
Incremental Maintenance Of Materialized

XQuery Views

by

Maged F. El-Sayed

A Dissertation

Submitted to the Faculty

of the

WORCESTER POLYTECHNIC INSTITUTE

in Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

in

Computer Science

by

August 9, 2005

APPROVED:

Prof. Elke A. Rundensteiner
Advisor

Prof. Carolina Ruiz
Committee Member

Prof. Mike Gennert
Head of Department

Prof. Murali Mani
Co-Advisor

Prof. Jayavel Shanmugasundaram
Cornell University
External Committee Member



i

Abstract

Keeping views fresh by maintaining the consistency between materialized

views and their base data in the presence of base updates is a critical prob-

lem for many applications, including data warehousing and data integra-

tion. While heavily studied for traditional databases, the maintenance of

XML views remains largely unexplored. Maintaining XML views is com-

plex due to the richness of the XML data model and the powerful capabili-

ties of XML query languages, such as XQuery.

This dissertation proposes a comprehensive solution for the general

problem of maintaining materialized XQuery views. Our solution is the

first to enable the maintenance of a large class of XQuery views including

XPath expressions, FLWOR expressions, and Element Constructors. These

views may contain arbitrary result construction and arbitrary grouping and

join operations. Our solution also supports the unique order requirements

of XQuery including source document order and query order.

The contributions of this dissertation include: (i) an efficient solution

for supporting order in XML query processing and view maintenance, (ii)

an identifier-based technique for enabling incremental construction of XML



ii

views, (iii) a mechanism for modeling and validating source XML updates,

(iv) a counting algorithm for supporting view maintenance on delete and

modify updates, (v) an algebraic solution for propagating bulk XML up-

dates, and (vi) an efficient mechanism for refreshing materialized XML

views on propagated updates. We provide proofs of correctness of our

proposed techniques for materialized XQuery maintenance.

We have implemented a prototype of our view maintenance solution

on top of the Rainbow XML query engine, developed at WPI. Our experi-

ments confirm that our solution provides a practical and efficient solution

for maintaining materialized XQuery views even when handling heteroge-

neous batches of possibly large source updates.

Our solution follows the widely adopted propagate-apply framework

for view maintenance common to all mainstream query engines. That is,

our solution produces incremental maintenance plans in the same algebraic

language used to define the views. These plans can thus be optimized and

executed by standard query processing techniques. Being compatible with

standard frameworks paves the way for our XML view maintenance solu-

tion to be easily adopted by existing database engines.



iii

Acknowledgments

I would like to express my great gratitude to my advisor, Prof. Elke A. Run-

densteiner for her guidance, encouragement, and support since my first

day here at WPI. She has always inspired me with her knowledge and ded-

ication and has helped me to become the researcher I am today.

Many thanks go to my other PhD committee members, Prof. Murali

Mani, Prof. Carolina Ruiz, and Jayavel Shanmugasundaram for their valu-

able feedback and suggestions on my dissertation. In particular I would

like to thank my co-advisor Prof. Murali Mani for his time and valuable

directions. I would like also to thank Prof. Carolina Ruiz who was always

supportive and helpful.

Many thanks go to Prof. Michael Gennert for his thoughtfulness and

support during critical times of my dissertation. Many thanks also go to

Prof. Micha Hofri who gave me the chance to teach at WPI and to gain

such a valuable experience. I would also like to thank other faculty and

staff members from the CS department at WPI, in particular Prof. Stanley

Selkow, Glynis Hamel, Sharon Demaine, Jessica Pollock, Michael Voorhis,

and Jesse Banning.



iv

I would like to thank Katica Dimitrova for the joint work related to XML

order and to thank members of the Rainbow team, in particular Xin Zhang,

Song Wang, Ling Wang, and Luping Ding for the joint work related to the

Rainbow XML query engine.

The long time I spent in my office would have been harder without the

company of Bin Liu, Mariana Jbantova, Venkatesh Raghavan, and Rimma

Nehme who made the office such a warm and nice place. I was also fortu-

nate to meet many other current and pervious DSRG members.

I would like to acknowledge the support given to me by my univer-

sity back home (Arab Academy for Science and Technology, Alexandria,

Egypt). I would like in particular to thank Dr. Gamal Mokhtar, Mr. Mah-

moud Ghoneim, Mr. Nabil Fahmy, Prof. Said El-Neshokaty, Prof. Asaad

Elnidani, Prof. Ismail Hussien, and Mrs Fayza Boghdady. I would like

also to thank my friend and colleague Mahmoud Youssef and many other

friends who always supported me.

Lastly, I would like to express my deepest gratitude to my parents, who

have been always behind every advance in my life, and also to my lovely

wife Hanan, my lovely sons Youssef and Sief for all the love, support, and

understanding.



v

Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Challenges in Maintaining Materialized XQuery Views 2
1.3 State-of-The-Art in View Maintenance . . . . . . . . . . . . . 13
1.4 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.1 View Maintenance Framework . . . . . . . . . . . . . 15
1.4.2 Proposed Solutions . . . . . . . . . . . . . . . . . . . . 17

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Background 23

2.1 XQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 The XML Algebra XAT . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Data Model . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.2 XAT Operators . . . . . . . . . . . . . . . . . . . . . . 26

2.3 XAT Generation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 XQuery Normalization . . . . . . . . . . . . . . . . . . 31
2.3.2 Converting XPath Expressions into XAT . . . . . . . . 32
2.3.3 Translating Normalized XQuery Expressions to XAT

Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 XAT Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Efficiently Supporting Order In XML Query Processing and View

Maintenance 35

3.1 XML and Order . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Challenges of Handling Order in XML Query Processing . . 37
3.3 Maintaining XML Order . . . . . . . . . . . . . . . . . . . . . 42

3.3.1 Node Identifier and Node Order . . . . . . . . . . . . 43
3.3.2 Order During XML Query Processing Time . . . . . . 47
3.3.3 Order in the Final XML Result. . . . . . . . . . . . . . 62



CONTENTS vi

3.4 Discussion on our Proposed Order Solution . . . . . . . . . . 62
3.4.1 Support for Different Types of Order . . . . . . . . . . 62
3.4.2 The Cost of Maintaining Order . . . . . . . . . . . . . 65
3.4.3 Implications of our Order Solution . . . . . . . . . . . 69
3.4.4 Other Discussions . . . . . . . . . . . . . . . . . . . . 72

3.5 Experimental Evaluation for the Cost of Handling Order . . 74

4 Incremental Fusion of XML Fragments through Semantic Identi-

fiers 83

4.1 Object Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 The Context Schema: Encoding Node Lineage and Order In-

formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.1 Context Schema . . . . . . . . . . . . . . . . . . . . . . 89
4.2.2 Rules for Computing the Context Schema . . . . . . . 95
4.2.3 Example for Context Schema Computation . . . . . . 102

4.3 Generating Semantic Identifiers from the Context Schema . . 106
4.3.1 From Context Schema to Node Identifiers . . . . . . . 106
4.3.2 Semantic Identifiers Assigned to different types of Nodes111
4.3.3 Example for Semantic Identifier Generation . . . . . . 116

4.4 XML Fusion Using Semantic Identifiers . . . . . . . . . . . . 118
4.5 Distributive Property of Views on Insert Updates . . . . . . . 120
4.6 The Stability of Semantic Identifiers . . . . . . . . . . . . . . 139
4.7 Discussion on our Proposed Semantic Identifier Solution . . 144
4.8 Experimental Evaluation for the Cost of Generating Seman-

tic Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5 Validating Source XML Updates 154

5.1 Modeling Source Updates . . . . . . . . . . . . . . . . . . . . 154
5.2 Validating Source Updates . . . . . . . . . . . . . . . . . . . . 155

5.2.1 Relevancy of Updates . . . . . . . . . . . . . . . . . . 158
5.2.2 Sufficiency of Updates . . . . . . . . . . . . . . . . . . 160

5.3 Batching Source Updates . . . . . . . . . . . . . . . . . . . . . 161

6 Counting Solution for Supporting XML Delete Updates 163

6.1 Maintaining XML views on Delete Updates . . . . . . . . . . 163
6.2 Count Annotation for Source Documents and Source Updates 165
6.3 Propagating Count Annotations in Normal Query Execution

Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.4 Propagating Count Annotations During View Maintenance

Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169



CONTENTS vii

6.5 Classifying Intermediate XAT Updates Based on Count An-
notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.6 Count-aware Deep Union Operator . . . . . . . . . . . . . . . 175
6.7 Counting Example . . . . . . . . . . . . . . . . . . . . . . . . 176

7 An Algebraic Approach for Propagating XML Updates of Differ-
ent types 179

7.1 Views with Single Operator . . . . . . . . . . . . . . . . . . . 180
7.2 Views with Multiple Operators . . . . . . . . . . . . . . . . . 189
7.3 General Views with Join and Grouping Operations . . . . . . 193
7.4 Views with Left Outer Join Operations . . . . . . . . . . . . . 209
7.5 Views with Self Joins . . . . . . . . . . . . . . . . . . . . . . . 217
7.6 Views with Aggregate Functions. . . . . . . . . . . . . . . . . 218
7.7 Update Propagation Example . . . . . . . . . . . . . . . . . . 219

8 Applying Propagated XML Updates 222

8.1 Refreshing the View Extent on Different Types of Updates . 222
8.2 Example of Applying Propagated Updates . . . . . . . . . . 223
8.3 Discussion on Refreshing the View Extent . . . . . . . . . . . 224

8.3.1 The Order of the Refreshed View Extent . . . . . . . . 224
8.3.2 Deleting Collections of XML Fragments Without Lin-

eage Context from the Materialized XML View . . . . 225

9 Experimental Evaluation 228

9.1 Cost of Enabling View Maintenance . . . . . . . . . . . . . . 229
9.2 Varying Source Document Sizes . . . . . . . . . . . . . . . . . 230
9.3 Varying View Selectivity . . . . . . . . . . . . . . . . . . . . . 232
9.4 Varying Update Sizes . . . . . . . . . . . . . . . . . . . . . . . 232
9.5 Deletion of Entire Fragments . . . . . . . . . . . . . . . . . . 234

10 Related Work 237

10.1 View Maintenance Related Work . . . . . . . . . . . . . . . . 237
10.2 Other Related Work . . . . . . . . . . . . . . . . . . . . . . . . 244

11 Conclusions and Future Work 251

11.1 Summary and Contributions . . . . . . . . . . . . . . . . . . 251
11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254



viii

List of Tables

3.1 Rules for computing Order Schema . . . . . . . . . . . . . . . 49

4.1 Rules for computing the Context Schema for different XAT op-
erators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2 Node-level operations required for generating the semantic
node identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.3 Notations used in the proof of Theorem 4.5.1. . . . . . . . . . 124

6.1 Count computation rules for nodes in a resulting tuple t of
an operator op during Query Execution Time. . . . . . . . . . . 167

6.2 Count computation rules for nodes in a resulting tuple t of
operator op during View Maintenance Time. . . . . . . . . . . . 170



ix

List of Figures

1.1 Two input XML documents. . . . . . . . . . . . . . . . . . . . 3
1.2 (a) XQuery expression defined on top of the two XML docu-

ments in Figure 1.1 and (b) resulting XML view extent. . . . 4
1.3 Three XQuery updates. . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The expected result of refreshing the materialized view ex-

tent shown in Figure 1.2(b) in response to the source updates
shown in Figure 1.3. . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Our V PA view Maintenance Framework. . . . . . . . . . . . 16

