
Reconfiguring Publish/Subscribe Overlay Topologies

Helge Parzyjegla∗ Gero Mühl† Michael A. Jaeger‡

Communication and Operating Systems Group
Berlin University of Technology

Einsteinufer 17, 10587 Berlin, Germany
{parzyjegla,g muehl,michael.jaeger}@acm.org

Abstract

Distributed content-based publish/subscribe systems are
usually implemented by a set of brokers forming an overlay
network. Most existing publish/subscribe middleware as-
sumes that the overlay topology is static. Those that con-
sider reconfiguration, exchange a single link that is torn
down by another link that comes up. However, they do not
guarantee that no notifications are lost or duplicated nor do
they ensure any message ordering policy.

In this paper, we discuss the dynamic reconfiguration of
publish/subscribe systems which are built on content-based
routing. We present algorithms that allow for reconfigura-
tions without notification loss or duplication that can also
ensure FIFO-publisher and causal ordering. Moreover, the
efficiency of reconfigurations is increased by limiting their
effects to those parts of the network which are directly af-
fected by the reconfiguration.

Keywords: Publish/Subscribe, Content-Based Routing,
Topology Reconfigurations, Dynamic Overlay Networks

1 Introduction

Distributed content-based publish/subscribe systems
provide asynchronous, implicit, and flexible group com-
munication well suited for dynamic environments such as
wide area networks with arbitrarily joining and leaving end
nodes. By publishing notifications and subscribing to no-
tifications of interest, the publish/subscribe middleware en-
ables application developers to abstract from network and
communication details. Developers can thus focus on the
information to exchange and the application itself.

State-of-the-art distributed publish/subscribe systems
are usually implemented by a set of brokers forming an

∗Funded by Deutsche Forschungsgemeinschaft.
†Funded by Deutsche Telekom.
‡Funded by Deutsche Telekom Stiftung.

overlay topology. However, most systems restrict them-
selves to static broker topologies or at the very least restrict
the dynamic evolution of the topology. In consequence,
they do not support dynamic environments adequately. Of-
ten it is desirable (e.g., for balancing the broker load and
for reducing the overall network traffic), sometimes even
necessary (e.g., to extend the system), to modify the bro-
ker topology. This may include starting new brokers, shut-
ting down running brokers, and rearranging links inside the
broker network. Thus, it is sensible to require that the pub-
lish/subscribe overlay topology is capable to dynamically
reconfigure itself.

Approaches in literature that consider reconfiguration by
repeatedly exchanging a single link [1, 2, 5] fail to guaran-
tee the completeness or ordering of notifications during re-
configurations. In this paper, we discuss algorithms which
allow reconfigurations without notification loss or duplica-
tion and that ensure FIFO-publisher and causal ordering.

The remainder of this paper is structured as follows:
Section 2 discusses the reconfiguration algorithms. Sec-
tion 3 presents an evaluation of the reconfiguration algo-
rithms based on simulations. In Sect. 4 we discuss related
work. Finally, we present our conclusions.

2 Reconfiguration Algorithms

We start with the description of three elementary types of
reconfigurations that can be used to carry out any other com-
plex topology reconfiguration. Then, we show how they can
be used to construct arbitrarily complex reconfigurations.
We assume an acyclic overlay topology where message or-
dering on the links is FIFO and reconfigurations are con-
trolled, i.e., the removal of a link or broker can be delayed
for a finite time.

2.1 Elementary Types of Reconfigurations

We consider the following actions as basic types of re-
configurations:

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

Figure 1. Exchanging a link in an acyclic
topology.

Figure 2. Adding (left subfigure) and remov-
ing (right subfigure) of a leaf broker.

Link Exchange. An existing link is removed from the
topology and a new link is added instead that recon-
nects the two resulting partitions again (see Fig. 1).

Adding a Leaf Broker. A broker is added as a leaf broker
to the topology (see left part of Fig. 2).

Removing a Leaf Broker. A leaf broker is removed from
the topology (see right part of Fig. 2).

