
University of Kansas | School of Engineering

A Comparison of Software and Hardware Techniques for
x86 virtualization

Virtual Machines
1

Keith Adams, Ole Agesen

Presented by Ramya Naidu

University of Kansas | School of Engineering

Abstract

Until 2006, x86 architecture did not permit classical trap-and-emulate
virtualization. Instead VMMs for x86 like VMware used Binary Translation of
the guest kernel code.

2006 - Intel and AMD introduced architectural extensions to support
classical virtualization on x86.

Virtual Machines
2

The paper compares software VMM techniques with the new VMM with
hardware support. And discovers that hardware techniques suffer from low
performance than software VMM.

University of Kansas | School of Engineering

Outline

• Classical Virtualization

• Software Virtualization

• Hardware Virtualization

Virtual Machines
3

• Qualitative Comparison

• Experiments

• Software and Hardware Opportunities

• Conclusion

University of Kansas | School of Engineering

Classical Virtualization

• Essential characteristics for a VMM, established by Popek and Goldberg ‘s 1974 paper

 Fidelity - Software on the VMM executes identically to its execution on
hardware

 Performance – Software performs on VMM as it would on hardware
 To ensure performance, majority of guest instructions should be executed

without VMM intervention

Virtual Machines
4

 Safety – VMM manages all hardware resources
 VMM should intervene when instructions that interact with hardware are

executed (sensitive instructions)

University of Kansas | School of Engineering

Classical VMM

• Classical VMM – particular VMM implementation style, uses trap-and-
emulate

• Classically Virtualizable Architecture – all instructions that read or write
privileged state can be made to trap when executed in unprivileged
context

• Important ideas from classical VMM implementations

Virtual Machines
5

 De-Privileging

 Maintain Shadow Structures

 Use of Memory Traces

University of Kansas | School of Engineering

Classical VMM: De-privileging

• Executes guest operating systems directly but at lesser privilege
level, user-level

• Instructions that read or write privileged state – trap

• VMM intercepts the trap and emulates the trapping instruction

Virtual Machines
6

• VMM intercepts the trap and emulates the trapping instruction
against the virtual machine state

University of Kansas | School of Engineering

Classical VMM: Primary and Shadow structures

• Privileged state of each guest differs from that of the underlying
hardware

• Basic function of VMM is to meet guest’s expectation

• To accomplish this VMM derives shadow structures from guest-level
primary structures

Virtual Machines
7

primary structures
 Primary structures reflect the state of guest

 VMM-level shadow structures are copies of guests primary structures

• These structures are kept coherent using – memory tracing

University of Kansas | School of Engineering

Classical VMM: Memory Tracing

• On-CPU privileged state – handled trivially
 Includes - Page table pointer register, processor status register etc

 Guest access to these registers coincide with trapping instructions

 On trap VMM refers to the corresponding shadow of the guest register structure in the
instruction emulation

• Off-CPU privileged data
 Guest access to these do not coincide with trapping instructions

Virtual Machines
8

 Guest access to these do not coincide with trapping instructions

 Example : Guest PTEs are considered privileged data – dependencies on this are not
accompanied by traps

They can be modified by any store in guest instruction stream

 VMM cannot maintain coherency of shadow structures

• VMMs use hardware page protection mechanisms to trap access to in
memory primary structures – memory tracing

University of Kansas | School of Engineering

Classical VMM : Memory Tracing example

• Guest PTEs for which shadow PTEs are constructed may be write-
protected

• Guest access to these cause traps (tracing faults)

• VMM decodes the faulting guest instruction, emulates its effect on
primary structure and propagates the change to shadow structures

Virtual Machines
9

primary structure and propagates the change to shadow structures

University of Kansas | School of Engineering

Refinements to Classical VMM

• Traps are expensive

• Exploit flexibility VMM/guest OS interface
 Modify guest OS to provide higher-level information to VMM

 Approach relaxes Popek and Goldberg’s fidility requirement

 But gains in performance

Virtual Machines
10

• Exploit flexibility in VMM/hardware interface
 IBMs System 370 architecture

University of Kansas | School of Engineering

x86 obstacles to classical virtualization

• x86 architecture is not classically virtualizable

• Lack of traps when privilege instructions run at user-level.
 Example – popf (pop Stack into flags register), loads word from stack into flags register

