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ABSTRACT 

This paper describes new interprocess communications 
facilities that have been added to the Locus system[POPEK 
8l]pALKER 831. The facilities improve Locus’s interpro- 
cess communication repertoire by providing distributed sup- 
port for three separate subsystems from System V UNIX: mes- 
sages, semaphores, and shared memory. Here we describe 
these subsystems and their integration into in the Locus archi- 
tecture. 

1 Interprocess Communication 

Interprocess communication (IPC) has been studied for 
many years. Historically, the study began in single processor 
systems. Numerous communication and synchronization 
mechanisms were developed. Among these, test-and-set, 
semaphores, shared memory, message passing, and monitors 
have been used widely. IPC has formed the basis for extend- 
ing many operating systems into distributed operating systems; 
communications mechanisms were selected to adapt single 
machine systems to interact with each other. Typically a spe- 
cial process, called a “network server”, provided host-to-host 
communication and encapsulated the details of the network 
protocols. In many systems, the interface to the network 
server used the system’s standard IPC calls. This approach ap- 
pears to be much simpler than building a truly distributed OS 
kernel. Throughout IPC has been used as an encapsulation or 
abstraction mechanism. 

In distributed systems the development of mechanisms 
for communication and synchronization has traditionally taken 
one of two approaches: language oriented or system oriented. 
This paper will examine the latter approach in the context of a 
UNIX-based system called Locus. First, however, we must 
turn our attention to the UNIX system and examine the inter- 
process communication mechanisms that have been traditional- 
ly provided. 
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1.1 IPC in UNIX 

Historically, interprocess communication (IPC) has 
been supported in UNIX using both pipes and signals. 
Pipes[RITCHIE 781 provide a basic facility by which streams 
of data may be passed between programs. Pipes are a synchro- 
nous one-way communication mechanism; the output of one or 
more programs can be directed to the input of one or more pro- 
grams through a pipe. A signal, on the other hand, is a 
mechanism by which one process can inform another about 
some condition. Thus, pipes are basically a first-in, first-out 
stream of bytes; signals are a simple asynchronous software in- 
terrupt system. Pipes and signals and a transparent distributed 
implementation have been available in Locus for some 
time[POPEK 831. 

Pipes and signals are not entirely suitable for all forms 
of communication. While simple and straightforward to use, 
pipes are limited in functionality and are difficult to use when 
asynchronous conditions or asynchronous communication 
must be performed. Signals, on the other hand, may be used 
for synchronization but not data exchange. Combining pipes 
and signals to achieve a desirable asynchronous notification 
and data exchange facility is difficult and inconvenient. 

To ameliorate the situation and provide compatibility 
with System V UNIX, three new facilities have been added to 
Locus: messages, semaphores, and shared memory. Messages 
permit structured communication in discrete packets, providing 
lightweight packet switching among processes in the network. 
Shared memory, by contrast, provides undisciplined high per- 
formance communication; the shared memory subsystem im- 
plements shared segments using the underlying virtual 
memory management hardware. Semaphores address data ac- 
cess synchronization problems; they can be used to synchron- 
ize access to a variety of resources, such as shared memory. 

The System V IPC model is a substantial improvement 
over pipes and signals. One may choose interprocess com- 
munication that is more flow controlled and structured; alter- 
nately, one may choose IPC that is less flow controlled, less 
disciplined and exploits the advantages of hardware support. 
Both approaches go a long way toward improving the rudi- 
mentary facilities in standard UNIX systems. 
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All these facilities are integrated in Locus in a manner 
entirely compatible with Unix System V IPC. Moreover, 
Locus supports all but the shared memory facility transparently 
within an entire network; messages and semaphore sets have a 
distributed implementation. 

1.2 System V IPC versus Berkeley IPC 

Recently, major UNIX development has been pursued 
by both AT&T and at the University of California, Berkeley. 
Berkeley 4.2 UNIX features a version of IPC well understood 
within academic and industrial circlesbEPFLER 831. 
AT&T’s System V IPC is less familiar, because fewer 
academic sites use this version of LJNIX. Here we examine the 
two different models of IPC to gain an understanding of why 
one would choose one model over the other. 

Berkeley’s IPC provides two facilities: virtual circuits 
and datagrams. These facilities come from traditional net- 
working concepts; we refer the reader to [WATSON 811 for 
further information. Both virtual circuits and datagrams use 
the underlying notion of a socket which has some of the 
features of a pipe, some of an TCP/IP connection[ISO 791, and 
some of an Accent port[RASHID 811. The socket is the unify- 
ing abstraction in this model; communication is directed to 
sockets. 

Berkeley’s virtual circuits are more heavily used than 
its datagram facility. Implemented primarily with TCP/lP as 
underlying protocol, virtual circuits and the Internet addressing 
domain are the only implementations fully developed. 
Predominant use of the virtual circuit facilities using TCP/lP, 
suggest Berkeley’s IPC is best suited for “long haul” environ- 
ments. Layers of protocol overhead would be wasteful for lo- 
cal area interprocess communication or local communication 
on the same processor. Nontheless, Berkeley’s IPC may be 
used in any of these situations. 

