
Efficient Processing of Complex Similarity Queries in
RDBMS through Query Rewriting

Caetano Traina Jr.
Dept. of Computer Science
ICMC-Univ. of Sao Paulo

Sao Carlos, SP, 13560-Brazil
caetano@icmc.usp.br

Agma J. M. Traina
Dept. of Computer Science
ICMC-Univ. of Sao Paulo

Sao Carlos, SP, 13560-Brazil
agma@icmc.usp.br

Marcos R. Vieira
Dept. of Computer Science.

ICMC-Univ. of Sao Paulo
Sao Carlos, SP, 13560-Brazil
mrvieira@icmc.usp.br

Adriano S. Arantes
Silicon Valley Laboratory

IBM
San Jose, CA

aarante@us.ibm.com

Christos Faloutsos
Dept. of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

christos@cs.cmu.edu

ABSTRACT
Multimedia and complex data are usually queried by simila-
rity predicates. Whereas there are many works dealing with
algorithms to answer basic similarity predicates, there are
not generic algorithms able to efficiently handle similarity
complex queries combining several basic similarity predica-
tes. In this work we propose a simple and effective set of
algorithms that can be combined to answer complex simila-
rity queries, and a set of algebraic rules useful to rewrite si-
milarity query expressions into an adequate format for those
algorithms. Those rules and algorithms allow relational da-
tabase management systems to turn complex queries into ef-
ficient query execution plans. We present experiments that
highlight interesting scenarios. They show that the propo-
sed algorithms are orders of magnitude faster than the tra-
ditional similarity algorithms. Moreover, they are linearly
scalable considering the database size.

Categories and Subject Descriptors: H.2.4 Database
Management, Systems: Query processing

General Terms: Algorithms, Theory.

Keywords: Similarity predicates, query rewriting.

1. INTRODUCTION
Exact match comparisons are rare in domains of complex

data, such as images, videos, genomic sequences, and time
series. Comparison based on ordering relationships cannot
be applied either, as the total ordering property does not
hold. Therefore, similarity emerges naturally as the natural
way to compare data in complex domains.

Similarity comparisons employs Distance Function (DF)
to quantify how similar, or close two objects are. Those

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’06, November 5–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-433-2/06/0011 ...$5.00.

functions are the basis to create a metric space, which for-
mally is a pair M =< S,d() >, where S denotes the universe
of valid elements and d() is the function d : S×S→R+ that
expresses a “distance” between elements of S, i.e., the smal-
ler the distance, the closer or more similar the elements
are [9]. A DF must satisfy the properties of: symme-
try: d(s1,s2) = d(s2,s1); non-negativity: 0 < d(s1,s2) < ∞

if s1 6= s2 and d(s1,s1) = 0; and triangular inequality:
d(s1,s3)≤ d(s1,s2)+d(s2,s3), where s1,s2,s3 ∈ S. A data set
S is said to be in a metric space if S⊆ S.

There are two basic similarity predicates, expressed as σ̃ :
the range and the k−nearest neighbor queries. Given a data
set S⊂ S and a query center sq ∈ S, they are defined as:

1. Range Query - Rq: given the maximum search dis-
tance rq, the range query σ̃(

Rq(sq,rq)
)S, expressed by the

Rq(sq,rq) predicate, selects every element si ∈ S such
that d(si,sq)≤ rq;

2. k-Nearest Neighbor Query - kNN: given an integer
value k ≥ 1, the k-nearest neighbor query σ̃(

kNN(sq)
)S,

expressed by the kNN(sq) predicate, selects the k ele-
ments si ∈ S whose distances to sq are the smallest.

Most algorithms for similarity search consider each query
as an isolated operation instead of predicates integrating
more complex query expressions. Moreover, they do not take
advantage of optimizations that can be performed combining
simpler expressions.Therefore, queries composed of multiple
similarity predicates require expensive union and intersec-
tion operations to combine intermediate results to answer
conjunctions and disjunctions of elementary predicates.

A RDBMS supporting multimedia data demands efficient
ways to answer complex similarity queries. To integrate
similarity queries with the traditional ones, the similarity
predicates should be included into the relational algebra.
As a consequence, similarity operators should be used
together with other predicates already available in the
relational algebra, such as exact match and order-based
comparisons for textual/numeric attributes, and also in
comparisons combining two or more similarity predicates.
In this paper we delve into the later kind of queries,
that is, those expressed as sequences of conjunctions and

4

disjunctions of the basic similarity predicates. Examples of
real systems demanding such kind of queries follows.
Q1: In a user friendly word processor: “When a wrong
word is written, show up to 5 correct words that differ at
most 2 characters” (k-NN and Range):
σ̃(

5NN(<wrong word>)
)S∩ σ̃(

Rq(<wrong word>,2)
)S .

Q2: In real state business: “Show the 10 nearest available
houses to my job ‘mj’ that are not farther than 15 miles
from ‘mj’, and not farther than 15 miles from my wife’s job
‘wj’ (conjunction of several predicates):(
σ̃(

10NN(m j)
)S∩ σ̃(

Rq(m j,15mi)
)S

)
∩ σ̃(

Rq(w j,15mi)
)S .

Q3: In health-care information systems: “Show the
XRay exams of any patient that are the 10 most similar
to each of these three XRay exams e1, e2 and e3 from my
current patient but that do not differ from them more than
10%” (disjunction of conjunctions):(
σ̃(

Rq(e1,10%)
)S ∩ σ̃(

10NN(e1)
)S

)
∪

(
σ̃(

Rq(e2,10%)
)S ∩

σ̃(
10NN(e2)

)S
)
∪

(
σ̃(

Rq(e3,10%)
)S∩ σ̃(

10NN(e3)
)S

)
.

Another important application for complex similarity que-
ries is to support relevance feedback (RF), which allows the
users to set the elements of a query that fulfills his/her in-
terest, guiding automatic corrections of future queries [16].
The query reprocessing can change the distance function
or the center element. It can also take advantage of rewri-
ting the similarity query including new similarity conditions.
The later approach produces the best results, but rely on the
ability to efficiently handle complex queries.

Although complex queries can be executed combining in-
termediate results of basic range and k-NN algorithms by
set-theoretical operators, a more efficient approach should
use few general algorithms configured by the query optimi-
zer of a RDBMS. This approach leads to two core problems:
how to rewrite a query plan to obtain an optimal execution;
and how to make frequently-used composite operations more
efficiently executed by a multi-purpose algorithm than by
the sequential execution of the basic algorithms combined
by set-theoretical operators. We tackle both problems in
this paper, addressing the following issues:

1. Which multi-purpose algorithms are efficient to answer
queries composed of conjunctions and disjunctions of
similarity predicates?

