
through specific system calls. For example, query and inser-
tion are supported with the msgget(), semgetf), and shmgetf)
system calls. The operations msgctl(), semctl(), and shmctl()
provide options for removing an object using a handle. The
associated key is deleted at that time.

Most Locus services are kernel-based; however, the
implementation of the IPC name database uses a protected
application-level process, called the IPC name server
(IPC iVS). The IPC-NS maintains the name database for all
the distributed IPC subsystems, keeping all keys and handles
for the subsystems that are distributed. The local kernel main-
tains this information for the shared memory subsystem.

The Ipc-NS is the first application-level server process
in Locus that the correctness of services provided by the kernel
depends on. Unlike lightweight server processes that are part
of the kernel and are used to service incoming network mes-
sages, the IPC NS is a typical application level process with
additional func%onality. Nonetheless, the IPC-NS is not per-
mitted to tie up kernel resources; it processes requests and
commands the kernel to perform certain actions by using sys-
tem calls.

2.1.3 The Handle Format

As stated earlier, an IPC handle is returned as the result
of a lookup operation. Application programmers typically do
not inspect the handle. Rather, they present it to the kernel to
access an underlying object. Most system calls we will later
describe take a handle as their first argument.

The use of handles brings up two issues related to iden-
tifying the underlying object to which the handle refers. First,
the handle must indicate if the object has been deleted, and
another one reallocated, in the same memory location. Thus, a
plain vanilla address would be ineffective since a deletion and
reallocation could occur between handle uses. This problem
was solved in standard System V IPC. Second, if the object is
stored at a remote site, it must be possible to detect if the same
object is stored there at a later time. This is a problem intrinsic
to distributed System V IPC. Recall the site could crash and
be revived during handle uses: during that time objects could
be reallocated at that site. So, this also says a (site, address)
pair would be ineffective as well.

Locus handle format solves these problems. The han-
dle is a 32-bit quantity with three subfields: a site identifier, a
bootcount, and an object index. The site identifier is allocated
16 bits, the bootcount 4 bits, and the object index 12 bits. Fig-
ure 2 shows the format of a Locus handle. The site identijer
portion of the handle identifies the home site of the object.
Locus IPC objects do not move. Thus, given the handle, one
can quickly determine the site where the object resides.

The bootcount identifies the current incarnation of the
kernel at the storage site of the object. Using the bootcount,
Locus can detect if the object’s storage site has failed and been
revived during intervening handle uses. Locus maintains a
running bootcount that is incremented each time the kernel is
booted. Handles use 4 bits of this value i.e. in modulo 16 ar-
ithmetic. For example, bootcount 161 would be stored as a 1
in a handle (161 mod 16 = 1). If a handle’s bootcount was 5,
and the current bootcount was computed to be 6, the next time
the handle was used Locus would send back an error. The er-
ror would indicate the site had crashed and been revived during
the meantime. Therefore, it is not necessary to inform holders
of handles that a particular storage site has failed. When this
happens, the handle is considered invalid.

As in System V Unix, the index allows one to deter-
mine where, in a fixed size table, the pointer to the object is.
When the object is removed, a reuse count in the index slot is
incremented so that the index’s value is not reused immediate-
ly. In this scheme, an index’s value is the offset into the table
times the reuse count. For example, if there are 50 indices in
the table and the zeroth entry has a reuse count of 1, the index
value is 50 (50*1), the next allocation of the zeroth slot will
use index value 100 (50*2), rather than 50. This continues un-
til a maximum value is reached. Then the reuse index is reset
to zero, The value of this scheme should be apparent: the re-
moval of an object and its reallocation in that table index, can
be quickly detected. Users with old indices for deleted objects
will learn of the table index’s reuse upon access.

System V handles can be passed unconstrained, making
it hard to detect who possesses handles (object references).
For example, it is easy to fork a child process that has the same
handle as its parent. Alternately, one could write a handle to a
file for others to use. Process migration complicates the issue.
Thus, it is nearly impossible to locate all handles. These
difficulties indicate process-by-process revocation of handles
is infeasible. Consequently, the Locus handle format was
designed to make it easy to detect a site failure or object dele-
tion, thus effecting invabdation automatically.

2.2 IPC Protection

Earlier we mentioned that keys were associated with
objects. In System V IX each object, whether that be a mes-
sage queue, semaphore set, or shared memory segment, is pro-
tected independently. The scheme used is similar to that of
files, one can specify access by: owner, group, and world.