Some have argued that Berkeley’s IPC merely provides 
convenient ARPA TCP/lP style networking similar to facilities 
long been available on many TOPS-10 and TOPS-20 systems. 
This tradition of communication has less than desirable perfor- 
mance characteristics; layered protocols add a significant ex- 
pense to communication. This increases the cost per message 
transmitted or received. We believe these additional costs 
make Berkeley IPC most suitable for long-haul communication 
rather than local area network communication. As an example, 
when Berkeley 4.2 pipes were built pairing two sockets togeth- 
er, performance of 4.2 pipes was substantially Worse than 4.1 
pipes in the local case. This is because of the overheads intrin- 
sic in the model. Other performance reports seem to substan- 
tiate this claim[GURWITZ 8.51. 

At the other extreme are System V UNIX’s facilities. 
Described briefly in the previous section, the three components 
of the System V IPC were built for a single system image 
model of computation. Extending such a model of computa- 
tion to a distributed environment should reap the benefit of 
lower costs than a similar conversion for a “long haul” model. 
Such a system would provide a more lightweight IPC than 
Berkeley’s IPC. Implemented well, this lightweight model 

would be ideally suited for local area network communication. 

1.3 Introduction to the Locus System 

Locus is a distributed version of UNIX that provides a 
superset of UNIX services. Support for the underlying net- 
work is almost entirely invisible to users and applications pro- 
grams. The system supports a very high degree of network 
rransparency, that is, it makes the network of machines appear 
to users and programs as a single computer; machine boun- 
daries are completely hidden during normal operation. 

Locus provides a fully transparent file system and facil- 
ities for distributed processes. In a LOCUS network, which may 
consist of machines of various cpu types, both files and pro- 
grams may be moved without effect on naming and correct 
operation. Local operations and remote operations appear the 
same in Locus. Process creation and migration are permissible 
and easily controlled by programs and users. 

Central to the design of the Locus architecture is the 
underlying distributed file system. The file system supports a 
number of high-reliability facilities, including a more robust 
facility than that of conventional UNIX systems, and support 
for interprocess communication using pipes. Communication 
in Locus through network pipes operates with exactly the same 
effect as local pipes. In addition, Locus supports named and 
unnamed pipes. 

When Locus activities must be performed remotely, lo- 
cal system calls are intercepted, a network messuge formatted 
with necessary arguments and data, and this message transmit- 
ted to the remote site. Locus services remote requests by pro- 
viding a set of lightweight server processes which are 
processes that have no nonprivileged address space. The code 
and stack of server processes are resident in the operating sys- 
tem nucleus. As remote requests arrive in the form of network 
messages, these requests are placed in a system queue, and 
when a server processes finishes an operation, it looks for 
more work to do in the queue. Each server process serially 
serves a request. The system is configured with some number 
of theses processes at initialization time, but that number is au- 
tomatically and dynamically altered during system execution. 
The distinction between server processes and application-level 
user processes is an important one to which we will refer later. 

Another aspect of the Locus design relates to a dynam- 
ic network environment. In such an environment, network 
failures and site failures may happen from time to time. These 
changes in network topology effect the correct operation of 
protocols in Locus. In particular, any time a site is connected 
or disconnected from the current partition in a network, Locus 
executes a reconfiguration protocol called ropology change. 
The present strategy splits the reconfiguration into two stages: 
first, a partition protocols runs to find fully connected subnet- 
works; a merge protocol runs to merge serveral such subnet- 
works into a full partition. This protocol detects all site and 
communications failures and cleans up all effected multisite 
data structures. Locus assumes a fully connected network, 
where if host A can talk to host C, and host B can talk to C, 
then A can talk to 8. We will refer to this topology change 
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mechanism later in this paper. 

Locus has been operational for over two years on a net- 
work of Digital Equipment Corporation VAXs at UCLA. Dur- 
ing that time several people expressed frustration with UNIX’s 
rudimentary IPC facilities. The need for more elaborate IPC 
mechanisms became apparent; work commenced in the sum- 
mer of 1984 towards this goal. System V IPC compatibility 
was achieved by mid-summer, but the functions provided were 
only available on a single site basis. Since then significant 
new distributed facilities have been added to Locus which we 
describe here. We begin with an overview of the design. 

2 Locus System V IPC Design 

We begin our discussion by examining how Locus Sys- 
tem V IPC was quite naturally decomposed into two parts and 
how the overall design was effected by this decomposition. 
Later sections describe the components in greater detail. 

The Locus System V IPC fell naturally into two parts: 

1) naming components: these are used to maintain the IPC 
name space. System V Unix names for interprocess 
communication are not part of the general file system 
name space. Locus maintains this new name space 
transparently network wide. 

2)functionaf components: these implement the message, sema- 
phore, and shared memory subsystems. 

Naming is used by all IPC subsystems; names are used to lo- 
cate specific IPC communication objects. Those objects will 
be described in detail later. In Locus these names must be ac- 
cessible from all sites. The funcrionai components comprise 
the specific subsystems including messages, semaphores, and 
shared memory. Figure 1 depicts this. 

