
University of Kansas | School of Engineering

A Comparison of Software and Hardware Techniques for
x86 virtualization

Virtual Machines
1

Keith Adams, Ole Agesen

Presented by Ramya Naidu

University of Kansas | School of Engineering

Abstract

Until 2006, x86 architecture did not permit classical trap-and-emulate
virtualization. Instead VMMs for x86 like VMware used Binary Translation of
the guest kernel code.

2006 - Intel and AMD introduced architectural extensions to support
classical virtualization on x86.

Virtual Machines
2

The paper compares software VMM techniques with the new VMM with
hardware support. And discovers that hardware techniques suffer from low
performance than software VMM.

University of Kansas | School of Engineering

Outline

• Classical Virtualization

• Software Virtualization

• Hardware Virtualization

Virtual Machines
3

• Qualitative Comparison

• Experiments

• Software and Hardware Opportunities

• Conclusion

University of Kansas | School of Engineering

Classical Virtualization

• Essential characteristics for a VMM, established by Popek and Goldberg ‘s 1974 paper

 Fidelity - Software on the VMM executes identically to its execution on
hardware

 Performance – Software performs on VMM as it would on hardware
 To ensure performance, majority of guest instructions should be executed

without VMM intervention

Virtual Machines
4

 Safety – VMM manages all hardware resources
 VMM should intervene when instructions that interact with hardware are

executed (sensitive instructions)

University of Kansas | School of Engineering

Classical VMM

• Classical VMM – particular VMM implementation style, uses trap-and-
emulate

• Classically Virtualizable Architecture – all instructions that read or write
privileged state can be made to trap when executed in unprivileged
context

• Important ideas from classical VMM implementations

Virtual Machines
5

 De-Privileging

 Maintain Shadow Structures

 Use of Memory Traces

University of Kansas | School of Engineering

Classical VMM: De-privileging

• Executes guest operating systems directly but at lesser privilege
level, user-level

• Instructions that read or write privileged state – trap

• VMM intercepts the trap and emulates the trapping instruction

Virtual Machines
6

• VMM intercepts the trap and emulates the trapping instruction
against the virtual machine state

University of Kansas | School of Engineering

Classical VMM: Primary and Shadow structures

• Privileged state of each guest differs from that of the underlying
hardware

• Basic function of VMM is to meet guest’s expectation

• To accomplish this VMM derives shadow structures from guest-level
primary structures

Virtual Machines
7

primary structures
 Primary structures reflect the state of guest

 VMM-level shadow structures are copies of guests primary structures

• These structures are kept coherent using – memory tracing

University of Kansas | School of Engineering

Classical VMM: Memory Tracing

• On-CPU privileged state – handled trivially
 Includes - Page table pointer register, processor status register etc

 Guest access to these registers coincide with trapping instructions

 On trap VMM refers to the corresponding shadow of the guest register structure in the
instruction emulation

• Off-CPU privileged data
 Guest access to these do not coincide with trapping instructions

Virtual Machines
8

 Guest access to these do not coincide with trapping instructions

 Example : Guest PTEs are considered privileged data – dependencies on this are not
accompanied by traps

They can be modified by any store in guest instruction stream

 VMM cannot maintain coherency of shadow structures

• VMMs use hardware page protection mechanisms to trap access to in
memory primary structures – memory tracing

University of Kansas | School of Engineering

Classical VMM : Memory Tracing example

• Guest PTEs for which shadow PTEs are constructed may be write-
protected

• Guest access to these cause traps (tracing faults)

• VMM decodes the faulting guest instruction, emulates its effect on
primary structure and propagates the change to shadow structures

Virtual Machines
9

primary structure and propagates the change to shadow structures

University of Kansas | School of Engineering

Refinements to Classical VMM

• Traps are expensive

• Exploit flexibility VMM/guest OS interface
 Modify guest OS to provide higher-level information to VMM

 Approach relaxes Popek and Goldberg’s fidility requirement

 But gains in performance

Virtual Machines
10

• Exploit flexibility in VMM/hardware interface
 IBMs System 370 architecture

University of Kansas | School of Engineering

x86 obstacles to classical virtualization

• x86 architecture is not classically virtualizable

• Lack of traps when privilege instructions run at user-level.
 Example – popf (pop Stack into flags register), loads word from stack into flags register

