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In this paper, we present an experimental evaluation of graph clus-

tering strategies in terms of their effectiveness in optimizing I/O

for path query processing in digital map databases. Clustering op-

timization is attractive because it does not incurs any run-time cost,

and is complimentary to many of the existing techniques in path

query optimization. We first propose a novel graph clustering tech-

nique, called Spatial Partition Clustering (SPC), that creates bal-

anced partitions of links based on the spatial proximity of their ori-

gin nodes. We then select three alternative clustering techniques

from the literature, namely two-way partitioning, approximately

topological clustering, and random clustering, to compare their per-

formance in path query processing with SPC. Experimental evahr-

ation indicates that our SPC performs the best for the high-locality

graphs (such as GIS maps), whereas the two-way partitioning ap-

proach performs the best for no-locality random graphs.

1 Introduction

1.1 Motivation

Digital map databases are criticrd components of Geographic

Information Systems (GIS) applications such as navigation,

route guidance, traveler information systems, fleet manage-

ment, public transit, and traffic management. An important

type of services required by many of the above applications

is path query processing in digital map databases. Examples

of path queries are:

Q~: Find the most ener~-e~iatpath from A to B that does not

use toll roads.

Q2: Display all the garages reachabfej%om A in IO minutes.

Q3: Find the shortestpathfiomA to B that does notpass through

areas with altitude >1000 feet.
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All three path queries have embedded constraints. Namely,

the computed path contains no links of toll road type for Ql;

the destination nodes are of garage type for Q2; and the com-

puted path contains only links that do not traverse areas with

altitude > 1000feet for Q3.

In order to process path queries such as the above, a map

database must model the topological information of the maps

as well as maintain the attributes associated with each map

element. Typically, the topological information of a road map

is decomposed into nodes and links. A node represents an

intersection and a link represents a road segment which is

one section of a road between two neighboring intersections

where traffic flows in one direction.

In this paper, we assume path computation is based on cost

measurements that are only associated with linksl, called link

weights. We also assume that query computation for path

queries such as those listed above (Ql - Q3) is based on

graph-traversal rdgorithms2 which conduct path search com-

putation by traversing from one node to another through their

connecting link. Because path search computation is recur-

sive in nature, searching a path means to recursively retrieve

link tuples in the link table into the main memory buffer for

evaluation. Since the size of the link table is often larger than

the main memory buffer of a given map database, many tu-

ples in the link table may need to be retrieved numerous times

during the computation of a path on a large digital map. This

amounts to tremendous HO costs required for the computa-

tion of path queries.

1.2 Goals

To address this high-cost problem of path query computation,

we set the following goals in this paper

(1) To identify existing clustering techniques suitable for op-

timizing the I/O behavior for path query processing for

digital map databases.

(2) To develop novel clustering techniques that exploit unique

properties of digital map databases such as spatial coor-

1We assume traversing a node is costtess end that such costs, if exis~ have

been factored appropriately into weights of the connecting links.

‘The D&ra, A*, Breadth-Fit Search, and Depth-Fiit Search algo-

rithms are atl examples of popular graph-traversat search atgorithtns.

215



(3)

(4)

dinates or high locality of digital maps.

To implement the selected clustering techniques on a

uniform testbed for fair comparison.

To perform experimental evaluation of both existing as

well as our proposed clustering techniques to determine

their relative effectiveness.

1.3 Effective Clustering: Key to Path Query Processing

The purpose of this paper is to demonstrate that clustering

optimization for path query computation can be effective for

cyclic graphs such as GIS maps. Clustering is attractive

because it does not incur any run-time cost and it requires

no auxiliary data structure that demands buffer space. For

attributes that do not change frequently, clustering can be

done off-line with no dynamic update costs. Furthermore,

clustering is at a level lower than many other path query

solutions that focus on auxiliary access structures [2, 16] or

on algorithmic techniques [1, 3]. Therefore results emerging

from the comparative evaluation of our clustering research

can be deployed by solutions that do not employ specific link

clustering [1, 3, 16].