2.1 Syntax of XQuery Subset . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 An Algebra Tree for the XQuery expression in Figure1.2(a) . 25
2.3 Building the Algebra Tree for an XQuery FWOR Expression. 34

3.1 Lexicographical order encoding of the two XML documents
“bib.xml” and “prices.xml” presented in Figure 1.1. . . . . . 44

3.2 Execution using FlexKeys for the XQuery expression in Figure1.2(a).
Shaded columns represent Order Schema. . . . . . . . . . . . 46

3.3 The function combine . . . . . . . . . . . . . . . . . . . . . . . 56
3.4 An example for order handling in the Join operator. Shaded

columns determine the Order Schema of each table and num-
bers appearing in circles beside tuples determine the tuple
induced order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Part of the structure of the “site.xml” file used in the experi-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Different XQuery expressions that are used in the experiments. 76
3.7 Results obtained for Query 1: (a) the order cost to the execu-

tion cost on different input XML file sizes, and (b) the break
down of order cost on 25MB XML input file size. . . . . . . . 77



LIST OF FIGURES x

3.8 Results obtained for Query 2: (a) the order cost to the execu-
tion cost on different input XML file sizes, and (b) the break
down of order cost on 25MB XML input file size. . . . . . . . 79

3.9 Results obtained for Query 3: (a) the order cost to the execu-
tion cost on different input XML file sizes, and (b) the break
down of order cost on 25MB XML input file size. . . . . . . . 80

3.10 Results obtained for Query 4: (a) the order cost to the execu-
tion cost on different input XML file sizes, and (b) the break
down of order cost on 25MB XML input file size. . . . . . . . 82

4.1 (a) A new “book” element to be inserted into the source doc-
ument “bib.xml” shown in Figure 1.1, (b) the corresponding
XML tree, and (c) the expected result of propagating the up-
date through the view in Figure 1.2(a). . . . . . . . . . . . . . 85

4.2 The algebra tree for XQuery expression in Figure 1.2(a) with
the Context Schema annotation, appearing in subscript font to
the right (or below) column names. Shaded column names
represent the Table Order Schema. . . . . . . . . . . . . . . . . 103

4.3 Function assignOverRidOrd used by the Combine Ccol(T ) and
the Group By γcol[1..n](T,Ccol) operators in Table 4.2. . . . . . 110

4.4 Function composeNodeIds used by the Tagger operator T col
p (T )

in Table 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.5 Function assignColIdPrfx used by the XML Union operator

x
∪

col

col1,col2(T ) in Table 4.2. . . . . . . . . . . . . . . . . . . . . . 111
4.6 Query processing for V (S′1,△S1, S2). . . . . . . . . . . . . . . 121
4.7 The result of computing (a) initial view: V (S1, S2, S3), (b) in-

cremental result: V (△S1, S2, S3), (c) incremental result V (S′1,△S2, S3),
and (d) the refreshed XML result. . . . . . . . . . . . . . . . . 122

4.8 Two example XQuery expressions. . . . . . . . . . . . . . . . 151
4.9 Result obtained using Query 1 in Figure 4.8. (a) The over-

head of generating semantic identifiers to query execution
time and (b) the break down of the cost of generating se-
mantic identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.10 Result obtained using Query 2 in Figure 4.8. (a) The over-
head of generating semantic identifiers to query execution
time and (b) the break down of the cost of generating se-
mantic identifiers. . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.1 Three source update primitives corresponding to the three
XQuery updates in Figure 1.3. . . . . . . . . . . . . . . . . . . 155



LIST OF FIGURES xi

5.2 Source Access Patter Tree (SAPT ) for the view in Figure 1.2. . 158
5.3 Batch update trees for (a) “bib.tex” and (2) “prices.xml”. . . 162

6.1 Delete update example showing how count is handled. . . . 178

7.1 An example showing a Join operation over sources affected
by grouping operations. (a) Initial view extent computation.
(b) Source updates. (c) Recomputed view extent. . . . . . . . 194

7.2 Computing the propagated updates resulting from the source
updates shown in Figure 7.1(b). (a) T1join△T2. (b)△T1join T2.
(c) △T1join△T2 . (d) The combined result of the three ex-
pressions (a), (b), and (c). . . . . . . . . . . . . . . . . . . . . . 195

7.3 An example showing a Left Outer Join operation over a an
updated right input source. (a) Initial view extent computa-
tion. (b) Source updates. (c) Recomputed view extent. (D)
delta updates if we use (T1=⊲⊳c△T2). . . . . . . . . . . . . . 211

7.4 Obtaining delta update trees. . . . . . . . . . . . . . . . . . . 221

8.1 Applying combined propagated updates to initial view ex-
tent to refresh it. (a) Initial view extent, (b) delta updates,
and (3) refreshed view extent. . . . . . . . . . . . . . . . . . . 224

9.1 Cost of enabling view maintenance feature. . . . . . . . . . . 230
9.2 Top charts showing varying source document size for (a)

Query 1 and (b) Query 2. Bottom charts showing the break
down of the view maintenance cost. . . . . . . . . . . . . . . 231

9.3 Varying query selectivity. . . . . . . . . . . . . . . . . . . . . 232
9.4 Top charts showing varying size of insert update. Bottom

charts showing break down of view maintenance cost. . . . 234
9.5 Varying size of delete update for (a) Query 1 and (b) Query 2. 235
9.6 (a) Query 3 and (b) cost of deleting “persons-list” fragment

in Query 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236



1

Chapter 1

Introduction

1.1 Motivation

A view is a function defined on top of data sources. Each time the view

is executed, it returns a collection of data called view extent. Materializa-

tion of view extents has important applications including providing fast

access to derived database repositories, optimizing query processing based

on cached results, and increasing availability. Materialized views facilitate

advanced database applications like data warehousing, data integration,

and online analytical processing.

Maintaining the consistency between materialized views and their base

data in the presence of source updates is important to ensure that the ma-

terialized views are up-to-date. The straightforward solution for this prob-

lem is to recompute the view from scratch over the updated sources. This

process is expensive and might take a long time (hours or even days for

large data sources). Hence, it is not practical to do this each time the sources



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 2

are updated, considering that source updates are typically small relative to

the original source size. To address this problem, incremental maintenance

has been advocated as a cheaper solution over full recomputation [GM95].

Such view maintenance work has however been largely done in the context

of traditional databases. This does no longer fulfill current needs with XML

emerging as important medium for representing and exchanging data over

the Internet.

XQuery [W3C05] has been proposed as standard for querying XML.

XQuery is a powerful query language for specifying queries over the XML

data model that incorporates the capabilities of many languages including

XPath [W3C99], SQL [Int99], and XML-QL [DFF+99] languages. Solutions

proposed thus far in the literature for maintaining XML or semi-structured

views have fallen short in supporting many of the core features of XML

languages, especially the XQuery language, as we will discuss in Section

1.3.

1.2 Research Challenges in Maintaining Materialized

XQuery Views

Motivating Example. Consider the two XML documents shown in Fig-

ure 1.1. The source document “bib.xml” stores book information and the

source document “prices.xml” stores prices of books. Assume that the rel-

ative order among elements in each source document, as shown in Figure

1.1, is a desired source document order that is important for the domain.

Consider the XQuery view shown in Figure 1.2(a) defined over the two



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 3

source documents in Figure 1.1. The view extent resulting from executing

the XQuery view is shown in Figure 1.2(b), with highlighted nodes rep-

resenting newly constructed nodes. Now assume that the updates shown

in Figure 1.31 are applied to the source XML documents. The view main-

tenance solution must refresh the materialized view to reflect the effect of

these source updates on the materialized view in Figure 1.2(b). A correctly

refreshed materialized view should be equal to the materialized view we

would get if we were to recompute the view over the updated sources. The

expected result of refreshing the materialized view extent (by recomputing

it) in Figure 1.2(b) in response to the three source updates shown in Figure

1.3 is shown in Figure 1.4.

<bib>
<book year = “1994”>

<title>TCP/IP Illustrated</title>
<author>

<last>Stevens</last><first>W.</first>
</author>

</book>
<book year = “2000”>

<title>Data on the Web</title>
<author>

<last>Abiteboul</last>
<first>Serge</first>

</author>
</book>

</bib>

<prices>
<entry>

<price>39.95</price>
<b-title>Data on the Web</b-title>

</entry>
<entry>

<price> 65.95</price>
<b-title>TCP/IP Illustrated</b-title>

</entry>
<entry>

<price> 69.99</price>
<b-title>Advanced Programming in

the Unix environment </b-title>
</entry>

</prices> prices.xmlbib.xml

bib

book book

title
title

“TCP/IP.. ”

“Data…”author

last
“Stevens” “Serge”

first
“W.” “Abiteboul”

author

firstlast

Year=“1994”
Year=“2000”

prices

entry entry

price price
“Data…”
b-title b-title

“39.95” “65.95” “TCP/IP.. ”

entry

price b-title
“69.99” “Advanced..”

Figure 1.1: Two input XML documents.

1Source updates are defined using the XQuery update language [TIHW01].



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 4

<result>{
FOR $y in

distinct-values(doc("bib.xml")/bib/book/@year)
ORDER BY $y
RETURN

<yGroup Y= “{$y}”>
<books>

FOR $b in doc ("bib.xml")/bib/book,
$e in doc (“prices.xml")/prices/entry

WHERE $y = $b/@year and

$b/title = $e/b-title
RETURN

<entry> {$b/title} {$e/price}</entry>

</books>
</yGroup>

</result>

(b)

result

yGroup yGroup

title
“TCP/IP…”

books

entry

price

“65.95”

title

“Data on..”

books

entry

price

“39.95”

Y=“1994”

(a)

Y=“2000”

Figure 1.2: (a) XQuery expression defined on top of the two XML docu-
ments in Figure 1.1 and (b) resulting XML view extent.

Below we highlight issues that must be considered when maintaining

XQuery views, using the above as running example.

Modeling and Validating Source XML Updates. In the relational con-

text source updates simply correspond to flat tuples that conform to the

same schema as that of the table to be updated. In the XML context, source

XML documents might not have a schema. Also an update to an XML

document might be provided in different shapes. For example, the update

might be provided as an entire XML fragment as in Figure 1.3(a), a root to

an XML fragment as in Figure 1.3(b), or a leaf node value as in Figure 1.3(c).

We need to decide how to:

• Model XML source updates. This includes what data structures to use,

how to encode hierarchial and order information of the update, and

how to represent different update operations. For example, the up-

date shown in Figure 1.3(a) inserts a new “book” fragment in a par-



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 5

for $book in document("bib.xml") /bib/book[2]
update $book
insert <book year = “1994”><title>Advanced programming in
the Unix environment</title><author><last>Stevens</last>
<first>W. </first></author></book> after $book

for $book in document("bib.xml") /bib/book
where $book/title =“Data on the Web”
update $book
delete $book

for $entry in document(“prices.xml") /prices/entry
where $entry/b-title =“TCP/IP Illustrated”
update $entry
replace $entry/price/text() with “70”

(a)

(b)

(c)

Figure 1.3: Three XQuery updates.

ticular location in the XML document (after the second “book” in

“bib.xml”). This affects the relative order of all elements that come

after that “book” (if any). In addition, the order in the materialized

view extent might be affected by that update. Such update should be

modeled in a way that specifies the exact location and order of the

insertion.

