SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

A Comparison of Software and Hardware Techniques for
x86 virtualization

Keith Adams, Ole Agesen

Presented by Ramya Naidu

Virtual Machines



SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

Until 2006, x86 architecture did not permit classical trap-and-emulate
virtualization. Instead VMMs for x86 like VMware used Binary Translation of
the guest kernel code.

2006 - Intel and AMD introduced architectural extensions to support
classical virtualization on x86.

The paper compares software VMM techniques with the new VMM with
hardware support. And discovers that hardware techniques suffer from low
performance than software VMM.

Virtual Machines



SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

Outline

» Classical Virtualization

Software Virtualization

Hardware Virtualization

Qualitative Comparison

Experiments

Software and Hardware Opportunities

Conclusion

Virtual Machines




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

Classical Virtualization

* Essential characteristics for a VMM, established by Popek and Goldberg ‘s 1974 paper

= Fidelity - Software on the VMM executes identically to its execution on
hardware

= Performance — Software performs on VMM as it would on hardware

» To ensure performance, majority of guest instructions should be executed
without VMM intervention

= Safety — VMM manages all hardware resources

» VMM should intervene when instructions that interact with hardware are
executed (sensitive instructions)

Virtual Machines




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Classical VMM

Classical VMM — particular VMM implementation style, uses trap-and-
emulate

Classically Virtualizable Architecture — all instructions that read or write
privileged state can be made to trap when executed in unprivileged
context

Important ideas from classical VMM implementations

» De-Privileging
» Maintain Shadow Structures

» Use of Memory Traces

Virtual Machines




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Classical VMM: De-privileging

« Executes guest operating systems directly but at lesser privilege
level, user-level

* Instructions that read or write privileged state — trap

VMM intercepts the trap and emulates the trapping instruction
against the virtual machine state

Virtual Machines



SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Classical VMM: Primary and Shadow structures

Privileged state of each guest differs from that of the underlying
hardware

Basic function of VMM is to meet guest’s expectation

To accomplish this VMM derives shadow structures from guest-level
primary structures

» Primary structures reflect the state of guest

» VMM-level shadow structures are copies of guests primary structures

These structures are kept coherent using — memory tracing

Virtual Machines




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Classical VMM: Memory Tracing

On-CPU privileged state — handled trivially
> Includes - Page table pointer register, processor status register etc
» Guest access to these registers coincide with trapping instructions

» On trap VMM refers to the corresponding shadow of the guest register structure in the
instruction emulation

Off-CPU privileged data

» Guest access to these do not coincide with trapping instructions

» Example : Guest PTEs are considered privileged data — dependencies on this are not
accompanied by traps

» They can be modified by any store in guest instruction stream
» VMM cannot maintain coherency of shadow structures

VMMs use hardware page protection mechanisms to trap access to in
memory primary structures — memory tracing

Virtual Machines




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Classical VMM : Memory Tracing example

» Guest PTEs for which shadow PTEs are constructed may be write-
protected

» Guest access to these cause traps ( tracing faults)

VMM decodes the faulting guest instruction, emulates its effect on
primary structure and propagates the change to shadow structures

Virtual Machines



University of Kansas | School of Engineering

Refinements to Classical VMM

 Traps are expensive

« Exploit flexibility VMM/guest OS interface

» Modify guest OS to provide higher-level information to VMM
» Approach relaxes Popek and Goldberg’s fidility requirement
» But gains in performance

« Exploit flexibility in VMM/hardware interface
» |IBMs System 370 architecture

Virtual Machines

10

SCHOOL OF
ENGINEERING

The University of Kansas




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I B

x86 obstacles to classical virtualization

« x86 architecture is not classically virtualizable

» Lack of traps when privilege instructions run at user-level.
» Example — popf (pop Stack into flags register), loads word from stack into flags register

»When executed in user-level, popf should trap but instead the flag register is overwritten
except for the interrupt-enable flag IF bit

Virtual Machines 1




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Software VMM: To overcome obstacles on x86

« Execute guest on Interpreter
»But fetch-decode-execute cycle of interpreter reduces performance

« Binary Translation of the guest
= VMM can switch between BT mode and direct execution mode
» Properties
»0On demand — Code is translated only when it is about to execute