In this paper, we first present a clustering technique that

partitions links in a GIS map based on the spatial proximity of

the origin nodes of the links. We call it Spatizd Partition Clus-

tering (SPC). Because GIS links are short, most nearby links

are grouped into the same partition by SPC. Since graph-

traversal algorithms exhibit high expansion locality on GIS

maps, SPC is expected to optimize I/O incurred during path

search. Next, we implement three other alternative cluster-

ing strategies, namely approximately topological clustering

[2], two-way partition clustering [5], and random clustering.

For our benchmark studies of these techniques, we select the

Dijkstra algorithm [6] because it is one of the most popular
and effective single path search algorithms for sparse graphs

such as GIS maps.

We conduct experiments using a real GIS map of Ann

Arbor (5,596 nodes, 14,033 links) and randomly generated

graphs of similar size. For each clustering strategy, we pro-

cess path queries using the Dijkstra algorithm with various

buffer sizes and different graph localities. Our results show

that random clustering performs the worst in all cases, con-

firming that graph clustering techniques can be effective in

reducing the I/O costs of path query processing. Among

the more effective clustering approaches, our spatial partition
clustering performs the best for high-locality graphs (such as

GIS maps) whereas the two-way partitioning approach is the

best for graphs without locality.

The outline of this paper is as follows. Section 2 discusses

related work, followed by Section 3 that introduces the pro-

posed spatial partition clustering technique. In Section 4 we

3Note that another popular atgorithm, A*, can be viewed as a variation

of the D~krtra algorithm with heuristics.

4We define that in a graph of high locatity, the two end nodes of most tinks

are located closely geographically. For graphs of no locatity, such restriction

does not apply.

present the alternative graph clustering techniques, and in

Section 5 we outline our testbed environment. We give the

experimental results in Section 6, and conclude the paper in

Section 7.

2 Related Work

There are many recent research efforts reported in the liter-

ature that focus on minimizing the I/O costs of path compu-

tation in a database setting that assumes a main memory I/O

buffer of fixed size. Most of such research has focused on

pure transitive closure (tc) computation [ 1,3, 10]. In our pre-

vious work, we have explored a hierarchical path view ap-

proach which fragments a large graph into smaller subgraphs

and pre-computes the path transitive closure for each sub-

graph [8, 9, 11]. The advantage of such a technique is more

efficient computation in both transitive closures of the sub-

graphs and path search through the hierarchy.

Two potential problems exist in using tc pre-computation

to answer path queries for digital map databases. First, a

single tc cannot take various embedded constraints into ac-

count. For example, a tc computed for path query Q1 cannot

be used to answer path query Q3. To answer all path queries

with many different embedded constraints, numerous tcmay

need to be computed, each based on a unique embedded con-

straint. This may not be feasible in practice. Second, some

link weights may change very frequently. In order for the tc

computed based on such weights to remain current, recompu-

tation may need to be conducted very frequently. However,

performance results in [1, 10] showed that such techniques

are not efficient in computing the shortest path tcfor cyclic

graphs such as GIS maps managed by digital map databases.

Recomputation of the shortest path tcusing such techniques

therefore cannot be done frequently, undercutting the correct-

ness of the computed paths.

In [16], a graph indexing technique is proposed to improve

paging performance for graph traversal by building an auxil-

iary structure to predict nodes that are to be accessed in the

future. [16] gave a cost model but did not present experimen-

tal results on real GIS maps.

Topological clustering techniques have been previously

proposed to reduce the path query processing I/O costs [2,

4, 13]. Fore topological clustering [4, 13] does not apply to

cyclic graphs such as GIS maps. In [2], an approximately

topological clustering was proposed that handles cyclic graphs

using heuristics which break cycles to decompose a graph
into acyclic subgraphs. It is suggested that such a technique

may not be very effective for highly cyclic graphs [14, 16].

In this paper, a version of this clustering technique is im-

plemented, benchmarked on real GIS maps, and compared

against alternative strategies.

Heuristic partitioning techniques [5, 7, 12, 15] commonly

deployed in VLSI (Very Large Scale Integrated Circuit) de-

sign can be used for graph clustering. Such techniques are

based on certain objectives, such as minimizing the total dis-

tance of inter-partition links. [14] uses the two-way parti-
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tioning algorithm [5] as a clustering mechanism for the pro-

posed access structure for aggregate queries for transporta-

tion networks. Their aggregate query experimentation con-

sidered only linear path traversal such as evaluation of an ex-

isting path. Recursive path search such as the ones discussed

in this paper was not considered. In this paper, we implement

the two-way partition algorithm [5] as one of the clustering

optimizations for path query processing.