• Check of relevancy of source updates. It might be more efficient to filter

out irrelevant updates before propagating them as the propagation

algorithm will then deal with a smaller number of updates. Hence,

we wish to propagate only relevant updates. In the relational con-

text this mainly involves filtering out irrelevant updates by predi-

cates [BLT86]. In XML, checking the relevancy of updates involves

more than just checking predicates. An XML update is not relevant if



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 6

result

yGroup

title

“TCP/IP …”

books

entry

Y=“1994”

price
“70”

title

entry

price
“69.99”“Advanced ..”

Figure 1.4: The expected result of refreshing the materialized view extent
shown in Figure 1.2(b) in response to the source updates shown in Figure
1.3.

it does not have certain paths relevant to the query even if there are

no predicates defined on these paths. We need a mechanism to define

if an XML update is relevant or not to a view.

• Check of sufficiency of source updates. The update should have sufficient

information so that it is even possible to propagate the update. This

issue intersects with the relevancy of the update. For example, the up-

date shown in Figure 1.3(b), that deletes a book node given its book

title appears to be relevant to the view in Figure 1.2(a), yet it might

have insufficient information to be propagated since the update pro-

vides only the “title” sub-element of the deleted book. One solution

for this problem here is to provide the entire subtree of this deleted

“book” node as part of the update. This solution is not practical when

we consider updating nodes with huge subtrees. It might make the

view maintenance inefficient due to the propagation of much unnec-

essary information.



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 7

• Batching of source updates. We typically wish to model updates in

batches of possibly different types where such batch encodes only

relevant updates using minimum yet sufficient information for prop-

agation. In the relational context [GL95], each update in a batch of

updates is independent from other updates. While in the XML con-

text, an update may share the same prefix path with other updates

possibly of different types.

Supporting Update Propagation for Complex View Expressions. Typ-

ically, even a simple XQuery expression contains fairly complex algebraic

operations. For example, the XQuery expression shown in Figure 1.2(a)

performs operations like navigation, unnesting, join, grouping, distinct,

sorting, and result construction. We need a view maintenance solution that

is general enough to support an expressive subset of the XQuery language.

This includes supporting:

• Simple Relational-like operations. Even this class of operators is more

powerful than its traditional relational counterpart as it deals with

full fledged XML data rather than only flat tuples. In contrast to

the traditional relational operators, where an update typically rep-

resents a flat tuple insert or delete, an update to an input source of a

relational-like operator in the XML context might be inserting, delet-

ing, or modifying a node anywhere in the hierarchy of XML data.

The updated node itself might be an entire XML tree. For example,

the view query shown in Figure 1.2(a) performs a join on book titles

($b/title = $e/b− title) between “book” fragments (bound to variable



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 8

$b) from the “bib.xml” document and “entry” fragments (bound to

variable $e) from “prices.xml” document. Propagating the modify

update shown in Figure 1.3(c) involves updating a leaf node that is

hidden deep in the processed “entry” fragments. One other complex-

ity related to propagating updates through relational-like operations

in the XML context is that such operators are order sensitive. We will

discuss this issue in more detail later.

• General queries involving arbitrary grouping and join operations. Such

class of queries is hard to maintain even in the relational context

[GM05]. For example, propagating an update to an input source of a

join operation, where such source had prior been grouped, might re-

sult in propagation of duplicate results. We will discuss this problem

in more detail in Chapter 7. This problem is even harder in the XML

context because of the nature of XML updates, as discussed above,

and because the grouping operation in XQuery supports both cases

when grouping is coupled with aggregation, like in the traditional

relational context, and when the grouping is done without aggrega-

tion hence creating nested results. Propagating updates in groups

of non-aggregated nodes is more complex than propagating updates

through groups where each group has one flat aggregate value. Views

with outer joins pose another challenge when maintaining them on

updates to their input sources. See Chapter 7 for more detail.

• XML-specific operations. This type of operators exploit and manipu-

late the flexible structure of XML data. Restructuring and order are



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 9

two main XML-specific capabilities that contribute to the difficulty of

XML view maintenance. Propagating source updates through views

that perform arbitrary result construction may require that we iden-

tify parts of previously constructed results. Palpanas et al. [PSCP02]

classified XML constructor functions as non-distributive that may re-

quire recomputation. In other words, they place them in a class of

opetrtors that may not be incrementally computable. The view query

in Figure 1.2(a) shows an example of result restructuring. Propa-

gating the modify update shown in Figure 1.3(c) to update the cor-

responding “price” node in the materialized view extent shown in

Figure 1.2(b) for example requires that we identify ancestor nodes in

the path from the root of the materialized view extent to that node.

Such path contains newly constructed nodes.

Supporting XML Order. XML is an ordered data model, which is one

important feature that sets XML apart from other data models. A source

XML document has an implicit order among its nodes, called document

order. For example, the relative order among nodes in each of the XML

documents shown in Figure 1.1 shows a source document order. XQuery

expressions return results that have a well-defined order. This order can be

the implicit document order, a new order imposed by the XQuery expres-

sion, or a mixture of the two. XQuery can impose order in a variety of ways

including (i) the use of order by clauses, (ii) the nesting of variable binding

in the query for and let clauses, (iii) the order defined by XQuery return

clauses, and (iv) the order defined by new result constructions.



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 10

For example the XQuery view defined in Figure 1.2(a) returns a result

that has a mixture of order semantics. (1) The query returns the constructed

“yGroup” nodes ordered based on the book year value. (2) No specific or-

der semantics is given to the child node “books” of “yGroup” nodes since

there is only one “books” node for each “yGroup” node. (3) The children

nodes of each “books” node should be returned in document order (with

a major order that follows the order of the source “book” nodes and a mi-

nor order that follows the source “entry” nodes). (4) The query imposes

an explicit order among the “title” and the “price” children nodes of each

“entry” node. (5) Lastly, the order among nodes in each subtree of “title”

and the “price” nodes (if there is any) should again follow document order.

XQuery operations (including relational-like algebra operators) thus must

be order-aware. Hence, sorting operations might be needed to maintain the

order of processed data at different stages of query execution. For example,

in the example above, sorting operations might be needed to determine the

order among “Ygroup” nodes or among “entry” nodes during query ex-

ecution time. We wish to avoid such sorting of intermediate data during

query processing time and to only perform partial sorting on the result

when the final result is indeed required in an ordered manner. From the

view maintenance point of view we wish to allow the relative order of the

propagated update to be computed in a distributive manner, without hav-

ing to be aware of order information with previously processed data. This

implies that we wish to avoid materialization (or access to the source docu-

ments) for computing the relative order of propagated updates with respect

to the order of previously processed data. This will allow propagated up-



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 11

dates to be processed in a distributive manner with respect to order, hence

achieving efficient maintenance of order-sensitive views.

Incrementally Refreshing Materialized XML Views. When refreshing

the materialized XML view extent using propagated updates that represent

the net effect of source updates, we encounter the following issues:

• Due to the powerful restructuring capabilities of XQuery views the

XML result may have a totally different structure than the underly-

ing source(s) that were used to construct it. Applying a propagated

update to the materialized XML view requires a mechanism to iden-

tify the correct location where the update should be applied. Con-

sider for example that we wish to refresh the view extent in Figure

1.2(b) on the source update in Figure 1.3(a), that inserts a new “book”

to “bib.xml”. The propagation of this source update should create a

delta update that inserts a new “entry” element into the view extent.

This “entry” element should be inserted into a particular location (as

a child of the “books” element that has a parent “yGroup” element

with attribute “Y” equal to “1994”) and also in a particular order (af-

ter the existing “entry” element). These issues are not encountered in

the relational context since applying propagated updates to relational

materialized views simply involves inserting or deleting tuples from

the materialized flat tuple set (a table) where neither order nor partic-

ular location is an issue.

• Delete updates are generally harder to handle than insert updates

[GM95]. Deleting a source tuple may not necessarily translate into



1.2. RESEARCH CHALLENGES IN MAINTAINING MATERIALIZED

XQUERY VIEWS 12

a deletion of the tuple(s) derived from it in the view extent, because

a tuple in the view extent may have multiple (and thus alternative)

derivations from source tuples. Such derivation issue appears even

in simple relational SPJ views [BLT86, GMS93]. This problem be-

comes harder when we consider XML views that typically have more

expressive power as we have discussed earlier. For example, a con-

structed “yGroup” node in the view shown in Figure 1.2(a) might be

representing more than one source “book” node. Hence, a delete of

a source “book” should not delete the “yGroup” it falls under unless

there are no other “book” nodes grouped under that “yGroup” node.

• Deleting a source node might cause the deletion of an entire subtree

from the view extent. For example, the delete update shown in Fig-

ure 1.3(b) deletes the only “book” node grouped under the second

“yGroup” node in the view extent in Figure 1.2(b). Hence, the cor-

rect propagation of such update requires the deletion of not only the

“entry” node it maps to in the view extent but also the deletion of

the entire XML fragment rooted at the “yGroup” node with attribute

“Y=2000”. An efficient treatment of such update should delete this

entire fragment directly from its root rather than deleting all descen-

dant nodes of that root node one by one before figuring out at the end

that the root node “yGroup” should be deleted, like what is done for

example in [LD00].



1.3. STATE-OF-THE-ART IN VIEW MAINTENANCE 13

1.3 State-of-The-Art in View Maintenance

The incremental maintenance of materialized views has been extensively

studied for relational databases [BLT86, GM95, GL95, CW91, GMS93, GL95,

MQM97, MK00, PSCP02, GM05]. Blakeley et al. [BLT86] proposed a differ-

ential solution that was focused on the view maintenance problem of SPJ

views. Griffin and Libkin [GL95] extended the solution in [BLT86] con-

sidering more algebraic operations and providing support for views with

duplicates. Ceri and Widom [CW91] proposed a solution for maintaining a

subset of SQL views. Some solutions [GMS93, MQM97] focused on views

with aggregation. Yet, these solutions are limited to views with one ag-

gregation operation that comes as the last operator in the expression tree.

Quass [Qua96] has considered general views with aggregation. Griffin and

Kumar [GK98] proposed a solution for maintaining outer join operations.

Gupta and Mumick [GM05] have proposed an efficient solution for main-

taining general views with aggregation and outer join operations.

To a lesser degree, view maintenance has also been studied for object-

relational and object-oriented views [KR98, LVM00, AFP03]. Most of the

solution for maintaining object-oriented views considered non-standard

models or supported only limited views. Ali et al. [AFP03] proposed a so-

lution for maintaining a large class of the standard object query language

OQL.

Little work has been done on the incremental maintenance of XML and

semi-structured views. Early solutions for maintaining semi-structured

views [AMR+98, ZGM98] have considered only a limited class of views.



1.3. STATE-OF-THE-ART IN VIEW MAINTENANCE 14

These solutions require materialization of large auxiliary data structures.

[LD00] proposed a solution for maintaining views defined using a restricted

subset of the XML-QL language. It places additional limitations on the sup-

ported language. For example, it does not support explicit union opera-

tions and complex nested queries and places restrictions on updating some

source values. It also provides an inefficient treatment for delete updates.

In [ESWDR02] we have proposed the first solution for supporting in-

cremental maintenance of a subset of XQuery using a set of well-defined

update primitives. This solution requires materialization of some interme-

diate results. Quan et al. [QCR00] proposed a solution for maintaining XQL

views. Their solution uses auxiliary data of size that depends on the source

data size. Sawires et al. [STP+05] proposed a solution for maintaining a

subset of the XPath expressions. Their solution uses auxiliary data that

depends on the expression size and the answer size and does not depend

on the source data size. Bohannon et al. [BCF04] proposed two solutions

for the incremental evaluation of ATGs, a formalism for schema-directed

XML publishing. Their solution considers only XML views defined over

flat relational tables and does not support full fledged XML sources.

