
VLDB JournaL3, 77-106 (1994), Peter Scheuermann, Editor 77  
@VLDB 

Versioning and Configuration Management in an 
Object-Oriented Data Model 

Edward Sciore 

Received July 29, 1991; revised version received June 11, 1992; accepted June 25, 1993. 

Abstract. Many database applications require the storage and manipulation of 
different versions of data objects. To satisfy the diverse needs of these applica- 
tions, current database systems support versioning at a very low level. This arti- 
cle demonstrates that application-independent versioning can be supported at a 
significantly higher level. In particular, we extend the EXTRA data model and 
EXCESS query language so that configurations can be specified conceptually and 
non-procedurally. We also show how version sets can be viewed multidimension- 
ally, thereby allowing configurations to be expressed at a higher level of abstrac- 
tion. The resulting model integrates and generalizes ideas in CAD systems, CASE 
systems, and temporal databases. 

Key Words. EXTRA/EXCESS data models, query language, generic and specific 
references, semantically based configuration specifications. 

1. Introduction 

In an object-oriented database system, the objects model entities in the real world. 
Often it is useful for a database to store information about different aspects of an 
entity; this information is stored as versions of the corresponding object. There  are 
two broad version categories: system-level versions and user-level versions. System- 
level versions are created and maintained by the database system. Such versions 
are used for concurrency control, transaction support (Agrawal and Jagadish, 1989), 
and redundancy in distributed databases. In contrast, user-level versions are created 
by applications for specific purposes. Examples of such versions include alternative 
designs for the object, previous states of the object, and so on. 

This article is concerned exclusively with user-level versions. Our  contention 
is that such versions are different aspects of the same conceptual idea, and should 
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be treated uniformly in a database system. Users should be able to access any 
subset of versions of an object or to choose a version based on specified properties; 
users should also be able to configure an object based on specified properties of its 
components. System-level versions do not fit into this framework, because they have 
no semantic meaning and are often invisible to user applications. Consequently, in 
the rest of this article we refer to user-level versions simply as versions. 

There is a substantial literature on versioning. Unfortunately, most of this 
research is limited in scope, being focused on a specific application. There are three 
application domains which have seen a lot of work: historical databases, CASE 
systems, and CAD databases. We discuss each of them in turn. 

A historical database is one in which the information about the entities in the 
database is a function of time. For example, a database may store the history of 
its employees: their previous salaries, job titles, awards, and so on. A historical 
database system should be able to retrieve the state of an employee as of a specified 
time, or to find the instances when an employee's state satisfied certain properties. 
Research into historical databases has centered primarily on the relational model 
(Tansel, 1986; Clifford and Croker, 1987; Snodgrass, 1987; Gadia, 1988), although 
some work has been done for object-oriented systems (Copeland and Maier, 1984; 
Caruso and Sciore, 1988; Rose and Segev, 1991; Wu and Dayal, 1992). 

Computer-Aided Software Engineering (CASE) systems comprise the second 
area of versioning research. CASE systems support the development and mainte- 
nance of software. A CASE database typically contains information about program 
modules and their relationships. A module might have several versions, corre- 
sponding to previous releases of the module or alternative implementations of it. 
CASE systems must provide the support necessary to allow a user to configure the 
modules of a program consistently; examples of such systems are Adele (Belkhatir 
and Estublier, 1986), DSEE (Leblang and Chase, 1984), Gypsy (Cohen et al., 1988), 
and Shape (Mahler and Lampen, 1988). 

CASE systems typically are language tools. They are not based on an explicit 
data model. They are developed specifically for software databases, and their 
configuration languages make sense only for that application. There have been 
efforts to apply database techniques to CASE systems (Beech and Mahbod, 1988; 
Hudson and King, 1988), but the treatments of versioning in these systems are much 
poorer than in specialized CASE systems. 

The third area in which versioning is prominent is computer-aided design 
(CAD). CAD systems support the design of engineering objects. As an object is 
being designed, it might be revised several times and have different alternative 
versions created for it. A designer might want to compare the properties of two 
different versions, or to check a proposed version against a set of design rules. The 
goal of research in this area has been to develop a general, all-purpose mechanism 
which can support the production and manipulation of design versions. Early work 
was based on files (Katz and Lehman, 1984; Katz et al., 1986) or relational systems 
(Batory and Kim, 1985; Dittrich and Lorie, 1988), but current research is almost 
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exclusively based on object-oriented database systems (Atwood, 1985; Chou and 
Kim, 1986, 1988; Klahold et al., 1986; Banerjee et al., 1987; Biliris, 1989; Kim et 
al., 1989.) 

Research on CAD databases has focused on understanding the systems-level 
requirements of versioning. In particular, questions regarding the support of long 
transactions and control access to versions have received substantial attention. 
However, the data modeling and user interface issues have barely been touched. 
In current systems, for example, the only way to find a version of an object with a 
particular property is by navigating its version hierarchy, and the language constructs 
for specifying configurations are primitive in comparison with those of CASE systems. 

Each of these three areas has solved different aspects of the versioning problem. 
However, it is not obvious how these different solutions can be combined, because 
the assumptions made in each case are incompatible. The many proposals for 
CAD versioning systems were shown to be very similar, and a unified terminology 
was given (Katz, 1990). However, this unification extends only partially to CASE 
systems and not at all to historical databases. In fact, Katz concluded with the 
statement that the problem of unifying all kinds of versioning is both important and 
challenging. 

We attacked this problem in two previous articles (Sciore, 1991a), arguing that 
there is no fundamental incompatibility among the different kinds of versioning. 
In the first article, we showed how annotations could be used to model versioning 
in CAD, CASE, and historical databases. The approach of that article was not 
completely satisfactory, however, because the resulting data model was still low-level 
and the query language was procedural. In the second article, we showed how the 
different kinds of versioning result from differences in their level of abstraction, and 
indicated how a non-procedural query language could be possible. In this article we 
solidify these ideas and extend them to a concrete data model, namely the EXTRA 
object-oriented model of Carey et al. (1988). 

This article is organized as follows. Section 2 reviews the EXTRA model and 
EXCESS query language, and shows how to implement the standard CAD versioning 
ideas in it. Section 3 introduces an extension of EXTRA called EXTRA-V and the 
EXCESS-V query language. Section 4 examines the notion of frozen configurations, 
and shows how this feature corresponds to views in EXTRA-V. In Section 5 we 
examine the semantics of versioning in some common applications, and show in 
each case how the version set of any object can be viewed as a multidimensional 
space. Section 6 presents our conclusions and some discussion of future research 
areas. 

2. Object-Oriented Versioning 

In this section we describe the basics of object-oriented versioning. Because there 
is no standard object-oriented data model, we have chosen the EXTRA data model 
(Carey et al., 1988) (as extended in the Pegasus system; Biliris, 1990) as the basis 
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of our study. EXTRas simplicity and conceptual elegance allow us to focus on 
versioning issues and ignore aspects of the data model unrelated to versioning. 
However, the results of this article should be applicable to other, more "complete" 
object-oriented models. 

