
Shaping SQL-Based Frequent Pattern Mining
Algorithms

Csaba István Sidló1 and András Lukács2

1 Eötvös Loránd University, Faculty of Informatics,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

scs@elte.hu
2 Computer and Automation Research Institute, Hungarian Academy of Sciences,

Kende u. 13-17., 1111 Budapest, Hungary
alukacs@sztaki.hu

WWW home page: http://informatika.ilab.sztaki.hu/websearch/

Abstract. Integration of data mining and database management sys-
tems could significantly ease the process of knowledge discovery in large
databases. We consider implementations of frequent itemset mining algo-
rithms, in particular pattern-growth algorithms similar to the top-down
FP-growth variations, tightly coupled to relational database manage-
ment systems. Our implementations remain within the confines of the
conventional relational database facilities like tables, indices, and SQL
operations. We compare our algorithm to the most promising previously
proposed SQL-based FIM algorithm. Experiments show that our method
performs better in many cases, but still has severe limitations compared
to the traditional stand-alone pattern-growth method implementations.
We identify the bottlenecks of our SQL-based pattern-growth methods
and investigate the applicability of tightly coupled algorithms in practice.

1 Introduction

Frequent itemset mining (FIM) is a central exercise of data mining. FIM is
a base to solve several further tasks like association rule, sequential and other
frequent pattern mining. Although algorithms for FIM were studied exhaustively
(see e.g. [1]), much fewer results and solutions are known about FIM algorithms
implemented in and for relational database management systems. On the other
hand the demand for integration of data mining tools into the existing database
management systems is tangible. An obvious next step solution is the extension
of the existing database query languages with new functions supporting FIM
algorithms.

Comparing the SQL-based implementations to the stand-alone FIM algo-
rithms one can notice that the second class contains the very well performing
pattern-growth algorithms [10, 19], while the idea of pattern-growth is poorly
represented among the available SQL-based FIM algorithms [25]. The main pro-
posal of this paper is to eliminate this flaw by suggesting a new pattern-growth

FIM algorithm tightly coupled to relational database management systems. The-
refore we examine SQL-based FP-growth algorithms in a performance perspec-
tive, that is whether they are usable in practice. The main result is the efficient
implementation of the sophisticated FP-growth algorithm. We expect that our
algorithms do the data processing inside the database. We identify the bott-
lenecks of the algorithms in order to determine the promising directions for
development of data mining enabled database systems.

2 Integrating Data Mining and Databases, Related Work

Data mining addresses extraction of interesting knowledge from large databases.
However, this complements the goals of the data warehouse and on-line analytical
processing technologies, the chasm between the existing data mining and the
database world is rather wide. Most data mining solutions include fully database-
independent applications for the data mining tasks. We belive that coupling data
mining with relational databases would remarkably improve the efficiency in the
knowledge discovery process and simplify the construction of decision support
systems.

Inductive databases [12, 7] are databases that integrate data with knowledge.
The main goal of an inductive database is to allow the user not only to query the
data that resides in the database, but also to query and mine generalizations,
patterns of interest. The knowledge discovery process should be supported by an
integrated framework, the user should be allowed to perform different operations
on both data and patterns. The interaction takes place through inductive query
languages supporting data mining, which are often extensions of SQL. A good
comparison between languages supporting descriptive rule mining can be found
in [6]. Other directions allowing data mining-like queries are data mining query
interfaces and APIs [18]. From the analyst point of view the usability of OLAP
(on-line analytical processing) systems could also be significantly increased by
the integration of data mining methods. This viewpoint of inductive databases
is the on-line analytical mining (OLAM) [9].

Despite the probable usefulness we are still far away from a general theory
and practical realizations of full value of inductive databases, however, there are
promising partial results, and also RDBMS vendors try to integrate more and
more knowledge discovery support in their systems, turning them into decision
support platforms (see [14] and [15]).

The accomplishment of integration from the architectural point of view is still
an open question. In case of the fully separated systems, the required data is
read from the DBMS, the mining is performed on a file system-cached version,
and the results are written back to the database. The advantage here is the
possibility to use special memory structures and buffer strategies. The loosely
coupled architectures access the data through some standard interface too, but
push parts of the data mining tasks in the DBMS. The tightly coupled variants
use only facilities of the DBMS. A tightly coupled architecture is introduced in
[16].