Figure 1: LOCUS System V IPC Components 

The separation of naming from the functional com- 
ponents is a natural one. Furthermore, it has effected the 
choice of implementation strategies. We have observed that 
the frequency of locating and asserting an IPC name is consid- 
erably less than the frequency of use of the functional opera- 
tions provided by the subsystems. This is often the case in 
computer systems because names are used typically to refer to 

objects that will be repeatedly used. This fact permitted us to 
implement the naming component outside of the kernel in a 
centralized, yet reliable, manner. Design and implementation 
were simplified because all of the standard kernel services 
were available to the naming component. The actual database 
of IPC names is stored in one special application level server 
for an entire Locus network. Various IPC system calls will ac- 
cess this database. 

Although names are stored outside of the kernel, the 
IPC subsystems themselves are directly supported by each 
site’s kernel. These functional components consist of a user 
and storage site component. In the case of local operations, 
the user site is the storage site. However, when these are dis- 
tinct, lightweight server processes perform operations at the 
server site. 

Storing the names outside of the kernel raises an issue 
in communicating values between system calls that require 
these names and the application IPC name server itself. We 
have chosen to use the message subsystem itself to provide 
this form of communication; the IFC name server uses the 
standard System V message subsystem to communicate values 
to and from the kernel. Although one system call was added to 
create a special channel to the kernel, the standard set of mes- 
sage system calls are used for all communication. 

2.1 IPC Naming 

In UNIX and Locus names are typically found through 
the file system. For example, all devices are mapped through 
the file system using the /dev logical directories. Locus is en- 
gineered towards providing highly efficient file system opera- 
tions; a natural consequence of design is that naming is tran- 
sparent and efficient. Moreover, all names are uniformly 
found through the file system. 

Unfortunately, System V adopted a separate name 
space for IPC names; IPC names are not part of the file system 
naming hierarchy. Locus must support this name space to 
maintain compatibility with software that uses these names. 
The format of these names is described in the next section. 

2.1.1 The Name Format 

System V IPC uses two types of names: keys and han- 
dles. A key is a 32-bit integer the user selects and associates 
with a message queue, semaphore set, or shared memory seg- 
ment. There is one special type of key, with a special value, 
called the ipc private key. If the IPC private key is used, the 
name of the object is kept private; all other keys reference ob- 
jects that may be looked up publicly. 

Handles operate on objects. Typically when one lo- 
cates an object using a key, a handle is returned (subject to 
protections see 1.6). For example, when one tries to locate key 
“12332” and an invalid handle is returned, one can assume the 
object does not exist. However, if a valid handle is returned, 
one can manipulate the underlying object. 
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2.1.2 Name Service 

System V IPC name service allows one to insert, re- 
move, and query keys in the name space. The subsystems 
described in subsequent sections support these operations 
through specific system calls. For example, query and inser- 
tion are supported with the msgget(), semgetf), and shmgetf) 
system calls. The operations msgctl(), semctl(), and shmctl() 
provide options for removing an object using a handle. The 
associated key is deleted at that time. 

Most Locus services are kernel-based; however, the 
implementation of the IPC name database uses a protected 
application-level process, called the IPC name server 
(IPC iVS). The IPC-NS maintains the name database for all 
the distributed IPC subsystems, keeping all keys and handles 
for the subsystems that are distributed. The local kernel main- 
tains this information for the shared memory subsystem. 

The Ipc-NS is the first application-level server process 
in Locus that the correctness of services provided by the kernel 
depends on. Unlike lightweight server processes that are part 
of the kernel and are used to service incoming network mes- 
sages, the IPC NS is a typical application level process with 
additional func%onality. Nonetheless, the IPC-NS is not per- 
mitted to tie up kernel resources; it processes requests and 
commands the kernel to perform certain actions by using sys- 
tem calls. 

2.1.3 The Handle Format 

As stated earlier, an IPC handle is returned as the result 
of a lookup operation. Application programmers typically do 
not inspect the handle. Rather, they present it to the kernel to 
access an underlying object. Most system calls we will later 
describe take a handle as their first argument. 

The use of handles brings up two issues related to iden- 
tifying the underlying object to which the handle refers. First, 
the handle must indicate if the object has been deleted, and 
another one reallocated, in the same memory location. Thus, a 
plain vanilla address would be ineffective since a deletion and 
reallocation could occur between handle uses. This problem 
was solved in standard System V IPC. Second, if the object is 
stored at a remote site, it must be possible to detect if the same 
object is stored there at a later time. This is a problem intrinsic 
to distributed System V IPC. Recall the site could crash and 
be revived during handle uses: during that time objects could 
be reallocated at that site. So, this also says a (site, address) 
pair would be ineffective as well. 

Locus handle format solves these problems. The han- 
dle is a 32-bit quantity with three subfields: a site identifier, a 
bootcount, and an object index. The site identifier is allocated 
16 bits, the bootcount 4 bits, and the object index 12 bits. Fig- 
ure 2 shows the format of a Locus handle. The site identijer 
portion of the handle identifies the home site of the object. 
Locus IPC objects do not move. Thus, given the handle, one 
can quickly determine the site where the object resides. 

The bootcount identifies the current incarnation of the 
kernel at the storage site of the object. Using the bootcount, 
Locus can detect if the object’s storage site has failed and been 
revived during intervening handle uses. Locus maintains a 
running bootcount that is incremented each time the kernel is 
booted. Handles use 4 bits of this value i.e. in modulo 16 ar- 
ithmetic. For example, bootcount 161 would be stored as a 1 
in a handle (161 mod 16 = 1). If a handle’s bootcount was 5, 
and the current bootcount was computed to be 6, the next time 
the handle was used Locus would send back an error. The er- 
ror would indicate the site had crashed and been revived during 
the meantime. Therefore, it is not necessary to inform holders 
of handles that a particular storage site has failed. When this 
happens, the handle is considered invalid. 