»Dynamic - Translation happens at runtime

»Subsetting — the translators input is full x86 instruction set, including all the privileged
instructions; output is a safe subset of user-mode instructions
— Privilege Instructions: in-TC sequences are used

— For complex operations like context switch — callout to runtime
SIMULATE(d)
sensitive

IDENT (ical)

Virtual Machines 12




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Software VMM: Adaptive Binary Translation

« Adaptive Translation — used to reduce more traps
»Privileged instruction traps — eliminated by simple BT

»Non-privileged instructions (eg: load, store) accessing sensitive data such as page tables
— Strategy : innocent until proven guilty
— ldentify the CCF that traps frequently
— IDENT translation type is adapted to SIMULATE translation type
— Patch CCF5 with a jump in CCF1
— This avoids trap in CCF1

3 V| ]
¥ jmpI ¥
IDENT
cefl cef3 IDENT of3 SIMU-
LATE
= =7 ccf5
v o
|
cef2 cef2 L]
ccf4 ccld
AN
callout callout

13

Virtual Machines



SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

Hardware Virtualization

« Architectural changes to permit classical virtualization on x86

» Virtual Machine Control Block: in-memory data structure
» contains the state of guest virtual CPU

* New less privileged execution mode — guest mode
» guest mode : supports direct execution of guest code and privilege code

* New Instructions
» vmrun and vmexit

Virtual Machines 14




|< ! l SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Hardware Virtualization

VMM Updates \ VMRUN Operation Guest
VMCE for o Executin
Guest / ’
A
S 5
L I
E &
5 =
= e
E_ =
S o
W
VMM examines \ EXIT Opergation / Guest Alters
VMCB = VMCB
infarmation j \
'*‘
[2]
15

Virtual Machines



SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Hardware Virtualization

Where possible, privileged instructions that affect state within the virtual
CPU as represented within the VMCB, rather than unconditionally
trapping

» Example: popf - with x86 extension to support classical virtualization

»VMCB includes a hardware-maintained shadow of the guest flags register

»When running in guest mode — instructions operating on flags, operate on the shadow —
removing the need for exits

Hardware provides means of throttling some exit types, however use of
traces and hidden page faults directly impact the exit rate

Virtual Machines 16




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

Qualitative Comparison — Hardware and Software VMMSs

Trap elimination — Software fares better

— Hardware VMM : replaces traps with exits
— Software VMM : adaptive BT can replace most traps with faster callouts

Emulation Speed — Software faster

— Hardware VMM : must fetch VMCB and decode trapping instruction before emulating it
— Software VMM : callouts jump to precoded emulation routine

Code Density — Hardware wins
— Since there is no translation

System Calls — runs without VMM intervention

Virtual Machines 17




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Experiments

Software VMM — VMware Player 1.0.1

Hardware VMM — VMware implemented experimental hardware assisted
VMM

Host — HP workstation, VT-enabled
» 3.8 GHz Intel Pentium

All experiments are run natively, on software VMM and on Hardware-
assisted VMM

Virtual Machines 18




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Experiments: User-Level Computations

« Benchmarks used:
»SPECint 2000 benchmark on Red Hat Linux 3
»SPECjbb 2005 on Windows 2003

 Observations:
> With SPECint benchmarks il I L B~ s ALY

— Near native performance e N =
— Average slowdown of 4% for software VMM
— Average slowdown of 5% for hardware VMM

o 1 —

— Overhead could be due to host background activity, E B0 7
housekeeping kernel threads .
E‘ 60 -
»>With SPECjbb benchmarks :
— Both very close to native performance — 99% with f A0 e

Hardware VMM and 98% in Software VMM
0 oo

grip wpr mcl crafly parser eon pervmk gap vorex beip2 wall specibb

Figure 2. SPECint 2000 and SPECjbb 2005.

Virtual Machines 19




SCHOOL OF

ENGINEERING
University of Kansas | School of Engineering The University of Kansas
I
Experiments: Server Workload
 Benchmarks:
»Apache ab benchmarking tool — on Linux
installation of Apache http server and on Windows
installation
. 100 ! T T T T T
« Observations: Haroware Vi

» Both VMMs perform poorly

»VMware Player uses hosted 1/0O model in which all
network packets pass through the host OS’s I/O
stack

nawva (highar is bafar]

%l

» Performance on Windows and Linux differ
»On Windows — Hardware VMM fares better
»On Linux — Software VMM fares better

compileLin compileWin Apachelin ApacheWin LargeRAM 2DGraphics

= Reason: Apache Configuration Figere 3. Macrobenchmarks.