In all the work above XML order was not considered. In [DESR03], we

proposed an extension to [ESWDR02] that supports order-sensitive view

maintenance of a subset of XQuery views. Both solutions [ESWDR02] and

[DESR03] were based on propagation rules that require special-purpose

processing for propagating updates. This does not follow the mainstream

framework for view maintenance that uses the query engine to propagate

updates.



1.4. OUR APPROACH 15

1.4 Our Approach

We now propose a comprehensive framework for solving the problem of

maintaining XML views defined in XQuery. Our solution supports an ex-

pressive subset of XQuery views including XPath expressions, FLWOR

expressions, and Element Constructors. We support XML order including

source document order and query imposed order. Our solution avoids in-

termediate result materialization and avoids accessing source documents

during view maintenance time for most of the views. Hence, the major-

ity of our views becomes self-maintainable. We take an algebraic approach

for propagating updates. Our proposed approach generates incremental

maintenance plans in the same language used to define the view, just like

view maintenance strategies used in mainstream database systems, like

DB2 [LSPC00]. This makes implementing and integrating the view main-

tenance solution with the current XQuery processing engine an easy task.

In fact this should facilitate the adaptation of our XML view maintenance

solution within future commercial XML engines. We also provide support

for bulk update processing of heterogeneous mixtures of update types.

1.4.1 View Maintenance Framework

We adapt a framework similar to that used in mainstream commercial database

systems that support view maintenance where the view maintenance is

done in two phases called the Propagate Phase and Apply Phase. We add

one phase that we call Validate Phase that we find essential for XML view

maintenance. We call our framework the V PA view maintenance frame-



1.4. OUR APPROACH 16

XML
Docs

XQuery

Updates

Validate Phase

Check Update
Relev/Suff

Model Source
Updates

Materialized
XML View

Query
Expression

Batch
Updates

Relev/Suff Updates

Propagate Phase

IMP

Batch Update Tree

Derive
Inc. Maint.

Plan

Apply Phase

Refresh
Materialized

View

Delta Update tree

Update Trees

XML Query
Engine

Figure 1.5: Our V PA view Maintenance Framework.

work. Figure 1.5 shows these three phases. We now briefly present these

three phases in our solution.

1). The Validate Phase. We define how a source XML update is modeled,

namely using a structure called update tree. An update tree encodes

hierarchy and order information of the source updates and also their

type. The relevancy of each update tree with respect to its potential

effect on the view is verified. We also determine if the source update

has sufficient information for propagation. Relevant updates with

sufficient information are then batched in a structure called batch up-

date tree and are made available for update propagation.

2). The Propagate phase. The most important task in this phase is to de-

rive Incremental Maintenance Plans (IMPs) from the view query. Batch

update trees are processed using the Incremental Maintenance Plans to



1.4. OUR APPROACH 17

generate propagated updates, called delta update trees. Delta update

trees are to be used in the next phase to incrementally refresh the view

extent. IMPs are expressed in the same algebraic language used in

computing the materialized view extents. Hence, they are processed

using the XML query engine used to generate the view extent.

3). The Apply Phase. In this final phase, delta update trees that had been

computed in the Propagate Phase are applied to the materialized view

to refresh it. This involves merging nodes in the delta update tree

with nodes in the materialized view and performing any necessary

insertion, deletion, or modification to the materialized view.

1.4.2 Proposed Solutions

Our work relies on enabling a basic property in views, called the distribu-

tive property. The distributive property of a view in the relational context is

typically defined over the union operator (∪) [BLT86]. For example a select

view defined over a source R is distributive because for a source update

△R the equation σp(R ∪ △R) = σp(R) ∪ σp(△R) holds. That is, by pro-

cessing the view over the update and combining the result σp(△R) with

the initial materialized view σp(R) we get the same final result that we

would get if we were to fully recompute the view over the updated source

σp(R ∪△R).

To enable the distributive property for the class of XQuery views that we

support, we need to provide mechanisms for (i) supporting distributive

processing of XML data and incremental construction of XML results, (ii)



1.4. OUR APPROACH 18

supporting the distributive property of views in XQuery order-aware envi-

ronment, and (iii) supporting the distributive property of views on delete

updates when the view extents contain nodes that have multiple deriva-

tions from the underlying sources.

To support the XML view maintenance framework presented above,

this dissertation proposes the following solutions:

An Efficient Solution for Supporting Order in XML Query Processing

and View Maintenance

We propose a solution [ESDR03, ESDR05] that addresses issues related to

handling order in the XML context. This includes the variety of order re-

quirements of the XQuery language and the need to maintain order in the

presence of updates to the XML data. Our solution is based on a special

order encoding for XML nodes. One important effect of this technique is

that it removes the overhead for each individual algebra operator to have

to maintain order. It also removes the need for unnecessary sorting of in-

termediate data. In other words it migrates the ordered bag semantics of

intermediate data into non-ordered bag semantics. This opens up opportu-

nities for optimization, since operators become free to manipulate the data

they process in any efficient way they wish with no regards to the order of

that data. Our approach enables efficient order-sensitive query processing

and incremental view maintenance. See Chapter 3 for more detail.



1.4. OUR APPROACH 19

A Technique for Enabling Incremental Fusion of XML Fragments through

Semantic Identifiers

We have studied the problem of how to fuse XML pieces (fragments) gener-

ated by incrementally processing XML data into XML results. We propose

an identifier-based solution for this problem [ESRM05a]. This solution as-

signs semantic node identifiers to nodes in XML results. A semantic iden-

tifier for an XML node encodes both lineage and order information in a

compact manner. A semantic identifier of a node in the XML view extent

is reproducible. This means that for any node in the XML view extent,

any propagated updates that would affect that node would be assigned the

same semantic identifier. Semantic identifiers enable many XQuery views

to be distributive. Hence, they provide a base for our view maintenance

solution. See Chapter 4 for more detail.

A Mechanism for Validating Source XML Updates

We model XQuery source updates [TIHW01] as a set of well defined up-

date primitives, called update trees. An update tree specifies the hierarchy

and order information of the update. We define a mechanism for check-

ing relevancy of source updates through the use of a special pattern tree,

called Source Access Pattern Tree (SAPT ). We also use SAPT to determine

if the source update is relevant or not to the view. Irrelevant updates are

discarded. Hence, we prevent unnecessary update propagations. Updates

that are potentially relevant to the query are annotated with any missing

information that may be required to enable successful propagation. This



1.4. OUR APPROACH 20

includes any other nodes needed by the query. This additional information

allows the update to contain sufficient information for propagation. Such

sufficient update should be ideally be minimum to achieve efficiency as re-

alized through a small number of nodes in the update being propagated

and a faster application of the propagated updates to the view extent being

achieved. Lastly, different update trees are batched together into a structure

called the batch update tree. See Chapter 5 for more detail.

A Counting Solution for Supporting XML Delete Updates

Views may not be distributive on delete updates due to possibility of nodes

in the view extent having multiple derivations from source node. We pro-

pose a counting solution for solving this problem. Our counting solution

is an extension to the counting algorithm in [BLT86, GMS93]. Our solu-

tion annotates every XML node with a count representing the number of

derivations of that node from source data. We define rules on how this

count annotation is computed for different query operations. Our counting

solution allows efficient deletion of large XML fragments from the XML

view. See Chapter 6 for more detail.

An Algebraic Solution for Propagating Source XML Updates

We propose an algebraic solution for propagating updates. In contrast

to our previous work [ESWDR02, DESR03] we now generate incremental

maintenance plans that can be executed using the XML query engine. Our

solution defines algebraic propagation equations for propagating updates



1.4. OUR APPROACH 21

through different algebra operators. We use these equations to derive the

incremental maintenance plans from the view query definition. Executing

the incremental maintenance plans produces delta update trees that are to be

used to refresh the XML view extents. Our propagation solution supports a

large class of views including XPath expressions, FLWOR expressions, and

Element Constructors. It supports many complex queries including queries

with nested sub-queries and general queries with arbitrary grouping and

join operations and queries with left outer joins. See Chapter 7 for more

detail.

An Efficient Solution for Refreshing XML View Extents

We address the issue of how to refresh materialized XML views using delta

update trees resulting from the propagation phase. We utilize a special

operator, the Deep Union, as the refresh operator. Our solution offers an ef-

ficient apply phase where nodes in the materialized XML view are updated

in a top-down fashion. In fact, an entire fragment can be deleted from the

XML materialized view by directly disconnecting its root from the XML

materialized view rather than having to first delete descendant nodes of

that root one-by-one.

We prove the correctness of our proposed view maintenance approach,

in particular that using our mechanism we can correctly refresh material-

ized view extents. We also provide the results of extensive experimental

evaluation of our solution that we have obtained using a prototype imple-

mentation of our system. The results of our experiments confirm that our

solution provides a practical and efficient framework for maintaining ma-



1.5. OUTLINE 22

terialized XML views. See Chapter 8 for more detail.

1.5 Outline

The rest of this dissertation is organized as follows. Chapter 2 defines the

XML query model that we use. Chapter 3 discusses our order solution.

Chapter 4 discusses our semantic identifier solution. Chapter 5 discusses

how we model and validate source XML updates. Chapter 6 introduces our

counting solution for supporting XML delete updates. Chapter 7 discusses

our algebraic solution for propagating XML updates. Chapter 8 discusses

how to apply propagated XML updates to the materialized XML view ex-

tents to refresh it. Chapter 9 presents and analyzes the result of experi-

mental evaluation. Chapter 10 discusses related work. Lastly, Chapter 11

provides a summary of the contributions of this dissertation and discusses

future work.



23

Chapter 2

Background

2.1 XQuery

We consider the subset of the XQuery language [W3C05] specified by the

grammar shown in Figure 2.1. This subset includes XPath expressions,

nested FLWOR expressions, and element constructors. In addition we sup-

port some functions like the distinct-value function and some aggregate

functions. We do not support queries that evaluate predicates on collec-

tions (like for example comparison operations between sequences) or on

results of functions (like for example predicates over the result of aggregate

functions or the position function). We support XPath expressions involv-

ing only the most used axes in practice; the child “/” and the descendant

“//” axes.



2.2. THE XML ALGEBRA XAT 24

FLWORExpr ::= (ForClause | LetClause)+WhereClause?

OrderByClause? ReturnClause

ForClause ::= "for" $VarName in ExprSingle

(, $VarName in ExprSingle)*

LetClause ::= "let" $VarName := ExprSingle

(, $VarName := ExprSingle)*

WhereClause ::= "where" ComparisonExpr

OrderByClause ::= "order" "by" OrderList

ReturnClause ::= "return" PrimaryExpr

PrimaryExpr ::= Literal | $VarName | Expr |

DirElemConstructor

Expr ::= ExprSingle (, ExprSingle)*

ExprSingle ::= FLWORExpr | XPathExpr

DirElemConstructor::= "<" QName AttributeList ("/>" |

(">" PrimaryExpr* "</" QName">"))

Figure 2.1: Syntax of XQuery Subset

2.2 The XML Algebra XAT

Given that to date no one standard XML algebra for query processing pur-

poses has emerged that has been widely accepted, we use the XML algebra

called XAT [ZPR02]1 implemented in the Rainbow engine [Zea03]. Figure

2.2 shows an algebraic representation for the XQuery expression in Figure

1.2(a) using the XAT algebra. We will discuss next the data model of this

algebra and give an overview of its operators.