2.1 Objects and Types 

An object is defined to be an instance of a given type. A type defines a set of 
attributes for each of its instances, and a set of operations on these instances. The 
set of attributes and operations is called the scheme of the type. Each attribute of 
an object may contain either a value or a reference to another object. Reference 
attributes are specified using the ref keyword. 1 

The set of types is organized into a type hierarchy. If T2 is a subtype of T1 in the 
hierarchy, then T2 inherits the scheme of T1; that is, the attributes and operations 
of T1 can be accessed by instances of T2 as if they were defined locally. There are 
two ways in which inheritance can occur: refinement and extension (Biliris, 1990). 
Refinement models the common notion of ISA relationship. Objects of type T2 
are "special cases" of Tl-objects, and thus can be used whenever objects of type 
T1 are expected. Extension, on the other hand, is related to the idea of prototypes 
(Sciore, 1991a). Each T2-object has an associated Tl-object; references to attributes 
or operations that are not defined in T2 are delegated to its associated Tl-object. 

Typically, refinement is implemented by including the scheme of T1 in each 
T2-object, and extension is implemented by storing a pointer to a Tl-object in 
each T2-object. In general, a type can have more than one parent in the type 
hierarchy, and each parent/child relationship can be either by refinement or extension. 
Implementation details and a proposal for resolving name conflicts were presented 
by Biliris (1990). 

2.2 Versions 

The notion of versioning can be modeled using pairs of types, each pair consisting of 
a generic type and a version type. Each versioned entity has a single associated generic 
object and zero or more associated version objects. A generic object contains the 
information which is common to all of its versions. The versions of a generic object 
all have the same scheme, so they differ only in the values for their attributes. 
These different attributes reflect the different desi~,m choices that caused the version 
to be created. It is useful for a version object to be able to access the values in 
its associated generic object directly (Biliris, 1990). This property is modeled by 
declaring the version type to be an extension of the generic type. 

1. Actually, there are different forms of reference, based on questions of ownership and sharability. The 
keywords own ref are used for this purpose by Carey et al. (1988), and exclusive ref and dependent refare used 
by Biliris (1990). These issues have already been addressed with respect to versioning (Kim et al., 1989), 
and so for simplicity we ignore them in this article. 
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The schema declaration of Figure i illustrates the above concepts. Each instance 
of Bicycle models a CAD design project, and has an associated project name, client 
and due date. The type BicycleVersion models versions of a given bicycle design, and 
contains attributes whose values may differ in different versions. These attributes 
include the style, number of speeds, frame, and so on. Some attributes (such as 
style) contain primitive values, whereas others (such as frame) contain references to 
other objects. The attribute designDate records the date when a version was added 
to the database, and the attribute derivedFrom references the version (if any) that 
was used to create it. 

The semantic connection between these types is modeled by the attributes 
versions and defaultVersion in Bicycle, and generic in BicycleVersion. The attribute 
generic associates a version object with its generic object. 2 The attribute versions 
associates a generic object with all of its versions, and the attribute defaultVersion 
associates a generic object with a reference to a single one of these versions. This 
default version is used in converting generic references to specific ones, as we shall 
see in the next section. The specification of which version is to be the default 
is usually based on semantic considerations, such as being the most recent or the 
current best. We therefore postpone our discussion of default selection until Section 
5.3, where we examine the semantics of versioning in more detail. 

The declarations of the type-pairs Frame/FrameVersion and Wheel/WheelVersion 
are similar to that of Bicycle/BicycleVersion. Note that material is an attribute of 
Frame, and is intended as a key. That is, the version set of a Frame-object consists 
of all frame designs corresponding to a particular material. Unlike in relational 
databases, a type definition does not automatically create a corresponding collection. 
Instead, these collections are created explicitly. In Figure 1 the collections bikes 
and frames hold references to objects of type Bicycle and Frame, respectively. Note 
that there is no defined collection of Wheel-objects. 

Each generic and version object in a database should be uniquely identifiable 
somehow. In this article we assume that each generic object has the attribute genericld 
and each version object has the attribute versionld. Version identifiers need only be 
unique within a version set, so that the combination (genericld, versionId) uniquely 
identifies any version object. 

2.3 Data Retrieval 

The non-procedural query language for the EXTRA model is called EXCESS. 
EXCESS is an extension of Q U E L  in the spirit of GEM (Zaniolo, 1983), DAPLEX 
(Shipman, 1981), and POSTGRES (Rowe and Stonebraker, 1987). We illustrate 
the EXTRA syntax by means of example; more formal definitions were made by 
Carey et al. (1988). The following EXCESS query for Figure 1 retrieves the costs 

2. The keywordproto refis taken from Biliris (1990), and indicates the attribute to be used for implementing 
extension inheritance. 
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Figure 1. An EXTRA scheme 

define type Bicycle: 
( projectName: char[10], 

client: char[20], 
dueDate: Date, 
versions: { ref Bicycle Version } , 
defaultVersion: ref BicycleVersion 

) 
define type BicycleVersion: 

( style: char[10], 
numSpeeds: int4, 
frame: ref Frame, 
frontWheel: ref Wheel, 
rearWheeh ref Wheel, 
cost: int4, 
designDate: date, 
derivedFrom: ref BicycleVersion 
generic: proto ref Bicycle, 

) extends Bicycle 

define type Frame: 
( material: char[15] 

versions: {ref FrameVersion } , 
defaultVersion: ref FrameVersion 

) 
define type FrameVersion: 

( color: char[10], 
designDate: date, 
derivedFrom: ref FrameVersion 
generic: proto ref Frame, 

) extends Frame 

define type Wheel: 
( versions: {refWheelVersion}, 

defaultVersion: ref WheelVersion 
) 

define type WheelVersion: 
( material: char[15], 

size: int4 
designDate: date, 
derivedFrom: ref WheelVersion 
generic: proto ref Wheel, 

) extends Wheel 

create bikes: ( ref Bicycle } ; 
create frames: {ref Frame } ; 
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of all versions of the BMX design project: 

retrieve V.cost 
from B in bikes, V in B.versions 
where B.projectName ="BMX" 

The from clause defines a set of bindings for each listed variable. Each possible 
combination of variable bindings is called a configuration of the query. One tuple 
is returned for each configuration that satisfies the where clause. 

EXCESS supports the standard aggregation operators. The following query 
for Figure 1 illustrates the syntax, retrieving the project name of the lowest-cost 
ten-speed bicycle design. 

retrieve B.projectName 
from B in bikes, V in B.versions 
where V.numSpeeds = 10 and 

V.cost = min(retrieve V2.cost 
from B2 in bikes, V2 in B2.versions 
where V2.numSpeeds = V.numSpeeds) 

. 