When executed in user-level, popf should trap but instead the flag register is overwritten
except for the interrupt-enable flag IF bit

Virtual Machines
11

University of Kansas | School of Engineering

Software VMM: To overcome obstacles on x86

• Execute guest on Interpreter
But fetch-decode-execute cycle of interpreter reduces performance

• Binary Translation of the guest
 VMM can switch between BT mode and direct execution mode

 Properties
On demand – Code is translated only when it is about to execute

Dynamic - Translation happens at runtime

Virtual Machines
12

Dynamic - Translation happens at runtime

Subsetting – the translators input is full x86 instruction set, including all the privileged
instructions; output is a safe subset of user-mode instructions

– Privilege Instructions: in-TC sequences are used

– For complex operations like context switch – callout to runtime

innocuousinnocuous

sensitive

IDENT(ical)

SIMULATE(d)

University of Kansas | School of Engineering

Software VMM: Adaptive Binary Translation

• Adaptive Translation – used to reduce more traps
Privileged instruction traps – eliminated by simple BT

Non-privileged instructions (eg: load, store) accessing sensitive data such as page tables
– Strategy : innocent until proven guilty

– Identify the CCF that traps frequently

– IDENT translation type is adapted to SIMULATE translation type

– Patch CCF5 with a jump in CCF1

– This avoids trap in CCF1

Virtual Machines
13

– This avoids trap in CCF1

University of Kansas | School of Engineering

Hardware Virtualization

• Architectural changes to permit classical virtualization on x86

• Virtual Machine Control Block: in-memory data structure
 contains the state of guest virtual CPU

• New less privileged execution mode – guest mode
 guest mode : supports direct execution of guest code and privilege code

Virtual Machines
14

 guest mode : supports direct execution of guest code and privilege code

• New Instructions
 vmrun and vmexit

University of Kansas | School of Engineering

Hardware Virtualization

Virtual Machines
15

[2]

University of Kansas | School of Engineering

Hardware Virtualization

• Where possible, privileged instructions that affect state within the virtual
CPU as represented within the VMCB, rather than unconditionally
trapping
 Example: popf - with x86 extension to support classical virtualization

VMCB includes a hardware-maintained shadow of the guest flags register

When running in guest mode – instructions operating on flags, operate on the shadow –

Virtual Machines
16

removing the need for exits

• Hardware provides means of throttling some exit types, however use of
traces and hidden page faults directly impact the exit rate

University of Kansas | School of Engineering

Qualitative Comparison – Hardware and Software VMMs

• Trap elimination – Software fares better
– Hardware VMM : replaces traps with exits

– Software VMM : adaptive BT can replace most traps with faster callouts

• Emulation Speed – Software faster
– Hardware VMM : must fetch VMCB and decode trapping instruction before emulating it

– Software VMM : callouts jump to precoded emulation routine

• Code Density – Hardware wins
– Since there is no translation

Virtual Machines
17

– Since there is no translation

• System Calls – runs without VMM intervention

University of Kansas | School of Engineering

Experiments

• Software VMM – VMware Player 1.0.1

• Hardware VMM – VMware implemented experimental hardware assisted
VMM

• Host – HP workstation, VT-enabled

Virtual Machines
18

• Host – HP workstation, VT-enabled
 3.8 GHz Intel Pentium

• All experiments are run natively, on software VMM and on Hardware-
assisted VMM

University of Kansas | School of Engineering

Experiments: User-Level Computations

• Benchmarks used:
SPECint 2000 benchmark on Red Hat Linux 3

SPECjbb 2005 on Windows 2003

• Observations:
With SPECint benchmarks

– Near native performance

– Average slowdown of 4% for software VMM

– Average slowdown of 5% for hardware VMM

– Overhead could be due to host background activity,

Virtual Machines
19

– Overhead could be due to host background activity,
housekeeping kernel threads

With SPECjbb benchmarks
– Both very close to native performance – 99% with

Hardware VMM and 98% in Software VMM

University of Kansas | School of Engineering

Experiments: Server Workload

• Benchmarks:
Apache ab benchmarking tool – on Linux

installation of Apache http server and on Windows
installation

• Observations:
 Both VMMs perform poorly

VMware Player uses hosted I/O model in which all
network packets pass through the host OS’s I/O