When executed in user-level, popf should trap but instead the flag register is overwritten
except for the interrupt-enable flag IF bit

Virtual Machines
11

University of Kansas | School of Engineering

Software VMM: To overcome obstacles on x86

• Execute guest on Interpreter
But fetch-decode-execute cycle of interpreter reduces performance

• Binary Translation of the guest
 VMM can switch between BT mode and direct execution mode

 Properties
On demand – Code is translated only when it is about to execute

Dynamic - Translation happens at runtime

Virtual Machines
12

Dynamic - Translation happens at runtime

Subsetting – the translators input is full x86 instruction set, including all the privileged
instructions; output is a safe subset of user-mode instructions

– Privilege Instructions: in-TC sequences are used

– For complex operations like context switch – callout to runtime

innocuousinnocuous

sensitive

IDENT(ical)

SIMULATE(d)

University of Kansas | School of Engineering

Software VMM: Adaptive Binary Translation

• Adaptive Translation – used to reduce more traps
Privileged instruction traps – eliminated by simple BT

Non-privileged instructions (eg: load, store) accessing sensitive data such as page tables
– Strategy : innocent until proven guilty

– Identify the CCF that traps frequently

– IDENT translation type is adapted to SIMULATE translation type

– Patch CCF5 with a jump in CCF1

– This avoids trap in CCF1

Virtual Machines
13

– This avoids trap in CCF1

University of Kansas | School of Engineering

Hardware Virtualization

• Architectural changes to permit classical virtualization on x86

• Virtual Machine Control Block: in-memory data structure
 contains the state of guest virtual CPU

• New less privileged execution mode – guest mode
 guest mode : supports direct execution of guest code and privilege code

Virtual Machines
14

 guest mode : supports direct execution of guest code and privilege code

• New Instructions
 vmrun and vmexit

University of Kansas | School of Engineering

Hardware Virtualization

Virtual Machines
15

[2]

University of Kansas | School of Engineering

Hardware Virtualization

• Where possible, privileged instructions that affect state within the virtual
CPU as represented within the VMCB, rather than unconditionally
trapping
 Example: popf - with x86 extension to support classical virtualization

VMCB includes a hardware-maintained shadow of the guest flags register

When running in guest mode – instructions operating on flags, operate on the shadow –

Virtual Machines
16

removing the need for exits

• Hardware provides means of throttling some exit types, however use of
traces and hidden page faults directly impact the exit rate

University of Kansas | School of Engineering

Qualitative Comparison – Hardware and Software VMMs

• Trap elimination – Software fares better
– Hardware VMM : replaces traps with exits

– Software VMM : adaptive BT can replace most traps with faster callouts

• Emulation Speed – Software faster
– Hardware VMM : must fetch VMCB and decode trapping instruction before emulating it

– Software VMM : callouts jump to precoded emulation routine

• Code Density – Hardware wins
– Since there is no translation

Virtual Machines
17

– Since there is no translation

• System Calls – runs without VMM intervention

University of Kansas | School of Engineering

Experiments

• Software VMM – VMware Player 1.0.1

• Hardware VMM – VMware implemented experimental hardware assisted
VMM

• Host – HP workstation, VT-enabled

Virtual Machines
18

• Host – HP workstation, VT-enabled
 3.8 GHz Intel Pentium

• All experiments are run natively, on software VMM and on Hardware-
assisted VMM

University of Kansas | School of Engineering

Experiments: User-Level Computations

• Benchmarks used:
SPECint 2000 benchmark on Red Hat Linux 3

SPECjbb 2005 on Windows 2003

• Observations:
With SPECint benchmarks

– Near native performance

– Average slowdown of 4% for software VMM

– Average slowdown of 5% for hardware VMM

– Overhead could be due to host background activity,

Virtual Machines
19

– Overhead could be due to host background activity,
housekeeping kernel threads

With SPECjbb benchmarks
– Both very close to native performance – 99% with

Hardware VMM and 98% in Software VMM

University of Kansas | School of Engineering

Experiments: Server Workload

• Benchmarks:
Apache ab benchmarking tool – on Linux

installation of Apache http server and on Windows
installation

• Observations:
 Both VMMs perform poorly

VMware Player uses hosted I/O model in which all
network packets pass through the host OS’s I/O