3 Spatial Partition Clustering (SPC)

3.1 Exploiting GIS Road Map Characteristics

The Spatial Partition Clustering (SPC) is designed to exploit

the unique GIS road map characteristics to achieve I/O opti-

mization in path query processing. It clusters link tuples in

the link table by the spatial proximity of their origin nodes.

We identify the following unique characteristics of the GIS

road maps managed by many digital map databases:

●

●

●

GIS maps are relatively sparse, have uniform fanout typ-

ically between 2 and 5.

GIS maps are strongly inter-connected, with each node

typically reachable from near-by nodes in a few hops.

GIS maps consist of mostly short links in comparison to

their map sizes.

Because most GIS links are short, graph-traversal algo-

rithms exhibit high expansion locality on GIS maps. Fur-

thermore, page sizes in modern databases can be quite large,

therefore many link tuples in the link table can be stored

within one page. Since GIS maps are sparse with low fanout,

multiple groups of links with the same on”gin can be stored

within one page. We call them Same-Origin-link (SOL)

groups. For example, with a 4KB page size and link tuple

size of 128 bytes, 32 links can be stored within one page.

For a GIS map with average fanout of 3, roughly 11 SOL

groups can be clustered in one page. This means that there

are roughly 11 different nodes in each page that could poten-

tially be expanded by the search algorithm.

If we cluster the link table so that every page contains

links whose origin nodes are closely located geographically,

we are grouping the expansion nodes based on their spatial

proximity. Based on the fact that GIS maps are highly inter-

connected and consist of mostly short links, graph-traversal

algorithms such as Dzjk.stra are likely to expand nodes within

the same page by traversing the intra-page links before travers-

ing cross-page links with such a clustering. Given a fixed-

sized main memory buffer not large enough to hold the entire

link table, such paging behavior would decrease page misses

caused by cross-page link traversing. We now present the al-

gorithm that creates the spatial partition clustering for a given

GIS road map.

3.2 Creating the Spatial Partition Clustering

The basic idea of SPC is first to sort all links by the x-

coordinates of their on-gin nodes. A plane-sweep technique is

then applied to sweep all x-sorted links along the x-coordinate

from left to right. The sweeping process stops periodically

to sort the links swept since the last stoppage by the y-

coordinates of their on”gin nodes. Because the on”gin nodes

of the links between two stoppage points span a short dis-

tance along the x-axis, sorting these links by they-coordinate

values of their origin nodes achieves a partial spatial order-

ing. After each y-sorting, the y-sorted links can be group into

pages and written to a new link table that is SPC clustered.

One criticrd decision is to determine the proper stoppage

points during plane sweeping when y-sorting takes place.

Our goal is to achieve a balanced partitioning in which each

resulting partition consists of links whose on-gin nodes are lo-

cated within a bounding area that resembles a square block

for maps with evenly distributed links. In this paper, we

introduce a heuristic that dynamically computes the proper

stoppage points in order to achieve such a balanced partition-

ing. To accommodate unevenly distributed maps, the heuris-

tic we use will adjust the bounding block for each partition by

growing in the y-axis direction if the regional link distribu-

tion is sparse, and shrinking if otherwise. In either case, each

partitioned page is maximally filled with links whose origin

nodes are relatively closely located.

To present the algorithm that creates the SPC clustering,

we use the following parameters:

—

—

.

—

—

$ is the blocking factor for a given page size in the link

table. We call every f consecutive link tuples an ~-page.

The block table is a temporary table that stores the links

collected between two stoppage points during the sweep-

ing process.

dx~ is the difference between the minimum and maxi-

mum x-coordinate values of the on-gin nodes of the links

in the first i f-pages in the block table.

dyi is the difference between the minimum and maximum

y-coordinate values of origin nodes of the links in the first

i f-pages in the block table.

SPC-clustered link tabfe is the resulting table.