Protection checks are provided at two times. First,
when a key is looked up using the msgget(), semget(), or
shmget() system calls protection is checked. Unauthorized ac-
cess is indicated by an EACCESS error and failure of the sys-
tem call to return the underlying handle. Second, when using a
handle access is rechecked against the protection mask esta-
blished when the object was created. Thus, users cannot gain
access to objects without appropriate permissions. Note how-
ever, access to an object that is publicly readable can be ob-
tained by “guessing” handles.

389

2.3 IPC-NS Kernel Communication

In order to implement much of the functionality
described, the IPC-NS and the local kernel must be able to
communicate. A new call was added to the Locus system for
this purpose called the ipcnschan() system call. The call re-
turns the handle of a reserved queue used to communicate with
the kernel; this queue is called the ipcnschun queue. The
ipcnschan queue is a protected, non-removable queue in Locus.
It is created when the site is booted and is used to pass values
from the kernel to the Ipc-NS. The queue accepts only a few
types of messages; only the owner (the IPC-NS) may read
from this queue using the msgrcv() call.

The ability for the IPC-NS to receive messages does
little good if it cannot reply. The same handle returned from
the ipcnschan() call is used by the IPC-NS to communicate re-
plies and requests to other sites. Any message sent with the
msgsnd() call specifying the handle of the ipcnschan queue is
intercepted by the kernel and routed to a destination encoded in
the body of the message. In this case, the ipcnschan queue is
not used. Clearly, the implementation could have selected
another special “dummy” vahre to send the messages to, but
that would waste an extra handle.

The basic operation of the IX-NS is simple. After a
handle to the ipcnschan queue is obtained, the IPC-NS remains
in a message receive loop awaiting incoming messages placed
on this queue. It uses the standard System V implementation
of message receive in awaiting these messages. If a message
is received, it is processed, and results are returned to the ori-
ginating site of the handle. If the message originated locally,
Locus will return results to the 1ocaI process.

Two kernel calls require IPC-NS services: the msgget()
and semget() calls. The Locus kernel implements the msgget()
or semget() system call by sending a lookup message to the
IPC-NS site and awaiting results. When results are returned ei-
ther an error condition is raised or a valid handle returned.
Two other systems calls, msgctl() and semctl() may be used to
remove a handle; in this case the IPC-NS is informed.

Figure 3 shows the flow of control for a typical naming
IPC system call. It depicts the sending of network messages
(step l), forwarding of them to a remote site (step 2), unpack-
aging of them by a server process, conversion of them into an
IPC message, and placement of them on the remote ‘ipcnschan
queue(step 3). Later, the remote IPC-NS receives the en-
queued message and processes it (step 4). Results from the
IPC-NS are “sent” to its own ipcnschan queue using the stan-
dard System V msgsnd() call. Locus intercepts the result mes-
sage and forwards it in a network message reply to the origina-
tor (step 10). Since the originator is suspended in a system
call at the local site, the local system call is allowed to proceed
when the results of the reply network message arrive (step 11).

When a msgget() or semget() call is issued, an argu-
ment may specify that a new queue or semaphore set be creat-
ed. When the IPC-NS gets the message, it must allocate the
object; it then returns a handle to the caller. The policy the
IPC-NS uses is that it sends a message back to the using site

where the original request was made to allocate the object.
Thus, the using site is selected as the storage site for the newly
allocated message queue or semaphore set. Therefore, perfor-
mance is optimized because operations on the object will be lo-
cal operations.

Figure 3 depicts the additional message request and
response (steps 5-9) required to allocate a message queue or
semaphore set. The result returned at step 9 must be returned
to the client and placed in the IPC-NS database. Since the
msgget() and semget() lookup and allocation calls are nearly
the same (except for the flag indicating allocation is needed),
steps 5-9 must be nested during the standard lookup for the
handle to be returned at step 10 and 11.

3 The Message Subsystem

The message subsystem provides a means for one pro-
cess to communicate with another using discrete packets.
Messages are placed in and removed from queues. A queue is
a repository for messages not yet received by a process.

3.1 Access to Queues

The typical way a user gains access to a queue is to do
a msgget() system call. Given a key and a flag, this call returns
a handle for the queue. The flag may specify that a new queue
is to be created or an existing one accessed. If a new queue is
to be created, the flag will specifies access rights to the queue
as well.