Because each versioned entity is modeled by objects from two different types, 
there are two different ways to refer to the entity. A generic reference refers 
to its generic object, and a specific reference refers to one of its version objects. 
In Figure 1, the attributes frame, frontWheel, and rearWheel of BicycleVersion are 
generic references, whereas the attribute derivedFrom is a specific reference. Generic 
references have a special interpretation--they refer to a default version of the design 
object, not the design object itself. The attribute defaultVersion is used to transform 
the generic reference into the desired specific reference. For example, the following 
query retrieves the default color of the default version of those bicycles designed 
for client "Schwinn": 

retrieve EdefaultVersion.color 
from B in bikes, F in B.defaultVersion.frame 
where B.client = "Schwinn" 

2.4 Updates 

There are many ways to create, destroy, and modify objects in EXCESS. In this 
article we discuss the operations most relevant to database applications, namely the 
operations to insert, delete, and modify objects in a collection. 

A new object is added to a collection with the copy command. The following 
commands on the scheme of Figure 1 create a new Bicycle object having a single 
version: 
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copy to B (projectName = "BMX", 

client = "Schwinn", dueDate = 9/9/99) 

from B in bikes 

copy to B.versions (style = "racing", numSpeeds = 12, frame = F, 

. . . ,  derivedFrom = nil, generic = B ) 

from B in bikes, F in frames 

where B.projectName = "BMX" and Ematerial  = "alloy" 

Additional versions can be added to the version set of Bikes similarly. 

Versions are modified using the replace command. For example, the following 
command increases the cost of all racing bicycle versions of the BMX project: 

replace V (cost = V.cost + 100) 

from B in bikes, V in B.versions 

where B.projectName = "BMX" and V.style = "racing" 

Versions are deleted using the delete command. The following command deletes all 
sufficiently old BMX versions: 

delete V 

from B in bikes, V in B.versions 
where B.projectName = "BMX" and V.designDate < 12/31/89 

3. A Versioning Data Model 

Section 2 showed how a versioned entity can be implemented using two types: 
its generic type and its version type. Although versioned information can be 
stored in this way, it is important to note that the model knows nothing about 
versioning. That is, the conceptual notion of a "versioned entity" is lost, and 
conceptual operations on versioned entities must be translated into operations on 
the underlying implementation. 

Previous research has recognized this problem, but has focused primarily on 
facilitating the creation and manipulation of versions. For example, ORION provides 
a new-version operation, which derives a new version from the current default, 
checks it out of the project database, and initializes its variables appropriately. Such 
operations are useful, but are only part of what is needed. In this section we show 
how a fully conceptual view of versioning can be built into the data model, and 
how it can be mapped automatically into the structures of Section 2. 

3.1 Data Definition 

Standard data models such as EXTRA are what we call non-versioning. In a non- 
versioning model, attributes that are modified lose their previous values. To avoid 
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losing information, a user must explicitly create new version objects containing the 
new values. 

In contrast, an object in a versioning model can have two kinds of attributes: 
versioned attributes and unversioned attributes. Unversioned attributes are version- 
independent. That is, changes to unversioned attributes will be done in place, 
and all versions of the object see the same values for these attributes. Values for 
versioned attributes are stored with the versions of the object. Changes to any of 
these attributes cause a new version to be created. 

We now define a versioning model called EXTRA-V. Syntactically, EXTRA- 
V is identical to EXTRA, except that it contains additional keywords. One of 
these keywords is versioned. Attributes appearing after this keyword in a type 
declaration are versioned, and those appearing before the keyword are unversioned. 
If the keyword does not appear in a type declaration, then all attributes are 
unversioned. For clarity in comparison with EXTRA, we call types declared in 
EXTRA-V conceptual types, and their instances conceptual objects. 

Figure 2 shows how the scheme of Figure 1 can be defined in EXTRA-V. Each 
conceptual Bicycle-object corresponds to a different design project. The attributes 
projectName and dueDate are unversioned because they contain information about 
the design project as a whole; that is, if the due date of a Bicycle-object is changed, 
then all of its versions should see the change. Each Bicycle-object can have several 
versions, each one corresponding to a possible design. Each version of the conceptual 
object has its own values of the versioned attributes. 

EXTRA-V schemes can be mapped to EXTRA schemes, using the type-pair 
strategy of Section 2. In particular, each conceptual EXTRA-V type has a corre- 
sponding EXTRA generic type and version type. The generic type has the same 
name as the conceptual type name, and contains all unversioned attributes, as well 
as the attributes genericld, versions and defaultVersion. The version type name is 
the concatenation of the string "Version" to the conceptual type name; this type 
contains the versioned attributes as well as the attributes versionld and generic. Note 
how this technique maps the declarations of Figure 2 to those of Figure 1. 

Subtyping in EXTRA-V is handled as follows. Let T1 and T2 be two conceptual 
types such that T2 is a subtype of T1. Then, in the mapping, the generic type of 
T2 will be a subtype of the generic type of T1 and the version type of T2 will be a 
subtype of the version type of T1. We note two things about this definition. First, a 
type can inherit versioned attributes, even though it defines no versioned attributes 
itself. For example, suppose in Figure 2 that we declare the type childBicycle to 
be a subtype of Bicycle, having only the unversioned attribute intendedAge. Then 
this type inherits the versioned attributes of Bicycle. Second, because attributes in 
a supertype can be overridden by redefining them in a subtype, an unversioned 
attribute can be declared to be versioned in a subtype (or vice versa). 
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Figure 2. A conceptual scheme 

define type Bicycle: 
( projectName: char[10], 

client: char[20], 
dueDate: Date 

versioned 
style: char[10], 
numSpeeds: int4, 
frame: ref Frame, 
frontWheel: ref Wheel, 
rearWheel: ref Wheel, 
cost: int4, 
designDate: Date, 
derivedFrom: specific ref Bicycle 

) 
define type Frame: 

( material: char[15] 
versioned 

color: char[10], 
designDate: Date, 
derivedFrom: specific ref Frame 

) 
define type Wheel: 

( versioned 
material: char[15], 
size: int4, 
designDate: Date, 
derivedFrom: specific ref Wheel 

) 
create bikes: {ref Bicycle } ; 
create frames: ( ref Frame } ; 

Our mapping from EXTRA-V schemes to E X T R A  schemes requires that each 
conceptual type map to both a generic and a version type. In particular, if a 
conceptual type T has no versioned attributes then all versions of an instance of 
T will have exactly the same information, namely the values of the unversioned 
attributes. Consequently, EXTRA-V is an extension of EXTRA.  Types that do 
not involve versioning can be declared in EXTRA-V exactly the same way as in 
EXTRA,  and will have exactly the same semantics. 3 

3. Our mapping from EXTRA-V schemes to EXTRA defines the semantics of EXTRA-V schemes. It also 
simplifies many of the mappings in the rest of this article. A real implementation of EXTRA-V could, of 
course, employ more efficient mappings. 
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Figure 3. Historical database scheme 

define type Person: 
( name: char[20] 
versioned 

address: char[20], 
occurredAt: Date 

) 
define type Employee: 

( employeeNum: int4 
versioned 

salary: int4, 
position: char[10], 
worksFor: ref Company 

) refines Person 
define type Company: 

( name: char[10], 
industry: char[10] 

versioned 
sales: int4, 
cceo: ref Employee, 
occurredAt: Date 

) 
create employees: { ref Employee } ; 
create companies: {refCompany}; 

Our bicycle-design scheme is an example of a CAD application. Figure 3 
illustrates an historical database in EXTRA-V. This scheme has three conceptual 
types: Person, Employee, and Company. A version of a conceptual object denotes 
a previous or current state of the object. Each time a versioned attribute changes, 
a new version is created corresponding to the new state. The attribute occurred,It 
recQrds the time at which the change logically took place. 