As in System V Unix, the index allows one to deter- 
mine where, in a fixed size table, the pointer to the object is. 
When the object is removed, a reuse count in the index slot is 
incremented so that the index’s value is not reused immediate- 
ly. In this scheme, an index’s value is the offset into the table 
times the reuse count. For example, if there are 50 indices in 
the table and the zeroth entry has a reuse count of 1, the index 
value is 50 (50*1), the next allocation of the zeroth slot will 
use index value 100 (50*2), rather than 50. This continues un- 
til a maximum value is reached. Then the reuse index is reset 
to zero, The value of this scheme should be apparent: the re- 
moval of an object and its reallocation in that table index, can 
be quickly detected. Users with old indices for deleted objects 
will learn of the table index’s reuse upon access. 

System V handles can be passed unconstrained, making 
it hard to detect who possesses handles (object references). 
For example, it is easy to fork a child process that has the same 
handle as its parent. Alternately, one could write a handle to a 
file for others to use. Process migration complicates the issue. 
Thus, it is nearly impossible to locate all handles. These 
difficulties indicate process-by-process revocation of handles 
is infeasible. Consequently, the Locus handle format was 
designed to make it easy to detect a site failure or object dele- 
tion, thus effecting invabdation automatically. 

2.2 IPC Protection 

Earlier we mentioned that keys were associated with 
objects. In System V IX each object, whether that be a mes- 
sage queue, semaphore set, or shared memory segment, is pro- 
tected independently. The scheme used is similar to that of 
files, one can specify access by: owner, group, and world. 

Protection checks are provided at two times. First, 
when a key is looked up using the msgget(), semget(), or 
shmget() system calls protection is checked. Unauthorized ac- 
cess is indicated by an EACCESS error and failure of the sys- 
tem call to return the underlying handle. Second, when using a 
handle access is rechecked against the protection mask esta- 
blished when the object was created. Thus, users cannot gain 
access to objects without appropriate permissions. Note how- 
ever, access to an object that is publicly readable can be ob- 
tained by “guessing” handles. 
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2.3 IPC-NS Kernel Communication 

In order to implement much of the functionality 
described, the IPC-NS and the local kernel must be able to 
communicate. A new call was added to the Locus system for 
this purpose called the ipcnschan() system call. The call re- 
turns the handle of a reserved queue used to communicate with 
the kernel; this queue is called the ipcnschun queue. The 
ipcnschan queue is a protected, non-removable queue in Locus. 
It is created when the site is booted and is used to pass values 
from the kernel to the Ipc-NS. The queue accepts only a few 
types of messages; only the owner (the IPC-NS) may read 
from this queue using the msgrcv() call. 

The ability for the IPC-NS to receive messages does 
little good if it cannot reply. The same handle returned from 
the ipcnschan() call is used by the IPC-NS to communicate re- 
plies and requests to other sites. Any message sent with the 
msgsnd() call specifying the handle of the ipcnschan queue is 
intercepted by the kernel and routed to a destination encoded in 
the body of the message. In this case, the ipcnschan queue is 
not used. Clearly, the implementation could have selected 
another special “dummy” vahre to send the messages to, but 
that would waste an extra handle. 

The basic operation of the IX-NS is simple. After a 
handle to the ipcnschan queue is obtained, the IPC-NS remains 
in a message receive loop awaiting incoming messages placed 
on this queue. It uses the standard System V implementation 
of message receive in awaiting these messages. If a message 
is received, it is processed, and results are returned to the ori- 
ginating site of the handle. If the message originated locally, 
Locus will return results to the 1ocaI process. 

Two kernel calls require IPC-NS services: the msgget() 
and semget() calls. The Locus kernel implements the msgget() 
or semget() system call by sending a lookup message to the 
IPC-NS site and awaiting results. When results are returned ei- 
ther an error condition is raised or a valid handle returned. 
Two other systems calls, msgctl() and semctl() may be used to 
remove a handle; in this case the IPC-NS is informed. 

Figure 3 shows the flow of control for a typical naming 
IPC system call. It depicts the sending of network messages 
(step l), forwarding of them to a remote site (step 2), unpack- 
aging of them by a server process, conversion of them into an 
IPC message, and placement of them on the remote ‘ipcnschan 
queue(step 3). Later, the remote IPC-NS receives the en- 
queued message and processes it (step 4). Results from the 
IPC-NS are “sent” to its own ipcnschan queue using the stan- 
dard System V msgsnd() call. Locus intercepts the result mes- 
sage and forwards it in a network message reply to the origina- 
tor (step 10). Since the originator is suspended in a system 
call at the local site, the local system call is allowed to proceed 
when the results of the reply network message arrive (step 11). 

When a msgget() or semget() call is issued, an argu- 
ment may specify that a new queue or semaphore set be creat- 
ed. When the IPC-NS gets the message, it must allocate the 
object; it then returns a handle to the caller. The policy the 
IPC-NS uses is that it sends a message back to the using site 

where the original request was made to allocate the object. 
Thus, the using site is selected as the storage site for the newly 
allocated message queue or semaphore set. Therefore, perfor- 
mance is optimized because operations on the object will be lo- 
cal operations. 

