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Abstract 

 
Optimistic replication accepts changes to replicated 

data sets without immediate coordination, with the 
assumption that conflicts can later be resolved by a 
separate protocol. This protocol will subsequently 
reconcile changes between replicas, and detect and 
resolve any conflicts. In this paper we present a log-
based reconciliation architecture that is designed to 
record and reconcile changes to data efficiently in 
terms of communication and storage overhead. 
Redundancy is eliminated through the use of a log-
based storage mechanism. A general data model 
accommodates a large variety of data types. Because 
of its storage efficiency, the architecture is especially 
suited to small data such as database records.  
 
1. Introduction 
 

Optimistic replication is a strategy for maintaining 
multiple copies of data when global access protocols 
are too expensive or not feasible. Updates to the 
replicated data are accepted optimistically with the 
assumption that any conflicts between changes can be 
resolved later. These updates are disseminated by a 
reconciliation process to other replicas, which spreads 
them epidemically throughout the entire system, 
leading to an eventual convergence [3]. 

This strategy is especially useful in mobile 
environments, where connectivity to other replicas 
may be sporadic. Because a central replica might not 
be reachable much of the time, a decentralized 
approach that uses all available connections to other 
replicas to exchange updates is better suited to the 
environment. 

While storage and communication resources are 
relatively scarce in mobile environments, today’s 
devices are already capable of holding considerable 
amounts of data, making scalability become an issue. 
Our work concentrates on mobile applications that 

operate on significant amounts of small database 
records.   

The reconciliation architecture we describe in this 
paper has been integrated into a personal information 
management system named StorageBox. A StorageBox 
is a distributed personal store that holds all information 
belonging to an individual user. Because changes are 
induced by actions of a single user, the change rate is 
relatively low and conflicts are rare.  

The contribution of this paper is to show how 
updates to a wide range of data types can be stored and 
reconciled efficiently while detecting and resolving 
any conflicts. Using a log-based reconciliation 
protocol, the amount of data transferred during 
reconciliation grows linearly with the number of 
observed changes. A carefully designed log-structured 
store records changes to the data with an overhead that 
is dependent on the number and pattern of 
reconciliation cycles. No metadata per data item is 
required, so the architecture can handle small data 
items without penalty. 

The paper is organized as follows: in Section 2 we 
survey research and illustrate some of the drawbacks 
of current approaches in this context. Section 3 relates 
our approach to efficiently reconciling a range of data 
types, using a generalized data model. Furthermore, we 
show how updates to the data set can be organized in a 
log structure, and how to use this structure to reconcile 
updates. Finally, we describe the processes of 
physically persisting and managing the log storage in 
Section 4. 
 
2. Related Work 
 

Replication systems handle data that is stored 
redundantly at multiple distributed replicas. Changes 
to one of the copies at one replica must be coordinated 
with other replicas to keep the data in a consistent 
state. While some system design have replicas 
coordinating before actually accepting changes [2], 
optimistic replication systems accept all changes and 



coordinate later. In these systems, the state of data at 
the replica nodes inevitably diverges until changes are 
reconciled to bring the data to a consistent state.  

The connection topology between nodes is random; 
regardless of the order the replicas communicate, they 
will all eventually converge to a consistent state.  
Changes received from a peer are applied to the local 
data set, and conflicts are then detected and resolved. 

Replicas use metadata to track the update history of 
the local data set, in order to decide which data should 
be reconciled, and for detecting conflicts. Two classes 
of reconciliation architectures can be differentiated 
according to the nature of this tracking data: those that 
keep metadata per data item and those logging changes 
to the data.   
 
2.1. Architectures Using Per-Item Metadata 
 

Architectures such as Bengal [4] or Ficus [13] use 
version vectors, version stamps [1], or hash histories 
[8] to keep the update history of their data. Separate 
metadata is recorded for each data item, which allows 
data items to be reconciled independently. This 
approach facilitates conflict resolution as eventual 
conflicts can be detected directly by comparing 
metadata of data items. As both conflicting versions of 
the data are available, a replica can decide directly how 
to resolve the conflict.  