2. What rules guide query rewriting when generating
strategies to execute the similarity search operators?

3. How to adequately represent a query to be submitted
to multi-purpose similarity search algorithms?

The remainder of this paper is structured as follows. The
next section gives a brief history of algorithms for answe-
ring similarity queries. Section 3 describes the basic algo-
rithms for similarity queries and their most common variati-
ons. Section 4 presents the rules governing complex simila-
rity queries centered at the same query element and defines
the algorithms required to support them. Section 5 pre-
sents rules governing complex similarity queries centered at
different query elements and an algorithm to answer them.
Section 6 show experimental results comparing the traditi-
onal approach with the algorithms and concepts presented
in this paper. Finally, section 7 concludes this paper.

2. RELATED WORK
The properties of a distance function led to the develop-

ment of hierarchical index structures called Metric Access
Methods (MAM). MAM are fundamental to accelerate se-
arches in large sets of complex data types, where only the
set of elements and a DF are available. MAM such as the
M-tree [9] and the Slim-tree [22] can accelerate similarity
queries on complex data by orders of magnitude.

2.1 Similarity Search Algorithms
Similarity search algorithms motivated several works. Al-

gorithms for range queries are straightforward, because a
limiting radius is always known throughout its execution.
However, the minimum radius that cover the k nearest ele-
ments is not known beforehand for k-NN algorithms. Thus,
the ordering to search subtrees in hierarchical index structu-
res is important, turning the choice of path sequences that
lead to high subtree-pruning one of the most pursued objec-
tives [22]. Many approaches have been proposed to improve
the performance of k-NN queries as, for instance, branch-
and-bound [17], incremental [11], multi-step [13, 18] and fast
parallel algorithms [1]. Another approach is to estimate a
final limiting range for the query and perform a sequence of
“start small and grow” steps [20]. All of these works refer to
algorithms dealing with just one simple similarity predicate.

Multiple similarity queries executed as a single command
have been introduced, allowing potential for much more
optimization than single queries do [4, 2]. Algorithms to
answer multiple similarity queries substantially speed-up
query-intensive data mining applications. Multiple k -NN
queries are addressed in [4], analyzing optimizations re-
garding CPU and I/O costs with potential for parallelism.
Complex similarity queries consisting of more than one si-
milarity predicate have been studied considering complex si-
milarity queries over a single feature [10] and over multiple
features [7, 3]. Algorithms to perform a spatial selection and
a spatial join simultaneously are presented in [14]. Indexing
structures are used in [10, 3] to enhance complex similarity
queries in relevance feedback environment. None of these
works consider combining multiple similarity predicates th-
rough a set of operations, but instead they use intermediary
scoring functions to evaluate the overall scores that indicate
the pertinence of each element to the answer.

2.2 Query rewriting
A query involving complex Boolean expressions in

RDBMS can be rewritten in an equivalent expression. Re-
writing into Conjunctive or Disjunctive Normal Form (CNF
or DNF) using one index per expression is a well-known
technique [19]. Multiple indexes techniques are presented
in [15]. Other approaches involve optimizing user-defined
predicates with varying evaluation cost and selectivity re-
garding AND [8] and OR [12, 7] expressions. Factorization
also helps rewriting Boolean expressions aiming optimizati-
ons [6].

Similarity query optimization over multimedia data star-
ted to receive attention, addressing the rewriting and op-
timization of ranked queries using expensive predicates [5].
However, no work addressed optimizations based on query
rewriting for the similarity-based select operators regarding
complex expressions, which is the objective of this paper.

5

3. BASIC OPERATORS AND VARIATIONS
FOR SIMILARITY QUERIES

Aiming at covering as many query options as possible,
we consider that each type of basic similarity predicate
corresponds to as a basic, but flexible operator. Thus, a
range predicate Rq(sq,rq) corresponds to a Range(θ ,sq,rq)
operator, and a k -NN predicate kNN(sq) corresponds to a
Nearest(θ ,sq,k) operator. The parameter θ is one of the re-
lational operators <,≤,>,≥,= or 6=. The basic range and
k-NN predicate uses ‘≤’ as θ in the corresponding operators.

There are variations of each similarity predicate, and most
of them can be expressed using the two basic operators.
A common variation is obtaining the farthest instead of
the nearest elements. Thus, a reversed range predicate
Rq−1(sq,rq) asks for the elements si in the data set S such
that d(si,sq) > rq. This is obtained when the θ parameter
in the range operator is >. A k-farthest neighbor predicate
kFN(sq) is equivalent.

Table 1 lists the basic queries and the variations used in
this paper, together with their predicates and the corres-
ponding operators. In this paper we use only ≤ and > as
θ for both operators. Table 2 lists the symbols used in this
paper.

Table 1: Basic Predicates and Operators
Query Name Predicate Operator
Range Query Rq(sq,rq) Range(‘≤’,sq,rq)
Reversed Range Query Rq−1(sq,rq) Range(‘>’,sq,rq)
k-Nearest N. Query kNN(sq) Nearest(‘≤’,sq,k)
k-Farthest N. Query kFN(sq) Nearest(‘>’,sq,k)

Table 2: Table of Symbols
Symbols Definitions

S Set of all valid elements in the data domain.
S Data set where queries are posed. S⊂ S
ν Number of elements in data set S. ν = |S|

d(si,s j) Distance function, or dissimilarity function.
d : S×S→ R+, si,s j ∈ S

sq Query center. sq ∈ S
rq Query radius. rq ≥ 0
k Maximum number of elements in a query. k ≥ 1

pi, qi Predicate type p, where p is either Rq or
kNN, and q is the other predicate type.

ui, vi Limiting value of predicate pi or qi.
If pi = Rq(sq,rq)⇒ ui = rq, else ui = k.

mp
i , mq

i Conjunction of predicates of one type. Used
in SCSO expressions. mp

i = ¬pk ∧ p j
mpq

i Conjunction involving Rq and kNN.
Used in SCMO expressions. mpq

i = mp
i ∧mq

i
cmp

i Conjunction of pred. centered at object c
Used in MCMO expressions.

mp
1 The min-term consisting of the single

non-complemented predicate. mp
1 = p j

mp
0 The min-term consisting of the single

complemented predicate. mp
0 = ¬pi

4. COMPLEX SIMILARITY QUERIES
WITH A SINGLE CENTER

We define complex similarity queries as those composed
of two or more basic similarity predicates combined by the
Boolean operators ∧ (and), ∨ (or) and ¬ (not). To analyze
expressions representing complex similarity queries we di-
vide the expressions into those having every predicate cen-

tered at the same query object (centers), and those having
distinct centers. The former expressions are further divided
into those composed of only a single similarity operator,
and those involving both range and k-NN operators. Single
operator means either only range or only k-NN operators,
resulting in three classes:

• SCSO - single center/single operator;

• SCMO - single center/multiple operator; and

• MCMO - multiple centers/multiple operator.
In this section we analyze the expressions combining simi-
larity operators over a single center sq ∈ S applied over the
data set S⊂ S of a metric domain S with cardinality ν = |S|.