Nonetheless, SQL-based tightly coupled algorithms are considered bearing
significantly inferior in terms of running times compared to stand-alone imple-
mentations, there exist advantages of tightly coupled data mining. Since data
appears mostly in data warehouses and other databases in practice, in the case of
tightly coupled data mining applications no additional data mining system is ne-
eded. Databases have already solved the problem of efficient and safe storing and
querying large datasets reliably. Therefore, DBMSs can facilitate data mining
to become an online, robust, scalable and concurrent process by complementing
the existing querying and analytical functions. A relevant example is that of the
caching problem. When data structures are too large to fit in memory, we can
try to entrust caching to the database engine.

The first attempt to the particular problem of integrated frequent itemset
mining was the SETM algorithm [11], expressed as SQL queries working on rela-
tional tables. The Apriori algorithm [2] opened up new prospects for FIM. The
database-coupled variations of the Apriori algorithm were carefully examined
in [22]. The SQL-92 based implementations were too slow, but the SQL imp-
lementations enhanced with object-relational extensions (SQL-OR) performed
acceptable. The so-called Cache-Mine implementation had the best overall per-
formance, where the database-independent mining algorithm cached the relevant
data in a local disk cache. The optimization of the key operation, the join que-
ries was studied in [26], and a new SQL-92-based method, Set-oriented Apriori
was introduced. Further performance evaluations on commercial RDBMS can be
found in [28], evaluations of the SQL-OR option in [17]. An interesting SQL-92
algorithm based on universal quantification is discussed in [20] and [21].

Since the introduction of the FP-growth method [10], a few attempts were
made to implement pattern-growth methods inside the RDBMS [25]. [3] presents
a novel, FP-tree-based indexing method, which provides a complete and compact
representation of the dataset for frequent itemset mining, and collaborates effi-
ciently with the relational database kernel. [8] deals with database-independent
frequent itemset mining from secondary memory.

FIM is investigated most intensively among the problems of data mining in
DBMS, but other classical data mining tasks are also studied, e.g. building and
applying decision tree classifiers [23, 5].

3 Association Rule and Frequent Itemset Mining

Several data mining tasks, including identification of joint distribution, comp-
ression, and fast counting can be reduced to association rules mining.

Let us consider the set of items I = {item1, item2, . . . itemm}. A setsystem
D ⊆ P (I) of I is called database and the elements of D are the baskets of items.
The support of an itemset A ⊂ I is the number of baskets that have all of the
items from A. We call an itemset A frequent if A has a support greater than
some fix threshold s. Finding all frequent itemsets is the goal of the frequent
itemset mining (FIM).

Association rules are binary relations between itemsets. An association rule
A → B is an ordered pair of two disjoint itemset, here A and B. The support
of the rule A → B is the support of A ∪ B, the number of baskets containing
A ∪ B. The confidence of this rule is defined by the ratio of the support of the
set A ∪ B to the support of the set A. The aim of association rule mining is to
find all the rules that have a support and confidence greater than or equal to
some previously given s and c, respectively. Practically association rule mining
can be derived to the frequent itemsets mining problem.

To solve the FIM problem one can observe that frequent itemsets satisfy the
antimonotonicity property (or Apriori principle), for a subset A of itemset B the
support of A is greater or equal to the support of B. This property is the base of
the multi-pass algorithm called Apriori [2]. Further algorithms solving the FIM
problem are based on pattern-growth [10, 19].

4 Apriori-Based Methods

The Apriori algorithm iterates two basic phases to find frequent itemsets. In the
nth iteration step it generates at first candidates for frequent itemsets having
size n, which can be done utilizing the Apriori principle: the nth candidate set
Cn can be produced from the (n − 1)th set of frequent itemsets Fn−1. Next it
tests the candidate set against the database, by counting support values for the
candidates. The process iterates until the candidate itemset becomes empty. We
don not have to materialize C1, all items in the database are candidates, and in
all other cases we materialize Cn and Fn. Next we discuss the SQL-92 methods
briefly.

