
Log-Structured Storage for Efficient Weakly-Connected Replication

Felix Hupfeld
Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany,

hupfeld@zib.de, http://www.zib.de/hupfeld/

Abstract

Optimistic replication accepts changes to replicated

data sets without immediate coordination, with the
assumption that conflicts can later be resolved by a
separate protocol. This protocol will subsequently
reconcile changes between replicas, and detect and
resolve any conflicts. In this paper we present a log-
based reconciliation architecture that is designed to
record and reconcile changes to data efficiently in
terms of communication and storage overhead.
Redundancy is eliminated through the use of a log-
based storage mechanism. A general data model
accommodates a large variety of data types. Because
of its storage efficiency, the architecture is especially
suited to small data such as database records.

1. Introduction

Optimistic replication is a strategy for maintaining
multiple copies of data when global access protocols
are too expensive or not feasible. Updates to the
replicated data are accepted optimistically with the
assumption that any conflicts between changes can be
resolved later. These updates are disseminated by a
reconciliation process to other replicas, which spreads
them epidemically throughout the entire system,
leading to an eventual convergence [3].

This strategy is especially useful in mobile
environments, where connectivity to other replicas
may be sporadic. Because a central replica might not
be reachable much of the time, a decentralized
approach that uses all available connections to other
replicas to exchange updates is better suited to the
environment.

While storage and communication resources are
relatively scarce in mobile environments, today’s
devices are already capable of holding considerable
amounts of data, making scalability become an issue.
Our work concentrates on mobile applications that

operate on significant amounts of small database
records.

The reconciliation architecture we describe in this
paper has been integrated into a personal information
management system named StorageBox. A StorageBox
is a distributed personal store that holds all information
belonging to an individual user. Because changes are
induced by actions of a single user, the change rate is
relatively low and conflicts are rare.

The contribution of this paper is to show how
updates to a wide range of data types can be stored and
reconciled efficiently while detecting and resolving
any conflicts. Using a log-based reconciliation
protocol, the amount of data transferred during
reconciliation grows linearly with the number of
observed changes. A carefully designed log-structured
store records changes to the data with an overhead that
is dependent on the number and pattern of
reconciliation cycles. No metadata per data item is
required, so the architecture can handle small data
items without penalty.

The paper is organized as follows: in Section 2 we
survey research and illustrate some of the drawbacks
of current approaches in this context. Section 3 relates
our approach to efficiently reconciling a range of data
types, using a generalized data model. Furthermore, we
show how updates to the data set can be organized in a
log structure, and how to use this structure to reconcile
updates. Finally, we describe the processes of
physically persisting and managing the log storage in
Section 4.

2. Related Work

Replication systems handle data that is stored
redundantly at multiple distributed replicas. Changes
to one of the copies at one replica must be coordinated
with other replicas to keep the data in a consistent
state. While some system design have replicas
coordinating before actually accepting changes [2],
optimistic replication systems accept all changes and

coordinate later. In these systems, the state of data at
the replica nodes inevitably diverges until changes are
reconciled to bring the data to a consistent state.

The connection topology between nodes is random;
regardless of the order the replicas communicate, they
will all eventually converge to a consistent state.
Changes received from a peer are applied to the local
data set, and conflicts are then detected and resolved.

Replicas use metadata to track the update history of
the local data set, in order to decide which data should
be reconciled, and for detecting conflicts. Two classes
of reconciliation architectures can be differentiated
according to the nature of this tracking data: those that
keep metadata per data item and those logging changes
to the data.

2.1. Architectures Using Per-Item Metadata

Architectures such as Bengal [4] or Ficus [13] use
version vectors, version stamps [1], or hash histories
[8] to keep the update history of their data. Separate
metadata is recorded for each data item, which allows
data items to be reconciled independently. This
approach facilitates conflict resolution as eventual
conflicts can be detected directly by comparing
metadata of data items. As both conflicting versions of
the data are available, a replica can decide directly how
to resolve the conflict.

The disadvantage of this approach is that it adds a
non-constant overhead to all data items. This overhead
depends directly on the number of replicas, but is
independent from the update frequency. While such
overhead might not be an issue for systems in which
data items are large, it can significantly enlarge the
storage footprint of replicated databases. Various
methods have been presented that reduce the amount
of metadata in this class of systems [1, 7, 8].