With a sequence of these three basic reconfigurations it
is possible to carry out more complex reconfigurations. For
example, inserting a new broker B between two connected
brokers B1 and B2 can be done by first adding B as a leaf
of B1 and then exchanging the link between the B1 and B2

by a link connecting B with B2. In general, inserting a new
broker of degree n requires connecting the broker as a leaf
and n − 1 additional link exchanges.

2.2 Link Exchange

Exchanging a link does not only mean to substitute the
removed link r with the added link a, but also includes up-
dating the brokers’ routing tables to reflect the change in the
network topology. This affects all brokers that lie on the re-
configuration cycle, which results from inserting a into the
present broker tree and includes a, r, and all the links on the
path from A1 to R1 and A2 to R2, respectively (cf. Fig. 1).
These brokers have to ensure, that all notifications previ-
ously routed over r are now forwarded towards and over the
new link a instead.

2.2.1 The Uncoordinated Approach

In the naı̈ve approach, R1 and R2 act as if they had received
unsubscriptions for each of their routing entries associated

with r before tearing down r. Simultaneously, A1 and A2

issue a subscription over a for each of their current routing
entries. Since subscriptions and unsubscriptions are pro-
cessed and forwarded concurrently without a dedicated or-
dering, we call this an uncoordinated reconfiguration. In
literature it is also referred to as the strawman approach [5].

There are several problems related to race conditions that
may cause undesired effects when omitting coordination.
Notifications might get lost, when a broker B on the recon-
figuration cycle (e.g., B1) processes an unsubcription orig-
inated at r, before the corresponding resubscription arrived
from a. Furthermore, if B then removes its last correspond-
ing routing entry, depending on the routing algorithm, the
unsubscription might also be forwarded to neighboring bro-
kers, that are not part of the reconfiguration cycle. Hence,
the reconfiguration process entails unintentional global ef-
fects, too. Besides the loss of notifications and global ef-
fects, also duplicates can occur and the ordering of notifi-
cations might get mixed up: while the original notification
passes the old link before r is torn down, a copy of the same
notification might be in transit to another subscriber on the
route to a. When this copy encounters one of a’s endpoints
later, it is also forwarded over the new link, if a is already
set up at this time. In this case, the copy might reach parts
of the network before the original notification or even afore
published notifications arrive.

2.2.2 The Coordinated Approach

To face these problems caused by concurrency, we coordi-
nate actions and split the process into two phases. In the
first phase, the new link a is set up and all routing entries
are established along the reconfiguration cycle such that the
old link r can be substituted. In the second phase, r is torn
down and superfluous entries pointing directly or indirectly
to r are removed. We discuss both phases in detail below
focussing on minimizing the overhead and limiting effects
to the reconfiguration cycle. Afterwards, we add measures
to ensure completeness and ordering of notifications and
subscriptions. Finally, we consider concurrent reconfigu-
rations. The algorithms’ pseudocode can be found in [4].

Phase 1: Establishing the New Link. Since the topol-
ogy is acyclic, the link r connects two partitions of the net-
work. Exchanging r by a thus means that all notifications
that where forwarded over r have to be forwarded over a
now. In consequence, the routing tables at A1 and A2 have
to contain equivalent or the same entries for a as R1 and
R2 did for r. To accomplish this, R1 and R2 create sub-
scriptions for all entries associated with r and send them
(i.e., out-of-band) to A1 and A2, respectively. A1 and A2

process the subscriptions as if they came from the opposite
side over the new link and forward them accordingly.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

In the following, we illustrate the algorithms only for the
left side of the reconfiguration cycle of the example in Fig. 3
as actions for the right side are analogous. For the identifiers
we also refer to this figure.

Two scenarios are possible. In the first, presumably rep-
resenting the majority of all cases, subscription s sent by
broker R1 to broker A1 is already active on the path be-
tween these two brokers. This means, that s is already in-
corporated into the routing tables of the brokers on the path
from R1 to A1 and was also sent to neighboring brokers (N1

and N2 in Fig. 3) if necessary. However, the routing entries
established route every matching notification on the path to
A1 towards the old link r that will be removed. When A1 is-
sues s received from R1, it will only be forwarded along the
path from A1 to R1 as part of the regular filter forwarding
mechanism of the routing algorithm used. The subscription
will not leave the reconfiguration cycle, since the original
copy coming from R1 was already sent to every other bro-
ker on the path as assumed above.