2.2.1 Data Model

The data model for the XAT algebra is a tabular model called XAT table.

Typically, an XAT operator takes as input one or more XAT tables and pro-

duces an XAT table as output. An XAT table T is an order-sensitive table

1This algebra is similar to NAL [MHM04] xatTreeand SAL [BT99] algebras.



2.2. THE XML ALGEBRA XAT 25

SS ””bib.xmlbib.xml””
$S$S11

ff$S1,book/$S1,book/@@year/textyear/text()()
$y$y

DistinctDistinct($y)($y)

CombineCombine $col7$col7

LOJLOJ$y= $col1$y= $col1

TT<entry>$col4</entry><entry>$col4</entry>
$col5$col5

TT<result>$col7</result><result>$col7</result>
$col8$col8

SS ””bib.xmlbib.xml””
$S$S22

ff $S1,book$S1,book
$b$b

ff$b, @year/text()$b, @year/text()
$col1$col1

FF$e, price$e, price
$col3$col3

ÈÈ $col2, $col3$col2, $col3
$col4$col4

GroupByGroupBy$y$y((CombineCombine$col5$col5))

TT<books>$col5</books><books>$col5</books>
$col6$col6

TT<<yGroupyGroup Y={$y}>$Y={$y}>$col6</col6</yGroupyGroup>>
$col7$col7

11

22

44

55

66

77

1212

1313

1414

1515

1616

1818

1919

2020

x

SS””prices.xmlprices.xml””
$S$S33

ff$S2,entry$S2,entry
$e$e

88

9

FF$b,title$b,title
$col2$col21111

JoinJoin $b/title= $e/b$b/title= $e/b--titletitle
1010

OrderByOrderBy$y$y
1717

ExposeExpose $col8$col8

2121

Figure 2.2: An Algebra Tree for the XQuery expression in Figure1.2(a)



2.2. THE XML ALGEBRA XAT 26

of p tuples ti, 1 ≤ i ≤ p, p ≥ 0 that is T = {t1, t2, .., tp}. The column names

in an XAT table schema of T represent either a variable binding from the

user-specified XQuery, e.g., $b, or an internally generated variable name,

e.g., $col1. Each tuple ti (1 ≤ i ≤ p) is a sequence of m cells ci,j (1 ≤ j ≤

m) that is ti = [[ci,1, ci,2, ..., ci,m]], where m corresponds to the number of

columns. Each cell ci,j (1 ≤ i ≤ p, 1 ≤ j ≤ m) with colj in a tuple ti, de-

noted by ti[colj ], can store an XML node or a sequence of nodes bound to

column colj . Atomic values are treated as text nodes. During XML query

evaluation algebra operators process input XML nodes stored in cells of

XAT tables.

2.2.2 XAT Operators

An XAT operator is denoted as opout
in (s), where op is the operator type sym-

bol, in represents the input parameters, out the newly produced output

column that is to be appended to the output table generated by the opera-

tor and s the input XAT table(s). Some XAT operators and their XAT tables

are shown in Figure 2.22. Below we introduce the core subset of the XAT

algebra [ZPR02].

The relational subset of the XAT algebra includes Select σc(T ), Cartesian

Product ×(T1, T2), Theta Join 1c (T1, T2), Left Outer Join =⊲⊳c(T1, T2), Distinct

δcol(T ), Group By γcol[1..n](T, func) Order By τcol[1..n](T ), and the column re-

naming operator Name ρcol1,col2(T ), where T , T1, and T2 denote XAT tables.

These operators are equivalent to their relational counterparts with the

added responsibility of maintaining order. All operators above, except the

2We discuss the details of algebra tree execution later in this document.



2.2. THE XML ALGEBRA XAT 27

Distinct, Group By, and Order By operators reflect the relative order of their

input XAT tables to their output XAT tables. We discuss order semantics of

different operators in more detail in Chapter 3.

Note that the XAT Group By operator is more powerful than its rela-

tional counterpart. The Group by operator in relational algebra only allows

aggregation (on the non-grouping columns). While the XAT Group By op-

erator allows other operations and functions as well as aggregation, such

as Combine operator. In this work, we mainly consider the parameter func

to be a the Combine operator or an aggregate function. The XAT Group By

my also perform grouping by values or by node identifiers.

Source Scol′

xmlDoc is a leaf node in an algebra tree. It takes the XML doc-

ument xmlDoc and outputs an XAT table with a single column col′ and a

single tuple tout1 = (c1,1), where c1,1 is the XAT table cell that contains a

reference to the entire XML document.

Navigate Unnest φcol′

col,path(T ) unnests the element-subelement relation-

ship through a navigation followed by an unnest. For each tuple from the

input XAT table T , it creates a sequence of output tuples in which path

navigates to. The φ$b
$S1,book operator in Figure 2.2 (node #5) generates one

tuple for each “book” element extracted from the “bib” element in the in-

put. Tuples in the output XAT table of the Navigate Unnest operator are

generally ordered by major order on entry point nodes and a minor order

on the destination nodes.

Navigate Collection Φcol′

col,path(T ) is similar to Navigate Unnest, except

it only performs the navigation functionality without the unnesting func-

tionality. It extracts a collection from each node in column col. For each



2.2. THE XML ALGEBRA XAT 28

tuple from T , it creates one output tuple containing the result of navigating

through path. The Φ$col2
$b,title operator in Figure 2.2 (node #11) generates one

tuple for each input XAT table tuple. This results in extracting two collec-

tions of “title” elements, one for each “book” in column $b. Tuples in the

output XAT table of the Navigate Collection operator are ordered based on

only the order of the entry point nodes.

Combine Ccol(T ) groups the content of all cells in column col into one

sequence (with duplicates). Given the input T with m tuples tini, 1 ≤

i ≤ m, Combine outputs one tuple tout = (c), where tout[col] = c =
◦
⊎

m

i=1tini[col]
3. Combine has only column col in its output XAT table. The

C$col7 operator in Figure 2.2 (node #19) groups all the “yGroup” elements

in $col7 tuples into one cell. Hence, there is only one row in its output XAT

table.

Tagger T col
p (T ) creates a new column col in which it constructs new

XML nodes by applying the tagging pattern p to each input tuple. A pattern

p is a template of a valid XML fragment [W3C98] with a parameter being

a column name, e.g., <result>$col7</result>. For each tuple tini from T ,

it creates one output tuple toutj , where toutj[col] contains the constructed

XML node obtained by evaluating the pattern p for the values in tini. For

example, the T $col5
<entry>$col4</entry> in Figure 2.2 (node #14) constructs a new

“entry” node from the contents of column $col4 for each input tuple (con-

taining “title” and “price” nodes previously unioned). The Tagger does not

build the result hierarchy; instead the result structure is built by a sequence

of grouping/nesting, union, and tagging operations.

3
◦
⊎

m

i=1 is the order sensitive bag union.



2.2. THE XML ALGEBRA XAT 29

XML Unique υcol′

col (T ) removes duplicate from sequences of XML nodes

by node identifier. For each tuple tini from T , it creates one output tu-

ple touti, where touti[col
′] is a sequence containing the unique members in

tini[col] after removing duplicates by node identifier.

XML Union
x
∪

col

col1,col2(T ) is used to union multiple sequences into one

sequence (duplicates are not eliminated). For each tuple tini from T , it

creates one output tuple touti, where touti[col] is a sequence containing the

members of the set tini[col1]∪ tini[col2]. Note that the operator XML Union

performs set operations on columns in a single XAT table, not on multiple

XAT tables.

Expose ǫcol(T ) exposes the specific column col into XML fragments or

XML documents in text format. It appears as the root node of an algebra

tree4.

The Map operator Mapa:e(Attr)(T ) is used to simplify the translation

from XQuery FLWOR expressions to the XAT algebra. It directly repre-

sents the nesting of XQuery expressions. The Map operator is a binary

operator with a left hand side (LHS) input defining one for-variable and

a right hand side (RHS) input defining an algebra expression e (a tree or

a directed acyclic graph). Attr represents the for-variable in the FLWOR

expression and a is the new attribute name whose value is calculated from

expression e(Attr). Intuitively the Map operator forces a nested loop eval-

uation strategy. At the algebraic level optimization all Map operators are

rewritten; hence they are removed.

4For simplicity of presentation, we do not show the Expose operator in the later algebra
tree figures.



2.3. XAT GENERATION 30

The Merge operator M(T1, T2) merges two XAT tables vertically into

one XAT table by concatenating columns. This operator merges results of

two independent sub-expressions in the query into one XAT table, hence

a combined result can be created from the merged XAT table (using XML

Union operator). Each input XAT table of the Merge operator is typically

generated using a Combine operator, hence it has one tuple that stores a

sequence of nodes.

2.3 XAT Generation

The XAT generation is also called the “Query Decomposition” phase of

query processing. This phase includes the following steps:

• Parsing. The query is lexically and syntactically analyzed using the

parser. We use here the Kweelt engine parser [Sah01].

• Normalization. The query is converted into a normalized format that

can be easily manipulated. We will discuss the normalization rules

used in Rainbow later this section.

• XPath. Appropriate operators are generated for each XPath expres-

sion.

• FLWOR Expressions. By using the Map operator, all operators gener-

ated for XPath expressions are connected to the query plan to form an

XAT algebra tree. Through the use of Directed Acyclic Graph (DAG),

common XPath expressions can be eliminated.



2.3. XAT GENERATION 31

2.3.1 XQuery Normalization

Prior to translating any XQuery expression into the XAT algebra expres-

sion, we use source-level normalization similar to that used in [MFK01b].

We apply the following normalization rules:

• Normalization Rule 1: The Let clause in an XQuery expression de-

fines let-variables that can be used later in the query block. The let-

variables are treated as temporary variables. During normalization,

they can be eliminated: the expression binding the let-variable is sub-

stituted for all occurrences of the let-variable. Note that in the im-

plementation, the let-variable is calculated only once and is shared

among all the occurrences. This would turn the algebraic query plan

into a DAG.

• Normalization Rule 2: Each for clause is represented as a Map opera-

tor5. Since the Map operator is binary, the for clause defining more

than one for-variable would first be split into a sequence of nested for

clauses. Each clause defines one for-variable only. For example, the

following For clause:

for $b in doc(“bib.xml”)/bib/book, $e in doc(”prices.xml”)/prices/entry

can be split into:

for $b in doc(“bib.xml”)/bib/book,

for $e in doc(”prices.xml”)/prices/entry

5This operator is later removed during the query optimization phase and before query
execution.



2.3. XAT GENERATION 32

• Normalization Rule 3: To simplify the translation of XPath expressions

into the Navigation operator in XAT, we substitute the predicate in an

XPath which refers to outer variables by a where clause in a FLWOR

query block. Since such predicates have existential semantics in both

cases, the original XPath semantics are not changed. After normaliza-

tion, the XPath expression must have a variable or a document as its

entry point. Also, it will not refer to any other variables in its naviga-

tion path and node tests.

2.3.2 Converting XPath Expressions into XAT

An XPath expression is composed of location steps (with axis and node

test), predicates, and optional parenthesis for grouping. An XPath is repre-

sented by a combination of navigation, select and grouping operations.

XPath Expression without Predicates

A path expression with location steps that have no predicates can be rep-

resented using an navigation operation. In the XQuery example in Figure

2.1(a), the XPath expression /bib/book that navigates from “bib.xml” and

binds result to variable $b is represented as φ$b
“bib.xml”,/bib/book .