3.2 Sending or Receiving a Message

Once one has access to a queue, a typical operation is
to send a message to the queue. The mgsnd() system call
takes a handle, a pointer, a size, and a flag as arguments. Its
purpose is to allow a message to be enqueued for later recep-
tion. Given these arguments, msgsnd() transfers the header of
the message to a linked list of headers maintained in system
space and the message body to another region of system space
where it is stored. Lastly, appropriate status fields are updated
and if a receiver is waiting for the message just enqueued, it is
awakened. The msgsnd() call will suspend awaiting resources
(using the internal sfeep() call) unless the IPC NOWAIT flag
is specified; in that case if resources are not available the error
EAGAIN will be returned to the sender.

The msgrcv() call is used to receive a message.
Msgrcv() takes a handle, a buffer pointer, a size (size of the re-
ceive buffer), a type, and a flag as arguments. Msgrcv() will
transfer the message from the queue specified by the handle to
a buffer in user space. The message type is used to perform a
selective receive; it may be used for asynchronous flow control
in message receipt. Msgrcv() will suspend awaiting a message
(or resources) using the internal sleep0 call, if specified by the
flag argument.

The operations described occur if the queue is CO-

located at the user (message sender or receiver’s) site. If the
sites are different, the message header and body must be
transferred to or from the storage site of the queur Since IPC

messages may be bigger than Locus network messages, this is
done by transferring each successive portion in network mes-
sages to or from remote server processes. For a m.sgsnd() the
servers at the storage site place the contents of the Locus net-
work message into system space until the entire IPC message
is completely transferred from the user’s site. For a msgrcv()
the servers remove portions of the IPC message from the sys-
tem space queue and return the contents in a Locus network
message to the using site. In both cases, after the first block of
the IPC message is sent or received, sufficient space has been
reserved for all subsequent portions to be transferred to the
destination.

An issue arises when ail resources are exhausted at the
storage site during a msgsnd() either because all memory in
system space is in use, or all headers for messages used. For a
msgrcv() if the requested message is not found, or for example
the queue is empty, it may be necessary to wait until these con-
ditions change. Clearly, what one needs to do is wait, using
sleep{), as is done in the local case previously described.
However, server processes are a limited resource in Locus; it is
undesirable to tie up the remote server process sleeping for a
resource.

To solve this problem, Locus includes a remote sleep-
wakeup facility. Remote sleep wakeup works as follows.
When resources are exhausted an error ESLEEP is returned to
the using site. The user sends a message to its storage site in-
dicating it desires the resource and is willing to sleep. At that
point, the using site’s kernel sleeps on a special channel until a
message comes in from the storage site indicating the user

31 16 15 12 11 0

I I-

Storage Site Number Bootcount Index into Object Storage Table
I

Figure 2: LOCUS Handle Format

. . . .
IPC Name Sewer

Processes

:

IPC Ciient Processes
Jl

. __ _. .- --_ ../
User space

Kernel Space

11 New Kernel
Message
Queue or
Semaphcve
Set

Figure 3: Locus IPC Name Server Allocation Example

391

should proceed. When that message comes in, the original
system call is awakened and proceeds. At that time, the user
may retty the original operation. This last message is, in ef-
fect, a remote wakeup. If the original system caller, who may
be in a remote sleep, is terminated, Locus cancels the sleep at
the storage site. This permits proper cleanup of storage struc-
tures for process or site failure.

3.3 Other Message Operations

Lastly, the message subsystem supports a msgcrl() call
which implements a variety of operations including: getting the
status of the queue, removing a queue and associated key,
determining the time the queue was last updated, determining
the pid of the last process to update the queue, etc. All these
operations are supported by sending a network message to the
storage site, when it is remote, and awaiting results. When re-
moving a queue and associated key, the IPC-NS is informed.

4 Semaphore Subsystem

The Locus semaphore subsystem allows one to create
logical groups of semaphores called semaphore sets. These can
be manipulated, named, and updated as one logical unit. Up-
dating a semaphore set is atomic; that is either the operation is
performed in its entirety or not at all.

Given a (semaphore) handle, one may perform a
number of different semop() calls: subject to permissions, a
semaphore may read or modified using this call. One particu-
larly useful modification of a semaphore value is to increment
or decrement it. Often it is desirable to wait for the semaphore
to be decremented to zero or incremented greater than zero.
The standard System V semaphore subsystem puts a reader to
sleep until the semaphore value changes in this case. This
avoids unnecessary polling.