The SQL implementations differ in data representation. Two basic varia-
tions to represent these sets in relations are the horizontal approach, where
Cn and Fn have the schema (item1, item2, ...itemn), and the vertical appro-
ach with (set id, item) schema. The horizontal approach have the disadvantage
that the item count is limited by the possible count of table attributes, but
can be beneficial in the performance view. The input database table has always
(transaction id, item) schema, because of the unknown number of items per
transaction, and fits mostly to the star schema in relational data warehouses.

The implementations also differ in the SQL commands for candidate ge-
neration and support counting. Since the support counting phase is the most
time consuming part of the computing, most algorithms share the candidate ge-
neration operation, using a k-way join to generate Cn from Fn−1. The support
counting commands like K-Way-Join, Subquery and 2-Way-Join utilize join ope-
rations, or rely on group by computations like Two-Group-Bys [22]. The basic
K-Way-Join support counting joins the data table n times in the nth step:

insert into Fn select item1 ... itemn count(∗)
from Cn, Fn−1 as I1, ... Fn−1 as In

where I1.item < Cn.item1 and ... and In.item < Cn.itemn and
I1.tid = I2.tid and ... and In−1.tid = In.tid

group by item1, ... itemn

having count(∗) ≥ minsup.

Subquery is an optimization of the K-Way-Join, which makes use of the com-
mon prefixes between the itemsets in the candidate set. We developed different
versions of Subquery to apply the divide-and-conquer idea of [24]: if we divide
the database into distinct partitions, then an itemset can only be frequent, if it
is frequent on at least one partition. It is possible therefore to partition the input
table, find the frequent itemsets over the partitions, then test all partition-wise
valid frequent itemsets over the whole input table. Unfortunately, as depicted on
Figure 3, the execution times against the size of the input table don not allow
to efficiently apply the partition trick. However, the method could be used to
mine data stored on multiple databases, as shown in [13].

5 Pattern-Growth Methods

Pattern-growth methods, first published in [10], represent the database in a
compact data structure, called Frequent-Pattern-tree (FP-tree) to avoid repeated
database scans and generating large candidate sets. The FP-tree stores items
have greater support than the minimum support in a tree structure. Given an
ordering of the items, transactions are represented as paths from the root node,
sharing the same upper path if their first few frequent items are the same. The
FP-tree is searched recursively to find the frequent itemsets with the FP-growth
method.

Figure 1 shows an FP-tree built for an example database with minimum
support threshold 2. All node is labelled by an item, has a count value and a
sidelink to its siblings. The count value refers to the support of the path’s itemset
from the root to the given node. An additional header table stores the initial
sidelink and the total item count for the items.

Fig. 1. FP-tree for a given database, built with minimum support threshold 2

5.1 Constructing the FP-tree

We represent the FP-tree in a natural fashion in a table having the schema

node : (node id, parent id, item, count, sidelink).

In a particular state of processing the binary sidelink attribute shows, whether
a node is part of the processed subtree or not (Y /N). On the first level of the
tree the parent attributes are null. An alternative approach can be found in [25],
where instead of the parent reference, a specially implemented and not fully
discussed path attribute is used for all nodes.

The FP-tree can be built by reading the database once, inserting a new path
per transaction into the tree if the itemset of its frequent items has not been
represented yet, or increasing the counts else. This method expressed as SQL
queries is, however, not efficient, because of the cost of the node table accesses
individually for all items. Instead of that, we build the FP-tree level by level,
inserting all nodes on a particular level of the tree by one SQL query.

The first version we present uses the subset of the original input table con-
taining only the transaction parts of frequent items, and a table containing
(node id, item) elements, representing the prefix we have processed. We delete
the processed rows from the filtered input table, get the next item per transac-
tion by a minimum search, and insert new rows in node. Supposing that input
table is tdb filtered : (tid, item), the prefix table is prefix : (tid, node id), and
node seq.nextval is used to generate the unique identifiers, the key step is:

insert into node
select node seq.nextval, min.minitem,

prefix.node id, count(min.tid)
from (select tid, min(item) minitem

from tdb filtered
group by tid) min, prefix

where min.tid = prefix.tid
group by min.item, prefix.node id.

Our second version uses an analytic function called dense rank to produce
a sorted and filtered version of the input table. We create groups with the help
of this function, according to the tid attribute, and rank the items in the group
based on the given ordering (supposing that tdb:(tid, item) is the input table):

select tid, item, dense rank() over (partition by tid order by item) rank
from tdb.