XPath Expression with Predicates

A predicate in an XPath expression is represented as a selection operator

after the navigation operator. In general, an expression E1[E2], it is trans-

lated into the XAT expression E2(E1). For example, the XPath expression



2.3. XAT GENERATION 33

/book[title =′′ Data on the Web′′], where book is navigated from an entry

point S, is translated into:

σy=′′Data on the Web′′

(

φy
x,title

(

φx
S,book()

))

.

2.3.3 Translating Normalized XQuery Expressions to XAT Alge-

bra

Normalized XQuery expressions are translated into their corresponding

XAT algebra representations in two steps: (1) translating XPath expres-

sions and (2) translating the FWOR query expressions (now without the

Let clause).

The translation pattern of a flat FWOR query block to the XAT alge-

braic expression is illustrated in Fig. 2.3. A nested XQuery block can be

translated recursively using this pattern. In this translation pattern, the

Map operator introduces one for-variable for the for clause in the LHS ex-

pression. This for-variable can be referred to in the nested query blocks in

the RHS. The Combine operator on top of the Map is used to construct a

sequence of all intermediate results. The where clause is also placed in the

LHS of the Map operator, just like the orderby clause.

Algebraic operators are generated during the translation from an XAT

algebra tree. Sharing of common subexpressions (e.g., the let-variable ex-

pression) is allowed among multiple operators. This turns the XAT tree

into a DAG. For simplicity, we do not emphasize the difference between

them and just generally call them XAT trees.



2.4. XAT OPTIMIZATION 34

Combine($ret_col)

Map

for Clause

$for-var

orderby Clause

where Clause

return Clause

Π$for-var
Π$ret_col

Figure 2.3: Building the Algebra Tree for an XQuery FWOR Expression.

2.4 XAT Optimization

After XQuery normalization and translation, the correlation in an XQuery

expression is represented in the XAT tree by the Map operator and linking

operators (operators in the inner query blocks referring to variables in the

outer FLWOR query block). The Map operator introduces the for-variable

from the LHS for clause and the linking operator refers to it in the RHS.

Intuitively the Map operator forces a nested loop evaluation strategy. We

use an XAT decorrelation algorithm that removes the Map operator in the

XAT tree. This is done by pushing the Map operator along the RHS until

the linking operator is reached. At this point the Map operator is rewritten

as a Join. In our system, we use an optimizer that is based on the work

done in [ZPR02] and [WRM05].



35

Chapter 3

Efficiently Supporting Order In

XML Query Processing and

View Maintenance

3.1 XML and Order

Unlike most common data models including semi-structured, relational

and object-oriented data models, XML data is order-sensitive. Support-

ing XML’s ordered data model is crucial for many domains. An example

is content management where document data is intrinsically ordered and

where queries often need to rely on this order [TVB+02]. For example, if

Shakespeare’s plays are modeled as XML documents, the order among acts

in plays is relevant. Then queries asking for a certain act in a play given its

order must be supported.



3.1. XML AND ORDER 36

XQuery expressions return results that have a well-defined order, un-

less specified otherwise. The result of a path expression is always returned

in document order [W3C99]. The order in the result of a FLWOR expres-

sion can in addition be imposed by the expression itself in many ways, as

we will describe next. Hence, the result of an XQuery expression reflects

in an interrelated manner both the implicit XML document order and the

explicitly imposed order by the XQuery expression.

Support for XML order when processing XQuery queries can severely

affect query optimization opportunities. Thus, a major performance hit

may result [W3C05]. For this reason the XQuery language provides a func-

tion, named unordered(), that can be used for those expressions where the

order of the result is not significant [W3C05]. This allows us to turn se-

quences processed during query execution into sets. Set-oriented process-

ing is known to offer potential opportunities for optimization.

One challenge in handling XML order is that the order of the result

of an XQuery expression may follow (1) document order, (2) query order

imposed by the order by clause, (3) query order imposed by the nesting of

the query for and let clauses, and (4) query order imposed by the query

return clause or by the new result construction, or (5) a combination of any

of the above.

The problem of handling order poses unique challenges to incremen-

tal XML view maintenance. XML views have to be refreshed correctly not

only concerning the view content but also concerning the order of the view

result document. In the relational context, for example, order is of interest

only if the Order By operation is explicitly present in the view definition.



3.2. CHALLENGES OF HANDLING ORDER IN XML QUERY PROCESSING37

Even then, a possible solution is to maintain an unordered auxiliary view,

and only recompute the ordered view on demand on the final output data.

This is because all ordering is done uniformly based on sorting on some

attribute value at the end of query processing. Such approach does not ap-

ply to the XML context, where most operations have to be order sensitive.

Even if explicit reordering occurs (for example, due to an OrderBy clause

in the view definition) it does not necessarily completely reorder the XML

view result. The internal elements (i.e., children/descendants elements) of

the element(s) on which the ordering was performed can still be returned

in document order.

Given that the order cannot always be ignored, efficient techniques for

handling order in XML query processing must also be devised. That is, we

need to have the ability to support order for processing queries and updates

on data and on materialized views. At the same we need to minimize the

overhead that comes with handling order.

Some work has been proposed for supporting order in XML query pro-

cessing [FLSW03, JAKC+02, MFK01a, TVB+02] yet these solutions did not

support all types of XQuery order or came with high overhead cost. See

Section 10.2 for more details on related work.

3.2 Challenges of Handling Order in XML Query Pro-

cessing

Challenges Posed by the Data Model. The query execution model of

ordered-sensitive XML views can be seen as a sequence of sequences, where



3.2. CHALLENGES OF HANDLING ORDER IN XML QUERY PROCESSING38

each of the sequences can have one or more XML nodes. An XML node in

a sequence can be a simple node like an attribute or a text node or it can be

an XML tree (an element node). In terms of our data model, the XAT table

corresponds to the container sequence and the tuples in that table are the

sequences inside the container sequence. Each cell (in a tuple) can store a

single node or a sequence of nodes. Given such a data model, three order

levels exist:

1) Order among processed sequences (tuples in an XAT table).

2) Order among nodes in a processed sequence of XML nodes (nodes in

a cell in an XAT table).

3) Order among internal nodes (children/descendants) of processed

XML nodes.

The processed nodes themselves may be either original nodes from the

source document or nodes constructed during query execution. And the

order defined for any of those three levels may follow the source document

order or may follow a new order imposed by the query. In some cases order

might not even be of importance.

Challenges Posed by the Different Order Requirements of the XML Query

Language. We classify the order that an XQuery expression can reflect on

its result into four main types:

1). Document Order. Document order is the order of nodes as they appear

in the source XML documents. XQuery expressions typically return

result in document order unless otherwise is specified by the query.

This order might be present in base nodes exposed in the result. It



3.2. CHALLENGES OF HANDLING ORDER IN XML QUERY PROCESSING39

also might be present in constructed nodes that follow the document

order of the base nodes they are derived from.

2). Query Order Imposed By the Query order by Clauses. The query might

have one or more order by clause(s) imposing new order to certain

parts of the returned result.

3). Query Order Imposed by the Nesting of Variable Binding in the Query for

and let Clauses. Nesting of variables in the for and let clauses in an

XQuery FLWOR expression also imposes a certain order based the

order of the variables. For example, for a FLWOR expression em-

bedded into another FLWOR expression we expect that, in general,

a variable in the outside for clause places a major influence on the or-

der while a variable in the inside for clause places a minor influence

on the order. The same order semantics applies to the order among

multiple variable bindings in the same for or let clause.

4). Query Order Imposed by the Query return clauses and by the New Result

Construction. The order in which variables are specified in the return

clause determines the order of data bound to these variables.

Often the XQuery result reflects a mixture of more than one of the order

types listed above. This makes handling XQuery order a complex issue.

On the query algebra level, different operators in the XML algebra deal

with order in a different way. Here are some examples:

• The operator Navigate Collection Φcol′

col,path(T ) processes one tuple at a

time, without requiring to access other tuples nor modifying the or-



3.2. CHALLENGES OF HANDLING ORDER IN XML QUERY PROCESSING40

der among the tuples. Moreover, for each tuple in the input table it

produces exactly one tuple in the output table.

• The operator Tagger T col
p (T ) also preserves the relative order among

the tuples it processes. In addition it defines order among its internal

nodes.

• The operator Combine Ccol(T ) destroys the order among the tuples it

processes. It groups all the nodes from its input column in one cell

and outputs only one tuple in the output XAT table that contains that

cell. This raises the issue of maintaining order between those nodes.

• For the Join operator 1c (T1, T2), the order of tuples in the output table

of the Join operator depends on the order of tuples in its input tables.

The order in its output table follows the order of the left input table

T1 as a major order and the right table T2 as a minor order.

• The Order By operator τcol[1..n](T ) destroys the order of the input table

and imposes a new order based on a certain criteria. Hence the output

table will have a new computed order based on the order of some

column values.

• The operator Expose ǫcol(T ) outputs an XML document rather than

an XAT table. This document is extracted as a tree from a col in the

input XAT table. The extracted tree has order among its elements that

reflects all previous order decisions.

We will discuss how different operators handle order in more detail in

Section 3.3.



3.2. CHALLENGES OF HANDLING ORDER IN XML QUERY PROCESSING41

Challenges Posed by Order-sensitive View Maintenance. The problem

of the incremental maintenance of XML views poses additional challenge.

View maintenance of ordered XML data is difficult for two reasons [LD00]:

(1) positions of the element may change dynamically during update time

and (2) positions of elements may be different in views and in the source

data.

It is essential to have a mechanism for encoding source XML nodes in

a way that avoids reordering (re-labeling) source nodes on updates. It is

also essential to maintain the order among the propagated nodes and se-

quences. This issue is similar to the that of maintaining order among pro-

cessed nodes and sequences discussed above. Two other issues appear here

(1) how to derive and maintain the relative order of the propagated up-

dates to the order of the previously processed data, and (2) how to avoid

re-ordering of nodes in the result when applying propagated update to the

view result. Without an efficient solution, materialization of large auxiliary

data structures and expensive scans of them might be needed to enable

order-sensitive view maintenance. For example, to determine the order of

an inserted tuple in an XAT table we might need to materialize and to scan

the input or output tables to determine the right order of the inserted tu-

ple. Our goal here is to provide an order handling technique that facilitates

not only efficient order-sensitive query processing but also efficient order-

sensitive view maintenance.



3.3. MAINTAINING XML ORDER 42

3.3 Maintaining XML Order

The requirement of preserving order, as described in Section 3.2, makes the

XML query execution and view maintenance significantly different from

the relational case. The two obvious solutions are: (1) relying on the physi-

cal sequential storage medium to be always ordered, or (2) assigning order

values to processed sequences and nodes. Both solutions are not efficient

especially in the presence of incremental updates.

Our solution for handling order relies on three main principles: (1) the

underlying Storage Manger is capable of returning source document nodes

in document order, (2) order is ignored when processing XML intermedi-

ate results, and (3) at the end of query processing and when generating the

final result sorting is performed (typically only partial sorting) to return

the result in the desired order. Our Storage Manager relies on the MASS

system [DR03], also developed at WPI, for providing scalable storage and

indexing for XML data with efficient update performance. The Storage

Manager provides interfaces for storing and retrieving XML nodes (both

original nodes and constructed nodes). MASS guarantees that when re-

trieving descendants of original XML nodes they are returned in document

order, eliminating the need for sorting them at the result generation time.

MASS provides scalable I/O performance for all XPath axes. Moreover,

it provides an integrated indexing support for XPath node tests, position

predicates and count aggregations.