4.1 Single center and same operator
We present in Appendix six basic properties of simila-

rity predicate combination, and show that both the fields
of range and of k-NN predicates centered at the same ele-
ment forms corresponding Boolean Algebras. Therefore, any
SCSO expression always can be expressed in disjunctive or
conjunctive normal form (DNF or CNF). Both DNF and
CNF share dual properties, so without loss of generality
we consider only the DNF in the following discussion. A
DNF expression consists of a disjunction of conjunctive min-
terms, where each conjunctive min-term is the conjunction
of either one variable or its complement. The variables are
the basic similarity predicates. Therefore, any SCSO ex-
pression can always be represented in DNF.

To simplify the notation for SCSO expressions, let pi, i =
1...n be a predicate using a basic similarity operator p, where
p is either Range or Nearest. Let also ui be the limiting value
of predicate pi, so if p is Range then ui is the radius ri of the
predicate Rq(sq,ri), otherwise ui is the number of neighbor ki
of the predicate kiNN(sq). Let us also express a conjunction
of predicates on p as mp

a . Therefore, a SCSO expression
involving predicates pi on the similarity operator p and the
∧, ∨ and ¬ Boolean operators can always be expressed in
DNF as (¬p1∧ . . .¬pi∧ p j ∧ . . . pk)∨ (¬px∧ . . . py)∨ . . . = mp

a ∨
mp

b ∨ Notice that if pi is a range predicate pi = Rq(sq,ri)
then ¬pi = Rq−1(sq,ri), and if pi is a k-NN predicate pi =
kiNN(sq) then ¬pi = (ν− ki)FN(sq).

The following three Theorems apply to conjunctive min-
terms, and can be straightforwardly demonstrated using the
properties presented in the Appendix. Property 3 on Range
operators and Property 5 on Nearest operators allow sim-
plifying min-terms of the form mp

a = p1 ∧ p2 ∧ . . . pn. Here
we give an intuition of the theorems using Figure 1, which
shows a two-dimensional space with the Euclidean DF, so
the points nearer than a limiting radius r to a center point
sq are within a circle of radius r centered at sq.

Figure 1: Regions covered by min-terms considering
an Euclidean distance function in a 2D space. (a)
min-term mp

0 ; (b) min-term mp
1 ; (c) min-term mp

c .

6

Theorem 1: Two basic predicates per Min-terms - Each
min-term in a SCSO DNF expression is composed of at
most two basic predicates, one complemented and the other
not complemented:

σ̃(
(p1∧...pg)∧(¬ph∧...¬pk)

)S⇔ σ̃(pi∧¬p j)S ,

where ui = min(u1, . . .ug) and u j = max(uh, . . .uk).
The min-terms having only one basic predicate are either

the one not having a complemented predicate, which we
represent as mp

1 , or the one having only the complemented

predicate, which we represent as mp
0 . Min-terms mp

0 and

mp
1 in a two-dimensional Euclidean domain are shown in

Figure 1(a) and (b) respectively.
Theorem 2: Min-terms as Rings - If the limiting value

of the complemented predicate of a min-term mp
c with two

basic predicates is less or equal than the limiting value of
the non-complemented predicate, then mp

c defines a ring-
shaped region, otherwise it can be dropped from the DNF
expression. That is:

σ̃(
(¬pi∧p j)|ui>u j

)S⇔ null .

Figure 1(c) shows a two-predicate min-term mp
c . DNF ex-

pressions combine one- and two-predicate min-terms leading
to complex expressions, as the one shown in Figure 2.

Theorem 3: Overlapping Min-terms - Min-terms
with overlapping limits can be joined as follows.
(total overlapping:)

σ̃(
(¬pg∧p j)∨(¬ph∧pi)|ug≤uh≤ui≤u j

)S⇔ σ̃(
¬pg∧p j

)S ,

(partial overlapping:)

σ̃(
(¬pg∧pi)∨(¬ph∧p j)|ug≤uh≤ui≤u j

)S⇔ σ̃(
¬pg∧p j

)S .

Figure 2 shows the min-term mp
c = ¬p4∧ p7 totally overlap-

ping min-term mp
b = ¬p5 ∧ p6, therefore only the min-term

mp
c must be retained. Likewise, the min-term mp

d =¬p9∧ p11
partially overlap min-term mp

e = ¬p8 ∧ p10, therefore they
can be joined in the single min-term mp

d ∨mp
e = ¬p8 ∧ p11.

Min-term mp
0 can be checked for overlap considering that

the missing predicate is p∞ with u∞ = ∞, and the min-term
mp

1 checked using p0 with u0 = 0.

Figure 2: Regions involved in the disjunctive normal
form p1 ∨ (¬p2 ∧ p3)∨ (¬p5 ∧ p6)∨ (¬p4 ∧ p7)∨ (¬p8 ∧ p10)∨
(¬p9 ∧ p11)∨¬p12, considering range queries and the
Euclidean distance function in a 2D space.

Operators to execute SCSO expressions

Single Center/Single Operator expressions in DNF simpli-
fied by Theorems 1 to 3 cannot be further simplified, so a
DBMS supporting similarity queries must be able to execute
a simplified expression. There are two approaches: an al-
gorithm for each basic operator processing a min-term at a
time, or an algorithm executing the full expression at once.

The first approach employs the existing algorithms to exe-
cute the Range(θ ,sq,rq) and Nearest(θ ,sq,k) basic predicates
of min-terms mp

1 and mp
0 . However, two other algorithms

must evaluate min-terms composed of two basic predica-
tes: the RingRange(sq,rqi,rqe) and the RingNearest(sq,kqi,kqe),
each one executing a min-term mp

i over the correspon-
ding operator. These algorithms can be created mo-
difying the corresponding basic algorithms as follows. The
RingRange(sq,rqi,rqe) algorithm changes the comparison of
an element si meeting the predicate d(si,sq)θrq in the ba-
sic algorithm to the predicate rqi < d(si,sq)≤ rqe in the ring
range algorithm. The RingNearest(sq,kqi,kqe) algorithm per-
forms just the Nearest(≤,sq,kqe) operation, dropping the kqi
nearest neighbors from the final answer. The simplification
process guarantees that each region covered by a min-term
does not overlap any other, thus a complete SCSO expres-
sion can be evaluated calling a ring operator once for each
min-term and concatenating the partial results to get the
final answer.

The second approach to execute SCSO expressions em-
ploys a generalized algorithm to evaluate the full expression
at once. We define the GenericRange(sq,rLimit[]) algorithm
to process range predicates, where rLimit[] is an array of
pairs < ri,re > with increasing radii, each one corresponding
to a min-term. It is similar to the RingRange() algorithm,
but the predicate compares each element si to check if it
is inside a valid region defined in rLimit[]. An equivalent
GenericNearest(sq,kLimit[]) algorithm shown as Algorithm 1
is defined for k-NN predicates. It first sorts every element
based on its distance to the predicate center, then includes
in the answer those elements whose rank is inside the ex-
tent defined by a min-term given by the pairs < ki,ke > in
kLimit[].