Virtual Machines
20

network packets pass through the host OS’s I/O
stack

Performance on Windows and Linux differ

On Windows – Hardware VMM fares better

On Linux – Software VMM fares better

Reason: Apache Configuration
Apache defaults to single address space on

Windows – and on Linux many address spaces

University of Kansas | School of Engineering

Experiment: Desktop-Oriented Workload

• Benchmark
PassMark on Windows XP Professional

The suite of microbenchmarks test various
aspects of workstation performance

• Observations:
Both VMMs encounter similar overhead in most

cases

Paper presents result of only the “Large RAM” and
“2DGraphics” tests.

Virtual Machines
21

“2DGraphics” tests.

 Large RAM
The component tests paging capabilities

 Software VMM performs better than Hardware
VMM

 2D Graphics
Involves system calls

Hardware VMM fares better - Handles kernel/user
transitions better

University of Kansas | School of Engineering

Experiments – Less Synthetic Workload

• Compilation times of Linux kernel and
Apache (on Cygwin)

• Software VMM beats Hardware VMM
 Big compilation jobs -> lots of page faults.

Software VMM is better in handling page faults

Virtual Machines
22

University of Kansas | School of Engineering

Experiments: Forkwait Test

• Test to stress process creation and destruction
 system calls, context switching, page table modifications, page faults etc

• Results – to create and destroy 40000 processes
 Host – 0.6 seconds

 Software VMM – 36.9 seconds

 Hardware VMM – 106.4 seconds

Virtual Machines
23

University of Kansas | School of Engineering

Experiments: Nanobenchmarks

• Test performance of single virtualization sensitive
operation

• Custom guest OS – FrobOS
• Syscall -

Hardware - No VMM intervention in so near native
Software – traps

• in
Native – access a off-CPU register
Software VMM – translates “in” into a short sequence of

instructions that access virtual model of the same

Virtual Machines
24

instructions that access virtual model of the same
Hardware – VMM intervention

• pgfault
Both VMMs use software MMU, logically same
But path taken different – Software VMM receives control and

page faults (in true page fault)
In Hardware VMM path taken is longer – exit/run

• ptemod
Both use shadowing technique to implement guest paging using

traces for coherency
PTE writes causes significant overhead compared to native
Adaptive BT can reduce overhead but Hardware VMM enters and

exits guest mode repeatedly

University of Kansas | School of Engineering

Opportunities

• Microarchitecture
 Hardware overheads will shrink over time as implementations mature

 Measurements on desktop system using a pre-production version Intel’s core
microarchitecture

• Hardware VMM algorithmic changes
 drop trace faults upon guest PTE modification, allowing temporary incoherency

with shadow page tables to reduce costs

Virtual Machines
25

with shadow page tables to reduce costs

• Hybrid VMM

• Hardware MMU support
 trace faults, context switches and hidden page faults can be handled effictively with

hardware assistance in MMU virtualization

University of Kansas | School of Engineering

Conclusion

• Hardware extensions allow classical virtualization on x86 architecture

• Extensions remove the need for Binary Translation and simplifies VMM
design

• Software VMM fares better than Hardware VMM in many cases like
context switches, page faults, trace faults, I/O

Virtual Machines
26

context switches, page faults, trace faults, I/O

• New MMU algorithms might narrow the gap in performance

University of Kansas | School of Engineering

References
[1] “ VMware – Hardware Support”, http://courses.cs.vt.edu/~cs5204/kafura-fall08/Presentations/VMM-

Part2.pdf, retrieved April 8,2009
[2] www.ittc.ku.edu/~niehaus/classes/750-s07/notes/virt-methods-comparison.ppt, retrieved April 8,

2009

Virtual Machines
27