In the second scenario, s is not yet active on the left side
of the reconfiguration cycle, since it is still in transit towards
a. In this case, the copy of s sent to A1 is sent along the cy-
cle in the opposite direction heading towards the original
s. Both copies might also be forwarded to other neighbor-
ing brokers (like N1 and N2) to ensure the subscription’s
dissemination in the entire network according to the rout-
ing algorithm used and the state of the routing tables. After
both copies have met each other on the reconfiguration cy-
cle, they strictly follow the reverse path of the other one
which they will not leave in the following, as the other copy
of s has already established all routing entries that could
lead away from the reconfiguration cycle.

Although we assume a simple subscription forwarding
scheme when describing the algorithms, they are still ap-
plicable if more sophisticated mechanisms such as identity-
based or covering-based routing are used. In this case sub-
scriptions transferred from r to a might not need to be sent
along the whole path, if an identical or a covering subscrip-
tion has already established the routing entries before.

The end of phase 1 is marked by a special separator mes-
sage which is sent by R1 to A1. It signals that all subscrip-
tions from R1 have been sent to A1. After receiving the
message, A1 forwards it along the reconfiguration cycle as
depicted in Fig. 3 until it reaches A2.

Phase 2: Tearing Down the Old Link. When a separa-
tor message reaches its originating broker R1 again, it is
guaranteed, due to the FIFO property of the links, that all
subscriptions at R1 have been completely transferred to A1.
This means that superflous routing entries pointing to r can
now be removed. Therefore, R1 issues an unsubscription
for every routing table entry associated with r, which is then
processed in the regular way.

Figure 3. Separator messages and message
queues.

In contrast to the strawman approach, it is impossible
that a broker removes the last routing entry for a subscrip-
tion during this phase of the reconfiguration, since the cor-
responding subscription from R1’s side of r had been issued
in phase 1 and is already present at each node on the path
from R1 to A1. Hence, the unsubscription is only forwarded
along the reconfiguration cycle towards A1 and not propa-
gated to any other neighboring broker causing unintended
global effects this way.

When R1 and R2 have each received both separator mes-
sages (their own and the one from the other side forwarded
over r), the new link and its routing entries have been estab-
lished on the whole reconfiguration cycle. In consequence,
r can be torn down and the reconfiguration is finished.

Notification Loss. In the first phase, new subscriptions
are established to ensure that notifications previously routed
from one side of r to the other will now be routed over a.
As no old subscription is removed, notifications will not get
lost. When all new subscriptions are established, the old
ones pointing over r will be removed. As the subscriptions
for a have already been established in the phase before, no
notifications will get lost in this phase, too, as there is al-
ways at least one path from every publisher to each sub-
scriber. On the downside, the approach taken may produce
duplicates, which we will tackle in the following.

Avoiding Duplicates. As subscriptions might get dupli-
cated in the first two phases when r and a are active, we
introduce a color attribute for brokers and messages (i.e.,
control messages and notifications), which is only used dur-
ing reconfiguration. According to the color, we can sort
out which messages have to be forwarded over r and which
have to be sent over a, preventing duplicates this way.

We set the color of a broker B to black when starting
the reconfiguration until it has received a separator message
that is originated from B’s side of the reconfiguration cy-
cle. Then, B changes its color to gray. A message adopts
the color of the first broker on the reconfiguration cycle
it passes. The color is removed again, when the message
leaves the reconfiguration cycle. Thus, the separator mes-
sage separates black messages from gray ones for the bro-

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

kers on the reconfiguration cycle. A broker that receives a
separator message from a neighbor knows that it will not
receive a black message from this neighbor anymore for the
rest of the reconfiguration. The color of separator messages
is black, such that they are discarded when they arrive at a.
Black messages are allowed to pass r when they arrive on
R1 or R2 and are discarded silently otherwise. Similarly,
only gray messages are routed over a. Since a message is
either black or gray, it can only pass one of the two links r
and a. Hence, it is guaranteed that there is always at most
one forwarding path between any two brokers a message
could follow and duplicates are prevented thus.