It is not worth to use the first approach in expressions
composed of several min-terms with k-NN predicates, be-
cause the rank of each element regarding its proximity to
a predicate center cannot be determined without knowing
the other elements in the set. Therefore, answering SCSO
queries with on k-NN predicates imposes the second appro-
ach. The cost of executing the GenericNearest() algorithm
is equivalent to a single execution of the Nearest() using the
largest k in kLimit[]. Therefore the GenericNearest() algo-
rithm is always faster than calling the Nearest() algorithm
several times, whenever the number of limits MaxK exceeds
one.

Algorithm 1 GenericNearest(sq,kLimit[])

1: CoverOb jSet = Nearest(sq,kLimit[MaxK].ke)
2: for each j in CoverOb jSet do
3: if j.rank() is in kLimit then
4: Answer.Add(CoverOb jSet[j])

4.2 Single center and multiple operator type
To analyze a SCMO expression, we extend the pi/ui no-

tation of SCSO expressions to represent SCMO expressions

7

in the following way. If pi is a range predicate with limiting
radius ui then q j is a k-NN predicate with limiting k = vi.

Similar to mp
a , mq

b represents a disjunctive min-term of pre-
dicates of type q. The symbols p and q can be arbitrarily
assigned to either range or nearest operators, provided they
are distinct from each other. A conjunctive predicate pi∧q j
on a single center sq recovers the elements satisfying both
basic predicates. Therefore, if pi ∧ q j = kiNN(sq)∧Rq(sq,r j)
then σ̃(

pi∧q j

)S = σ̃(
kiNN(sq)

)S∩ σ̃(
Rq(sq,r j)

)S, leading to the fol-

lowing Theorem.
Theorem 4: The field of range and k-NN predicates with

same center forms a Boolean Algebra - The conjunction of
a k-NN predicate with a range predicate satisfies the com-
mutative, associative and distributive properties over both
∧ and ∨ Boolean operators.

The importance of this theorem relies on representing
every single-centered expression as a SCMO expression in
DNF, where each min-term is a conjunction of range and
k-NN predicates, complemented or not. Moreover, as each
operator range or nearest can contribute with at most two
predicates, each min-term is a conjunction of at most four
predicates: a reversed range, a k-farthest neighbor, a range
and a k-NN. As these predicates are commutative over ∧,
each min-term of a DNF expression always can be expres-
sed as mpq

a = (mp
b ∧mq

c) = (¬pg∧¬qh)∧ (pi∧q j).
Any conjunction Rq(sq,rq) ∧ kNN(sq) or Rq−1(sq,rq) ∧

kFN(sq) of predicates centered at the same element sq re-
quires intersecting the intermediate results obtained by the
basic operators. We propose a new kAndRange(θ ,sq,k,rq) al-
gorithm that receives the limits from both the range and the
k-NN predicates and returns the elements that satisfy both
criteria, so the following theorem can be stated.

Theorem 5: Conjunction of k-NN and Range with
same center - The conjunction of a k-NN and a range
predicate over dataset S is equivalent to the intersection of
the results from both basic operators and equivalent to the
execution of the algorithm kAndRange(θ ,sq,k,rq). Therefore:

σ̃(
Rq(sq,rq)

)S∩ σ̃(
kNN(sq)

)S⇔
σ̃(

Rq(sq,rq)∧kNN(sq)
)S⇔ σ̃(

kAndRange(θ ,sq,k,rq)
)S .

Using the property of commutativity to represent every min-
term mpq

a as (¬pg ∧ pi)∧ (¬qh ∧ q j) it becomes the conjunc-
tion of a sub-expression on range with a sub-expression on
k-NN predicates, and each one can be simplified using The-
orems 1 to 3. Once simplified, the remaining min-terms can
be re-arranged as mpq

a = (¬pg∧¬qh)∧(pi∧q j), and answered
calling algorithm kAndRange(θ ,sq,k,rq) twice, first to process
(¬pg∧¬qh) and then to process (pi∧q j).

The intersection of two distinct min-terms in an SCMO
expression in DNF can be non-empty. An algorithm to pro-
cess such expressions can be improved guaranteeing that the
min-terms are disjoint, so the following theorem is useful.

Theorem 6: Disjoint min-terms in DNF expres-
sion - Suppose a SCMO expression in DNF with at
least two min-terms mpq

a =
(
(¬pg ∧ ¬qh) ∧ (pi ∧ q j)

)
and

mpq
b =

(
(¬pe ∧ ¬q f) ∧ (pk ∧ ql)

)
. If the limiting values

ug ≤ ue ≤ ui, then the min-term mpq
a can be substituted by

two non-overlapping min-terms:

mpq
a =

(
(¬pg∧¬qh)∧ (pe∧q j)

)
∨
(
(¬pe∧¬qh)∧ (pi∧q j)

)
,

If the limiting values ue ≤ ui ≤ uk then the min-term mpq
b

can be substituted by two non-overlapping min-terms:

mpq
b =

(
(¬pe∧¬q f)∧ (pi∧ql)

)
∨

(
(¬pi∧¬q f)∧ (pk ∧ql)

)
.

When no pair of min-terms of a SCMO expression allows
any of those substitutions, then each min-term is disjointed
from any other min-term, so we call it an overlap-free, or a
O f -expression.

The substitutions in Theorem 6 can be applied to both
predicate types, but it is enough to apply to just one. Notice
that it fosters the use of incremental algorithms, and enables
the use of the concatenation operation in place of the more
expensive union operation.

Operators to execute SCMO expressions

SCMO expressions in DNF benefit from specific retrieval
algorithms. A common sub-expression, worth to be imple-
mented as a specific algorithm is the ‘k-nearest and range
query’, defined as follows.

Definition 1: k-Nearest and Range Query - Given an
element sq ∈ S, a nearest value k, a distance rq ∈ R+ and
a relational operator θ ∈ {≤,>}, a ‘k-Nearest and Range
query’ retrieves every element si ∈ S | d(sq,si)θrq and si ∈
Nearest(θ ,sq,k).

A ‘k-nearest and range query’ can be executed by a
kAndRange(θ ,sq,k,rq) algorithm (see Algorithm 2). It exe-
cutes the conjunction pi∧q j of a range and a k-NN predica-
tes centered at the same element, where pi and q j are both
complemented or both not complemented. The conjunction
requires both predicates satisfying the same θ condition,
so this algorithm is based on the Nearest(θ ,sq,k) one. The
allowed distances of the answers to the query center, re-
presented by rc, starts at rq and is reduced (increased) as
nearer (farther) elements are found. The answer is sorted
by the distance of the element to the query center. The
methods Add() inserts a new element to the list keeping it
sorted, Length() returns the number of elements in the list,
DropLast() removes the farthest (if θ =‘≤’) or nearest (if
θ =‘>’) element in the list, and MaxDist() returns the dis-
tance to the farthest or to the nearest (regarding θ) element
in the list.