3.2 Generic and Specific References 

Another keyword unique to EXTRA-V is specific ref, which is needed to distinguish 
generic references from specific ones. Conceptually, a generic reference points to 
an object and all of its versions, whereas a specific reference points to a single 
version only. In EXTRA-V, the keyword ref denotes a generic reference and the 
keyword specific ref denotes a specific reference. 

Generic references are often more appropriate than specific references. For 
example, consider the generic references worksFor and ceo in Figure 3. Each 
Employee version contains the information about an employee during some time 
interval. If the employee worked for some company (say, IBM) during that interval, 
then worksFor would refer to the complete history of IBM, not just the value of 
IBM during that interval. There are two advantages to this approach. First, a 
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new version of the employee does not have to be created each time a new version 
of the company is created, which would be the case if worksFor were a specific 
reference. Second, it is possible to bind the generic :reference to any version of the 
company, so that information about an employee's current company at a previous 
time (or current information about an employee's previous company) can be easily 
requested. 

Note in Figure 2 that Frame is one of the versioned attributes of Bicycle. 
Consequently, different versions of a Bicycle-object can have frames made of different 
materials. Had this attribute been declared as unversioned, then two versions of a 
bicycle project could not be configured with frames made of different materials. 

3.3 Data Manipulation 

We now define the language EXCESS-V, which extends EXCESS to versioned 
databases. Our principle is that versioning should be as transparent as possible, so 
that users can interact with versioned data as if it were unversioned. That  is, we 
want a standard EXCESS query on a versioned scheme to behave as if each object 
had only one version. Which version of each referenced object should be used? In 
an unversioned database, the most recent "version" of-the object is always used, 
because it is the only one available. In a versioned database we use the default 
version when answering queries. 

The binding of default versions to variables occurs in the from clause. In 
EXCESS, the expression 'Kin S" binds variable X to each member of the set S. We 
modify this definition in EXCESS-V so that X is bound to the default version of 
each member of S. Note that if the objects in S are unversioned, then EXCESS-V 
behaves exactly like EXCESS; thus EXCESS-V is an extension of EXCESS. 

For example, consider a database for Figure 3 where the default version of each 
object is defined to be the most current one. Then the following query retrieves the 
name of all employees who currently make more than their current CEO currently 
does. 

retrieve El .name 

from E1 in employees, C in El.worksFor, E2 in C.ceo 
where El.salary > E2.salary 

EXCESS (as well as many other languages) provides an extended dot notation to 
reduce the number of explicit variable declarations in a query. Using this notation, 
the above query can be written equivalently as follows: 

retrieve El .name 

from E1 in employees 
where El.salary > El.worksFor.ceo.salary 

The system interprets extended dot expressions by generating implicit variable 
declarations in the from clause of the query, using the keyword in. Consequently, 
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using such expressions on versioned databases causes the default versions of the 
generic references to be chosen. 

We use the new keyword inall in EXCESS-V to access non-default versions of 
objects. The expression '3inall S" binds X to all versions of each member of S. 
For example, the following query using Figure 3 retrieves the names of all current 
salespersons and their highest salaries: 

retrieve El.name, El.salary 
from E1 in employees 
where El.position = "salesperson" and 

El.salary = max(retrieve E2.salary 
from E2 inall employees 
where E2.name = El.name) 

The expression "E2.name = El.name" in the aggregation portion of the above query 
guarantees that E2 will be bound only to versions belonging to the same version 
set as El. The expression 'SE2.genericld = El.genericld" would have had the same 
effect. 

Given an EXCESS-V query Q there is a straightforward translation of Q into 
an equivalent EXCESS query Q~. Each expression '7~in S" of Q is translated into 
'~Xin S.default" in Q~, and each expression 'Tfinall S" of Q is translated into 'Win 
S.versions" in Q~. 

3.4 Updates 

In Section 2.4 we described the EXCESS update commands copy, delete, and replace. 
As with retrievals, the increased understanding of version semantics in EXTRA-V 
also allows update operations to be much simpler. 

The copy command creates a new object and inserts it into a collection. In 
our versioning model, each conceptual object has both a generic and versioned 
part. Thus, this command is interpreted in EXCESS-V as creating a new generic 
object having a single version. For example, in Figure 2 the following EXCESS-V 
command creates a new Bicycle-object: 

copy to B (projectName="BMX2", client="Fuji", 
dueDate=6/6/96, style = "racing", 
. . . ,  designDate = 7/13/92 ) 

from B in bikes 

The delete command removes an object from a collection, including all of its versions. 
For example, in Figure 2 the command: 

delete B 
from B in bikes 
where B.style = "mountain" 
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deletes any project in bikes whose default version is a mountain bike. Had the 
keyword in been inall in this command, then all projects having any mountain bike 
version would be deleted. 

The above behavior of delete is necessary for the command to be an extension 
of deletion on unversioned databases. In an unversioned database, executing a 
command such as "Delete the BMX project" would cause all information about 
the project to disappear (or at least cause it to be unavailable). Similar behavior 
is necessary in EXCESS-V. Thus, for example, it would not be appropriate for the 
above command to delete only the current default version of the project, because 
other versions would then become visible. 

The notion of deleting individual versions of a conceptual object is somewhat 
out of place in a versioning model, because versions are usually considered to 
be archival information. However, there are situations when version deletion is 
necessary, and we introduce the command delete w~rsion to this end. For example, 
the command 

delete version B 
from B inall bikes 
where B.style = "mountain" 

deletes all mountain-bike versions from all projects. 
The replace command is used in EXCESS to modify objects. We extend this 

meaning in EXCESS-V as follows. Updates to the unversioned attributes of an 
object are done in place and are seen by all of its versions. Updates to versioned 
attributes, however, cause the creation of a new ve, rsion. For example, in Figure 3 
the following command conceptually changes the salary and job of Joe Smith: 

replace E (salary = 30, worksFor = C, occurredAt = 3/3/93) 
from E in employees, C in companies 
where C.name = "IBM" and E.name = "Joe Smith" 

Formally, this command selects the object in employees corresponding to Mr. Smith, 
and chooses a default version for it. It then creates a new version derived from this 
default; that is, the new version contains the specified values for salary, worksFor 
and occurredAt, and the values of the default version for the other attributes. 