In this case the filtered input table is tdb filtered : (tid, item, rank). Building
node is similar to the previous version, but we can eliminate the minimum search
and the deleting by referring to all levels by the rank value.

Items in the input table are represented by identifiers, and a natural ordering
is given for them, but this ordering is not suitable for building the FP-tree. We
use an additional table for the items, in which they are ordered according to
exactly one new identifier. The new identifiers are given so, that the natural
ordering of them will be the same as the descending ordering of the original
items based on the count of transactions they appear in. This ordering promises
optimal tree structure in the sense of compactness. This step can be solved by
a simple sorting query, and the results can be used initially to fill up the header
table described later.

5.2 FP-tree Evaluation

To avoid the combinatorial problem of evaluating the FP-tree, we use a met-
hod similar to the top-down FP-growth described in [27], which enables fin-
ding all frequent itemsets without materializing conditional subtrees. The core
of the algorithm is a recursive procedure utilizing SQL operations and addi-
tional tables. The header : (header id, item, count) table stores count infor-
mation for items coming up in stages of the recursion, and also serves as a
recursion heap. Header table identifiers are analogous to the separate header
tables in the original FP-growth concept. All those itemsets are considered in
a recursion step, which end up with a given x̄ item sequence. An other table
header postfix : (header id, item) stores these x̄ postfixes for the header iden-
tifiers. The mine procedure recursively produces all frequent itemsets above a
given minsup minimal support value. First after the FP-tree creation phase it
is called mine(0), when header is already filled with frequent items and their
counts, and rows refer to the initial header id 0.

Procedure mine(h id)
1 for h rec in (select header id, item, count from header

where header id = h id)
2 if h rec.count ≥ minsup then
3 output long pattern: (h rec.item, postfix) using header postfix ;
4 new header ← generate new header id ;
5 for each n node from node located on paths

upwards from h rec.item-s, having sidelink = Y
6 n.count ← sum of counts of leaves ;
7 n.sidelink ← Y ;
8 if (new header, n.item) exists in header then
9 add n.count to header row identified by (new header, n.item)
10 else insert (new header, n.item, n.count) into header;
11 for each n node from node not located on paths upwards from

h rec.item-s, having sidelink = Y and item < h rec.item
12 n.sidelink ← N ;
13 mine(new header) ;

We implemented the steps of the algorithms as SQL queries, with the help of
auxiliary tables. Frequent sets are outputted to the result : (set id, item), abso-
lute support values of itemsets to the result support : (set id, support) table.

The main observation that motivated the top-down FP-growth method was,
that if we process the tree in a top-down fashion, then the counts of the no-
des above the actual leaf are no longer needed, therefore they can be used for
counting. We use further temporary tables for the purpose of climbing up the
paths and setting sidelinks and counts (rows 5-12). Table path : (node id, count)
stores the nodes found on the paths with the actual count value. We climb up
the paths level by level, accumulating the counts of the leaves. The required
information (original node, actual node, count value of the original node) for

these steps are stored in an other auxiliary table. This step can be solved by the
use of a recursive query as well (assuming the syntax of Oracle):

select node id from node
start with node id = (actual node) connect by prior parent id = node id.

Processing the nodes on the paths leaf by leaf with the use of a recursive
query instead of level by level, however, was less effective according to our early
test results.

5.3 Indices and Further Optimization

It became clear after implementing the first versions of the algorithm, that the
main cost arises from the node table accesses, especially from updates (steps
6, 7 and 12). These accesses refer to more and more node by the end of the
processing, when we process nodes near to the leaves. We can optimize the
updates, for example updating only those sidelinks of the nodes which do not
have the right value yet, but after all without the use of indices these steps
require full scans of the node table, and this costs mostly lots of block reads and
writes.

The node id, parent id and item attribute values don’t change after building
the node table. It is therefore profitable to use standard B-tree indices on them,
like (item, node id) for searching node id-s by item, or (node id, parent id) to
find parent nodes efficiently. The sidelink and count values are changed fre-
quently. We don’t want to access the table by the count attribute, but the use
of some index on the sidelink attribute can be profitable. We can use regular
indices, or, since the sidelink attribute has only two distinct attributes, we can
use bitmap index. We tested both the regular and bitmap version for sidelink.
Bitmap indices are good for selecting rows by low cardinality attributes, and the
access times were really lower in practice. We refer hereafter the indexed version
of the above described algorithm as FP-TDG.