(Un)subscription Completeness. (Un)subscriptions that
are issued during reconfiguration pass r or a according to
their color. If one enters the reconfiguration cycle over a
gray broker, it is forwarded normally but discarded at the
broker on r due to its color. If a black (un)subscription
reaches R2 it is sent (e.g., out-of-band) to A2, recolored
to gray, and processed there as discussed above.

Ordering. Depending on the correctness requirements of
the system, notification ordering must be maintained. Re-
garding control messages, it is always important to keep a
FIFO-publisher ordering of related subscriptions and un-
subscriptions such that, for example, a gray subscription
cannot overtake an associated black unsubscription after the
former has been sent from R2 to A2. Therefore, we intro-
duce a queue Qsub on A2 that delays gray (un)subscriptions
that were forwarded over a until the last black control mes-
sage has been received from R2. This is the case, when R2

has received a separator message from its neighbor on R1.
To inform broker A2 about that, R2 signals A2 the end of
the reconfiguration. In the following, A2 empties the queue
and will not queue new gray messages anymore.

Notifications are queued similarly as control messages.
Likewise, they are delayed on broker A2, if forwarded over
a, using a queue Qnot if they are gray. Messages from one
publisher enter the reconfiguration cycle always over the
same broker. Thus, two consecutive notifications from one
publisher (N1, for example) may be black and gray. While
the black notification is routed over r, the gray notification
has to be delayed on broker A2 on the other side of a until it
is guaranteed, that the black notification has reached every
broker on A2’s side of the reconfiguration cycle. For FIFO-
publisher ordering, gray messages have hence to be queued
until a separator message is received from R1. To maintain
causal ordering, gray notifications have to be delayed until
it is guaranteed that no black notification from both sides
of the reconfiguration cycle can reach the broker anymore.
From FIFO-ordering we know, that if A2 receives a separa-
tor message from R1, it is guaranteed, that no notifications
from R1’s side are in transit on A2’s side of the reconfigu-

ration cycle. To ensure, that there are no black messages in
transit from A2’s side, the separator message forwarded by
A2 on the same side has to be copied and sent back over the
reconfiguration cycle when it reaches the originating bro-
ker R2 again. If A2 has received both messages, this copy
and R1’s separator message, it can start with processing the
queue as it is guaranteed now, that there are no black mes-
sages heading towards A2 on the cycle anymore.

2.3 Adding and Removing Leaf Brokers

Up to now, we discussed how to exchange a link with
another. In this section, we present algorithms to add and
remove leaf brokers.

2.3.1 Adding a Leaf Broker

A new leaf broker A has no subscriptions yet. Connecting
one with a broker B that is already part of the network (as
depicted in Fig. 2) thus means that B has to forward its sub-
scriptions to A that are stored in its routing table and point to
other neighbor brokers of B. Therefore, the regular routing
algorithm is used. If simple routing is used, for example, all
subscriptions in the routing table of B will be forwarded to
A. For covering-based routing only those subscriptions are
forwarded, that are not covered by others.

2.3.2 Removing a Leaf Broker

When a broker R is removed from the topology, like de-
picted in Fig. 2, its neighbor broker B simply has to remove
every routing entry from its routing table that points to R
and forward corresponding unsubscriptions if necessary ac-
cording to the routing algorithm used.

2.4 Composite and Concurrent Reconfigurations

The types of reconfigurations defined in Sect. 2.1 are ele-
mentary. It is possible to carry out a sequence of elementary
reconfigurations to realize one complex composite reconfig-
uration. For several reasons like optimizations, it might be
useful or simply happens that reconfigurations are also car-
ried out in parallel. We have to take care, that concurrent
reconfigurations do not share any broker, as this can lead
to serious problems regarding message ordering and com-
pleteness or even system correctness.

Therefore, we introduce a lock-message before starting
the reconfiguration that has to be forwarded to every bro-
ker on the reconfiguration cycle. This guarantees that each
broker can only take part in one reconfiguration at a time.
Additionally the lock-message is used to initially color par-
ticipating brokers black to prepare the reconfiguration pro-
cess. If a lock-message of one reconfiguration encounters a

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

broker that is already locked by another reconfiguration, it
is sent back to the originating broker, freeing already locked
brokers. To prevent livelocks caused by repeatedly collid-
ing lock attempts additional measures must be applied (e.g.,
a randomized exponential backoff algorithm). After the
reconfiguration is finished, an unlock-message releases all
brokers on the reconfiguration cycle.