»Apache defaults to single address space on
Windows — and on Linux many address spaces

Virtual Machines 20




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Experiment: Desktop-Oriented Workload

« Benchmark
»PassMark on Windows XP Professional

» The suite of microbenchmarks test various

aspects of workstation performance N
1

«  Observations: e
»Both VMMs encounter similar overhead in most S
cases :
»Paper presents result of only the “Large RAM” and 'ij ________
“2DGraphics” tests. g
£
» Large RAM ﬁ
»The component tests paging capabilites | ®| ® ®| ®l ® BRI |
» Software VMM performs better than Hardware
VMM
n 2D GraphICS compileLin compile'Win Apachelin ApacheWin LargeRAM 2DGraphics
»Involves system calls Figure 3. Macrobenchmarks,

»Hardware VMM fares better - Handles kernel/user
transitions better

Virtual Machines 21




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Experiments — Less Synthetic Workload

» Compilation times of Linux kernel and
Apache ( on Cygwin )

Hargware VMW —

« Software VMM beats Hardware VMM o - - ; - T —
» Big compilation jobs -> lots of page faults.
Software VMM is better in handling page faults Ll
E L S
2
-\; -0 [ S —
]

compileLin compile'Win Apachelin ApacheWin LargeRAM 2DGraphics

Figure 3. Macrobenchmarks,

Virtual Machines 22




SCHOOL OF
ENGINEERING

The University of Kansas

University of Kansas | School of Engineering

Experiments: Forkwait Test

» Test to stress process creation and destruction
» system calls, context switching, page table modifications, page faults etc

* Results — to create and destroy 40000 processes
» Host — 0.6 seconds
» Software VMM — 36.9 seconds
» Hardware VMM — 106.4 seconds

Virtual Machines 23




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Experiments: Nanobenchmarks

« Test performance of single virtualization sensitive
operation

 Custom guest OS — FrobOS
« Syscall -

»Hardware - No VMM intervention in so near native
» Software — traps Native S
. Software VMM —

° N Hardware VMM o

100000

»Native — access a off-CPU register

» Software VMM - translates “in” into a short sequence of
instructions that access virtual model of the same

»Hardware — VMM intervention
* pgfault

»Both VMMs use software MMU, logically same

»But path taken different — Software VMM receives control and
page faults (in true page fault)

»In Hardware VMM path taken is longer — exit/run

° ptemOd 0.1
»Both use shadowing technique to implement guest paging using

1000 e forens

10

CPU cycles {smaller is betler)
2

syscall in cr@wr  caliret pglaull divzero  plemod

traces for coherency
»PTE writes causes significant overhead compared to native

»Adaptive BT can reduce overhead but Hardware VMM enters and
exits guest mode repeatedly

Figure 4. Virtualization nanobenchmarks.

Virtual Machines 24




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Opportunities

Microarchitecture
» Hardware overheads will shrink over time as implementations mature

» Measurements on desktop system using a pre-production version Intel's core
microarchitecture

Hardware VMM algorithmic changes

» drop trace faults upon guest PTE modification, allowing temporary incoherency
with shadow page tables to reduce costs

Hybrid VMM

Hardware MMU support

» trace faults, context switches and hidden page faults can be handled effictively with
hardware assistance in MMU virtualization

Virtual Machines 25




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas

Conclusion

Hardware extensions allow classical virtualization on x86 architecture

Extensions remove the need for Binary Translation and simplifies VMM
design

Software VMM fares better than Hardware VMM in many cases like
context switches, page faults, trace faults, /O

New MMU algorithms might narrow the gap in performance

Virtual Machines 26




SCHOOL OF
ENGINEERING

University of Kansas | School of Engineering The University of Kansas
I

References

[1] “ VMware — Hardware Support”, http://courses.cs.vt.edu/~cs5204/kafura-fall08/Presentations/VMM-
Part2.pdf, retrieved April 8,2009

[2] www.ittc.ku.edu/~niehaus/classes/750-s07/notes/virt-methods-comparison.ppt, retrieved April 8,
2009

27

Virtual Machines