The following is the algorithm that creates the SPC:

1

2

The uncluttered link table is sorted by the x-coordinate

values of the on”gin nodes of its link tuples. The result is

called the x-sorted link table.

Read the x-sorted link table sequentially one f-page at a

time, and write it to the end of the (initially empty) block

table. Then check the following conditions:

— If all tuples in the x-sorted link table are read, go to

step 3. (This is the end of loop.)
— If there is only one f -page in the block table, go to step

2 to read the next f-page and write it to the end of the

block table.

— Otherwise, conduct the following evaluation:
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2.1 Let p be the number of f-pages in the block table.

Compute the following:

~p = l(~Yp/P) – ~%1

lip-l = \(czyp-l/(P – 1)) – ~~p-11

2.2 If dp > alp-l, this is a stoppage point. Perform the

following:

2.2.1 Sort the link tuples of the first p-1 f-pages by the y-

coordinate values of their origin nodes, group them

into pages, and sequentially append to the SPC-

clustered link table.

2.2.2 Move the p-th f-page of link tuples in the block

table to the first page in the block table. Set the

number of pages in the block table to 1.

2.3 Go to step 2 to read the next f-page.

3 Sort all the remaining link tuples in the block table by the

y-coordinate values of their origin nodes, group them into

pages, and sequentially append to the SPC-clustered link

table. The SPC clustering is completed.

The intuition behind the heuristic is that when the first few

f-Pages (e.g., 1 or 2) are written from the link table to the

block table, p is small, and dp = l(dyP/p) – d%pI will likely

be large, assuming a map with evenly distributed links. This

is because in the plane sweep process, we are proceeding with

small progress on the x-axis and with entire range on the y-

axis. When more f-pages are added to the block table, p

increases and dp decreases. At some point, dp will approach

O and then starts picking up again when dxp > (dyp/p). We
capture this point by dynamically detecting dp > dp– 1 and

then we make it a stoppage point. At a stoppage point, links

in the first p-l f-pages in the block table are sorted by the

Y-coordinate values of their origin nodes. Because dp - 1 =

I(dyp-l /(P – 1)) – dzp- 1I approaches O, each partition will
be bounded by an area that resembles a square box.

Figure 1 illustrates the sweeping process and the heuristics

in determining the stoppage points. In Figure 1(a), the link

tuples are sorted by the x-coordinate values of their origin

nodes. Next, f-pages of link tuples are written to the block

table sequentially. In Figure 1 (b), when the 4th f-page is

written to the block table, d4 > d3. This is a stoppage point.

In Figure 1 (c), links in the first 3 f-pages in the block table are

then sorted by the y-coordinate values of their ongin nodes
and the y-sorted links are grouped in pages and written to

the SPC-clustered link table. Note that at this point, the first

3 f-pages in the link table are properly clustered. When the

sweeping process is complete, all f-pages in the link table are

properly clustered as shown in Figure 1 (d).

4 Alternative Graph Clustering Strategies

We now discuss three alternative clustering strategies im-

plemented for comparative studies. They are the Two-Way
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Figure 1: Spatial Partition Clustering,

Partition Clustering (TWPC) [5], the “approximately” Topo-

logical Clustering (TopoC) [2], and the Random Cluster-

ing (RandC). We assume that for each clustering technique,

links of the same origin are always clustered together in

the link table. Such a clustering is important because the

graph-traversal path search algorithms typically expand a

node by traversing all its outgoing links to the connecting

nodes. Grouping links by their origin nodes makes sure such

expansions exhibit good I/O behavior.

4.1 Two-Way Partition Clustering

Partitioning algorithms have been widely deployed in the de-

sign and fabrication of VLSI (Very Large Scale Integrated

circuit) chips. Most such algorithms partition a network

into two subnetworks [5, 7, 12], and through a divide-and-

conguer process, reduce a complex problem into smaller and

hence more manageable subproblems. The common objec-

tive of such partitioning is to shorten the total interconnec-

tion distance between all subnetworks in achieving a reduced

layout cost and better system performance. We now propose

that these partitioning algorithms could also be applied to our

problem of GIS graph clustering, namely to cluster the link

table by storing each partition within a single page. In our

context, the size of each partition therefore is bounded by the
size of a buffer page. Our goal of such partitioning is to re-

duce the page misses, to a minimum if possible, occurred dur-

ing path query computation. Because each cross-page traver-

sal in path computation may potentially incur a page miss,

our partition objective is then to minimize the number of inter-
partition (cross-page) links.