Figure 3 depicts the additional message request and 
response (steps 5-9) required to allocate a message queue or 
semaphore set. The result returned at step 9 must be returned 
to the client and placed in the IPC-NS database. Since the 
msgget() and semget() lookup and allocation calls are nearly 
the same (except for the flag indicating allocation is needed), 
steps 5-9 must be nested during the standard lookup for the 
handle to be returned at step 10 and 11. 

3 The Message Subsystem 

The message subsystem provides a means for one pro- 
cess to communicate with another using discrete packets. 
Messages are placed in and removed from queues. A queue is 
a repository for messages not yet received by a process. 

3.1 Access to Queues 

The typical way a user gains access to a queue is to do 
a msgget() system call. Given a key and a flag, this call returns 
a handle for the queue. The flag may specify that a new queue 
is to be created or an existing one accessed. If a new queue is 
to be created, the flag will specifies access rights to the queue 
as well. 

3.2 Sending or Receiving a Message 

Once one has access to a queue, a typical operation is 
to send a message to the queue. The mgsnd() system call 
takes a handle, a pointer, a size, and a flag as arguments. Its 
purpose is to allow a message to be enqueued for later recep- 
tion. Given these arguments, msgsnd() transfers the header of 
the message to a linked list of headers maintained in system 
space and the message body to another region of system space 
where it is stored. Lastly, appropriate status fields are updated 
and if a receiver is waiting for the message just enqueued, it is 
awakened. The msgsnd() call will suspend awaiting resources 
(using the internal sfeep() call) unless the IPC NOWAIT flag 
is specified; in that case if resources are not available the error 
EAGAIN will be returned to the sender. 

The msgrcv() call is used to receive a message. 
Msgrcv() takes a handle, a buffer pointer, a size (size of the re- 
ceive buffer), a type, and a flag as arguments. Msgrcv() will 
transfer the message from the queue specified by the handle to 
a buffer in user space. The message type is used to perform a 
selective receive; it may be used for asynchronous flow control 
in message receipt. Msgrcv() will suspend awaiting a message 
(or resources) using the internal sleep0 call, if specified by the 
flag argument. 

The operations described occur if the queue is CO- 

located at the user (message sender or receiver’s) site. If the 
sites are different, the message header and body must be 
transferred to or from the storage site of the queur Since IPC 



messages may be bigger than Locus network messages, this is 
done by transferring each successive portion in network mes- 
sages to or from remote server processes. For a m.sgsnd() the 
servers at the storage site place the contents of the Locus net- 
work message into system space until the entire IPC message 
is completely transferred from the user’s site. For a msgrcv() 
the servers remove portions of the IPC message from the sys- 
tem space queue and return the contents in a Locus network 
message to the using site. In both cases, after the first block of 
the IPC message is sent or received, sufficient space has been 
reserved for all subsequent portions to be transferred to the 
destination. 

An issue arises when ail resources are exhausted at the 
storage site during a msgsnd() either because all memory in 
system space is in use, or all headers for messages used. For a 
msgrcv() if the requested message is not found, or for example 
the queue is empty, it may be necessary to wait until these con- 
ditions change. Clearly, what one needs to do is wait, using 
sleep{), as is done in the local case previously described. 
However, server processes are a limited resource in Locus; it is 
undesirable to tie up the remote server process sleeping for a 
resource. 

To solve this problem, Locus includes a remote sleep- 
wakeup facility. Remote sleep wakeup works as follows. 
When resources are exhausted an error ESLEEP is returned to 
the using site. The user sends a message to its storage site in- 
dicating it desires the resource and is willing to sleep. At that 
point, the using site’s kernel sleeps on a special channel until a 
message comes in from the storage site indicating the user 
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should proceed. When that message comes in, the original 
system call is awakened and proceeds. At that time, the user 
may retty the original operation. This last message is, in ef- 
fect, a remote wakeup. If the original system caller, who may 
be in a remote sleep, is terminated, Locus cancels the sleep at 
the storage site. This permits proper cleanup of storage struc- 
tures for process or site failure. 

3.3 Other Message Operations 

Lastly, the message subsystem supports a msgcrl() call 
which implements a variety of operations including: getting the 
status of the queue, removing a queue and associated key, 
determining the time the queue was last updated, determining 
the pid of the last process to update the queue, etc. All these 
operations are supported by sending a network message to the 
storage site, when it is remote, and awaiting results. When re- 
moving a queue and associated key, the IPC-NS is informed. 

4 Semaphore Subsystem 

The Locus semaphore subsystem allows one to create 
logical groups of semaphores called semaphore sets. These can 
be manipulated, named, and updated as one logical unit. Up- 
dating a semaphore set is atomic; that is either the operation is 
performed in its entirety or not at all. 

Given a (semaphore) handle, one may perform a 
number of different semop() calls: subject to permissions, a 
semaphore may read or modified using this call. One particu- 
larly useful modification of a semaphore value is to increment 
or decrement it. Often it is desirable to wait for the semaphore 
to be decremented to zero or incremented greater than zero. 
The standard System V semaphore subsystem puts a reader to 
sleep until the semaphore value changes in this case. This 
avoids unnecessary polling. 