We implemented several alternatives of FP-TDG. We experienced, that de-
normalizing the node table is beneficial: the node:(node id, parent id, item),
sidelink:(node id), count: (node id, count) schema enables us to manage the
frequently changed information apart from the permanent tree-structure infor-
mation. In this case we store the binary ”header” information as a node id set.
The ”count” values for nodes are stored in a smaller and exclusive table. Instead
of building separate indices on these two tables we store them as B-trees with
the help of the so-called ”index-organized table” facility of the database server.
We refer this version as FP-TDG2.

6 Experiments

Our experiments were performed on Oracle 9i Enterprise Edition release 2, ins-
talled on a PC server with two 3 GHz Intel Pentium processor, 2 GB memory,
RAID-5 with IDE disks and Debian Linux operating system. The memory usage

of the database server was limited to 1 GB, because of other background services
on the server. Redo logging was reduced for all tables, and parallel processing
functions of the database were not enabled.

We generate the sequences of SQL operations by PL/SQL procedures. PL/SQL
could be exchanged to any other programming language, which can connect to
the database server through some standard database API. The code can be exe-
cuted on an arbitrary client, because generating the SQL statements requires
only little computing and networking capacity.

We used public FIMI [1] datasets as test datasets (table 1 shows the proper-
ties of the four selected datasets for demonstration).

Table 1. Dataset properties

Dataset Num. of records Num. of Num. of items Avg. num. of items
(K) transactions per transaction

RETAIL 908.576 88,162 16,469 10.3
T10I4D100K 250 100,000 250,000 10
ACCIDENTS 11,498 340,183 468 33.8

BMS-WEBVIEW-2 358.278 77,512 3,340 4.6

We have chosen the Subquery method to compare our algorithms to, because
- as suggested in [22] - Subquery had the best overall performance (although this
is in fact opposed to the result in [21], where K-Way-Join is superior in this cate-
gory). We implemented our version with the so-called second-pass optimization:
we don not materialize the candidates of size two, we replace it with a 2-way
join between frequent item tables of size one.

The other algorithm we have chosen to compare is the nonordfp algorithm
[1], which is a fully database-independent implementation, coded in C++. The
algorithm nonordfp handles an FP-tree-like structure, and can efficiently evalu-
ate it without materializing subtrees. We implemented a tiny cache-mine system,
where the application runs on the hardware of the database, but only connects
to the database to read out the input data and to write back the result through
standard JDBC interface. The code of nonordfp caches the data in the filesystem
for processing. The memory usage was not limited.

The main part of nonordfp’s total execution times was the time needed to
read and write the database. The response time goes up only below really low
minimum support values, when the result set becomes large. The algorithm no-
nordfp outperforms the SQL-based methods for low minimum support, however
as being in-memory algorithm, the input size is limited by the available memory.

Figure 2 shows the execution times of our two versions of creating the FP-
tree. Figure 3 (a.) shows execution times with different sized samples of the
RETAIL database at the minimum support value of 0.5 %. Figures 3 (b.) and
4 compare the total execution times of our algorithms. FP-TDG and FP-TDG2
mostly outperform Subquery, but in case of the T10I4D100K generated dataset
they do not perform well. This dataset is rather sparse, and most FP-growth

methods work less efficiently on sparse datasets. This can be seen here as well.
The FP-tree becomes too large, it does not compress the database efficiently,
and this causes a leap in the aggregated node-access times. On the other hand
the sparsity of the database is advantageous for the join-based Apriori methods,
when the size of the candidate sets shrink fast.

1

10

100

1000

10000

T
1
0
I4

D
1
0
0
K

 -
 1

%

B
M

S
W

E
B

V
IE

W
2

-
0
.1

 %

R
E

T
A

IL
 -

 0
 %

A
C

C
ID

E
N

T
S

 -

9
0

 %

minimum search

dense rank

Fig. 2. Constructing the FP-tree for some selected databases and minimum support
values

RETAIL samples - 0.5 % minimum support

0

50

100

150

200

250

300

350

400

450

500

0 20000 40000 60000 80000

Input Size (transaction count)

T
o
ta

l
T

im
e
 (

s
e
c
)

SUBQUERY - 0.5%

NONORDFP-CACHE - 0.5%

FP-TDG - 0.5%

FP-TDG2 - 0.5%

RETAIL

1

10

100

1000

10000

100000

00.511.522.53

Minimum Support (%)

T
o
ta

l
T

im
e
 (

s
e
c
)

SUBQUERY

NONORDFP-CACHE

FP-TDG

FP-TDG2

(a.) (b.)