If the same operations, described above, were not per-
formed at the storage site, it would be necessary to package up
the arguments to the calls and perform the calls remotely at the
storage site. In this using-site/storage-site configuration, all of
the typical semaphore operations are handled in just this
manner. However, once again it is undesirable to force a
server process to sleep waiting for a semaphore value to
change. In this distributed case, the remote sleep-wakeup pro-
tocol is used.

It is quite possible that operations performed on a
semaphore set are interrupted in the middle. For example, a
signal could kill the client process in the middle of the semop()
call. If not handled appropriately, this would leave some of
the semaphore values within the semaphore set changed. For
atomicity, it is necessary to back out the updates so that
changes appear indivisible. The mechanism which is used to
implement this is an undo log. Each storage site stores an undo
log that indicates “how to undo” the semaphore if an applica-
tion begins an update and is aborted by a signal or site crash.
Because semaphore sets do not survive site crashes, this undo
log may be stored in memory, The undo log entries are re-
moved when the semaphore is removed; they are process
specific. An auxiliary table is stored at the storage site, with

the user’s pid and the pouner to its in-memory undo log.

If a user with entries in the undo-log terminates, the
undo-log must be cleared out. Since termination by signal
goes through the exit code, exit0 has been modified to send a
message to the storage site of the semaphore set to clean up
this state information. Currently the message is sent to all
storage sites where the user has semaphore sets. A special
bit-vector is stored in the user structure and kept up-to-date as
the user accumulates semaphore sets at different storage sites
(by migrating). The bit’s position in the vector indicates the
site number to send the cleanup message to. On the other
hand, if a site fails, it is the responsibility of the topology
change routine to update its local undo log. It purges entries
from the site or sites that have failed.

Lastly, as in the message subsystem, when one re-
moves a semaphore set, the Ipc-NS must be informed so its
key is removed from the name space. When Locus removes an
IPC handle for a semaphore set, it informs the IPC-NS.

5 Shared Memory Subsystem

This section (for completeness) describes the System V
compatible shared memory subsystem by describing the ra-
tionale behind what was done in Locus to implement it. Few
modifications were made to the standard implementation.

Shared memory gives the user an opportunity to per-
form undisciplined high performance communication. In this
scheme processes in the same proximity (host) of one another
can communicate extremely efficiently. A virtue of this type
of communication is that communication effects are hard to
identify; this totally eliminates kernel overhead in tracking,
maintaining, or transmitting values or data structures.
Hardware memory management support absorbs most of the
overhead.

In a distributed implementation the virtues of the
scheme cannot be exploited cheaply. It is difficult to identify
exact modifications to segment pages and this makes it difficult
to come up with an inexpensive transparent implementation.
Small changes in a segment page wouId require transmitting
the entire page of the shared segment to other sites. This
would be expensive, requiring numerous page-size network
messages. Further, hardware memory management would not
absorb overhead, as it did in the single-site case. These con-
siderations influenced the decision not to provide transparent
shared memory segments between sites.

Along with the implementation of shared segments, is
the issue of naming the segments. It was decided that the nam-
ing of shared segments be single-site oriented as well; this
means that two keys at different sites may be identical. Be-
cause of both these factors, once a process begins using the
shared memory subsystem the process is forbidden from mi-
grating. Since there is no way to know when a process has
released all shared memory segments, once forbidden from mi-
grating, the process will never regain this ability.

392

Thus, in summary, System V shared memory has not
been significantly modified. Rather, controls have been put in
place to disallow operations that would cause problems in a
Locus network. Nevertheless, we suspect shared memory
should be a useful subsystem for co-located Locus clients; the
subsystem was easily integrated into Locus with few
modifications.

6 Reliability

In distributed system environments complex error con-
ditions can cause unexpected process terminations or site
crashes. Nonetheless, reliable operation of the IPC-NS is
essential for IPC! services. Without an IPC NS new sema-
phore sets or messages queues could not be located or created
efficiently.

In order to provide reliable name service, it must be
possible to detect the termination of the IPC-NS and to restart
it without loss of essential information. Since we expect
failures to be rare, it is crucial that the IPC NS operate well in
the normal case. In the failure case, it 7s not crucial that
recovery operations be exceptionally high performance.