3.3. MAINTAINING XML ORDER 43

3.3.1 Node Identifier and Node Order

In many cases the order among processed XML nodes and collections de-

pends on the order in their source document. In other words, the order

among the tuples in an XAT table (and among nodes in a cell) depends

on the source document order of the XML nodes present in these tuples

(cell). Our query processing model uses node identifiers during query ex-

ecution time. Hence, a node identity that serves the dual purpose of node

identifier and order encoding is beneficial for both query processing and

order handling. We also require the node identity of a base node to en-

code the unique path of that node in the XML tree and to capture the or-

der at each level along the path. We have thus considered techniques pro-

posed in the literature for encoding order in XML data [AKJK+02, DR03,

JAKC+02, TVB+02]. The lexicographical order encoding technique pro-

posed in [DR03] that does not require reordering on updates is used. It

is analogous to the Dewey ordering [TVB+02], except rather than using

numbers in the encoding, it uses variable length strings. First, for each

document node a variable length byte string key is assigned, such that lex-

icographical ordering of all sibling nodes yields their relative document or-

dering. The identity of each node is equal to the concatenation of all keys of

its ancestor nodes and of that node’s own key (see Figure 3.1). This order-

reflecting node identity encoding is called FlexKey. We use the notation

k1 ≺ k2 to note that FlexKey k1 lexicographically precedes FlexKey k2.

The FlexKey encoding is well suited for query execution and for view

maintenance because it has the following properties:



3.3. MAINTAINING XML ORDER 44

bib

book book

title
title

b

b.b b.f

b.b.b
b.f.b

“TCP/IP.. ”

“Data…”author

b.b.f

last

b.b.f.b

“Stevens” “Serge”
first

b.b.f.f

“W.” “Abiteboul”

author
b.f.f

first

b.f.f.f

last

b.f.b.f

(a)

Year=“1994”
Year=“2000”

prices

entry entry

price price

e

e.b
e.f

e.b.b e.f.b

“Data…”
b-title

e.b.f

b-title
“39.95” “65.95” “TCP/IP.. ”

entry

price

e.l

e.l.b

b-title
“69.99” “Advanced..”

e.f.f e.l.f

(b)

Figure 3.1: Lexicographical order encoding of the two XML documents
“bib.xml” and “prices.xml” presented in Figure 1.1.

• It identifies a unique path from the root to the node. Hence the parent-

child and ancestor-descendant containment relationships between nodes

can easily be determined without the need to access the actual data.

Accessing this relationship is a frequent operation in XML query ex-

ecution.

• It embeds the relative order among nodes in the same XML tree.

Hence the order between any nodes can easily be determined (re-

gardless of the level) by comparing their FlexKeys lexicographically.

• It does not require reordering on updates because of the use of vari-

able length strings instead of numbers for encoding order. We can

always create new gaps by extending the string by adding more let-

ters. We discuss that in more detail in Section 3.4.

Base Nodes. We use FlexKeys for encoding the node identities of all

nodes in the source XML document. That is, we assume that any given

XML document used as source data has FlexKeys assigned to all of its nodes.

For reducing redundant updates and avoiding duplicated storage we mainly



3.3. MAINTAINING XML ORDER 45

store references (FlexKeys) in the XAT tables rather than actual XML data.

This is sufficient as the FlexKeys serve as node identifiers and also capture

the order. From here on, when we refer to a cell in a tuple we mean the

FlexKey or the collection (or sequence) of FlexKeys stored in that cell. The

actual XML data is stored only once in the Storage Manager. Figure 3.2 il-

lustrates the usage of FlexKeys as references to source XML nodes. FlexKeys

are used for accessing that data when needed by some operator. For exam-

ple, the Navigate Unnest operator φ$n
$S1,book in Figure 3.2 retrieves the “book”

children of the root node of “bib.xml” from the Storage Manager, and places

their FlexKeys in the output XAT table.

Constructed Nodes. We also use FlexKeys to encode the node identity of

any constructed nodes either in the intermediate result or in the final extent.

The FlexKeys assigned to constructed nodes are locally unique. We post-

pone discussion on id generation and their semantics to Chapter 4. Rather

than instantiating the actual XML fragments in our system, we only store

a skeleton representing their structure in the Storage Manager. References

(FlexKeys) to other source data or to constructed nodes that are included in

the newly constructed node are kept. For example, in Figure 3.2, although

the constructed node T7 is representing the whole output view extent, it is

only stored as <result>T5 T6</result>. When the constructed node is cre-

ated, the FlexKey assigned to it reflects only its identifier and does not reflect

its order. This is because the order of a constructed node at its creation time

is just an intermediate order at a certain point of query execution. It does

not necessarily reflect the desired final result order. We assign the order

information to the constructed node at a later stage (when the constructed



3.3. MAINTAINING XML ORDER 46

SS ””bib.xmlbib.xml””
$S$S11

ff$S1,book/$S1,book/@@year/textyear/text()()
$y$y

DistinctDistinct($y)($y)

CombineCombine $col7$col7

LOJLOJ$y= $col1$y= $col1

TT<entry>$col4</entry><entry>$col4</entry>
$col5$col5

TT<result>$col7</result><result>$col7</result>
$col8$col8

SS ””bib.xmlbib.xml””
$S$S22

ff $S1,book$S1,book
$b$b

ff$b, @year/text()$b, @year/text()
$col1$col1

T7

$col8

T7

$col8

2000b.f

1994b.b

$col1$b

2000b.f

1994b.b

$col1$b

2000

1994

$y

2000

1994

$y

b.f

b.b

$b

2000

1994

$y

b.f

b.b

$b

2000

1994

$y

FF$e, price$e, price
$col3$col3

e.b

e.f

$e

b.f

b.b

$b

{b.f.b}

{b.b.b}

$col2

2000

1994

$y

{e.b.b}

{e.f.b}

$col3

e.b

e.f

$e

b.f

b.b

$b

{b.f.b}

{b.b.b}

$col2

2000

1994

$y

{e.b.b}

{e.f.b}

$col3

ÈÈ $col2, $col3$col2, $col3
$col4$col4

e.b

e.f

$e

b.f

b.b

$b

{b.f.b[a],
e.b.b[b]}

{b.b.b[a],
(e.f.b[b]}

$col4

2000

1994

$y

e.b

e.f

$e

b.f

b.b

$b

{b.f.b[a],
e.b.b[b]}

{b.b.b[a],
(e.f.b[b]}

$col4

2000

1994

$y

GroupByGroupBy$y$y((CombineCombine$col5$col5))

TT<books>$col5</books><books>$col5</books>
$col6$col6

TT<<yGroupyGroup Y={$y}>$Y={$y}>$col6</col6</yGroupyGroup>>
$col7$col7

b.f

b.b

$b

e.b

e.f

$e

T2

T1

$col5

2000

1994

$y

b.f

b.b

$b

e.b

e.f

$e

T2

T1

$col5

2000

1994

$y

{T2[b.f..e.b]}

{T1[b.b..e.f]}

$col5

2000

1994

$y

{T2[b.f..e.b]}

{T1[b.b..e.f]}

$col5

2000

1994

$y

T4

T3

$col6

2000

1994

$y

T4

T3

$col6

2000

1994

$y

{T5[1994], T6[2000]}

$col7

{T5[1994], T6[2000]}

$col7

11

22

33

44

55

66

77

1212

1313

1414

1515

1616

1818

1919

2020

x

SS””prices.xmlprices.xml””
$S$S33

ff$S2,entry$S2,entry
$e$e

88

9

FF$b,title$b,title
$col2$col21111

e.l

e.f

e.b

$e

e.l

e.f

e.b

$eJoinJoin $b/title= $e/b$b/title= $e/b--titletitle
1010b.f

b.b

$b

e.b

e.f

$e

2000

1994

$y

b.f

b.b

$b

e.b

e.f

$e

2000

1994

$y

OrderByOrderBy$y$y
1717T4

T3

$col6

2000

1994

$y

T4

T3

$col6

2000

1994

$y
T6

T5

$col7

2000

1994

$y

T6

T5

$col7

2000

1994

$y Storage ManagerStorage Manager

bib.xml

Constructed Result

result

books

title

entry

yGroup yGroup

T6[2000]

prices

entry

b-title

price

e

e.b

e.b.f

e.b.b
book

b-title

price

e.f

e.f.f

e.f.b

bib

book

title

b

b.b

b.b.b

author
b.b.f

first

b.b.f.f

last

b.b.f.b

book

title

b.f

b.f.b

author
b.f.f

first

b.f.f.f

last

b.f.f.b

prices.xml

price

T7

T5[1994]

book

b-title

price

e.l

e.l.f

e.l.b

books

title

entry

price

T3 T4

T1[b.b..e.f] T2[b.f..eb]

b.b.b[a] e.f.b[b] b.f.b[a] e.b.b[b]

Storage ManagerStorage Manager

bib.xml

Constructed Result

result

books

title

entry

yGroup yGroup

T6[2000]

prices

entry

b-title

price

e

e.b

e.b.f

e.b.b
book

b-title

price

e.f

e.f.f

e.f.b

bib

book

title

b

b.b

b.b.b

author
b.b.f

first

b.b.f.f

last

b.b.f.b

book

title

b.f

b.f.b

author
b.f.f

first

b.f.f.f

last

b.f.f.b

prices.xml

price

T7

T5[1994]

book

b-title

price

e.l

e.l.f

e.l.b

books

title

entry

price

T3 T4

T1[b.b..e.f] T2[b.f..eb]

b.b.b[a] e.f.b[b] b.f.b[a] e.b.b[b]

Figure 3.2: Execution using FlexKeys for the XQuery expression in
Figure1.2(a). Shaded columns represent Order Schema.

nodes are placed into a sequence with other nodes or when it becomes part

of other constructed nodes). When defining the order of a constructed node

we use an additional key for encoding order that we attach to the FlexKey

of the constructed node. We call such additional key Overriding Order. We

will discuss the Overriding Order encoding in more detail in Section3.3.2.

Composed Keys. In addition to the FlexKeys described above, we may

also use FlexKeys created as a composition of other FlexKeys. This is mainly

for maintaining any order that is different than the document order in se-



3.3. MAINTAINING XML ORDER 47

quences of XML nodes (see Section 3.3.2). For example, the FlexKey k =

“b.b.b..b.b.d” is a composition of the FlexKeys k1 = “b.b.b” and k2 = “b.b.d”,

where “..” is used as delimiter. We denote this by k = compose(k1, k2).

Now we discuss in detail how we maintain the order of processed XML

data. We organize our discussion based on the query execution data model

into (1) order among sequences of XML nodes, (2) order among nodes in a

sequence of XML nodes, and (3) order among internal (children/descendant)

nodes of processed nodes (XML fragments).

3.3.2 Order During XML Query Processing Time

Maintaining Order Among Sequences of XML Nodes

We observe that the order among the tuples (sequences of XML nodes) in

an XAT table can be determined, in some cases, by comparing the FlexKeys

stored in cells corresponding to some of the columns. For two tuples in an

XAT table, we define the expression before(t1, t2) to be true if the tuple t1

should semantically be ordered before the tuple t2, false if t2 is semanti-

cally before t1 and undefined if the order between the two tuples is irrel-

evant. For example, consider the tuples t1 = (1994, b.b, e.f) and t2 = (2000,

b.f, e.b) in the input XAT table of the operator #11 in Figure 3.2. Here t1

should be before t2, that is before(t1, t2) is true. This can be deduced by

comparing the FlexKeys in t1[$b, $e] and t2[$b, $e] lexicographically. We will

show that this is not a coincidence. That is, the relative order among the

tuples in an XAT table is indeed encoded in the keys contained in certain

columns. Thus it can be determined solely by comparing those FlexKeys.