Algorithm 2 kAndRange(θ ,sq,k,rq)
1: set Answer to null, set rc to rq
2: for each si in S do
3: Compute d(si,sq)
4: if d(si,sq) θ rc then
5: Answer.Add(si, θ)
6: if ¬(Answer.Length() θ k) then
7: Answer.DropLast(θ)
8: set rc to Answer.MaxDist(θ)
9: return Answer

The UniSimDNF(minterms[],sq) algorithm (see Algo-
rithm 3) answers a whole O f -expression, using the
kAndRange(θ ,sq,k,rq) algorithm to solve each min-term. The
intermediary results of each call to kAndRange() is a set of
elements sorted by their distances to the predicate center sq.
The final answer of a min-term is the intersection of both
intermediary answer but, as both are sorted by the distance
of each element to sq, this operation can be computed with
linear computational complexity on the number of elements
involved.

The SCMO expression in DNF is sent to UniSimDNF() as
parameter minterms[]. As each min-term is calculated, the
result is maintained in a queue sorted by the distance of
each element to the query center sq. Therefore, the union of

8

each min-term to the previous ones can also be executed in
linear time regarding the number of elements involved.

Algorithm 3 UniSimDNF(minterms[],sq)
1: set Answer to null
2: for each mpq

a = (¬pg∧¬qh)∧ (pi∧q j) ∈ minterms[] do

3: set Answer to Answer
⋃(

kAndRange(>,sq,kh,rg)⋂
kAndRange(≤,sq,k j,ri)

)
4: return Answer

5. COMPLEX SIMILARITY QUERIES
WITH MULTIPLE CENTERS

Expressions involving the basic similarity predicates can
include predicates centered at several elements. The comple-
ments of basic predicates do not depend on other predicates
existing in the same expression, so Properties 1 and 2 also
holds for MCMO expressions. The commutative, associative
and distributive properties over the ∧ and ∨ Boolean opera-
tors also hold for sub-expressions composed of the predicates
centered at any element. Therefore, the field of MCMO ex-
pressions also forms a Boolean Algebra.

MCMO expressions can be represented in DNF with min-
terms composed of range or k-NN predicates, complemen-
ted or not, centered at the same or at distinct elements.
MCMO expressions do not present special properties ena-
bling further optimizations. However, we developed a tech-
nique to rewrite MCMO expressions that splits existing over-
lapping min-terms into other disjoint min-terms, exploiting
the proposed properties of the SCSO and SCMO expressions
to build efficient algorithms to answer MCMO queries.

For this discussion, suppose a MCMO query expres-
sion involving predicates centered at nc different elements
c1,c2, . . .cnc, and let ck mpq

a represent a disjunction on both
operators p and q centered at ck, that is, ck mpq

a = (¬pg ∧
¬qh)∧ (pi ∧ q j), where pg,qh, pi and q j are predicates cen-
tered at element ck. Then, each min-term has the form:
c1 mpq

a ∧c2 mpq
b ∧ . . .cnc mpq

z .
To evaluate an MCMO query in DNF, our algorithm

factorizes the query expression using one center at a
time. Let us assume that the set of centers are main-
tained in a given order, so that ci precedes c j for every
i < j. An expression factorized by center c1 becomes
(c1 mpq

a ∧ Ea,1)∨ (c1 mpq
b ∧ Eb,1) . . . where Ei, j is the i-th sub-

expression in DNF involving predicates centered at elements
c j+1, . . .cnc. For example, the expression with two centers
c1,c2:

(c1 mpq
a ∧c2 mpq

b)∨ (c1 mpq
c ∧c2 mpq

d)∨ (c1 mpq
a ∧c2 mpq

e)

is factorized considering the center c1 to(c1 mpq
a ∧ (c2 mpq

b ∨c2 mpq
e)

)
∨(c1 mpq

c ∧c2 mpq
d).

Each Ei, j is in turn recursively factorized considering one of
the remaining centers. Each Ei, j sub-expression and the full
expression are simplified using Properties 1 to 3. After every
sub-expression and the full expression had been simplified,
they can be executed. The simplification process assures
that each min-term in an expression do not overlap with
the other min-terms in the same expression. Therefore, the
implicit union operation required to integrate the answers
of each min-term is executed as a concatenation operation,
with linear processing cost regarding the number of elements
concatenated.

The algorithm to execute a factorized MCMO query called
GenSimDNF(minterms[],centers[]) is detailed in Algorithm 4.
The parameter minterms[] is an array with the min-terms
of the expression, and centers[] is an array with the cen-
ters. The algorithm works as follows. If an expression
has only one center c, it returns the result of executing
UniSimDNF(minterms[],c). Otherwise, it chooses one cen-
ter as c, and factorizes the expression finding each dis-
tinct term cmpq

i occurring in the set of min-terms. For

each min-term cmpq
i , it factorizes the remaining terms and

calls GenSimDNF() recursively. The answers from each sub-
expression are intersected with the answers from the cmpq

i
term, generating the result of each min-term, which are in
turn concatenated to obtain the final result of the query.

Algorithm 4 GenSimDNF(minterms[],centers[]) - Execute a
generic similarity query in disjunctive normal form.

1: set Answer to null
2: if |centers[]|> 1 then
3: set c = FactorOut(centers[])
4: for each cmpq

i ∈ minterm[] do

5: Prepare(minterms[],c mpq
i , InnerMinterms[])

6: set Answer to Answer
⋃(

GenSimDNF(InnerMinterms[],centers[] − c)
⋂

UniSimDNF(cmpq
i ,c)

)
7: return Answer
8: else
9: return UniSimDNF(minterms[],centers[1])

Algorithm FactorOut(center[]), called in step 3 of
GenSimDNF(), chooses one center to factor out, thus defining
the order of the centers. Algorithm FactorOut() can use diffe-
rent heuristics based on the sizes of the query radii relative to
the dataset diameter, and on the number k of elements requi-
red relative to the number of elements in the data set. This
algorithm can benefit from optimizations regarding particu-
larities from a given application domain, so this is a topic
where further research can improve performance. To per-
form the experiments presented in the next section, we have
used a generic heuristic that we found useful in a variety of
application domains. This heuristic uses the centroid of the
remaining centers, selected as follows. Calculate the summa-
tion of the squared distances from each center to every other,
then select the center whose summation is the smallest.
The algorithm Prepare(minterms[],c mpq

i , InnerMinterms[]) se-

lects from minterms[] those having the term cmpq
i , strips it off

and stores the resultant sub-expression into InnerMinterms[].
A factored expression can have more min-terms than the

equivalent DNF expression, but it will never have more pre-
dicates pi. Therefore, the factorized expression will never
require more incursions into the dataset to retrieve the par-
tial answers than the DNF expression. Similarity queries
over multimedia data can be very expensive. However, in
our approach the overhead of the factorization cost of the
GenSimDNF() algorithm is overcame by the expressive gain
in the query execution, as shown in the next section.

6. EXPERIMENTAL RESULTS
This paper proposes rewriting techniques to improve pro-

cessing similarity queries. In this section we present ex-
periments comparing the proposed algorithms with compo-
sitions of the basic algorithms combined by set-theoretical

9

operators (the traditional approach), and show that the pro-
posed algorithms are much faster and scalable considering
database size.