When the current IPC-NS site fails, it is necessary to
select another site to support a new Ipc-NS. To conserve ker-
nel space some sites do not provide IPC-NS services, and do
not have IPC NS kernel code compiled in. These sites, which
we call in&ible must not be selected as IPC-NS sites.
Current Locus policies coordinate mounting information when
network membership changes. To perform IPC NS selection,
the topology change mechanisms have been modified to gather
indications from all sites in the new partition as to whether
they are eligible or ineligible to support an IPC-NS. Once this
information is gathered, as it must be anyhow for file system
mount table coordination, a new IPC-NS is selected as the
highest eligible site. This provides a relatively low cost means
of selecting a new IPC-NS.

Once selected, the IPC-NS starts up with an empty da-
tabase. To provide truly transparent distributed operation it
would be desirable if all (key, handle) pairs not associated with
the site which failed i.e. whose storage site was not the site
that failed, could be reinserted in the IPC-NS. To provide this
reliability, the kernel of each storage site maintains (key, han-
dle) pairs for all message queues or semaphore sets stored at
that site. This is a critical ingredient to the recovery scheme.
By polling all sites, it is possible to fully reconstruct the con-
tents of the IPC-NS from each site’s kernel aside from the
(key, handle) pairs from the sites which are no longer in the
partition. This polling may be done from the application level
by starting a small process at each storage site that reads the
special /dev/kmem file and transmits the contents over a Locus
pipe to the IPC-NS. An advantage of performing key recovery
from the application level is that no special purpose kernel
code need be written. Indeed the IX-NS is taking advantage
of the high performance pipe code in the Locus kernel.

Although topological changes in the computing en-
vironment are one way an Ipc-NS may fail, another way for
the IPC-NS to fail is for the process to be signalled and that
signal not caught. However, the IPC-NS is resilient to all sig-
nals and the one signal which cannot be caught is handled with
underlying kernel support. If an IPC-NS receives a SIGKILL,
a signal which cannot be trapped, the IPC-NS is immediately
recreated when standardized exit() code is executed. A check
is made to see if the process exiting is the IPC-NS. If it is, the
kernel informs the recovery master process, which runs on
each site, to create another IPC-NS from the replicated direc-
tory letclipcns. If a “root” user attempts to create a second
Ipc-NS on the same site (or different site) the IPC-NS will
fail when it performs its ipcmchan() call.

One problem that can occur when two or more parti-
tions merge during the network topology change is that each
partition may have a separate IPC-NS. NaturalIy we want
only one IPC-NS to be running that has the keys of both of the
separate IPC-NSs. One solution to this problem is to select
one of the the IPC-NSs as the new IPC-NS and augment its
database with all the keys of the others. The current imple-
mentation merely kills all IPC!-NS’s in this merged partition,
elects a new IPC-NS and restarts the polling procedure in the
new topology. All keys which were in all JPC-NSs will be
reconstructed from the kernels of all sites involved. The ad-
vantage of this scheme is that all the existing code for election
and polling is conveniently reused and no special IPC NS da-
tabase merge code need be developed. We felt that this was a
reasonable policy to adopt at the time.

One last problem with merging IPC-NSs is that two or
more IPC-NSs may have duplicate key values. This situation
could occur if two users run the same program in different par-
titions and the software chose fixed keys values for communi-
cation. The situation has no counterpart in a single system en-
vironment and indeed there is no “correct” answer to handling
this problem. We have implemented a solution of this case by
placing only one of the (key, handle) sets in the merged
IPCNS. Existing bindings of keys to handles will be
preserved for parties already communicating. New lookups of
the key would return the one handle which was stored. How-
ever, after a short reevaluation of this issue, we have decided
the IPC-NS should accept all duplicate (key, handle) pairs and
issue an error EAMBIGUOUS if lookups occur when more
than one duplicate (key, handle) pair is in the IPC-NS data-
base.

7 Experiences

The IPC facility took a little over 9 months to imple-
ment. The code was produced by the author; his experiences
were derived from the RlG[LANTZ 821 project which was a
message-based operating system. The Locus kernel had a to-
tally unfamiliar system structure to the author. Design work
required several iterations before being adopted. Therefore, a
6-8 month full-time effort could be expected including design
work; with an a priori design one could expect to reduce the
project to 5-7 months. Figure 4 shows the number of lines of
code in the standard System V IPC versus the number of lines
of code for Locus distributed transparent System V IPC.