To reconcile changes, the client replica requests the
server’s complete metadata, compares it with its own
to infer data item changes, creations and deletions, and
requests the needed changes from the server. This
complete transfer of the metadata is inefficient when
there are only a small number of changes to a large
data set, or when the actual data is relatively small
when compared to its accompanying metadata.

2.2. Log-based Architectures

Instead of storing the causal histories for each data
item separately, the second class of architectures uses a
log of changes as a common structure to represent
reconciliation metadata [5, 11, 12, 16]. This log
records changes and implies the history of update

events in its structure. The metadata overhead of log-
based architectures depends on the change rate relative
to the number of data items, and on the reconciliation
frequency and topology, and is independent from the
size of single data items, the number of data items, and
the number of replicas. Thus these architectures are
particularly suited for systems that have a larger
number of small data items.

For reconciliation of changes, the client replica
sends a small representation of its own state to the
server, which then infers the unknown parts of its log,
and sends them to the client. Thus the communication
demand of log-based approaches grows linearly with
the number of changes to the data set.

Efficient log-based reconciliation was first
described by Wuu et al. [16] where they are used to
reconcile changes to a replicated dictionary.

Bayou [11] applies this technique in a database
management system with a client interface that reflects
that changes are only accepted provisionally. For
client-controlled conflict detection and resolution, each
write operation includes the expected state and a
conflict resolution procedure. This allows for very
flexible and content-adaptive conflict detection and
resolution, but imposes a considerable communication
and storage overhead.

The refdbms system [5] uses a log-based
architecture for distributing a database of bibliography
records. These records, however, are write-once; a
mechanism ensures that record identifiers of newly
create records are globally unique. Therefore, updates
to the data set are never updates to data items, so
conflicts cannot arise.

The more general approach of Rabinovich et al.
[12] uses a log-based reconciliation protocol but keeps
a log list per data item. It is functionally close to our
approach but has a larger overhead.

We chose a log-based approach to benefit from its
efficient reconciliation protocol and the possible
savings in storage overhead. Our general data model
accommodates a wide range of data types and is able
to keep multiple versions of data. Thus it can provide
the same conflict detection and resolution functionality
that version vector and similar approaches provide.

The key to efficiency in our approach is to use a
log-only storage, which previously has been applied to
databases [9] and file systems where it improves write
performance by taking advantage of the physical
characteristics of hard disks. We exploit the log
structure to embed reconciliation metadata in the data
storage. This way we are able to store optimistically
replicated data with a metadata overhead that is
dependent on the number of reconciled but
unacknowledged changes. In the optimal case, when

all changes are reconciled and acknowledged, our
storage architecture has virtually no metadata
overhead.

3. Efficient Log-Based Reconciliation

3.1. Generalized Data Model and Operators

In our model, a data set has a locally known current
state, which consists of multiple tuples of the form

(key, values).
The key is a unique handle to the data; one (single-

valued) or more (multi-valued) distinct values can be
associated with each key.

This generalized data model subsumes a wide range
of data types (Table 1), from files to database records.
It is equivalent to the model that is used in version
vector based systems, except that our model is also
able to keep multiple versions of a data item.

The state of data in the model can be changed by
three operations:

• add(key, value), which associates a value
with a key (reasonable only for multi-valued
data),

• remove(key, value), which removes the
given value from the key, and

• set(key, value), which removes all existing
values of the given key and replaces them
with the given value.

Because a distinct value can only be associated
once with a certain key, these operations are
idempotent: adding, setting or removing the same
value more than once has no additional effect.

When mapping this data model to a replicated
record database management system, for example, the
database itself would be the data set, and the records
would be the tuples (Figure 1). Changing a record is
conceptually done with the set operation, which
removes the old version of the record and adds the new
one. Add and remove are used for creating and deleting
records, respectively.

Table 1: Types of handled data

Data type Key Value

Files filename contents
Attribute-
value pairs

(object-id, attribute-name) value

Tabular
data

(table-id, row-id, column-id) value

Records record identifier record
data

Tuples (tuple-id, element-id) value

3.2. Logging of updates

When operations are applied to the current data set,
their effect is recorded in parallel to a log, which is an
ordered set of log entries of the form

(‘+’/’-’, key, value),
with which the system indicates that a certain value

has been added (‘+’) or removed (‘-‘) from a key.
These log entries act as a ‘diff’ to the previous state

of the data set. Only those operations that have an
actual effect on the current state are recorded. Because
of their idempotency, operations such as an add with a
value that is already present, or a remove on a non-
existent value, do not change the data set and therefore
do not result in a log entry. Because the log is only
recording changes to the data set, set operations are
recorded as a number of ‘–‘ (remove) log entries to
remove previous values of this key followed by an ‘+’
(add) log entry for the new value.