Virtual Machines
20

network packets pass through the host OS’s I/O
stack

Performance on Windows and Linux differ

On Windows – Hardware VMM fares better

On Linux – Software VMM fares better

Reason: Apache Configuration
Apache defaults to single address space on

Windows – and on Linux many address spaces

University of Kansas | School of Engineering

Experiment: Desktop-Oriented Workload

• Benchmark
PassMark on Windows XP Professional

The suite of microbenchmarks test various
aspects of workstation performance

• Observations:
Both VMMs encounter similar overhead in most

cases

Paper presents result of only the “Large RAM” and
“2DGraphics” tests.

Virtual Machines
21

“2DGraphics” tests.

 Large RAM
The component tests paging capabilities

 Software VMM performs better than Hardware
VMM

 2D Graphics
Involves system calls

Hardware VMM fares better - Handles kernel/user
transitions better

University of Kansas | School of Engineering

Experiments – Less Synthetic Workload

• Compilation times of Linux kernel and
Apache (on Cygwin)

• Software VMM beats Hardware VMM
 Big compilation jobs -> lots of page faults.

Software VMM is better in handling page faults

Virtual Machines
22

University of Kansas | School of Engineering

Experiments: Forkwait Test

• Test to stress process creation and destruction
 system calls, context switching, page table modifications, page faults etc

• Results – to create and destroy 40000 processes
 Host – 0.6 seconds

 Software VMM – 36.9 seconds

 Hardware VMM – 106.4 seconds

Virtual Machines
23

University of Kansas | School of Engineering

Experiments: Nanobenchmarks

• Test performance of single virtualization sensitive
operation

• Custom guest OS – FrobOS
• Syscall -

Hardware - No VMM intervention in so near native
Software – traps

• in
Native – access a off-CPU register
Software VMM – translates “in” into a short sequence of

instructions that access virtual model of the same

Virtual Machines
24

instructions that access virtual model of the same
Hardware – VMM intervention

• pgfault
Both VMMs use software MMU, logically same
But path taken different – Software VMM receives control and

page faults (in true page fault)
In Hardware VMM path taken is longer – exit/run

• ptemod
Both use shadowing technique to implement guest paging using

traces for coherency
PTE writes causes significant overhead compared to native
Adaptive BT can reduce overhead but Hardware VMM enters and

exits guest mode repeatedly

University of Kansas | School of Engineering

Opportunities

• Microarchitecture
 Hardware overheads will shrink over time as implementations mature

 Measurements on desktop system using a pre-production version Intel’s core
microarchitecture

• Hardware VMM algorithmic changes
 drop trace faults upon guest PTE modification, allowing temporary incoherency

with shadow page tables to reduce costs

Virtual Machines
25

with shadow page tables to reduce costs

• Hybrid VMM

• Hardware MMU support
 trace faults, context switches and hidden page faults can be handled effictively with

hardware assistance in MMU virtualization

University of Kansas | School of Engineering

Conclusion

• Hardware extensions allow classical virtualization on x86 architecture

• Extensions remove the need for Binary Translation and simplifies VMM
design

• Software VMM fares better than Hardware VMM in many cases like
context switches, page faults, trace faults, I/O

Virtual Machines
26

context switches, page faults, trace faults, I/O

• New MMU algorithms might narrow the gap in performance

University of Kansas | School of Engineering

References
[1] “ VMware – Hardware Support”, http://courses.cs.vt.edu/~cs5204/kafura-fall08/Presentations/VMM-

Part2.pdf, retrieved April 8,2009
[2] www.ittc.ku.edu/~niehaus/classes/750-s07/notes/virt-methods-comparison.ppt, retrieved April 8,

2009

Virtual Machines
27