Fig. 3. Execution times for the RETAIL dataset

We have tested Subquery and FP-TDG2 in real-life environment, over logs
of the largest Hungarian web portal [origo] (www.origo.hu). The site produces
7,000,000 page hits on a typical workday, which is processed by an experimental
weblog mining architecture (see [4] for details). The preprocessed data is stored

T10I4D100K

1

10

100

1000

10000

012345

Minimum Support (%)

T
o
ta

l
T

im
e
 (

s
e
c
)

SUBQUERY
NONORDFP-CACHE
FP-TDG
FP-TDG2

ACCIDENTS

1

10

100

1000

10000

100000

5060708090

Minimum Support (%)

T
o

ta
l
T

im
e

 (
s
e

c
)

SUBQUERY NONORDFP-CACHE

FP-TDG FP-TDG2

(a.) (b.)

Fig. 4. Execution times for the T10I4D100K and the ACCIDENTS datasets

in the central Oracle 9i database component of the architecture. The task is to
identify frequent pages accessed together by the users on a given day. Execution
times of a typical workday can be seen on Figure 5, where 767,663 identified
user accessed 57,911 different pages in the course of the day, which resulted in
2,395,146 records. The average number of pages per user was 3.12.

Weblog

1

10

100

1000

10000

00.511.52

Minimum Support (%)

T
o

ta
l
T

im
e

 (
s
e

c
)

SUBQUERY FP-TDG2

Fig. 5. Execution times on weblog data

The results can be analysed in our architecture by the given statististical
analysis framework, through a webserver with dynamic web pages, connected
to the database. Users can discover frequent page sets by extending these sets
one-by-one, starting with an empty set, or with a directly given set. They can
see on every page the details of the given page set, and the toplist of the next
element extending this set. This simple method is suitable in our case, where (for

the minimum support interval of Figure 5) we have 1 to 47 thousand frequent
sets with a maximum size of 13.

In this practical use of the SQL-based FP-TDG2 we eliminated the need
for a separate FIM system with duplicated data. Frequent sets are produced
with only the use of the common database facilities. The execution times are
acceptable, they are comparable to the computation times of some complex
statistical aggregations in the database.

Implementations of the algorithms and the used sample datasets can be re-
ached at http://scs.web.elte.hu/sqlfim/.

7 Conclusion

In this paper, we proposed an FP-tree based algorithm for frequent itemset mi-
ning, discussed variants for both constructing and evaluating the tree. Our final
algorithm performed well in its category, but it has severe limitations in per-
formance compared to stand-alone FIM algorithms. We found that the common
buffer management and indexing technics do not provide enough support for
the task of efficient storing and accessing the FP-tree in relations, which is the
essential problem of our SQL-based method. However, practical uses of our al-
gorithm seems possible, especially for high support thresholds, where the result
set still has a manageable size.

References

1. Frequent itemset mining implementations repository. http://fimi.cs.helsinki.fi/.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In VLDB ’94: Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

3. E. Baralis, T. Cerquitelli, and S. Chiusano. Index support for frequent itemset
mining in a relational DBMS. In ICDE ’05: Proceedings of the 21st Internatio-
nal Conference on Data Engineering (ICDE’05), pages 754–765. IEEE Computer
Society, 2005.

4. A. A. Benczúr, K. Csalogány, K. Hum, A. Lukács, B. Rácz, C. Sidló, and M. Uher.
Architecture for mining massive web logs with experiments. In Proceedings of the
HUBUSKA Open Workshop on Generic Issues of Knowledge Technologies, 2005.

5. F. Bentayeb and J. Darmont. Decision tree modeling with relational views. In
ISMIS ’02: Proceedings of the 13th International Symposium on Foundations of
Intelligent Systems, pages 423–431. Springer-Verlag, 2002.