For another example, the following command using Figure 2 increases the cost 
of all racing bike versions by $100: 

replace B (cost = B.cost + 100) 
from B inall bikes 
where B.style = "racing" 

Formally, this command is evaluated as follows. First, there is a binding of variable 
B for each racing bike version of any project in bikes. Second, a new version is 
created for each binding, whose attribute values are derived from the corresponding 
version. Finally, the cost attribute of these new versions are incremented by 100. 
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Occasionally it is necessary for a user to modify a versioned attribute in place, 
without creating a new version. Consequently, we introduce the replace version 
command. The meaning of this command is the same as replace, except that new 
versions are not created. 

3.5 Relationship to Configuration Management 

In Section 2 we defined a query as constructing a configuration of the database 
objects. Our use of the term configuration is meant to suggest that EXCESS-V is a 
configuration management language when applied to versioned databases. That is, 
the body of an EXCESS-V query configures a specified set of objects by determining 
which versions are associated. This view is quite different from previous approaches 
to configuration management in CAD and CASE applications. In these systems, 
a configuration is specified by giving a list of version objects. Whenever a generic 
reference needs to be resolved, the appropriate version object from the specified 
list is used. 

The chief difference between these other systems is the way in which this list of 
version objects is specified. In ORION (Banerjee et al., 1987), the list is explicitly 
given, and each version is specified by its unique version number. Gypsy also requires 
an explicit list of versions (Cohen et al., 1988), but a version can be specified in 
several ways: by its version number, by giving a predicate on its attributes, or by 
invoking system-defined rules (such as "choose the most recent version"). In Shape 
(Mahler and Lampen, 1988), the list is specified implicitly using a sequence of 
design rules. Each design rule defines a predicate, and the first version of a generic 
object satisfying a design rule is chosen. Finally, Adele (Belkhatir and Estublier, 
1986) allows both implicit and explicit specification of versions, using a specification 
language that allows complex predicates to be defined. 

There are several problem areas caused by these approaches to configuration 
management. The first area concerns expressive power. The ways in which selection 
predicates are expressed in these languages are ad hoc, and are less expressive 
than EXCESS-V. For example, EXCESS-V allows arbitrary Boolean predicates 
(as opposed to Gypsy, which supports positive conjunctions only), and nested 
queries involving grouping and aggregation. Thus the query "Find the lowest-cost 
configuration of each style of bicycle, and choose the configuration having the largest 
number of speeds" is impossible to express in the above systems. 

The second area concerns the fact that constraints on configurations cannot 
involve multiple objects. This liability stems from the use of version-lists to specify 
configurations. Each version object is specified independently, so there is no way 
to make coordinated choices. 4 For example, the following EXCESS-V query selects 
all bicycle configurations so that the front and rear wheels have the same size: 

4. Except for synchronization, but  that is another  issue. See Section 5.3. 
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retrieve B 
from B inall bikes, FW inall B.frontWheel, 

RW inall B.rearWheel 
where FWsize = RW.size 

Again, such a configuration specification is impossible to write in CAD and CASE 
systems. 

The third area also stems from the use of version-lists, and from the fact that 
all generic references to an object must be resolved in the same way. In our 
CAD example application, this restriction implies that there is no way to define a 
configuration for bikes in which the front and rear wheels are different versions of 
the same Wheel-object. In CASE applications, this restriction implies that programs 
cannot use more than one implementation of a module generically. So for example, a 
program that needs different kinds of sorting routines cannot use generic references 
to the sort module, but must use specific references to the individual vers ions--  
which, of course, means that the program will not be able to automatically take 
advantage of new versions of the sorting routines. 

Finally, all configuration-management system,,; known to us return a single 
configuration only. That is, there is no construct analogous to our inall keyword 
that allows a query to return multiple configurations satisfying a given condition. 

4. Views and Freezing 

One feature missing in EXTRA is the support for view definitions. Views in object- 
oriented systems are more complex than in the relational model, primarily because 
of problems with the class hierarchy and object identity. A discussion of these issues 
and a proposed view definition language for 02 appear in Abiteboul and Bonner 
(1991). For the purposes of this article, we only need views that define subsets of 
objects from a collection. We adopt the following syntax: 

define view tenspeeds as 
retrieve B 
from B in bikes 
where B.numSpeeds = 10 

This definition defines a virtual collection named tenspeeds, containing references 
to those objects in bikes whose default version has ten speeds. Because tenspeeds 
is defined as a view, its contents may change as new versions are added or other  
default mechanisms are used. 

Queries involving views can be evaluated by query substitution, so that no new 
objects need be materialized. That is, the query 

retrieve T.cost 
from T in tenspeeds 
where T.frame.color = "red" 
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is equivalent to 

retrieve B.cost 
from B in bikes 
where B.frame.color = "red" and B.numSpeeds = 10 

View definitions are important for versioning systems, because they can be used to 
freeze objects in particular configurations. Traditionally, a frozen object has a single 
configuration that never changes. Frozen objects allow important configurations to 
be saved for future reference, such as a public release of a program, a proposed 
bicycle design sent to a client, or the state of a particular company in 1984. For 
example, in the following view definition 

define view proposedBike as 
retrieve B 
from B inall bicycles, F inall B.frame, 

RW inall B.rearWheel, FW inall B.frontWheel 
where B.versionNum = 3 and 

F.versionNum = 1 and 
RW.versionNum = 20 and 
FW.versionNum = 20 and 
B.projectName = "BMX" 

the single virtual object in proposedBike has a single frozen configuration. 
In other configuration management systems, freezing is performed by convert- 

ing all generic references reachable from an object into specific references, and 
consequently is an expensive operation. View definitions eliminate the need to 
materialize the frozen configuration. Instead, the configuration is constructed when 
it is needed. 

An important additional benefit of view definitions is that objects can be partially 
frozen. A partially frozen object is constrained, but the constraint may not determine 
a unique configuration or the specified configuration may change over time. For 
example, in a CASE application we might want to freeze a module according to 
a specific time, but allow other considerations (such as which operating system 
version) to be unfrozen. In such a case, the partially frozen object encodes all of 
the alternative design versions that were most recent as of this date. Similarly, a 
module might be frozen with respect to a particular design decision; in this case it 
would encode the history of revisions for that design decision. 

In our bicycle database, we might define a view that specifies the current most 
lightweight bicycle configuration. This view defines a partially frozen configuration, 
which changes as new frames or wheels are designed. 