3 Evaluation

This section presents the results of a discrete event simu-
lation1 which we carried out to analyze the algorithm’s be-
havior focusing on the difficult case of exchanging a link
in the broker topology. The simulation was designed to
both verify the correctness of the developed algorithm and
to evaluate its performance in terms of reconfiguration over-
head. The performance is measured in the number of con-
trol messages needed to complete a link exchange compara-
ble to the strawman solution. Furthermore, we quantify the
additional delay in the delivery of events, that is introduced
by queueing notifications to guarantee their FIFO-publisher
or causal ordering. We start with describing the simulation
setup, before we discuss the results in detail.

3.1 Simulation Setup

The simulation is based on a transit-stub network topol-
ogy with a total of 10,000 nodes, subdivided into 100 do-
mains of equal size, that was generated using the BRITE [3]
topology generator. The publish/subscribe infrastructure is
then composed of 100 randomly chosen brokers which form
an acyclic overlay network. The maximum delay of an over-
lay link is limited to 100 ms including the time needed by a
broker to process a message. The brokers host a total of 500
clients, that are uniformly distributed among them. Each of
the 50 publishers has 9 dedicated subscribers, that receive
all of its notifications. The publication rate follows an ex-
ponential distribution such that a publisher is expected to
create a new notification every 25 ms. The following ex-
periments were repeated 25 times and arithmetic means as
well as 95% confidence intervals were calculated for every
measured value. To ensure, that results of different algo-
rithms are comparable, the same setups and random seeds
were used for corresponding simulations.

3.2 Measuring Reconfiguration Overhead

In the first experiment, we evaluate the control message
complexity of the improved reconfiguration algorithm and
compare it to the strawman approach. Therefore, 100 ran-
domly chosen links are exchanged such that the network

1For the simulation source-code and setups refer to http://kbs.
cs.tu-berlin.de/∼mjaeger/debs06/reconf.tar.gz.

0

10000

20000

30000

40000

50000

60000

70000

4 6 8 10 12 14 16 18 20

N
um

be
r

of
 C

on
tr

ol
 M

es
sa

ge
s

Length of Reconfiguration Cycle

Strawman Approach
Improved Algorithm

Figure 4. Number of control messages versus
length of reconfiguration cycle.

stays connected and acyclic, while the control messages
necessary to update the brokers’ routing tables are counted.
Furthermore, we check for the improved algorithm, whether
any notification is lost or delivered twice to any of its sub-
scribers to verify its correctness.

Figure 4 shows the number of control meassages as a
function of the length of the reconfiguration cycle. The
message complexity increases for both algorithms, because
(un)subscriptions have to be forwarded to more brokers
to update their routing tables, if the reconfiguration cycle
grows. However, since the improved algorithm limits filter
forwarding to the cycle, it clearly outperforms the straw-
man approch especially for small cycle lengths. Although
the number of control messages increases, due to additional
messages needed for coordination, the improved algorithm
even remains more efficient for larger reconfigurations.

3.3 Measuring Ordering Delay

The improved reconfiguration algorithm ensures the
complete delivery of notifications, but introduces a delay as
notifications are queued after passing the new link, if their
correct ordering has to be guaranteed. The delay depends on
the type of ordering (FIFO-publisher or causal) and on the
length of the reconfiguration cycle. Figure 5 shows the av-
erage delay of 100 random link exchanges measured as the
mean time an affected notification is queued at the new link.
The delay increases linearly with the length of the reconfig-
uration cycle, as seperator-messages have to travel over it
before queued notifications are released again. Causal or-
dering is more expensive, because notifications are queued
until separator messages have arrived from both sides of the
cycle, while FIFO-publisher ordering only requires the re-
ceipt of one seperator-message from the opposite side.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

0

50

100

150

200

250

4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 D
el

ay
 in

 m
s

Length of Reconfiguration Cycle

FIFO-Publisher Ordering
Causal Ordering

Figure 5. Average delay caused by ordering
versus length of reconfiguration cycle.