If the same operations, described above, were not per- 
formed at the storage site, it would be necessary to package up 
the arguments to the calls and perform the calls remotely at the 
storage site. In this using-site/storage-site configuration, all of 
the typical semaphore operations are handled in just this 
manner. However, once again it is undesirable to force a 
server process to sleep waiting for a semaphore value to 
change. In this distributed case, the remote sleep-wakeup pro- 
tocol is used. 

It is quite possible that operations performed on a 
semaphore set are interrupted in the middle. For example, a 
signal could kill the client process in the middle of the semop() 
call. If not handled appropriately, this would leave some of 
the semaphore values within the semaphore set changed. For 
atomicity, it is necessary to back out the updates so that 
changes appear indivisible. The mechanism which is used to 
implement this is an undo log. Each storage site stores an undo 
log that indicates “how to undo” the semaphore if an applica- 
tion begins an update and is aborted by a signal or site crash. 
Because semaphore sets do not survive site crashes, this undo 
log may be stored in memory, The undo log entries are re- 
moved when the semaphore is removed; they are process 
specific. An auxiliary table is stored at the storage site, with 

the user’s pid and the pouner to its in-memory undo log. 

If a user with entries in the undo-log terminates, the 
undo-log must be cleared out. Since termination by signal 
goes through the exit code, exit0 has been modified to send a 
message to the storage site of the semaphore set to clean up 
this state information. Currently the message is sent to all 
storage sites where the user has semaphore sets. A special 
bit-vector is stored in the user structure and kept up-to-date as 
the user accumulates semaphore sets at different storage sites 
(by migrating). The bit’s position in the vector indicates the 
site number to send the cleanup message to. On the other 
hand, if a site fails, it is the responsibility of the topology 
change routine to update its local undo log. It purges entries 
from the site or sites that have failed. 

Lastly, as in the message subsystem, when one re- 
moves a semaphore set, the Ipc-NS must be informed so its 
key is removed from the name space. When Locus removes an 
IPC handle for a semaphore set, it informs the IPC-NS. 

5 Shared Memory Subsystem 

This section (for completeness) describes the System V 
compatible shared memory subsystem by describing the ra- 
tionale behind what was done in Locus to implement it. Few 
modifications were made to the standard implementation. 

Shared memory gives the user an opportunity to per- 
form undisciplined high performance communication. In this 
scheme processes in the same proximity (host) of one another 
can communicate extremely efficiently. A virtue of this type 
of communication is that communication effects are hard to 
identify; this totally eliminates kernel overhead in tracking, 
maintaining, or transmitting values or data structures. 
Hardware memory management support absorbs most of the 
overhead. 

In a distributed implementation the virtues of the 
scheme cannot be exploited cheaply. It is difficult to identify 
exact modifications to segment pages and this makes it difficult 
to come up with an inexpensive transparent implementation. 
Small changes in a segment page wouId require transmitting 
the entire page of the shared segment to other sites. This 
would be expensive, requiring numerous page-size network 
messages. Further, hardware memory management would not 
absorb overhead, as it did in the single-site case. These con- 
siderations influenced the decision not to provide transparent 
shared memory segments between sites. 

Along with the implementation of shared segments, is 
the issue of naming the segments. It was decided that the nam- 
ing of shared segments be single-site oriented as well; this 
means that two keys at different sites may be identical. Be- 
cause of both these factors, once a process begins using the 
shared memory subsystem the process is forbidden from mi- 
grating. Since there is no way to know when a process has 
released all shared memory segments, once forbidden from mi- 
grating, the process will never regain this ability. 
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Thus, in summary, System V shared memory has not 
been significantly modified. Rather, controls have been put in 
place to disallow operations that would cause problems in a 
Locus network. Nevertheless, we suspect shared memory 
should be a useful subsystem for co-located Locus clients; the 
subsystem was easily integrated into Locus with few 
modifications. 

6 Reliability 

In distributed system environments complex error con- 
ditions can cause unexpected process terminations or site 
crashes. Nonetheless, reliable operation of the IPC-NS is 
essential for IPC! services. Without an IPC NS new sema- 
phore sets or messages queues could not be located or created 
efficiently. 

In order to provide reliable name service, it must be 
possible to detect the termination of the IPC-NS and to restart 
it without loss of essential information. Since we expect 
failures to be rare, it is crucial that the IPC NS operate well in 
the normal case. In the failure case, it 7s not crucial that 
recovery operations be exceptionally high performance. 

When the current IPC-NS site fails, it is necessary to 
select another site to support a new Ipc-NS. To conserve ker- 
nel space some sites do not provide IPC-NS services, and do 
not have IPC NS kernel code compiled in. These sites, which 
we call in&ible must not be selected as IPC-NS sites. 
Current Locus policies coordinate mounting information when 
network membership changes. To perform IPC NS selection, 
the topology change mechanisms have been modified to gather 
indications from all sites in the new partition as to whether 
they are eligible or ineligible to support an IPC-NS. Once this 
information is gathered, as it must be anyhow for file system 
mount table coordination, a new IPC-NS is selected as the 
highest eligible site. This provides a relatively low cost means 
of selecting a new IPC-NS. 