Because the partition problem with specified size con-

straints belongs to the class of NP-complete problems, all

partition algorithms focus on finding heuristics in providing

solutions in polynomial time. The most common heuristic
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used in two-way partitioning is based a two-stage process

[12]. First, an initial cut that separates a network into two

is derived. Next, nodes are swapped between partitions for

a better cut. Swapping can be done with a single node mov-

ing from one partition to the other, or with two nodes from

different partitions moving to the opposite partition. During

the swapping stage, priority is given to the swap that yields

the best cut. Swapping can continue until it no longer cre-

ates a better cut. To avoid cyclic swapping that results in an

infinitive loop, a restriction is imposed that allows one node

be swapped only once during each swapping run. To remedy

such a restriction, multiple iterations of swapping runs may

be necessary to achieve a better result.

The two-way partitioning algorithm we implement extends

the two-stage heuristics to include a contraction stage that

was shown to be an improvement over the traditional two-

stage approach [5]. Such an algorithm cuts a network into

two partitions based on ratio-cut heuristics. To adapt it to our

page clustering, we recursively apply it until each partition

fits into one page. To minimize the size of the link table, we

set the size of at least one partition to approximate that of a

page during each cut. We abbreviate this clustering technique

as TWPC. We now give an overview of the algorithm.

The two-way partitioning algorithm:

1 Contracting stage:

1.1

1.2

Initially, the network G has only one partition. Based

on divide-and-conquer, recursive y apply the ratio-cut

routine in [15] to the partitions whose sizes are greater

than a specified value p.

Based on the resulting partitions, contract G to a con-

densed graph G’ such-&at each partition in G is a node

in G) and each interconnection link between two parti-

tions is a link between the two corresponding nodes in

G’.

2 Swapping stage:

2.1 Randomly select a cut that creates two partitions in G’.

2.2 Iteratively apply the Fiduccia-Mattheyses algorithm

[7] to the partitioned G’ i times for a better swapping

result, with the size constraints of the two resulting

partitions set to S1 and 52. The i, s1, 52 are pre-

specified parameters. The result is a rein-cut of G’.

3 Restoring stage

3.1

3.2

Restore the two partitions in G’ created in step 2 by

replacing each condensed node in each partition by its

original nodes in the correspondent partition created in

step 1. The result is G cut into two partitions.

Apply the Fiduccia-Mattheyses algorithm on the two

restored partitions in G one time, and the ending two

partitions are the final result.

*B ,@<B
$uWrsph cut sutqraph subgrsph ~

cut su~taph

Figure 2: Partitioning with Figure 3: Partitioning

Contraction. without Contraction.

The ratio-cut routine [15] in step 1.1 and the Fiduccia-

Mattheyses algorithm [7] in steps 2.2 and 3.3 are two min-

cut algorithms based on the two-stage heuristics described

previously. The intuition behind the contraction approach

is that nodes that are grouped into the same partition by

the ratio-cut algorithm [15] are more strongly connected.

Treating them as one node reduces the chance of separating

them into different partitions by a bad split. For example,

in Figure 2, the ratio-cut routine may group the circle nodes

and triangle nodes into two different subgraphs A and B.

Because partitions A and B are subsequently contracted into

two inseparable units, if there is a cut that goes through A

and B, it has to go through the link between node z and

node y. Note that this is an optimal cut between A and B

and no further swapping will change this cut-link. If no

contraction is performed, an initial cut of all the nodes in A

and B may look like the cut in Figure 3, Note that subsequent

swapping will not alter this cut because any single-node or

pair-wise swapping of nodes a, b, c, d does not yield a cut

with less inter-partition links. Therefore the optimal cut that

goes through the link between nodes x and y is lost.

4.2 Approximately Topological Graph Clustering

Pure topological clustering [4, 13] arranges links in a topo-

logicrd order. Whh art adequate buffer size, such an order-

ing can facilitate path query processing with only one pass

of the link table. Pure topological clustering however is not

applicable to cyclic graphs such as GIS maps. [2] proposed

an approach which extended topological clustering to cyclic

graphs by recursively breaking cycles and preserving acyclic

subgraphs for a cyclic graph. This approach is called “ap-

proximately” topological clustering.