The disadvantage of this approach is that it adds a 
non-constant overhead to all data items. This overhead 
depends directly on the number of replicas, but is 
independent from the update frequency. While such 
overhead might not be an issue for systems in which 
data items are large, it can significantly enlarge the 
storage footprint of replicated databases. Various 
methods have been presented that reduce the amount 
of metadata in this class of systems [1, 7, 8]. 

To reconcile changes, the client replica requests the 
server’s complete metadata, compares it with its own 
to infer data item changes, creations and deletions, and 
requests the needed changes from the server. This 
complete transfer of the metadata is inefficient when 
there are only a small number of changes to a large 
data set, or when the actual data is relatively small 
when compared to its accompanying metadata.  
 
2.2. Log-based Architectures 
 

Instead of storing the causal histories for each data 
item separately, the second class of architectures uses a 
log of changes as a common structure to represent 
reconciliation metadata [5, 11, 12, 16]. This log 
records changes and implies the history of update 

events in its structure. The metadata overhead of log-
based architectures depends on the change rate relative 
to the number of data items, and on the reconciliation 
frequency and topology, and is independent from the 
size of single data items, the number of data items, and 
the number of replicas. Thus these architectures are 
particularly suited for systems that have a larger 
number of small data items. 

For reconciliation of changes, the client replica 
sends a small representation of its own state to the 
server, which then infers the unknown parts of its log, 
and sends them to the client. Thus the communication 
demand of log-based approaches grows linearly with 
the number of changes to the data set.  

Efficient log-based reconciliation was first 
described by Wuu et al. [16] where they are used to 
reconcile changes to a replicated dictionary.  

Bayou [11] applies this technique in a database 
management system with a client interface that reflects 
that changes are only accepted provisionally. For 
client-controlled conflict detection and resolution, each 
write operation includes the expected state and a 
conflict resolution procedure. This allows for very 
flexible and content-adaptive conflict detection and 
resolution, but imposes a considerable communication 
and storage overhead.  

The refdbms system [5] uses a log-based 
architecture for distributing a database of bibliography 
records. These records, however, are write-once; a 
mechanism ensures that record identifiers of newly 
create records are globally unique. Therefore, updates 
to the data set are never updates to data items, so 
conflicts cannot arise. 

The more general approach of Rabinovich et al. 
[12] uses a log-based reconciliation protocol but keeps 
a log list per data item. It is functionally close to our 
approach but has a larger overhead.  

We chose a log-based approach to benefit from its 
efficient reconciliation protocol and the possible 
savings in storage overhead. Our general data model 
accommodates a wide range of data types and is able 
to keep multiple versions of data. Thus it can provide 
the same conflict detection and resolution functionality 
that version vector and similar approaches provide.  

The key to efficiency in our approach is to use a 
log-only storage, which previously has been applied to 
databases [9] and file systems where it improves write 
performance by taking advantage of the physical 
characteristics of hard disks. We exploit the log 
structure to embed reconciliation metadata in the data 
storage. This way we are able to store optimistically 
replicated data with a metadata overhead that is 
dependent on the number of reconciled but 
unacknowledged changes. In the optimal case, when 



all changes are reconciled and acknowledged, our 
storage architecture has virtually no metadata 
overhead.   

 
3. Efficient Log-Based Reconciliation 
 
3.1. Generalized Data Model and Operators 
 

In our model, a data set has a locally known current 
state, which consists of multiple tuples of the form 

( key, values ). 
The key is a unique handle to the data; one (single-

valued) or more (multi-valued) distinct values can be 
associated with each key.  

This generalized data model subsumes a wide range 
of data types (Table 1), from files to database records. 
It is equivalent to the model that is used in version 
vector based systems, except that our model is also 
able to keep multiple versions of a data item. 

The state of data in the model can be changed by 
three operations: 

• add( key, value ), which associates a value 
with a key (reasonable only for multi-valued 
data),  

• remove( key, value ), which removes the 
given value from the key, and  

• set( key, value ), which removes all existing 
values of the given key and replaces them 
with the given value. 