Once selected, the IPC-NS starts up with an empty da- 
tabase. To provide truly transparent distributed operation it 
would be desirable if all (key, handle) pairs not associated with 
the site which failed i.e. whose storage site was not the site 
that failed, could be reinserted in the IPC-NS. To provide this 
reliability, the kernel of each storage site maintains (key, han- 
dle) pairs for all message queues or semaphore sets stored at 
that site. This is a critical ingredient to the recovery scheme. 
By polling all sites, it is possible to fully reconstruct the con- 
tents of the IPC-NS from each site’s kernel aside from the 
(key, handle) pairs from the sites which are no longer in the 
partition. This polling may be done from the application level 
by starting a small process at each storage site that reads the 
special /dev/kmem file and transmits the contents over a Locus 
pipe to the IPC-NS. An advantage of performing key recovery 
from the application level is that no special purpose kernel 
code need be written. Indeed the IX-NS is taking advantage 
of the high performance pipe code in the Locus kernel. 

Although topological changes in the computing en- 
vironment are one way an Ipc-NS may fail, another way for 
the IPC-NS to fail is for the process to be signalled and that 
signal not caught. However, the IPC-NS is resilient to all sig- 
nals and the one signal which cannot be caught is handled with 
underlying kernel support. If an IPC-NS receives a SIGKILL, 
a signal which cannot be trapped, the IPC-NS is immediately 
recreated when standardized exit() code is executed. A check 
is made to see if the process exiting is the IPC-NS. If it is, the 
kernel informs the recovery master process, which runs on 
each site, to create another IPC-NS from the replicated direc- 
tory letclipcns. If a “root” user attempts to create a second 
Ipc-NS on the same site (or different site) the IPC-NS will 
fail when it performs its ipcmchan() call. 

One problem that can occur when two or more parti- 
tions merge during the network topology change is that each 
partition may have a separate IPC-NS. NaturalIy we want 
only one IPC-NS to be running that has the keys of both of the 
separate IPC-NSs. One solution to this problem is to select 
one of the the IPC-NSs as the new IPC-NS and augment its 
database with all the keys of the others. The current imple- 
mentation merely kills all IPC!-NS’s in this merged partition, 
elects a new IPC-NS and restarts the polling procedure in the 
new topology. All keys which were in all JPC-NSs will be 
reconstructed from the kernels of all sites involved. The ad- 
vantage of this scheme is that all the existing code for election 
and polling is conveniently reused and no special IPC NS da- 
tabase merge code need be developed. We felt that this was a 
reasonable policy to adopt at the time. 

One last problem with merging IPC-NSs is that two or 
more IPC-NSs may have duplicate key values. This situation 
could occur if two users run the same program in different par- 
titions and the software chose fixed keys values for communi- 
cation. The situation has no counterpart in a single system en- 
vironment and indeed there is no “correct” answer to handling 
this problem. We have implemented a solution of this case by 
placing only one of the (key, handle) sets in the merged 
IPCNS. Existing bindings of keys to handles will be 
preserved for parties already communicating. New lookups of 
the key would return the one handle which was stored. How- 
ever, after a short reevaluation of this issue, we have decided 
the IPC-NS should accept all duplicate (key, handle) pairs and 
issue an error EAMBIGUOUS if lookups occur when more 
than one duplicate (key, handle) pair is in the IPC-NS data- 
base. 

7 Experiences 

The IPC facility took a little over 9 months to imple- 
ment. The code was produced by the author; his experiences 
were derived from the RlG[LANTZ 821 project which was a 
message-based operating system. The Locus kernel had a to- 
tally unfamiliar system structure to the author. Design work 
required several iterations before being adopted. Therefore, a 
6-8 month full-time effort could be expected including design 
work; with an a priori design one could expect to reduce the 
project to 5-7 months. Figure 4 shows the number of lines of 
code in the standard System V IPC versus the number of lines 
of code for Locus distributed transparent System V IPC. 
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Nondistributed System V IPC Modified for Locus 

Source file Lines of Code Single Site System V IPC Sources 

msgc 501 100 lines modified estimate 

msginitl 62 (this is a new file) 

ipc.c 135 

sem.c 745 

shm.c 607 

Total 2050 

200 lines modified estimate 

I I I I 
Header File Lines of Code 

shm.h 67 

Multisite System V IPC 

ipcc 
shm.c 

438 
609 I 

I iucnsx 402 1 
1 

gatherkeys.c 1 
rkeys.c _ 
msginitl 

Total 

230 
87 
62 

5559 

Header File Lines of Code 

shm.h 110 
sem.h 135 
ipc.h 73 
msg.h 103 
nmipc.h 516 
Total 937 

code to support: 
shared memory throughout kernel 
remote sleep-wakeup 
cleanup in topology change 
reliable IPC-NS 

Figure 4: Lines of Code for System V IPC 
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The surprising amount of time it took to write this ap- 
plication deserves some attention. First, UNIX and Locus 
suffer from fairly poor tools for kernel debugging. Indeed the 
only way to debug the kernel when running applications is to 
take a static core dump. Application-level printfs do little to 
assist because the underlying buffering may or may not pro- 
duce the printf before the error occurs. Second, at the time of 
development, the underlying environment was changing daily; 
it was hard to keep an experimental kernel up to date with the 
“current” system. One change in the header of a critical header 
file would make operating the kernels together impossible be- 
cause of incompatibilities. An alternate approach was used 
which was to test the kernel in its “own” partition; in that si- 
tuation disparities in kernel headers between experimental ker- 
nels and production kernels would not cause crashes. Third, 
because the Locus environment was constantly evolving, the 
environment’s development machines would crash once or 
twice a day. During those interruptions no code could be writ- 
ten or tested. 