393

Nondistributed System V IPC Modified for Locus

Source file Lines of Code Single Site System V IPC Sources

msgc 501 100 lines modified estimate

msginitl 62 (this is a new file)

ipc.c 135

sem.c 745

shm.c 607

Total 2050

200 lines modified estimate

I I I I
Header File Lines of Code

shm.h 67

Multisite System V IPC

ipcc
shm.c

438
609 I

I iucnsx 402 1
1

gatherkeys.c 1
rkeys.c _
msginitl

Total

230
87
62

5559

Header File Lines of Code

shm.h 110
sem.h 135
ipc.h 73
msg.h 103
nmipc.h 516
Total 937

code to support:
shared memory throughout kernel
remote sleep-wakeup
cleanup in topology change
reliable IPC-NS

Figure 4: Lines of Code for System V IPC

394

The surprising amount of time it took to write this ap-
plication deserves some attention. First, UNIX and Locus
suffer from fairly poor tools for kernel debugging. Indeed the
only way to debug the kernel when running applications is to
take a static core dump. Application-level printfs do little to
assist because the underlying buffering may or may not pro-
duce the printf before the error occurs. Second, at the time of
development, the underlying environment was changing daily;
it was hard to keep an experimental kernel up to date with the
“current” system. One change in the header of a critical header
file would make operating the kernels together impossible be-
cause of incompatibilities. An alternate approach was used
which was to test the kernel in its “own” partition; in that si-
tuation disparities in kernel headers between experimental ker-
nels and production kernels would not cause crashes. Third,
because the Locus environment was constantly evolving, the
environment’s development machines would crash once or
twice a day. During those interruptions no code could be writ-
ten or tested.

Some other experiences merit attention. The IPC-NS
communicates to and from the kernel using the standard Sys-
tem V IPC system calls. No modification was made to these
call’s interface. The technique used is called boorstrapping.
Our experiences suggest that bootstrapping is very useful.
The task of putting the implementation in place was substan-
tially simplified by using the System V IPC itself. Having to
reinvent new mechanisms to transmit messages to and from
the kernel, with substantially different interfaces would have
complicated things enormously. On the other hand, bootstrap-
ping does create restrictions. For instance, for semget() to lo-
cate a handle when the Ipc-NS is co-located at the site of the
semget(), requires using the message subsystem. Thus, we
have created a dependency of the naming system on the mes-
sage system and the semaphore system on the message system.
For the most part, this is not a problem in Locus.

One of the most important experiences has to do with
the structure of the EC-NS. At first, the rPCr\rS seemed to
be a serious reliability problem that would require considerable
effort to make stable and reliable. Indeed it was obvious from
the start that a crash of the IPC-NS would make the IPC sys-
tem totally unusable. However, the implementation of
IPC-NS reliability took an incredibly short amount of time.
Most of the time spent on reliability was spent in the design
process. The implementation took less than two part-time
weeks.

Another issue arises from the standard System V IPC.
Since semaphores use the kernel’s sleep-wakeup protocol, the
fairness of the implementation has to be judged by just how
fair the underlying sleep-wakeup is. Unfortunately, UNIX and
Locus’s sleep-wakeup, whether using the local or remote pro-
tocols, is not fair. This could cause one process to unfairly
monopolize access to the resource the underlying semaphore
protects. This is unfortunate, but could easily be rectified by
implementing fairness controls in the wakeup operations.

One policy which may have to be rethought is the one
which kills all IPC-NS when partitions merge. Unfortunately,
whenever a new site is added to the local net all IPC NSs are
killed. If the site merged into the partition is not gomg to be
the new IPC NS site, the IPC NS would have remained at the
site where it was before the topology changed. In that case,
killing, restarting, and polbng is fairly heavy expense.
Nontheless, if the site had active IPC entities operating, polling
that site and merging IPC-NSs would be essential. Thus, to
solve this problem Locus would have to provide mechanisms
to distinguish sites with active IPC being merged; a mechan-
ism to distinguish a site being rebooted and merged would also
be useful.

We thought the last issue was going to be a serious
problem; the System V IPC name space was not part of the file
system. The fact that 32-bit keys were used to name a mes-
sage queue, semaphore set, or shared memory segment did not
mesh well with current UNIX or Locus philosophy. Our im-
plementation of an IPC-NS, at first, was meant as a quick
means to store values in a general repository. However, later
we learned that a separate name space did not pose any intrin-
sic difficulties we could not solve; it merely added a bit of
inelegance to the problem. Our solution of using an
application-level name service appears to be the right one, con-
sidering we could use all of the facilities of the Locus kernel,
including high performance Locus pipes, to implement the
IPC-NS and perform key recovery.