Because a distinct value can only be associated 
once with a certain key, these operations are 
idempotent: adding, setting or removing the same 
value more than once has no additional effect. 

When mapping this data model to a replicated 
record database management system, for example, the 
database itself would be the data set, and the records 
would be the tuples (Figure 1). Changing a record is 
conceptually done with the set operation, which 
removes the old version of the record and adds the new 
one. Add and remove are used for creating and deleting 
records, respectively. 

 
Table 1: Types of handled data 

Data type Key Value 

Files filename contents
Attribute-
value pairs 

(object-id, attribute-name) value 

Tabular 
data 

(table-id, row-id, column-id) value 

Records record identifier record 
data 

Tuples (tuple-id, element-id) value 

3.2. Logging of updates 
 

When operations are applied to the current data set, 
their effect is recorded in parallel to a log, which is an 
ordered set of log entries of the form  

(‘+’/’-’, key, value ), 
with which the system indicates that a certain value 

has been added (‘+’) or removed (‘-‘) from a key. 
These log entries act as a ‘diff’ to the previous state 

of the data set. Only those operations that have an 
actual effect on the current state are recorded. Because 
of their idempotency, operations such as an add with a 
value that is already present, or a remove on a non-
existent value, do not change the data set and therefore 
do not result in a log entry. Because the log is only 
recording changes to the data set, set operations are 
recorded as a number of ‘–‘ (remove) log entries to 
remove previous values of this key followed by an ‘+’ 
(add) log entry for the new value. 

Log entries are organized into regions, similar to 
the simultaneous regions in [15]. A region contains all 
updates that happened at a certain replica node 
between two reconciliation requests. All entries of a 
region share a node identifier and a logical timestamp. 
The start of a region is marked with a timestamp 
marker in the log,   

(node-name, logical time), 
where node-name is the replica name, and logical 

time is the replica’s current local logical time when the 
region was created.  

Regions are created on a local node by appending 
local changes to the end of the log. To be able to name 
the entries of the region consistently, the current local 
region is closed before sending it to other replicas. 
Afterwards, a new region with an increased logical 
timestamp is started. With reconciliation, some of the 
regions are communicated to other replicas where they 
are added to the log there. Thus the log is a mixture of 
locally created and remotely created regions. 

The complete log of a replica node is a ‘diff’ to the 
initially empty data set. In sum, it contains the data 
set’s current state at the respective replica node. This 
state can be represented by a logical state vector  that 
contains the newest logical timestamp for the locally 
known regions of each replica node (Figure 1). While 
this vector is cached normally, it can be rebuilt by 
scanning the complete log in chronological order, and 
noting for each found node-name the newest logical 
timestamp in the state vector. 

Because each log entry, and thus each region, is a 
‘diff’ to the respective previous state of the data set, it 
depends on its predecessors in the log. This means for 
reconciliation, that the regions have to be sent to other 
replicas completely and in log order.  



This log structure does not keep metadata per data 
item. Combined with the log-structured storage, which 
we describe in Section 4, it imposes no fixed metadata 
overhead to stored data.  

 
3.3. Reconciliation of Changes 
 

When using a log to record updates, extracts of this 
log contain all information to bring other replicas up to 
date. This information is used by the reconciliation 
protocol, which lets an initiating client replica request 
changes from a responding server replica.   

To be able to request a minimal amount of update 
information, a reconciliation client has to send the state 
vector as a description for its currently known state to 
the reconciliation server (Figure 1, Step 1). 

Using this state vector, the reconciliation server can 
infer the regions that it needs to send to bring the client 
replica to the current state. To this end, it compares 
each entry of its state vector with the client’s. Having 
the greater state entry for a replica node name means 
knowing the newer state for this replica node. If for 
one replica the server’s entry is greater than the 
client’s, the difference between these states defines the 
interval for the log entries that would bring the client 
up to date for this one replica (Figure 1, Step 2). The 
intervals of all state vector entries together define the 
log extract that has to be sent to the client.  