4 Related Work

The work closest to ours is by Cugola et al. where they
introduce the strawman approach discussed as the “unco-
ordinated approach” in [2]. The basic algorithm has later
been improved by introducing a delay for issueing the un-
subscriptions [2, 5]. With this solution, the new link is es-
tablished a bounded delay (i.e., a timeout is used) before
the old link is removed, i.e., subscription propagation starts
earlier than unsubscription propagation. However, choosing
a sensible value for the timeout seems difficult. To avoid
the propagation of subscriptions that would otherwise be
removed a short time later, subscriptions located at an end-
point of a removed link are removed from the routing ta-
bles of the respective brokers instantaneously and only their
propagation is delayed.

In [1], the authors identify the reconfiguration path (a
subset of the reconfiguration cycle) as the minimal portion
of the system affected by the reconfiguration and reduce re-
configuration actions to this part. As a result, they are able
to reduce the overhead dramatically and achieve subscrip-
tion completeness. However, no guarantees are given for
notification completeness, duplicates, and ordering. Con-
current reconfigurations are possible if the reconfiguration
paths do not cross each other.

While related approaches assume that the old link is not
available anymore, we still use it for message forwarding
until the reconfiguration is finished. Thus, our solution ad-
dresses proactive scenarios, where reconfigurations serve
administrative or optimizational purposes that should not
disturb the normal operation of the publish/subscribe sys-
tem. For these scenarios we also assume that the reconfigu-
ration cycle is known in advance.

5 Conclusions

Reconfiguration in content-based publish/subscribe mid-
dleware is an important issue. In this paper, we investi-
gated administrated reconfigurations that consist of elemen-
tary reconfiguration steps which include the exchange of a
link as well as the addition or removal of a leaf broker. Al-
gorithms were presented that prevent the loss or duplication
of notifications and maintain the message ordering. For the
ordering of notifications we focused on a FIFO-publisher
and a causal ordering policy.

We carried out simulations and compared the number of
control messages that are produced by the strawman ap-
proach with the overhead of our algorithm. The results
show that our algorithm is more efficient in the scenarios
tested. We also compared the average notification delay in-
duced by FIFO-publisher and causal ordering.

Enabling reconfiguration in publish/subscribe systems is
a prerequisite for supporting dynamic environments with
adaptivity. Thus, the presented work is a building block
for future adaptive publish/subscribe middleware that will
lower administration effort and increase its applicability.

References

[1] G. Cugola, D. Frey, A. L. Murphy, and G. P. Picco. Mini-
mizing the reconfiguration overhead in content-based publish-
subscribe. In Proceedings of the 2004 ACM Symposium
on Applied Computing (SAC’04), pages 1134–1140, Nicosia,
Cyprus, 2004. ACM Press.

[2] G. Cugola, G. P. Picco, and A. L. Murphy. Towards dynamic
reconfiguration of distributed publish-subscribe middleware.
In 3rd International Workshop on Software Engineering and
Middleware (SEM 2002), volume 2596 of Lecture Notes in
Computer Science, pages 187–202, Orlando, FL, USA, 2002.
Springer.

[3] A. Medina, A. Lakhina, I. Matta, and J. Byers. Brite: An
approach to universal topology generation. In Proceedings of
MASCOTS’01, pages 346–353, Cincinnati, OH, USA, August
2001. IEEE Computer Society.

[4] H. Parzyjegla. Ein adaptives brokernetz für pub-
lish/subscribe systeme. Master’s thesis, Berlin Uni-
versity of Technology, Berlin, Germany, October 2005.
(in German), http://www.kbs.cs.tu-berlin.de/
publications/fulltext/diplParzyjegla.pdf.

[5] G. P. Picco, G. Cugola, and A. L. Murphy. Efficient content-
based event dispatching in the presence of topological recon-
figuration. In Proceedings of the 23rd International Confer-
ence on Distributed Computing Systems (ICDCS 03), pages
234–243, Providence, RI, USA, 2003. IEEE Press.

Proceedings of the 26th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW’06)
0-7695-2541-5 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