Log entries are organized into regions, similar to
the simultaneous regions in [15]. A region contains all
updates that happened at a certain replica node
between two reconciliation requests. All entries of a
region share a node identifier and a logical timestamp.
The start of a region is marked with a timestamp
marker in the log,

(node-name, logical time),
where node-name is the replica name, and logical

time is the replica’s current local logical time when the
region was created.

Regions are created on a local node by appending
local changes to the end of the log. To be able to name
the entries of the region consistently, the current local
region is closed before sending it to other replicas.
Afterwards, a new region with an increased logical
timestamp is started. With reconciliation, some of the
regions are communicated to other replicas where they
are added to the log there. Thus the log is a mixture of
locally created and remotely created regions.

The complete log of a replica node is a ‘diff’ to the
initially empty data set. In sum, it contains the data
set’s current state at the respective replica node. This
state can be represented by a logical state vector that
contains the newest logical timestamp for the locally
known regions of each replica node (Figure 1). While
this vector is cached normally, it can be rebuilt by
scanning the complete log in chronological order, and
noting for each found node-name the newest logical
timestamp in the state vector.

Because each log entry, and thus each region, is a
‘diff’ to the respective previous state of the data set, it
depends on its predecessors in the log. This means for
reconciliation, that the regions have to be sent to other
replicas completely and in log order.

This log structure does not keep metadata per data
item. Combined with the log-structured storage, which
we describe in Section 4, it imposes no fixed metadata
overhead to stored data.

3.3. Reconciliation of Changes

When using a log to record updates, extracts of this
log contain all information to bring other replicas up to
date. This information is used by the reconciliation
protocol, which lets an initiating client replica request
changes from a responding server replica.

To be able to request a minimal amount of update
information, a reconciliation client has to send the state
vector as a description for its currently known state to
the reconciliation server (Figure 1, Step 1).

Using this state vector, the reconciliation server can
infer the regions that it needs to send to bring the client
replica to the current state. To this end, it compares
each entry of its state vector with the client’s. Having
the greater state entry for a replica node name means
knowing the newer state for this replica node. If for
one replica the server’s entry is greater than the
client’s, the difference between these states defines the
interval for the log entries that would bring the client
up to date for this one replica (Figure 1, Step 2). The
intervals of all state vector entries together define the
log extract that has to be sent to the client.

The order of the sent log regions is important,
because their content depends by definition on the
current state of the data at the time they have been
added. Thus the server has to scan the log in
chronological order and send all regions that match
one of the intervals to the client (Figure 1, Step 3).
The client appends these region to its own log in order
to be able to distribute them further to other replicas.

 In this step, the log semantics apply, which means
that operations are only appended to the log, when they
have an actual effect on the state of the data. If this

would be ignored, a ‘-‘ (remove) entry which is added
twice and has no corresponding ‘+’ (add) entry
somewhere before would act as a ‘pending remove’.
When it gets reconciled to a replica that already has a
key with the value, the value gets removed
accidentally. A similar example can be constructed for
‘+’ (add) entries that have no effect on the current
state.

The log extract sent by the server may contain gaps,
depending on the reconciliation topology. This occurs
when some newer regions are already known by the
client and thus not requested from the server, like for
example, when a region stems from a third replica and
has reached the client directly from that replica. This
situation is illustrated in Figure 2, where both replicas
received a region from a third party replica T
independently. At reconciliation, this region is already
contained in the client’s log, and thus is excluded from
the set of regions the server sends (A, B), causing a
gap in the middle of the sent log extract.

This results in a difference in ordering of the
regions between the replicas, which, however, does not
cause inconsistencies. To support this statement, it is
sufficient to look at one value of one key of the data
set, because other values of the same key or of other
keys do not influence the decision of whether to add or
to drop a log entry.