The order of the sent log regions is important, 
because their content depends by definition on the 
current state of the data at the time they have been 
added. Thus the server has to scan the log in 
chronological order and send all regions that match 
one of the intervals to the client  (Figure 1, Step 3). 
The client appends these region to its own log in order 
to be able to distribute them further to other replicas. 

 In this step, the log semantics apply, which means 
that operations are only appended to the log, when they 
have an actual effect on the state of the data. If this 

would be ignored, a ‘-‘ (remove) entry which is added 
twice and has no corresponding ‘+’ (add) entry 
somewhere before would act as a ‘pending remove’. 
When it gets reconciled to a replica that already has a 
key with the value, the value gets removed 
accidentally. A similar example can be constructed for 
‘+’ (add) entries that have no effect on the current 
state. 

The log extract sent by the server may contain gaps, 
depending on the reconciliation topology. This occurs 
when some newer regions are already known by the 
client and thus not requested from the server, like for 
example, when a region stems from a third replica and 
has reached the client directly from that replica. This 
situation is illustrated in Figure 2, where both replicas 
received a region from a third party replica T 
independently. At reconciliation, this region is already 
contained in the client’s log, and thus is excluded from 
the set of regions the server sends (A, B), causing a 
gap in the middle of the sent log extract.  

This results in a difference in ordering of the 
regions between the replicas, which, however, does not 
cause inconsistencies. To support this statement, it is 
sufficient to look at one value of one key of the data 
set, because other values of the same key or of other 
keys do not influence the decision of whether to add or 
to drop a log entry.  

When the third party region T is appended to the 
server’s log, a log entry might get dropped because it 
is already contained in a previous region A. In Figure 
2, we have marked this dropped entry with 
parentheses. Later, these regions are transferred to the 
client. As the client already knows the third party 
region, only regions A and B of the server will be 
transferred and appended to the client’s log. The value 
that is contained in region A in the server, is already 
contained in region T on the client. Thus it has to be 
dropped from region A when it is appended. While the 
log ordering and region contents differ on both sides, 

Figure 1. Log-based reconciliation protocol. The node’s state vector summarizes the latest 
locally known state. For reconciliation, the client sends its state vector (step 1), the server infers 

the known but missing regions (step 2) and sends them in log order (step 3). 

Log with Regions at Node 0 

Node  0        1           0          2          0 
State  1        1           2          1          3  

State Vector 
Node   0  1  2 
State ( 3, 1, 1 ) 

Node   0   1   2 
State ( 1,  3,  2  ) 

1

2 

3 

send state 

infer missing log regions 

send in log order

Node    1        0        2        1        2       1 
State    1        1        1        2        2       3 

Node    1       2     1       
State    2       2     3   

Log with Regions at Node 1 

… 

… 



the data sets are consistent. Because other replicas 
always request complete state updates, they will also 
get a consistent data set whose ordering of regions 
differs depending on the path the regions came to 
them.  

The amount of transferred information depends 
directly on the number of changes the client needs to 
be brought up to date. Because this is independent 
from the size of the data set, the reconciliation protocol 
can be used with large data sets. 

 
3.4. Conflict Detection and Resolution 
 

While the client is appending the regions to its log, 
it also has to apply these ‘diffs’ to its data set and 
detect any conflicts. Changes to data items are logged 
as deletions of their old (‘-‘) and creation (‘+’) of a 
new state. Thus there are no conflicting updates for a 
value. For a key, however, there may be an update 
conflict, resulting in multiple values for one key.  

When the system tries to apply an ‘+’ (add)  entry 
to a key, and finds that the key already has one or more 
associated values in the current state, a conflicting 
update might have occurred, depending on the data 
model. For single-valued data (such as a file system), a 
key that has two or more values (versions) conflicts 
with the model. In a multi-valued data schema, the 
newly-added value can be checked against existing 
values to detect any application-dependent conflicts.  
Conflicts are resolved by locally removing the 
conflicting values and adding the deconflicted version 
to the key. 
 