The algorithms were implemented in C++, and the ex-
periments ran in an AMD Athlon XP 2600 processor with
385MB of main memory, under the Linux operating system.
Every test was performed using both sequential scan (SeqS-
can) and a Slim-tree index. We present the results obtained
from the following four data sets:

• LBeach: a set of 36,298 2-dimensional coordinates of
the road intersections in Long Beach City, CA, from
the TIGER system of the U.S. Bureau of Census, using
the Euclidean distance;

• XR: a set of 40,000 Metric Histograms (non-
dimensional) obtained from various human body part
radiographies, using the MH() distance function (the
Metric Histogram is a piecewise linear approximation
built over normalized histograms. As the number of pi-
eces varies from an image to another, it does not have
a defined dimension. The MH() distance uses the val-
leys and peaks to compare pairs of Metric Histograms
[21]);

• EngWords: a random subset of 24,893 words from the
English language, using the LEdit distance;

• Synt30D : a synthetic set of 1,000,000 randomly ge-
nerated 30-dimensional points, each coordinate in the
range [0,1], using the Euclidean distance.

Due to space limitations, in this paper we highlight the
performance regarding only total time, as it summarizes
the whole computational cost. Each measured point in the
graphs represents the total time in seconds (log scale) to
evaluate 200 queries with constant values for r and k and
different centers.

6.1 Performance experiments
We evaluated the proposed algorithms comparing them

with the traditional ones to query the real world data sets.
The first experiment evaluates the time required to exe-
cute a complex similarity query on a pure metric data set
(EngWords), processing the SCMO expression correspon-
ding to Query Q1 stated in Section 3:

σ̃(
5NN(wordi)

)EngWords∩ σ̃(
Rq(wordi,r)

)EngWords .

Figure 3 shows the total time required to process 200 que-
ries asking for the k = 5 most similar words differing not
more than r letters from a query center, for r varying from
1 to 10. The query centers are words randomly chosen in
the data set. Plots A and C show the total time of the
proposed kAndRange() algorithm respectively using Slim-tree
and sequential scan. Plots B and D show total time using
the traditional approach running both algorithms consecuti-
vely, using Slim-tree and sequential scan respectively. When
using the LEdit , the number of words retrieved rapidly incre-
ases as r increases, and for r > 8 it is retrieved, in average,
more than 90% of the data set. The intersection operation
required by the conjunction of the traditional algorithms
can be quadratic on the cardinality of the sets intersected,
explaining way plots B and D in Figure 3 present noticea-
ble increasing starting on r ≈ 5, whereas for smaller values

Figure 3: Results of executing the following query
over the EngWords data set, using the LEdit DF:
σ̃(

5NN(wordi)
)EngWords∩ σ̃(

Rq(wordi,r)
)EngWords.

of r the time is mostly spent in the retrieval operations.
However, the proposed kAndRange() algorithm does not suf-
fer from this problem (as seen in plots A and C). There-
fore, the proposed techniques lead to speedups from at least
two times faster (sequential scan for radius from 1 to 3) to
more than a hundred times faster (large radius for any ac-
cess method). Moreover, even when the indexing structure
reflects the explosion of words for larger values of r (plot A),
the k = 5 limit always guarantees a performance better than
sequential scan, even for large values of r (plot C).

The second experiment evaluates the execution time of the
MCMO expression corresponding to Query Q3 of Section 3
over XR, a pure metric data set. Figure 4 shows the results
of asking for the 10 images most similar to each of three
images e1, e2 and e3 but not exceeding a given radius r. The
radius r varies from 0.01% to 10% of the data set diameter,
and the number of nearest neighbors is fixed at k = 10. As in
the previous experiment, each measurement represents the
total time in seconds to evaluate 200 queries for the same r
and k and three randomly chosen centers.

Figure 4(a) shows the results of evaluating the complete
query in the traditional way (plots A and D), and optimizing
the query with the proposed algorithms (plots B and E).
It also shows the time to execute just one min-term th-
rough the proposed kAndRange() algorithm (plots C and F),
since the processing of each min-term gives equivalent mea-
surements. Figure 4(b) shows the time to obtain intermedi-
ary results, highlighting where the answering process spends
more time. It shows the time to evaluate one range predicate
(the σ̃(

Rq(e1,r)
)XR) (plots I and L), one k-NN predicate (the

σ̃(
10NN(e1)

)XR) (plots H and K) and the results of executing

one min-term both through the proposed kAndRange() algo-
rithm (plots C and F) and through the intersection of the
range and k-NN algorithms (plots G and J). Plots C and F
appears in both Figures 4(a) and 4(b) for reference. All
plots are in log-log scales.

As it can be seen in Figure 4(a), for smaller values of r
the proposed method (plots C and F) consistently requires
approximately one third of the time required by the basic
algorithms (plots A and D). This reduction comes from the
query expression having three min-terms. This figure con-
firms that the optimization-based algorithms can take into

10

Figure 4: Results of executing the following query over a set of metric histograms of 40,000 x-Ray images
of various parts of the human body, using the Metric-Histogram MH() metric:

(
σ̃(

Rq(e1,r)
)XR∩ σ̃(

10NN(e1)
)XR

)
∪(

σ̃(
Rq(e2,r)

)XR∩ σ̃(
10NN(e2)

)XR
)
∪

(
σ̃(

Rq(e3,r)
)XR∩ σ̃(

10NN(e3)
)XR

)
.

account the other min-terms when processing one min-term,
improving the overall performance.

Another important point shown in Figure 4(b) is that
the kAndRange() algorithm improves the query execution by
limiting the number of retrieved elements when using ac-
cess methods. Observe that the plot corresponding to the
range algorithm (plot L) increases continuously, surpassing
the plot of the k-NN algorithm (plot K). However, as the
number of elements retrieved by the range algorithm ap-
proaches k, the curve corresponding to the kAndRange() al-
gorithm flattens (plot F), always remaining lower than the
combination of the range and k-NN algorithm (plot J). This
effect is reflected in the time spent to evaluate the complete
query, so the improvement for large values of r is even more
remarkable, as it can be seen comparing plot E with plot D
of Figure 4(a). The pruning obtained by limiting the number
of elements in the range part of the min-term also reduces
the complexity of merging the intermediary results of each
min-term. As it can be seen comparing plots E and D of
Figure 4(a), the speedup obtained achieves more than 130
times for large radii and small k.

Query Q3 is composed of three min-terms at different
centers, and plots E and F of Figure 4(a) shows that the
time required to evaluate the complete query by the propo-
sed method is about one third of the time required by the
basic algorithms. This is due to the cost of the UniSimDNF()
algorithm being equivalent to a single call to kAndRange(),
whereas the traditional approach needs calling the basic al-
gorithms the same number of times as there are min-terms.
Experimental evaluations confirmed that more complex que-
ries lead to correspondingly larger improvements.