In this paper, we implement the approximately topological

clustering algorithm proposed in [2] and call it TopoC. The

following is a description of the main steps of TopoC:

1 Iteratively move a root-link 5 in the graph into the clus-

tered link table, until no root-link exists. If the remaining

graph is empty, go to step 4.

2 Move a sink-link 6 to a temporary link table. Repeat step

5A root-tink is a link whose origin node has no in-cotning connection.

6A sink-link is a fink whose destination node has no out-going

connection.
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3

4

2 until no sink-link exits.

Randomly pick a node in the remaining graph and move

all its out-going links to the temporary link table. Go to

step 1.

Append the links in the temporary link table in reverse

order to the clustered link table.

In TopoC, steps 1 and 2 preserve the acyclic portions of

the graph whereas step 3 breaks the cycle by removing all

out-going links for a selected node. If the remaining graph

at any time is acyclic, its links are topologically sorted by

step 1 that continuously moves root-links to the clustered link

table. Finally, after appending the links of the temporary link

table in reverse order in step 4, all links are “approximately”

topologically clustered in the link table.

4.3 Random Clustering

Random Clustering (RandC) keeps the link tuples in the link

table in random order, except that links of the same origin

node are clustered together. We use Random Clustering as

the strawman to determine the path query processing cost

when no clustering strategy is deployed.

5 Testbed Environment

Our experimental testbed is implemented on a SUN Spare-20

workstation running the Unix operating system. It includes

the clustering algorithms presented in this paper, a heap-

based Dijkstra algorithm, an I/O buffer manager, and many

other supporting data structures. All programs are written in

c++.
We use link table to model the topology of the graph. Each

link tuple in the link table models a link in the graph. The

path queries discussed in this paper are assumed to be path

queries with embedded constraints (see examples in Section

1). To resolve such constraints may require the retrieval of

link attributes in order to evaluate the validity of each link

traversed during path finding. We thus must store relevant

link attributes in their respective link tuples. In this paper,

the link tuple used in our experiments is set to 128 bytes. The

page size is 4 Kbytes.

In our experiments, we vary the I/O buffer sizes from 64

Kbytes to 640 Kbytes and then take the average of five runs.

The sizes of the link table of our test maps are about 2 Mbytes,

with a small difference between the various clustering tech-
niques. Note that the size of a link table is proportional to the

size of the map. In this paper, we test maps with up to 15,000

links. For large city maps, the number of links can be many

times more7. This means that the buffer size should also in-

crease proportionally for large maps in order to process path

queries efficiently.

We test both randomly generated graphs and a real street

map of Ann Arbor City (5,596 nodes, 14,033 links). We

TFw exmple, the Detroit map we are using for related research efio~s

in this project has more than 50,000 tinks.

experiment with random graphs that have 5,000 nodes and an

average outdegree of 3, similar to that of the real map. We

create two additional sets of random graphs, one with high

locality, the other with no locality. The reason we experiment

with random maps of both high and no locality is because GIS

applications such as Intelligent Transportation Systems need

to model graphs beyond the road transportation maps (such

as the Ann Arbor city map). For example, the airline flight

routes exhibit no planarity and locality therefore can be better

modeled by random graphs with no locality. An intermodal

map of both subway train and bus routes, however, exhibits

high locality without planarity, therefore can be modeled by

random graphs with high locality.

6 Experimental Evaluation

This section presents experiments and performance evalu-

ation of the various clustering techniques proposed in this

paper. They are SPC (Spatitd Partition Clustering), TWPC

(Two-Way Partition Clustering), TopoC (Topological Clus-

tering), and RandC (Random Clustering). Our measurement

is based on a simulated number of page I/O.

We conduct single-source shortest path search for ran-

domly selected nodes. Because the single-source shortest

path computation for a source node i corresponds to the

search of the longest shortest-path from node i for graph-

traversal algorithms, this set of experiments tests the worst-

case scenario in searching a shortest path from node i.