6. M. Botta, J.-F. Boulicaut, C. Masson, and R. Meo. Query languages supporting
descriptive rule mining: A comparative study. In Database Support for Data Mining
Applications, volume 2682/2004 of Lecture Notes in Computer Science, pages 24–
51. Springer-Verlag, 2004.

7. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes wit-
hin the inductive database framework. In DaWaK ’99: Proceedings of the First
International Conference on Data Warehousing and Knowledge Discovery, pages
293–302. Springer-Verlag, 1999.

8. G. Grahne and J. Zhu. Mining frequent itemsets from secondary memory. In ICDM
’04: Proceedings of the Fourth IEEE International Conference on Data Mining
(ICDM’04), pages 91–98, Washington, DC, USA, 2004. IEEE Computer Society.

9. J. Han. Towards on-line analytical mining in large databases. SIGMOD Rec.,
27(1):97–107, 1998.

10. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate gene-
ration. In Proceedings of the 2000 ACM SIGMOD international conference on
Management of data, pages 1–12. ACM Press, 2000.

11. M. Houtsma and A. Swami. Set-oriented data mining in relational databases. Data
Knowl. Eng., 17(3):245–262, 1995.

12. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Commun. ACM, 39(11):58–64, 1996.

13. H. Kona and S. Chakravarthy. Partitioned approach to association rule mining
over multiple databases. pages 320–330, 2004.

14. W. Li and A. Mozes. Computing frequent itemsets inside Oracle 10g. In VLDB’04,
pages 1253–1256, 2004.

15. J. MacLennan. SQL Server 2005: Unearth the new data mining features of analysis
services 2005. MSDN Magazine, 19(9), 2004.

16. R. Meo, G. Psaila, and S. Ceri. A tightly-coupled architecture for data mining. In
ICDE ’98: Proceedings of the Fourteenth International Conference on Data Engi-
neering, pages 316–323, Washington, DC, USA, 1998. IEEE Computer Society.

17. P. Mishra and S. Chakravarthy. Performance evaluation of SQL-OR variants for
association rule mining. Lecture Notes in Computer Science, 2737/2003:288–298,
2003.

18. A. Netz, S. Chaudhuri, U. M. Fayyad, and J. Bernhardt. Integrating data mining
with SQL databases: OLE DB for data mining. In Proceedings of the 17th Interna-
tional Conference on Data Engineering, pages 379–387. IEEE Computer Society,
2001.

19. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-structure
mining of frequent patterns in large databases. In Proceedings of the 2001 IEEE
International Conference on Data Mining, pages 441–448. IEEE Computer Society,
2001.

20. R. Rantzau. Processing frequent itemset discovery queries by division and set
containment join operators. In Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, pages 20–27. ACM Press,
2003.

21. R. Rantzau. Frequent itemset discovery with SQL using universal quantification.
In Database Support for Data Mining Applications, pages 194–213, 2004.

22. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: alternatives and implications. In SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on Management
of data, pages 343–354. ACM Press, 1998.

23. K.-U. Sattler and O. Dunemann. SQL database primitives for decision tree classifi-
ers. In CIKM ’01: Proceedings of the tenth international conference on Information
and knowledge management, pages 379–386. ACM Press, 2001.

24. A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for mining
association rules in large databases. In Proceedings of the 21th International Con-
ference on Very Large Data Bases, pages 432–444. Morgan Kaufmann Publishers
Inc., 1995.

25. X. Shang, K.-U. Sattler, and I. Geist. SQL based frequent pattern mining with
fp-growth. In INAP/WLP, pages 32–46, 2004.

26. S. Thomas and S. Chakravarthy. Performance evaluation and optimization of
join queries for association rule mining. In Proceedings of the First Internatio-
nal Conference on Data Warehousing and Knowledge Discovery, pages 241–250.
Springer-Verlag, 1999.

27. K. Wang, L. Tang, J. Han, and J. Liu. Top down FP-growth for association
rule mining. In PAKDD ’02: Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, pages 334–340, London, UK,
2002. Springer-Verlag.

28. T. Yoshizawa, I. Pramudiono, and M. Kitsuregawa. SQL based association rule
mining using commercial RDBMS (IBM DB2 UBD EEE). In Proceedings of the
Second International Conference on Data Warehousing and Knowledge Discovery,
pages 301–306. Springer-Verlag, 2000.