Although a view definition may currently determine a unique configuration, 
future events might cause that configuration to change or new configurations to be 
added. The only way to completely freeze an object in a specific configuration is 
to restrict each generic reference on an immutable key, such as a version number. 
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The above view definition is such an example. However, it is not necessary for 
the user to explicitly write such restrictions. Instead, the system should provide a 
way in which a given configuration specification can be "precompiled" into a frozen 
version of this specification. We introduce the keyword frozen for this purpose. For 
example, suppose that at this moment the following view happens to define the 
same configuration as the previous view definition: 

define view bike2 as 
retrieve B 
from B in bikes 
where B.projectName = "BMX" and 

B.frame.material = "alloy" and 
B.frontWheel.size > 27 and 
B.rearWheel = B.frontWheel 

If the first line of this definition is changed to begin define frozen view, then the 
system will precompile it, automatically creating the previous view definition. A 
similar feature exists in DSEE (Leblang and Chase, 1984). 

5. Multi-Dimensional Versioning 

5.1 Version Semantics 

In the previous sections we have treated the version set of an object as being 
conceptually unstructured. However, the semantics of a type usually imposes a 
particular logical structure on the version sets of its member objects. In this section 
we examine this idea in the context of two different application domains. 

5.1.1 CAD and CASE Databases Each conceptual object in a CAD or CASE ap- 
plication corresponds to a design project whose versions are the various designs for 
that project. There are two reasons why new versions are added to a version set 
(Katz, 1990). The new version might be the result of a bug fix, in which case it is 
a revision of a previous version. Or it might be the result of trying out a different 
implementation strategy, in which case it is an ahernative version. 

Each alternative implementation strategy is defined by the values of some set 
of attributes, which we call alternative attributes. All versions of an object having 
the same values for these attributes are considered to belong to the same design 
alternative. For example, in a CASE application we might declare the attribute opSys 
to be an alternative attribute; this choice would specify a design alternative for each 
possible target operating system. In Figure 2, the attributes style and numSpeeds 
might be used as alternative attributes for the type Bicycle. Under this assumption, 
the version set of Figure 4 has three design alternatives: 10-speed racing bikes, 
3-speed racing bikes, and 10-speed mountain bikes. 
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Figure 4. Version set for a Bicycle Object 
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If the semantics of alternative versions is to partition the version set into its 
different design alternatives, then the semantics of revisions is to organize the 
versions within a particular design alternative. In particular, a version is considered 
to be a revision of another if they both belong to the same design alternative and 
the first was created after the second. The attribute designDate is used for this 
purpose in Figure 2. Thus, in Figure 4 version v4 is a revision of vl, and v5 is a 
revision of v2. 

Note that this definition of revision is a logical concept, and is unrelated to the 
information kept in the attribute derivedFrom. For example, in Figure 4 version v4 
is a revision of vl but is derived from v3. Presumably in this example, the designer 
of v4 decided to redo version v3 for a different design alternative; the result is a 
revision of vl. 

The attribute derivedFrom structures the version set of an object into what 
is called a version hierarchy. Version hierarchies have a different semantics from 
revisions. In particular, the former structures a version set according to how its 
versions were created; the latter structures a version set according to the values 
of its versions. All versioning systems that we know of (with the exception of 
Dittrich and Lorie, 1988) support only the semantics of version hierarchies. The 
concept of revision is then shoehorned into this narrow context, which makes certain 
configurations difficult to express. 

The advantage of our definition of revision is that it allows versions to be 
accessed simply by mentioning the desired design alternative and effective revision 
date. In our bicycle-design example, a user might ask for the most recent ten-speed 
touring bikes as of 1986. Such a specification can be expressed naturally as bikes(lO, 
touring, 1986). Intuitively, the semantics of alternatives and revisions organizes a 
version set into a multidimensional space; versions can be accessed by giving the 
desired coordinates in this space. 

5.f.2 Historical Databases. Historical databases form the second application do- 
main in which we examine version semantics. In Figure 3, we saw how each version 
of Employee records a change to its associated object, using the attribute occurredAt 
to store the time at which the change took place. This attribute can be thought of 
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Figure 5. Temporal version set 
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as defining a one-dimensional time line, and allows the version set to be viewed as 
a function from times to versions. For example, the expression employees(1985) is 
a natural way of specifying the most current version of each member of employees 
as of 1985. 

The attribute occurredAt holds what is known as logical time--that is, the time at 
which the changes took place in the real world. Another form of time is known as 
physical time, which models the time at which the changes took place in the database. 
A system which supports both logical and physical time is called a temporal database 
system (Snodgrass, 1987). Physical time can be supported by the addition of the 
attribute recordedAt to the types in Figure 3. Figure 5 shows a version set using this 
revised scheme for an example employee sue. Versions vl and v2 assert that Sue 
was hired as a clerk in 1981 and given a pay raise a year later. In 1983 her starting 
salary was changed retroactively, probably due to a clerical error. In 1984 it was 
announced (and recorded in the database) that she would be promoted to VP in 
1985. Finally, she was promoted to CEO in 1988, at which time the information 
was also recorded. 

Logical and physical time are orthogonal concepts, and define a two-dimensional 
version space. That is, a particular version can be identified by giving two coordinates: 
the logical time of the change and the physical time of the change. A user can specify 
a particular version of an object simply by giving its (logical-time, physical-time) 
coordinates. Using Figure 5 as an example, sue(1981, 1982) specifies vl, sue(1981, 
1986) specifies v3, and sue(1988, 1987) specifies v4. 

5.2 Dimension Types 

The previous section showed that the semantics of both CAD and historical databases 
imposes a multidimensional structure on version sets. In this section we examine 
how these ideas translate to our versioning data model. We discuss the following 
issues: 

• How the dimensions for a given type can be declared in the scheme; 
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Figure 6. Some dimension types 
define type BikeStyle: 

dimension style = # 
(versioned 

style: char[10] 
) 

define type BikeSpeeds: 
dimension numSpeeds = # 
(versioned 

numSpeeds: int4 
) 

define type PhysicalTime: 
dimension max(recordedAt < #) 
(versioned 

recordedAt: Date 
) 

• How queries can access versions by specifying coordinates; 

• How the system can interpret such queries. 

5.2.1 Dimension Declaration. We define a dimension predicate to be a Boolean 
expression which uses the designated symbol # as a constant, and which may be 
surrounded by an optional aggregation operator. A dimension predicate can be 
declared for an EXTRA-V type by using the new keyword dimension. A type 
containing a dimension predicate is called a dimension type. 

Figure 6 contains definitions for the dimension types BikeStyle, BikeSpeeds, and 
PhysicalTime. Each dimension predicate encodes the semantics of its dimension. 
Intuitively, the designated symbol represents an unspecified coordinate value of the 
dimension; the predicate tells what versions to return given that coordinate. For 
example, the predicate for BikeStyle says to choose the versions having the given 
style-value. The predicate for PhysicalTime says to choose the versions having the 
highest value of recordedAt which is not greater than the given value. 