Some other experiences merit attention. The IPC-NS 
communicates to and from the kernel using the standard Sys- 
tem V IPC system calls. No modification was made to these 
call’s interface. The technique used is called boorstrapping. 
Our experiences suggest that bootstrapping is very useful. 
The task of putting the implementation in place was substan- 
tially simplified by using the System V IPC itself. Having to 
reinvent new mechanisms to transmit messages to and from 
the kernel, with substantially different interfaces would have 
complicated things enormously. On the other hand, bootstrap- 
ping does create restrictions. For instance, for semget() to lo- 
cate a handle when the Ipc-NS is co-located at the site of the 
semget(), requires using the message subsystem. Thus, we 
have created a dependency of the naming system on the mes- 
sage system and the semaphore system on the message system. 
For the most part, this is not a problem in Locus. 

One of the most important experiences has to do with 
the structure of the EC-NS. At first, the rPCr\rS seemed to 
be a serious reliability problem that would require considerable 
effort to make stable and reliable. Indeed it was obvious from 
the start that a crash of the IPC-NS would make the IPC sys- 
tem totally unusable. However, the implementation of 
IPC-NS reliability took an incredibly short amount of time. 
Most of the time spent on reliability was spent in the design 
process. The implementation took less than two part-time 
weeks. 

Another issue arises from the standard System V IPC. 
Since semaphores use the kernel’s sleep-wakeup protocol, the 
fairness of the implementation has to be judged by just how 
fair the underlying sleep-wakeup is. Unfortunately, UNIX and 
Locus’s sleep-wakeup, whether using the local or remote pro- 
tocols, is not fair. This could cause one process to unfairly 
monopolize access to the resource the underlying semaphore 
protects. This is unfortunate, but could easily be rectified by 
implementing fairness controls in the wakeup operations. 

One policy which may have to be rethought is the one 
which kills all IPC-NS when partitions merge. Unfortunately, 
whenever a new site is added to the local net all IPC NSs are 
killed. If the site merged into the partition is not gomg to be 
the new IPC NS site, the IPC NS would have remained at the 
site where it was before the topology changed. In that case, 
killing, restarting, and polbng is fairly heavy expense. 
Nontheless, if the site had active IPC entities operating, polling 
that site and merging IPC-NSs would be essential. Thus, to 
solve this problem Locus would have to provide mechanisms 
to distinguish sites with active IPC being merged; a mechan- 
ism to distinguish a site being rebooted and merged would also 
be useful. 

We thought the last issue was going to be a serious 
problem; the System V IPC name space was not part of the file 
system. The fact that 32-bit keys were used to name a mes- 
sage queue, semaphore set, or shared memory segment did not 
mesh well with current UNIX or Locus philosophy. Our im- 
plementation of an IPC-NS, at first, was meant as a quick 
means to store values in a general repository. However, later 
we learned that a separate name space did not pose any intrin- 
sic difficulties we could not solve; it merely added a bit of 
inelegance to the problem. Our solution of using an 
application-level name service appears to be the right one, con- 
sidering we could use all of the facilities of the Locus kernel, 
including high performance Locus pipes, to implement the 
IPC-NS and perform key recovery. 

8 Conclusions 

System V interprocess communication provides a 
number of ways by which tasks can communicate. Locus has 
extended these facilities to largely be transparent throughout an 
entire Locus network. In this way, tasks can use much of these 
IPC facilities as simply across machine boundaries as within a 
single machine. 

Separating the design into naming and functional com- 
ponents has worked out well. By observing the frequency of 
name service versus actual subsystem use, the components 
were implemented to be best suited to this usage pattern. Per- 
formance is optimized for the functional components because 
they are in the kernel itself. Less necessary functions are 
placed outside the kernel where they may be used without 
impeding kernel performance or kernel space. 

A final consequence of this design is the need to incor- 
porate policies for insuring application-level reliability. This 
used an IPC-NS selection and update procedure. The selection 
procedure has little overhead since Locus performs inter-kernel 
coordination when the topology changes and we have merely 
added some additional functions to select a new IPC-NS. The 
second part, polling all kernels, is slightly expensive for failure 
situations, but has the virtue of requiring little run-time over- 
head during normal operation. 

It is common folklore in distributed systems that a cen- 
tral server model is not a reliable way to structure a computer 
system. Typically when reliability is needed for this organiza- 
tion a duplicate, mirror, or “hot” backup process is also avail- 
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able at another site. In our case, information is redundantly 
stored in each kernel and the kernel provides mechanisms for 
reliability. Reliability is obtained without a duplicate or mirror 
process and the added overhead of checkpoints and synchroni- 
zation between the two. The disadvantage of providing relia- 
bility in this manner is the amount of time to perform 
recovery. Nonetheless, this application’s modest recovery 
time appears acceptable. 

[WATSON 811 Watson, R. W., Hierarchy, in Distributed Sys- 
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