6.1 Experiments on the Real Map

I --m- SPC --@- TWPC + TopoC RandC

64 128” 192”256” 320”364”448 ”512”576” 640
Buffer Size (KByte)

Figure 4: I/O Cost on Real Map.

In the first set of experiments, we use the real Ann Arbor map.

The results in Figure 4 show that Random clustering per-

forms much worse than any other clustering, confirming our

claim in this paper that proper graph clustering can be a key

to efficient path query processing. Because the cost of RandC

is very high, making it hard to see the difference in per-

formance between the other three clustering approaches, we
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Figure 5: I/O Cost on Real Map (excl. RandC).

plotted Figure 5 without showing the RandC results. Figure

5 shows that SPC performs the best, followed by TWPC and

then TopoC. The results indicate that for high-locality graphs

such as the Ann Arbor map minimizing the cross-page links

is not as effective as partitioning based on spatial proximity.

Although TopoC has the worst performance among the three

clustering optimizations, it is still much more effective than

RandC. This is contradictory to the suggestion in [14, 16]

that topological clustering is not effective for highly cyclic

graphs. Note that when the buffer size is greater than 512

Kbytes, the difference between the three clustering strategies

is becoming small. This is because the size of the buffer is

large enough to contain the expansion locality of the Dijk-

str-a algorithm captured by all three clustering optimization.

Therefore, roughly one pass for such a large buffer would be

sufficient to compute the single-source shortest paths.

6.2 Experiments on the High-Locality Random Graphs

The second set of experiments is based on a randomly gen-

erated graph with 5,000 nodes, average outdegree of 3, and

high locality. While the real Ann Arbor map is very planar

and interconnected, the high-locality random graph does not

guarantee planarity. We conduct the same single-source path
search experiments described above. The results in Figure 6

show that RandC remains the distant worst, with the TopoC

significantly worse than the other two clustering approaches.

The close-up results in Figure 7 show that SPC still performs

better than TWPC. This means that high locality is the domi-

nant reason why SPC performs better than TWPC. Planarity

is less relevant.

6.3 Experiments on the Low-Locality Random Graphs

Lastly, we test a randomly generated graph with 5,000 nodes,

average outdegree of 3, and no locality. Interestingly, the

results in Figure 8 show that RandC and SPC are equally the

worst. This can be explained by the fact that without locality,

i + Spc + Tkvpc + Topoc RandC I

128 192 256 320 384 448 “512 ’576 840

Buffer Size (KByte)

Figure 6: I/O Cost on High-locality Graph.

+ SPC + TWPC + TopoC

---
256 320 384 ‘ 448 “ 512 ‘ 576 840

Buffer Size (KByte)

Figure 7: I/O Cost on High-locality Graph (excl. RandC).

the spatial proximity is irrelevant in clustering optimization.

Consequently, the SPC performs the same as the RandC on

graphs with no locality. The results show that TWPC has
the best performance, followed by TopoC. This indicates

that TWPC is not locality-dependent, therefore has better

performance than SPC, TopoC, and RandC on graphs with no
locality.

7 Conclusions

In this paper, we consider the optimization of path query pro-

cessing based on graph clustering techniques for digital map

databases. Clustering optimization is attractive because it

does not incur any run-time cost, and it requires no auxiliary
data structures that demand memory. More importantly, it is

complimentary to many of the existing path query solutions

proposed in the literature that typically tackle the problem at
the data structure or at the algorithmic level.
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Figure 8: I/O Cost on Low-locality Graph.

The contributions of this paper are:

1

2

3

4

A new clustering technique, called spatial partition clus-

tering, is developed for path query optimization for digi-

tal map databases.

Three existing graph clustering techniques, namely two-

way partitioning, topological, and random clustering, are

identified. All four techniques are implemented in a

uniform testbed for a fair benchmarking of path query

processing in digital map databases.

For the first time, experimental evaluation of the com-

parative performance of the above four graph clustering

techniques is conducted based on various buffer sizes and

different graph localities.

Our experimental results can be used to establish guide-

lines in selection of the best clustering technique based

on the type of maps at hand. For example, the results

show that our spatial partition clustering performs the

best for high-locality graphs whereas the two-way parti-

tioning approach works the best for low-loczility graphs.
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