The third set of experiments evaluates the time required
to execute the MCMO expression derived from Query Q2
of Section 3 over the LBeach data set. Figure 5 shows the
results of asking for the 10 closest road intersections not
farther than radius r1 from center m j and not farther than
radius r2 from center w j. Radii r1 are the abscissas and r2 is
randomly chosen in [0,r1]. Figure 5 shows the time required
to evaluate the full expression using both the proposed and
the traditional approaches, using the Slim-tree (plots A and
C) and sequential scan (plots B and D). In this case, the gain
for the proposed algorithm is about 35% for small radii, the
ones most frequently asked in similarity queries.

Figure 5: Evaluating Query Q2 of Sec-
tion 3 over the LBeach data set using

the Euclidean DF:
(

σ̃(
10NN(m j)

)LBeach ∩

σ̃(
Rq(m j,r1)

)LBeach
)
∩σ̃(

Rq(w j,r2)
)LBeach.

6.2 Scalability
To evaluate the scalability of the proposed algorithms, we

performed two experiments. The first employed the expres-
sion of Query Q2 from Section 3 over the LBeach data set.
For this experiment, we generated random samples of 5,000
elements, 10,000 elements, and so on from the LBeach data
set, and measured the total time to calculate 200 queries
using k = 37 (equivalent to 0.1% of the data set size) and
r1 = 0.001 of the data set diameter. The result, shown in Fi-
gure 6, indicates that the proposed algorithms have a linear
behavior regarding the data set size.

The second scalability experiment evaluated the
kAndRange() algorithm using the Synt30D data set,
showing the total time to calculate 200 queries considering
k = 10 and rq = 0.02 (see Figure 7). Each set of 200 queries
was performed increasing the data set in steps of 50,000
elements. The measurements show that the behavior of
this algorithm is linear even for very large data sets, that
do not fit in main memory, as it happens with the Synt30D
data set.

11

Figure 6: Scalability test using Query Q2 of Sec-
tion 3 over the LBeach data set.

Figure 7: Scalability test regarding the kAndRange()
algorithm over the Synt30D data set.

7. CONCLUSIONS
Similarity queries have been increasingly demanded to re-

trieve complex data in large data sets but, until now, there
was no study on how to analyze and optimize a query ex-
pression involving more than one similarity predicate. This
paper brings the following contributions to this subject:

1. It presents rules to derive formal optimizations for si-
milarity queries, exploring the representation of the
queries in disjunctive and conjunctive normal form. It
pays special attention to DNF, which is the usual way
to represent selections in traditional databases.

2. The algebraic approach adopted helps to identify
which are the primitive operators required for a
DBMS to support similarity queries, revealing that
quite a few are really needed. The paper also pre-
sents the algorithms for the newly identified operators.

3. The rules developed for similarity query optimizations
hold for spatial and metric datasets as well. They
are independent of the underlying MAM employed,
although specific implementations can take advantage
of the index structure being used.

4. We implemented the prototype of a similarity query
analyzer/executor, which showed that the optimiza-

tion techniques proposed significantly improve query
answering. Experiments on both real and synthetic
datasets show that they accelerate answering simila-
rity queries more than two orders of magnitude. Sca-
lability experiments confirm that the techniques are
scalable over both range and k-nearest neighbor que-
ries, keeping the gains for any dataset size.

Throughout the paper we answered the three main issues
stated in Section 1. Starting with the third issue, “How
to adequately represent a query to be submitted to multi-
purpose similarity search algorithms”: it is solved by divi-
ding the problem of analyzing complex similarity expressi-
ons in three steps – Single Center/Single Operator (SCSO),
Single Center/Multiple Operators (SCMO), and Multiple
Centers/Multiple Operators (MCMO). Following this ap-
proach, rules to simplify a complex similarity expression
were straightforwardly obtained, solving the second issue:
“What rules guide the query rewriting process to explore stra-
tegies to execute similarity search algorithms”. Those rules
allow representing the query expressions in a way such that
union and intersection operations can be performed with li-
near computational cost regarding the number of elements
involved, as opposed to the usual super-linear complexity
required by traditional methods. Thereafter, we presented
algebraic rules to optimize similarity queries, and a small
collection of simple and generic similarity-based retrieval al-
gorithms able to answer complex similarity queries in linear
time, solving the first issue “Which algorithms are efficient
to answer queries composed of conjunctions and disjuncti-
ons of similarity predicates”. We identified that four algo-
rithms are enough to answer any complex similarity query
involving range and k-NN predicates and their discussed va-
riations. They are the GenericRange(), the GenericNearest(),
the UniSimDNF(), and the GenSimDNF() algorithms. Th-
ree others, the RingRange(), RingNearest() and kAndRange()
were also included to improve performance when answering
simpler but frequently asked queries.

Rules to simplify complex similarity expressions enable
to generate multiple representations of a query. Selecting
the one that leads to the best execution plan depends on a
cost model, which is dependent from the underlying indexing
structure employed. In this paper we concentrated on rules
that are independent from indexing structures, so we do
not elaborated on this subject. The experiments performed
assume that the majority of the queries aim at retrieving few
elements relative to the database cardinality. The results
showed that the proposed approach is significantly better
than the traditional one.

As a follow-up of this paper, we are working on the rules to
extend the relational algebra to support similarity join and
combinations of similarity and non-similarity based predi-
cates. This will open the possibility to support the storage,
relevance feedback and content-based retrieval of complex
data, such as images, scientific and biological data, among
others, in systems based on the relational algebra, such as
the current RDBMS based on SQL.

Acknowledgement
This work has been supported by CNPq (Brazilian Natio-
nal Council for Research Supporting), FAPESP (São Paulo
State Research Foundation) and CAPES/Fulbright (Brazi-
lian Federal Agency for Post-Graduate Education).

12

8. REFERENCES
[1] S. Berchtold, C. Böhm, B. Braunmüller, D. A. Keim, and H.-P.

Kriegel. Fast parallel similarity search in multimedia databases.
In ACM SIGMOD, pages 1–12, 1997.

[2] C. Böhm, B. Braunmüller, and H.-P. Kriegel. The pruning
power: Theory and heuristics for mining databases with
multiple k-nearest-neighbor queries. In Int. Conf. on DaWaK,
pages 244–257, 2000.

[3] K. Böhm, M. Mlivoncic, H.-J. Schek, and R. Weber. Fast
evaluation techniques for complex similarity queries. In VLDB,
pages 211–220, 2001.

[4] B. Braunmüller, M. Ester, H.-P. Kriegel, and J. Sander.
Efficiently supporting multiple similarity queries for mining in
metric databases. In ICDE, pages 256–267, 2000.

[5] K. C.-C. Chang and S. won Hwang. Minimal probing:
supporting expensive predicates for top-k queries. In ACM
SIGMOD, pages 346–357, 2002.

[6] S. Chaudhuri, P. Ganesan, and S. Sarawagi. Factorizing
complex predicates in queries to exploit indexes. In ACM
SIGMOD, pages 361–372, 2003.

[7] S. Chaudhuri and L. Gravano. Optimizing queries over
multimedia repositories. In ACM SIGMOD, pages 91–102,
1996.