When the third party region T is appended to the
server’s log, a log entry might get dropped because it
is already contained in a previous region A. In Figure
2, we have marked this dropped entry with
parentheses. Later, these regions are transferred to the
client. As the client already knows the third party
region, only regions A and B of the server will be
transferred and appended to the client’s log. The value
that is contained in region A in the server, is already
contained in region T on the client. Thus it has to be
dropped from region A when it is appended. While the
log ordering and region contents differ on both sides,

Figure 1. Log-based reconciliation protocol. The node’s state vector summarizes the latest
locally known state. For reconciliation, the client sends its state vector (step 1), the server infers

the known but missing regions (step 2) and sends them in log order (step 3).

Log with Regions at Node 0

Node 0 1 0 2 0
State 1 1 2 1 3

State Vector
Node 0 1 2
State (3, 1, 1)

Node 0 1 2
State (1, 3, 2)

1

2

3

send state

infer missing log regions

send in log order

Node 1 0 2 1 2 1
State 1 1 1 2 2 3

Node 1 2 1
State 2 2 3

Log with Regions at Node 1

…

…

the data sets are consistent. Because other replicas
always request complete state updates, they will also
get a consistent data set whose ordering of regions
differs depending on the path the regions came to
them.

The amount of transferred information depends
directly on the number of changes the client needs to
be brought up to date. Because this is independent
from the size of the data set, the reconciliation protocol
can be used with large data sets.

3.4. Conflict Detection and Resolution

While the client is appending the regions to its log,
it also has to apply these ‘diffs’ to its data set and
detect any conflicts. Changes to data items are logged
as deletions of their old (‘-‘) and creation (‘+’) of a
new state. Thus there are no conflicting updates for a
value. For a key, however, there may be an update
conflict, resulting in multiple values for one key.

When the system tries to apply an ‘+’ (add) entry
to a key, and finds that the key already has one or more
associated values in the current state, a conflicting
update might have occurred, depending on the data
model. For single-valued data (such as a file system), a
key that has two or more values (versions) conflicts
with the model. In a multi-valued data schema, the
newly-added value can be checked against existing
values to detect any application-dependent conflicts.
Conflicts are resolved by locally removing the
conflicting values and adding the deconflicted version
to the key.

4. Storage Architecture

4.1. Log-structured Storage

Conceptually, we keep the data set’s current state
and a log noting changes to the data set. As the

complete log already contains the data set’s state, a
separate storage of the current state would contain
redundant information. By using a log-structured
storage that fuses the current state and the log, we
remove this redundancy in the implementation.

This log-structured storage records the log regions
in sequential order, as described in the previous
section. Additionally, the store keeps a number of
indices that indicate the current state of the data, so
that client applications can perform queries on the data
set.

These indices are also used during reconciliation to
enforce the log semantics. Before an operation is
appended to the log, the system checks whether the
add or remove operation would actually change the
state of the data set. Using an index that maps a key to
its values, the current values of the changed key are
retrieved and compared to the new value.

Physically, for each key there is a reference in the
index to the newest log add entry (or entries, for a
multi-valued data model). Together, the values of these
referenced entries represent the current state of the
values associated with the key. An index can be built
by executing the operations of the log in chronological
order on a normal index data structure.

4.2. Log Maintenance

In order to bring other replicas up to date, the log of
a replica node accumulates all updates that it requested
as a client. When the receipt of older regions is
acknowledged by all replicas in the system, regions
won’t be requested further by other nodes, and can
thus be removed from the log. The distribution state of
log regions can be communicated with one of the
known schemes [5, 14, 16], which can safely detect
when a region is known to all replicas.

If the data set’s current state is stored separately
from the log, the acknowledged regions can in fact be
erased from the log, because the data set does not refer
to them. In a log-structured data store, however, where
the log itself contains the data set, parts of regions still
contribute to the local data set’s current state even if
they were already distributed and acknowledged, and
thus these parts cannot be removed.

Those log entries that do not contribute to the data
set’s current state can only be erased under certain
circumstances. In general, entries that do not
contribute to the data set’s current state are removed
add entries, along with their corresponding remove
entry. Whether these add/remove pairs can be erased
depends on distribution status of their containing
regions.

T +

A (+)

B

A +

T (+)

B

Client Server

Figure 2. Different ordering does not cause
inconsistencies

There are several possible distribution states an
add/remove pair. A pair can be contained

1. in two different regions that are both not
known to all replicas yet, or

2. in two different regions only one of which is
known to all replicas. In both cases, the
removed add will never contribute to the
current state and can be removed from the log.
The corresponding remove, however, has to be
kept to remove the add at replicas to which the
add already has been distributed separately and
where it is already part of the log.