8 Conclusions

System V interprocess communication provides a
number of ways by which tasks can communicate. Locus has
extended these facilities to largely be transparent throughout an
entire Locus network. In this way, tasks can use much of these
IPC facilities as simply across machine boundaries as within a
single machine.

Separating the design into naming and functional com-
ponents has worked out well. By observing the frequency of
name service versus actual subsystem use, the components
were implemented to be best suited to this usage pattern. Per-
formance is optimized for the functional components because
they are in the kernel itself. Less necessary functions are
placed outside the kernel where they may be used without
impeding kernel performance or kernel space.

A final consequence of this design is the need to incor-
porate policies for insuring application-level reliability. This
used an IPC-NS selection and update procedure. The selection
procedure has little overhead since Locus performs inter-kernel
coordination when the topology changes and we have merely
added some additional functions to select a new IPC-NS. The
second part, polling all kernels, is slightly expensive for failure
situations, but has the virtue of requiring little run-time over-
head during normal operation.

It is common folklore in distributed systems that a cen-
tral server model is not a reliable way to structure a computer
system. Typically when reliability is needed for this organiza-
tion a duplicate, mirror, or “hot” backup process is also avail-

395

able at another site. In our case, information is redundantly
stored in each kernel and the kernel provides mechanisms for
reliability. Reliability is obtained without a duplicate or mirror
process and the added overhead of checkpoints and synchroni-
zation between the two. The disadvantage of providing relia-
bility in this manner is the amount of time to perform
recovery. Nonetheless, this application’s modest recovery
time appears acceptable.

[WATSON 811 Watson, R. W., Hierarchy, in Distributed Sys-
rems - Architecture and Implementation: An Advanced Course,
Lecture Notes in Computer Science, Springer Verlag, 1981,
pp. 109-118.

9 Acknowledgements

Jerry Popek read numerous drafts and revisions of this
paper. He also supervised work on issues of System V IPC
design along with Bruce Walker who implemented the remote
sleep-wakeup. Matt Weinstein, Scott Spetka, and Alan Down-
ing provided comments on earlier drafts of this paper; Wein-
stein also generously helped in preparation of the figures.
Monique Benarrosh proofread the submission draft. Steve
Kiser assisted at numerous times during the implementation of
this work.

10 References

[GURWITZ 851 Gurwitz, R., An Informal Critique of 4.2BSD,
Unpublished Memo, BBN Laboratories, 1985.

[ISO 793 Reference Model of Open System Interconnection,
ISO/TC 97 SC16 N 227, August, 1979.

[LANTZ 821 Lantz, K. A., Gradischnig, K. D., Feldman, J.A.,
Rashid, R.F., Rochester’s Intelligent Gateway, Compurer, Oc-
tober, 1981, pp.54-68.

[LEFFLER 831 Leffler, S. J., Fabry, R. S., Joy, W. N., A
4.2BSD Interprocess Communication Primer, Technical Re-
port, Department of Computer Science and Electrical En-
gineering, University of California, Berkeley, February 1983.

[POPEK 811 Popek, G., Walker, B., Chow, J., Edwards, D.,
Kline, C., Rudisin, G. and Thiel, G., LOCUS: A Network
Transparent, High Reliability Distributed System, Proceedings
of the Eighrh Symposium on Operating System Principles,
Published as SIGOPS Operating Systems Review, Vol. 15, No.
5, October, 1983.

[RASHID 811 Rashid, R.F., Robertson, G.R., Accent: A Com-
munication Oriented Operating System, Proceedings of rhe
Eighth Symposium on Operating System Principles, Published
as SIGOPS Operating Systems Review, Vol. 15, No. 5, De-
cember, 1981.

[RITCHIE 781 Ritchie, D., Thompson, K., The UNIX
Timesharing System, Bell System Technical Journal, vol. 57,
no. 6, part 2, July-August, 1978.

[WALKER 831 Walker, B., Popek, G., English, R., Kline, C.,
Thiel, G., The LOCUS Distributed Operating System,
Proceedings of rhe Ninth Symposium on Operating System
Principles, Published as SIGOPS Operating Systems Review,
Vol. 17, No. 5, October, 1983.

396