[8] S. Chaudhuri and K. Shim. Optimization of queries with
user-defined predicates. ACM TODS, 24(2):177–228, 1999.

[9] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In VLDB,
pages 426–435, 1997.

[10] P. Ciaccia, M. Patella, and P. Zezula. Processing complex
similarity queries with distance-based access methods. In
EDBT, volume 1377, pages 9–23, 1998.

[11] G. R. Hjaltason and H. Samet. Distance browsing in spatial
databases. ACM TODS, 24(2):265–318, 1999.

[12] A. Kemper, G. Moerkotte, K. Peithner, and M. Steinbrunn.
Optimizing disjunctive queries with expensive predicates. In
ACM SIGMOD, pages 336–347, 1994.

[13] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and
Z. Protopapas. Fast nearest neighbor search in medical image
databases. In VLDB, pages 215–226, 1996.

[14] N. Mamoulis, D. Papadias, and D. Arkoumanis. Complex
spatial query processing. GeoInformatica Journal,
8(4):311–346, 2004.

[15] C. Mohan, D. J. Haderle, Y. Wang, and J. M. Cheng. Single
table access using multiple indexes: Optimization, execution,
and concurrency control techniques. In EDBT, volume 416 of
LNCS, pages 29–43. Springer, 1990.

[16] K. Porkaew, S. Mehrotra, and M. Ortega. Query reformulation
for content based multimedia retrieval in MARS. IEEE
ICMCS, 2:747–751, 1999.

[17] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor
queries. In ACM SIGMOD, pages 71–79, 1995.

[18] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest
neighbor search. In ACM SIGMOD, pages 154–165, 1998.

[19] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. In ACM SIGMOD, pages 23–34, 1979.

[20] M. Tasan and Z. M. zsoyoglu. Improvements in distance-based
indexing. In SSDBM, pages 161–170, Greece, 2004.

[21] A. J. M. Traina, C. Traina Jr., J. Bueno, F. Chino, and
P. Marques. Efficient content-based image retrieval through
metric histograms. WWW Journal, 6(2):157–185, 2003.

[22] C. Traina Jr., A. J. M. Traina, C. Faloutsos, and B. Seeger.
Fast indexing and visualization of metric datasets using
Slim-trees. IEEE TKDE, 14(2):244–260, 2002.

APPENDIX
Basic Properties on Similarity Predicates
For the sake of completeness, we present in this Appendix the basic
properties hold by SCSP expressions using only one basic similarity
predicate with the ¬ operator. The following two properties govern
the complement of range and k-NN predicates.

Property 1: Range complement - The complement of a range
predicate is the reversed range predicate centered at the same element
and same radius, so that:

σ̃(
¬Rq(sq ,rq)

)S⇔ σ̃(
Rq−1(sq ,rq)

)S

Property 2: k-NN complement - The complement of a k-NN
predicate is the k̄-farthest neighbor predicate centered at the same
element and with the number of required elements k̄ equal to the
total number of elements ν in data set S less k, so that:

σ̃(
¬kNN(sq)

)S⇔ σ̃(
(ν−k)FN(sq)

)S

Conjunctions and disjunctions of range predicates satisfy the pro-
perties following.

Property 3: (Range and Range) with same center - The
conjunction of two range predicates is equivalent to a single range
predicate using the smaller value between both radii as the predicate
radius, so that:

σ̃(
Rq(sq ,rq1)

)S∩ σ̃(
Rq(sq ,rq2)

)S⇔

σ̃(
Rq(sq ,rq1)∧Rq(sq ,rq2)

)S⇔ σ̃(
Rq(sq ,min(rq1 ,rq2))

)S

Combined with Property 1, the following also holds

σ̃(
Rq−1(sq ,rq1)

)S∩ σ̃(
Rq−1(sq ,rq2)

)S⇔

σ̃(
Rq−1(sq ,rq1)∧Rq−1(sq ,rq2)

)S⇔ σ̃(
Rq−1(sq ,max(rq1 ,rq2))

)S

Property 4: (Range or Range) with same center - The disjunc-
tion of two range predicates is equivalent to a single range predicate
using the larger value between the radii of both basic predicates as
the predicate radius. That is:

σ̃(
Rq(sq ,rq1)

)S∪ σ̃(
Rq(sq ,rq2)

)S⇔

σ̃(
Rq(sq ,rq1)∨Rq(sq ,rq2)

)S⇔ σ̃(
Rq(sq ,max(rq1 ,rq2))

)S

which, combined with Property 1, results in

σ̃(
Rq−1(sq ,rq1)

)S∪ σ̃(
Rq−1(sq ,rq2)

)S⇔

σ̃(
Rq−1(sq ,rq1)∨Rq−1(sq ,rq2)

)S⇔ σ̃(
Rq−1(sq ,min(rq1 ,rq2))

)S

It is straightforward to show that range predicates follow the com-
mutative, associative and distributive properties over the ∧ and ∨
Boolean operators. Also, the range predicate with infinity radius is
the identity element under the ∧ operator. We define here a null
predicate ∅(sq) that always returns the null set, so it is the identity
element under the ∨ operator. In this way, the field of range predica-
tes centered at the same element forms a Boolean Algebra.

Equivalent properties hold for the k-NN predicate as follows.
Property 5: (Nearest and Nearest) with same center - The

conjunction of two k-NN predicates is equivalent to the one having
the smallest k, that is:

σ̃(
k1NN(sq)

)S∩ σ̃(
k2NN(sq)

)S⇔

σ̃(
k1NN(sq)∧(k2NN(sq)

)S⇔ σ̃(
min(k1 ,k2)NN(sq)

)S

which, combined with Property 2, results in

σ̃(
(¬k1NN(sq)

)S∩ σ̃(
¬k2NN(sq)

)S⇔

σ̃(
(ν−k1)FN(sq)∧(ν−k2)FN(sq)

)S⇔ σ̃(
ν−max(k1,k2)FN(sq)

)S

Property 6: (Nearest or Nearest) with same center - The
disjunction of two k-NN predicates is equivalent to the one having
the largest k, that is:

σ̃(
(k1NN(sq)

)S∪ σ̃(
k2NN(sq)

)S⇔

σ̃(
k1NN(sq)∨(k2NN(sq)

)S⇔ σ̃(
max(k1 ,k2)NN(sq)

)S

which, combined with Property 2, results in

σ̃(
(¬k1NN(sq)

)S∪ σ̃(
¬k2NN(sq)

)S⇔
σ̃(

(ν−k1)FN(sq)∨(ν−k2)FN(sq)
)S⇔ σ̃(

ν−min(k1,k2)FN(sq)
)S

Like the range predicates, the k-NN predicates also follow the com-
mutative, associative and distributive properties over the ∧ and ∨
Boolean operators. Considering ∅(sq) as the identity element under ∨
operator, and the predicate requiring ν elements νNN(sq) as the iden-
tity element under ∧ operator, the field of k-NN predicates centered
at a single element also forms a Boolean Algebra.

13