3. in different two regions that are both known to
all replicas. These pairs can be removed,
because they won’t be requested anymore in
the future, and do not contribute to the data
set’s current state by definition.

4. in the same region. As they do not contribute
in sum to a data set’s state and are never
distributed independently, they can be
removed at any time.

Case 1 and 2 only apply when remove entries are
added to the local log, either in the current local region
or in newly arrived log regions. When the
corresponding add is removed from the indices during
this operation, it can also be removed from the log in
the same step.

As the obsolete pairs of case 3 can only be located
in regions that are known to all replicas, it is sufficient
to scan those regions for remove entries that have
recently been acknowledged by all replicas.

5. Conclusions

In this paper we have presented a log-based
architecture for reconciling changes to optimistically
replicated data. The architecture is founded on a data
model that subsumes a wide range of data types, and is
scaled to significantly-large collections of small data
items. We maintain a low storage footprint by keeping
an efficient log format in a log-structured storage
architecture, thus eliminating the redundancy of an
additional store for the current state of data. To store
only information that is necessary for data set’s current
state and for further reconciliation, we identify
obsolete log entries and erase them as early as
possible.

6. References

[1] P. S. Almeida. C. Baquero V. Fonte. “Version Stamps –
Decentralized Version Vectors”, Proc. of the 22nd
International Conference on Distributed Computing Systems,
2002.
[2] P. A. Bernstein, V. Hadzilacos, N. Goodman.
„Concurrency Control and Recovery in Database Systems”,
Addison Wesley, 1987.
[3] Demers et al., “Epidemic Algorithms for Replicated
Database Maintenance”, Proceedings of the Sixth Symposium
on Principles of Distributed Computing, 1987, pp. 1-12.
[4] T. Ekenstam. C. Matheny. P. Reiher. and G. Popek, “The
Bengal Database Replication System”, Distributed and
Parallel Databases, vol. 9, no. 3, 2001.
[5] R. Golding, “Weak-consistency group communication
and membership”, PhD thesis, University of California,
Santa Cruz, 1992.
[6] R. G. Guy. G. J. Popek. T. W. Page, Jr., “Consistency
algorithms for optimistic replication”, Proc. of the 1st
International Conference on Network Protocols, 1993.
[7] Y.-W. Huang, P. S. Yu. « Lightweight Version Vectors
for Pervasive Computing Devices”, Proc. of the
International Workshop on Parallel Processing, 2000.
[8] B. K. Kang. R. Wilensky. J. Kubiatowicz, “The Hash
History Approach for Reconciling Mutual Inconsistency”,
Proc. of the 23rd International Conference on Distributed
Computing Systems, 2003.
[9] K. Nørvåg, K. Bratbergsengen, “Log-Only Temporal
Object Storage”, Proceedings of the 8th International
Workshop on Database and Expert Systems Applications,
DEXA'97, Toulouse, France, pp. 728-733
[10] Parker et al., „Detection of mutual inconsistency in
distributed systems”, IEEE Transactions on Software
Engineering, volume 9 (3), 1983, pp. 240-247.
[11] Petersen et al., “Flexible Update Propagation for weakly
consistent replication”, Proc. of the 16th ACM Symposium on
Operating Systems Principles (SOSP), 1997.
[12] M. Rabinovich. N. Gehani. A. Kononov, “Scalable
Update Propagation in Epidemic Replicated Databases”,
Advances in Database Technology - EDBT'96, Lecture Notes
in Computer Science Vol. 1057, Springer, pp. 207-222.
[13] Reiher et al., “Resolving File Conflicts in the Ficus File
System”, USENIX Conference Proceedings, Boston, MA,
June 1994, pp. 183-195.
[14] S. K. Sarin, Nancy Lynch, “Discarding obsolete
information in a replicated database system”, IEEE
Transactions on Software Engineering, SE-13(1), January
1987, pp. 39-47.
[15] M. Spezialetti, J. P. Kearns, “Simultaneous Regions: A
Framework for the Consistent Monitoring of Distributed
Systems”, Proc. of the 9th International Conference on
Distributed Computing Systems, 1989.
[16] G. Wuu, A Bernstein. „Efficient Solutions to the
Replicated Log and Dictionary Problems”, Proceedings of
the third ACM Symposium on Principles of Distributed
Computing, August 1984, pp. 233-242.