Dimension types can be inherited. Although this inheritance can be declared 
using standard EXTRA syntax, it seems more appropriate to separate inherited 
dimension types from other inherited types. We therefore declare inherited di- 
mension types after the versioned keyword. Figure 7 shows a revised definition of 
Bicycle from Figure 2. Note that under this new definition, instances of Bicycle have 
exactly the same attributes as before (except that designDate has been renamed to 
recordedAt). The difference is that three of the attributes have been designated as 
defining a three-dimensional version space. 

One of the advantages of our approach is that each type can independently 
declare its version dimensions. For example, in Figure 3 the types Employee and 
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Figure 7. Defining a 3-dimensional version space 
define type Bicycle: 

( projectName: char[10], 
dueDate: Date 

versioned by BikeSpeeds, BikeStyle, PhysicalTime 
frame: ref Frame, 
frontWheel: ref Wheel, 
rearWheel: ref Wheel, 
cost: int4 

) 

Company could be specified as two-dimensional temporal databases by including 
"versioned by LogicalTime, PhysicalTime" in their type declarations. Alternatively, 
Employee could be versioned according to LogicaITime only; in this case, the previous 
values of the database for each logical time would be kept for Company but not 
Employee. It is even possible for Employee to be versioned according to LogicalTime 
only, and Company to be versioned according to PhysicalTime only. This flexibility 
also allows different kinds of versioning to be used :for different parts of a database. 
That is, there need not be just "design databases" or "historical databases"; any 
mixture is possible. Moreover, dimensions are not hard-coded into the system, so 
new dimensions can be declared by an application as needed. 

The choice of dimensions in Figure 7 was totally arbitrary on our part. We 
could just as easily have declared Bicycle to have fewer (or more) dimensions, or 
changed the semantics of the dimension types in Figure 6. Our model provides a 
powerful and flexible way for a database designer to specify the logical structure of 
version sets; it is up to the designer to ensure that it corresponds to her intuition 
of the application. 

5.2.2 Multidimensional Coordinates. The existence of dimension specifications does 
not change the meaning of the queries and updates of Section 3, because the 
conceptual scheme of each type has not changed. However, their existence does 
provide added semantics that can lead to significantly shorter and more natural 
queries. In particular, a desired version of an object can be specified by giving its 
coordinates in the multidimensional space defined by its type. 

Coordinate specification occurs in the from clause. For example, the following 
query returns the cost of the most recent 5-speed racing bicycle for the BMX project 
as of 1986: 

retrieve B.cost 
from B in bikes(5, "racing", 1986) 
where B.projectName = "BMX" 

Note that the order of the coordinate values is determined by the order of their 
declaration in Bicycle. If a type has many dimensions, this positional coordinate 
notation can become difficult to use. We therefore also support coordinate spec- 
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ification by giving the name of the dimension attribute. For example, the above 
coordinates could be equivalently specified by the expression 

bikes (numSpeeds = 5, style= "racing'; rec ordedAt =1986 ) 

In addition to avoiding the need to know the position of each dimension, this 
notation allows a user to specify only a portion of the dimensions. The unspecified 
dimensions are given default values, as described in Section 5.3. 

For another example, suppose that the scheme of Figure 3 has been declared 
so that both types are versioned along the single dimension LogicalTime. Then the 
following query returns the 1989 salaries of all employees who worked for IBM in 
1983: 

retrieve E.salary 
from E in employees(1989), E ~ in employees(1983) 
where E.genericld = E~.genericld and 

Et.worksFor.name = "IBM" 

The following query returns the names of all employees who were the CEO in 1989 
of the same company that they worked for in 1983: 

retrieve E.name 
from E in employees(1983), C in E.worksFor(1989) 
where C.ceo.genericld = E.genericld 

5.2.3 Coordinate Interpretation We now describe how coordinate specifications are 
interpreted by the system. We do this by showing how a query containing coordinate 
specifications can be translated into an equivalent query with the syntax of Section 
3. 

The query translation process is best understood by considering some specific 
examples first. Consider the above query involving the bicycle-design scheme. The 
expression "B in bikes(5, racing 1986)" should be translated into "B inall bikes" 
together with some additional predicates in the where clause specifying the required 
bindings for B. In particular, the following three predicates are needed: 

B.numSpeeds = 5 and 
B.style = "racing" and 
B.recordedAt = max(retrieve B2.recordedAt 

from B2 inall bikes 
where B2.genericld = B.genericld and 

B2.numSpeeds = B.numSpeeds and 
B2.style = B.style and 
B2.recordedAt < 1986) 

Each predicate corresponds to a dimension of B. The predicates for the first two 
dimensions are straightforward. The third dimension's predicate involves aggrega- 
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returns the 
translation 

tion; the versions to be aggregated are those versions which belong to the same 
version set as B and are 5-speed racing bikes. 

The next query in Section 5.2.2 involved the employee-company scheme, and 
is translated as follows: 

retrieve E.salary 
from E, E I inall employees 
where E.genericld = EI.genericld and 

E~.worksFor.name = "IBM" and 
E.occurredAt = max(retrieve E2.occurredAt 

from E2 inall employees 
where E2.genericld = E.genericld and 

E2.occurredAt < 1989) and 
Et.occurredAt = max(retrieve E3.occurredAt 

from E3 inall ,employees 
where E3.genericld = E~.genericld and 

E3.occurredAt < 1983) 

Note how the predicates generated for each variable are independent of each other. 
One must be careful in translating coordinates having multiple aggregation 

dimensions, because the order in which aggregation is performed is important. For 
an example, suppose that Figure 3 is a temporal database; that is, the types Employee 
and Company are dimensioned according to both LogicalTime and PhysicalTime. 
Then the query 

retrieve E.salary 
from E in employees(1986,1988) 

salary of all employees in 1986 as they were known in 1988. The proper 
of this query is as follows: 

retrieve E.salary 
from. E inall employees 
where E.occurredAt = max(retrieve 

from 
where 

E.recordedAt = max(retrieve 
from 
where 

E2.occun:edAt 
E2 inall employees 
E2.genericld = E.genericld and 
E2.occur:redAt < 1986 and 
E2.recordedAt _< 1988) and 
E3.recordedAt 
E3 inall employees 
E3.genericld = E.genericld and 
E3.occurredAt = E.occurredAt and 
E3.recordedAt < 1988) 

The first aggregation chooses the versions with the latest possible logical date. 
If there are several such versions, then the second aggregation chooses the one 
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with the latest possible physical date. Note how the second aggregation depends 
on the binding generated by the first aggregation; these two predicates are thus not 
independent of each other. 

To define the general translation algorithm, we use the following notation. Let 
D be a dimension type and V be a variable• Then: 

• att(D, V) is the attribute declared in D qualified by V; 

cond(D, x, V) is the condition part of the predicate declared in D, where the 
designated symbol # is replaced by x and each expression is qualified by V; 
and 

• aggOp(D) is the aggregation operator declared in the predicate of D (or null 
if no aggregation was declared). 