4. Storage Architecture  
 
4.1. Log-structured Storage 
 

Conceptually, we keep the data set’s current state 
and a log noting changes to the data set. As the 

complete log already contains the data set’s state, a 
separate storage of the current state would contain 
redundant information. By using a log-structured 
storage that fuses the current state and the log, we 
remove this redundancy in the implementation. 

This log-structured storage records the log regions 
in sequential order, as described in the previous 
section. Additionally, the store keeps a number of 
indices that indicate the current state of the data, so 
that client applications can perform queries on the data 
set. 

These indices are also used during reconciliation to 
enforce the log semantics. Before an operation is 
appended to the log, the system checks whether the 
add or remove operation would actually change the 
state of the data set. Using an index that maps a key to 
its values, the current values of the changed key are 
retrieved and compared to the new value.  

Physically, for each key there is a reference in the 
index to the newest log add entry (or entries, for a 
multi-valued data model). Together, the values of these 
referenced entries represent the current state of the 
values associated with the key. An index can be built 
by executing the operations of the log in chronological 
order on a normal index data structure.  
 
4.2. Log Maintenance 
 

In order to bring other replicas up to date, the log of 
a replica node accumulates all updates that it requested 
as a client. When the receipt of older regions is 
acknowledged by all replicas in the system, regions 
won’t be requested further by other nodes, and can 
thus be removed from the log. The distribution state of 
log regions can be communicated with one of the 
known schemes [5, 14, 16], which can safely detect 
when a region is known to all replicas. 

If the data set’s current state is stored separately 
from the log, the acknowledged regions can in fact be 
erased from the log, because the data set does not refer 
to them. In a log-structured data store, however, where 
the log itself contains the data set, parts of regions still 
contribute to the local data set’s current state even if 
they were already distributed and acknowledged, and 
thus these parts cannot be removed.  

Those log entries that do not contribute to the data 
set’s current state can only be erased under certain 
circumstances. In general, entries that do not 
contribute to the data set’s current state are removed 
add entries, along with their corresponding remove 
entry. Whether these add/remove pairs can be erased 
depends on distribution status of their containing 
regions. 

T    +   
 
A   (+) 
 
B 
 

A      + 
 
 
T     (+) 
 
B 

Client          Server 

Figure 2. Different ordering does not cause 
inconsistencies 



There are several possible distribution states an 
add/remove pair. A pair can be contained 

1. in two different regions that are both not 
known to all replicas yet, or  

2. in two different regions only one of which is 
known to all replicas. In both cases, the 
removed add will never contribute to the 
current state and can be removed from the log. 
The corresponding remove, however, has to be 
kept to remove the add at replicas to which the 
add already has been distributed separately and 
where it is already part of the log. 

3. in different two regions that are both known to 
all replicas. These pairs can be removed, 
because they won’t be requested anymore in 
the future, and do not contribute to the data 
set’s current state by definition. 

4. in the same region. As they do not contribute 
in sum to a data set’s state and are never 
distributed independently, they can be 
removed at any time.  

Case 1 and 2 only apply when remove entries are 
added to the local log, either in the current local region 
or in newly arrived log regions. When the 
corresponding add is removed from the indices during 
this operation, it can also be removed from the log in 
the same step.  

As the obsolete pairs of case 3 can only be located 
in regions that are known to all replicas, it is sufficient 
to scan those regions for remove entries that have 
recently been acknowledged by all replicas. 
 
5. Conclusions 
 

In this paper we have presented a log-based 
architecture for reconciling changes to optimistically 
replicated data. The architecture is founded on a data 
model that subsumes a wide range of data types, and is 
scaled to significantly-large collections of small data 
items. We maintain a low storage footprint by keeping 
an efficient log format in a log-structured storage 
architecture, thus eliminating the redundancy of an 
additional store for the current state of data. To store 
only information that is necessary for data set’s current 
state and for further reconciliation, we identify 
obsolete log entries and erase them as early as 
possible. 
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