A query is translated as follows. Let the expression "V in  e(xl, • • • , Xn)" be 
specified in the from clause of a query, where e is an expression of type T, and T 
inherits the dimension types D1, • • •, Dn. Then this specification becomes "Vinall 
e" in the new from clause, and n predicates {P1, • • •, Pn } are added to the where 
clause. Each Pi is defined as follows: 

(a) If aggOp(Di) is null, then Pi = cond(Di, xi, V); 

(b) if aggOp(Di) is not null, then Pi is 

att(Di, V) = aggOp(Di) (retrieve 1/ 
from 1/inall  e 
where V.genericId = V.genericld and 

att(D1, V )  = art(D1, V) and 
• . .  and 
att(Di-1, V )  -- att(Di_l, V) and 
cond(Di, xi, l / )  and 
• • • and 
condOm xn, l / )  ) 

The aggregation expression for a Pi has n + 1 subpredicates within it. The 
first subpredicate restricts the aggregation so that only versions from the same 
version set as V are used. The next i - 1 subpredicates require that the aggregated 
versions respect the variable bindings established byP1 throughPi_l .  The remaining 
subpredicates constrain the remaining dimensions of the version space appropriately. 

5.3 Contexts 

We now deal with the issue of how default versions of objects are chosen. We assume 
that there is a global variable associated with each dimension type; by convention, 
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this variable has the same name as the type. The values of all of these variables is 
called the current context. 

When a query or update command is issued, the current context is used to 
choose the necessary default versions. Recall that defaults are specified in the 
from clause via the in keyword. Consider the declaration "V in e", where e is 
an expression of type T If T has dimensions { D r , . . . ,  Dn}, then the n global 
variables corresponding to each Di determines a coordinate in the version space of 
T This coordinate is used to choose the default version. In other words, the above 
declaration is equivalent to "Vin e ( x l , . . . ,  Xn)", where each xi is the value of the 
appropriate global variable. 

It is often useful to be able to evaluate a query in a particular context. Instead 
of requiring the user to manually change the appropriate context variables, execute 
the query, and restore the old context values, we introduce new syntax. The incontext 
clause in EXCESS-V specifies a context, to be effective only for the duration of the 
query. For example, suppose that the types of Figure 3 have the two dimensions 
(LogicalTime, PhysicaITime), and that both context variables have the value 1990. 
Then the query 

retrieve E.salary 
from E in employees, C in E.worksFor 
where C.name = "IBM" 
incontext LogicalTime = 1976 

returns the 1976 salary of all employees working for IBM in 1976, as it was known 
in 1990. 

Contexts provide the way to synchronize the way defaults are chosen for multiple 
objects. In the above example, every generic reference was evaluated using the 
coordinates (1976, 1990). In general, if two objects share a common dimension, 
then the system will use the same coordinate value when choosing defaults. The 
need for this form of synchronization is prominent :in CASE systems. For example, 
one could configure a program as it existed in 1986 for the UNIX system with the 
clause 

incontext PhysicalTime = 1986, OpSys = "UNIX".  

The use of contexts provides a synchronous way of accessing previous versions 
of objects. It is also possible to create a "partially synchronous" configuration by 
combining contexts and explicit references to versions. For example, in a CASE 
system one could configure a program in a particular context, but substitute a test 
version of some module. In our historical database of Figure 3, this ability allows 
the following query to be expressed: 

retrieve E.salary, C.sales, C.ceo.salary 
from E in employees, C in E.worksFor(1980, 1990) 
where C.name = "IBM" 
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incontext LogicalTime = 1976 

Here  the generic references employees and C.ceo are evaluated in the context 1976, 
whereas the generic reference E.worksFor is evaluated in the context 1980. Thus 
the query returns the 1976 salary of all employees who worked for IBM in 1976, 
the 1980 sales of IBM, and the 1976 salary of whoever was the CEO of IBM in 
1980. 

We note that the specification of default versions in other systems is significantly 
less expressive than what we have described here. CAD systems typically provide a 
fixed set of choice heuristics, such as "most recent" and "latest release". In ORION, 
for example, this set is built-in to the system and is not extendible. Moreover, these 
heuristics are always applied to the current date; it is not possible to specify a 
configuration as of a previous date. Biliris has proposed additions to the ORION 
model that would allow such a possibility (Biliris, 1990); however, his approach 
is somewhat contorted and only allows time-based dimensions to be synchronized. 
The TQuel  temporal query language uses defaults in a very limited way: Only the 
current time can be used as a context value. 

Our use of global variables for synchronization is similar to the way compiler 
switches are used in CASE systems. The results of this section show how these 
CASE features can be added to a data model and be made aplSlication-independent. 

6. Conclusions 

We have shown how versioning and configuration management can be added 
to the EXTRA/EXCESS data model. The resulting versioning model, EXTRA- 
V/EXCESS-V, has the following features: 

• A small number of new constructs are added, which can be ignored by people 
who do not need or want to know about versioning. 

• The constructs are all conceptual; that is, they do not depend on how versions 
are implemented at the physical level. 

The constructs are application-independent. Constructs which are specific to 
a particular application domain (such as CASE) have either been generalized 
(e.g. synchronization and context), or omitted. 

• The constructs are high-level, allowing users to access versioned data in 
exactly the same non-procedural way as unversioned data. 

We also considered the semantics of versioning applications, and saw that version 
sets often form a multidimensional space. We then showed how such semantics can 
be declared using dimension types, and accessed by giving the desired coordinates 
in that space. This approach led to semantically-based configuration specification 
and a framework for specifying how default versions are chosen. 
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There are several issues that require further exploration. Query optimization 
strategies have not yet been examined. For example, configuration specification can 
involve a substantial amount of aggregation, and a straightforward evaluation of 
such queries may not be efficient. Can the standard relational techniques (such as 
magic sets) be used, or are other strategies necessary? 

We also need to examine the physical strategies used to store versions. CASE 
systems store versions as differential files based on the version hierarchy; historical 
database systems use techniques based on the semantics of time intervals; and CAD 
systems use still other techniques. A more careful study of these implementation 
strategies is necessary. In particular, we need to understand better when a given 
storage strategy is useful and the extent to which different strategies can be combined. 
The possibility of using indexes also needs consideration. Ultimately, we would like 
a database designer to be able to declare storage: strategies for versioned types 
similarly to the way it is done with relations. 

This article has been concerned with encoding the basic ideas of versioning and 
configuration management into a data model. There are many features related to 
versioning that we have not had the time to examine. For example, CAD systems 
provide change notification, schema evolution, and checkin/checkout; CASE systems 
provide incremental compilation; and historical systems provide operators on time 
intervals. Each of these features needs to be reexamined in the light of our model. 
Are the ideas application-independent, or do they involve some special properties 
of the application? Are there general concepts that are missing from our current 
model? For example, do schema versions have special requirements that are not 
handled by dimension types? For that matter, what would it mean for a dimension 
type to be versioned? 
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