3.3. MAINTAINING XML ORDER 48

Such columns are said to compose the Order Schema of the table. For any

two tuples in the output XAT table of the Distinct (and also the Group By

operators if grouping is by value), the relative order is undefined.

Definition 3.3.1 The Order Schema OST = (on1, on2, ...onm) of an XAT table

T in an algebra tree is a sequence of column names oni, 1 ≤ i ≤ m, computed

following the rules in Table 3.1 in a postorder traversal of the algebra tree.

Two tuples are compared lexicographically as follows.

Definition 3.3.2 For two tuples t1 and t2 from an XAT table T with OST =

(on1, on2, ...onm), the comparison operation ≺ is defined by: t1 ≺ t2 ⇔ (∃j, 1 ≤

j ≤ m)(((∀i, 1 ≤ i < j)(t1[oni] == t2[oni])) ∧ (t1[onj] ≺ t2[onj]))

The rules in Table 3.1 guarantee that cells corresponding to the Or-

der Schema never contain sequences, only single keys. The rules are de-

rived from the semantics of the operators and rely on the properties of the

FlexKeys.

For example, let us consider the rule for computing the Order Schema

of the operator Navigate Unnest φcol′

col,path(T ), when the column col is the last

column in the Order Schema of the input XAT table T . By the semantics

of this operator presented in Section 2.2, it processes one tuple at a time.

However, it may produce zero or more tuples in its output XAT table Q for

each tuple in T . The order of any two tuples in Q derived from two different

tuples in T should be same as of those they are derived from in T . The order

among two tuples derived from the same tuple in T should correspond to

the document order of the nodes present in their cells corresponding to col′.



3.3. MAINTAINING XML ORDER 49

Cat. Operator op OS∗Q

I T col
p (T ), Φcol′

col,path(T ), σc(T ), OST

x

∪
col

col1,col2(T ), υcol′

col (T )

II Scol′

xmlDoc, Ccol(T ), δcol(T ), ∅

γcol[1..n](T, Ccol), M(T1, T2) (if γ is grouping by id, then OST )

III ×(T1, T2), 1c (T1, T2), (on
(T1)
1 , on

(T1)
2 , ...on

(T1)
mr , on

(T2)
1 , on

(T2)
2 , ...on

(T2)
mp )

=⊲⊳c(T1, T2) mr = |OST1
|, mp = |OST2

|

IV φcol′

col,path(T ) (on
(T )
1 , on

(T )
2 , ...on

(T )
p , col′)

(if on
(T )
m = col, then p = m− 1, else p = m)

V τcol[1..n](T ) (col′′), col′′ contains order values.

VI ǫcol(T ) N/A

* Q = opout
in (T ), OST = (onT

1 , onT
2 , ...onT

m)

Table 3.1: Rules for computing Order Schema

Note that, in some cases, if the Navigate Unnest navigates to a text node or

to an attribute, we may use the column of the entry point instead.

For any two tuples t1 and t2 in any XAT table in an XAT algebra tree,

if tuple t1 should semantically be before tuple t2, then the lexicographical

comparison from Definition 3.3.2 of the tuples always yields t1 ≺ t2. On

the contrary, if t1 ≺ t2, then either t1 should semantically be before t2 or

otherwise the order between these two tuples is irrelevant. This means

that the relative order among the tuples is correctly preserved in the Order

Schema, but the Order Schema may impose order among the tuples when

such order is semantically irrelevant. In the following theorem, we state

this observation more formally. We also prove its correctness.

All columns contained in the Order Schema of any table are also con-

tained in the Full Schema of that table, except for the column in the Order

Schema of the output table of the Order By operator. Thus, no extra compu-

tation is needed for evaluating the Order Schema. Moreover, they are often



3.3. MAINTAINING XML ORDER 50

present even in the Minimum Schema. The order among the tuples in the

output XAT table of the Order By operator depends on the values present

in the tuples. Thus it is not captured by any of the FlexKeys present in the

tuple. Thus we explicitly encode it in a new column created for that pur-

pose.

Theorem 3.3.1 shows that the relative position among the tuples in an

XAT table is correctly preserved by the cells in the Order Schema of that

table.

Theorem 3.3.1 For every two tuples t1, t2 ∈ T , where T is an XAT table in an

XAT algebra tree, with before(t1, t2) defined as above, (I) before(t1, t2)⇒ (t1 ≺

t2), and (II) (t1 ≺ t2)⇒ (before(t1, t2) ∨ (before(t1, t2) = undefined)).

Proof: We prove (I) by induction over the height h of the algebra tree, i.e., the max-

imum number of ancestors of any leaf node. To simplify the proof, we consider any

algebra tree even if it does not have an Expose operator as a root, i.e., a superset

of what is necessary.

Base Case: For h = 0, the algebra tree has a single operator node, which is

both a root and a leaf. That node must be a Source operator, as each leaf in a

valid XAT algebra tree is a Source operator. As the input of Source is an XML

document, the output XAT table is the only table in the tree. Since the Source

operator outputs only one tuple t, the expression before(t, t) is never true. Thus

the theorem trivially holds.

Induction Hypothesis: For every two tuples t1, t2 ∈ T , where T is any

XAT table in an XAT algebra tree with height l, 1 ≤ l ≤ h, it is true that

before(t1, t2)⇒ (t1 ≺ t2).



3.3. MAINTAINING XML ORDER 51

Induction Step: We now consider an XAT algebra tree of height h + 1. Let

op be the operator at the root of such an algebra tree. All children nodes of the root

must themselves be roots of algebra trees each of height not exceeding h. By the

induction hypothesis, (I) must hold for all XAT tables in those algebra trees. Thus,

(I) holds for all the XAT table(s) that are sources for the operator op. It is only left

to show that before(t1, t2) ⇒ (t1 ≺ t2) holds for any two tuples t1 and t2 in the

output XAT table Q of the operator op.

The operator op can be any XAT operator, excluding the Source operator, as

h + 1 > 1 and Source can only appear as a leaf node in an XAT algebra tree. We

proceed by inspecting the different cases depending on the type of the operator op,

following the classification presented in Table 3.1.

Category I. These operators process one tuple at a time, without requiring to

access other tuples or modifying the order among the tuples. Moreover, for each

tuple in the input table they produce exactly one tuple in the output table, except

for Select, which may filter out some tuples. The latter is not of significance, as

only the relative order among tuples is addressed in this theorem. Hence, if the

theorem holds for the tuples in their input XAT table T and OSQ = OST , it must

also hold for the tuples in their output XAT table Q.

To prove this formally, we consider any two tuples tout1, tout2 ∈ Q. Let

tin1, tin2 ∈ T , such that tout1 derived from tin1 and tout2 derived from tin2.

By the induction hypothesis, (I) holds for any two tuples in T , hence also for

tin1 and tin2. As before(tin1, tin2) ⇔ before(tout1, tout2), in order to

prove before(tout1, tout2) ⇒ (tout1 ≺ tout2) we only need to show that

(tin1 ≺ tin2)⇒ (tout1 ≺ tout2).

As the operators considered do not modify any values in the columns retained



3.3. MAINTAINING XML ORDER 52

from the input tuple, but may only append new columns, it holds that (∀i, 1 ≤

i ≤ |OST |) (tout1[oni] == tin1[oni]). Therefore, by Definition 3.3.2, we have

(tin1 ≺ tin2)⇒ (tout1 ≺ tout2).

Category II. For the operator Combine, there is at most one tuple in the

output XAT table. Hence the reasoning is same as presented for the opera-

tor Source in the proof for the base case. The operator Distinct by definition

outputs an unordered XAT table Q. Hence for any two tuples t1, t2 ∈ Q,

before(t1, t2) = undefined. The same applies to the value-based Group By

operator1 . Thus the left hand side of (I) is never true, so (I) trivially holds.

Category III. All the operators in this category belong to the Join family of

operators and regarding order have the same behavior. Their output is sorted by

the left input table T1 as major order and the right table T2 as minor order ( see

Section 2.2). Consider any two tuples tout1 and tout2 from the output XAT table

Q. Let tout1 be derived from tin
(T1)
1 and tin

(T2)
1 and tout2 be derived from tin

(T1)
2

and tin
(T2)
2 , where tin

(T1)
1 , tin

(T1)
2 ∈ T1 and tin

(T2)
1 , tin

(T2)
2 ∈ T2. Thus, by the

definition of these operators: before(tout1, tout2) ⇔ before(tin
(T1)
1 , tin

(T1)
2 ) ∨

((tin
(T1)
1 = tin

(T1)
2 )∧before(tin

(T2)
1 , tin

(T2)
2 )). Note that for the Left Outer Join

operator there could exist zero to many output tuples that are not derived from any

tuple in T2. But, as there could be at most one such tuple derived from each tuple

in T1, the above statement is still valid.

There are two cases: (1) tin
(T1)
1 and tin

(T1)
2 are two different tuples from T1,

or (2) both tout1 and tout2 are derived from the same tuple tin(T1), i.e., tin
(T1)
1 =

tin
(T1)
2 = tin(T1).

For case (1) it holds that before(tout1, tout2) ⇔ before(tin
(T1)
1 , tin

(T1)
2 ).

1The id-based Group By follow the rule of Category I.



3.3. MAINTAINING XML ORDER 53

Hence, this case can be easily reduced to that for the operators in Category I.

For case (2), when tin
(T1)
1 = tin

(T1)
2 = tin(T1), as

before(tout1, tout2) ⇔ before(tin
(T2)
1 , tin

(T2)
2 ) and by the induction

hypothesis before(tin
(T2)
1 , tin

(T2)
2 ) ⇒ (tin

(T2)
1 ≺ tin

(T2)
2 ), in order to

prove before(tout1, tout2) ⇒ (tout1 ≺ tout2), it is sufficient to show

(tin
(T2)
1 ≺ tin

(T2)
2 ) ⇒ (tout1 ≺ tout2). By the rules in Table 3.1, the

Order Schema of Q contains all the columns from the Order Schema of

T1, followed by all the columns from the Order Schema of T2. As the op-

erators considered do not modify any values in the columns retained from

the input tuples, it holds that (∀i, 1 ≤ i ≤ |OST1|)((tout1[on
(T1)
i ] ==

tin(T1)[on
(T1)
i ]) ∧ (tout2[on

(T1)
i ] == tin(T1)[on

(T1)
i ])) and (∀j, 1 ≤

j ≤ |OST2 |)((tout1[on
(T2)
i ] == tin

(T2)
1 [on

(T2)
i ]) ∧ (tout2[on

(T2)
i ] ==

tin
(T2)
2 [on

(T2)
i ])). Thus, (∀i, 1 ≤ i ≤ |OST1 |)(tout1[on

(T1)
i ] == tout2[on

(T1)
i ])

and then by Definition 3.3.2 (tin
(T2)
1 ≺ tin

(T2)
2 )⇒ (tout1 ≺ tout2).

Category IV. The operator Navigate Unnest φcol′

col,path(T ) by its definition

presented in Section 2.2 processes one tuple at time. However, it may produce zero

or more tuples in its output XAT table Q for each tuple in T . Consider any two

tuples tout1 and tout2 from Q. There are two cases: (1) Both tout1 and tout2

are derived from the same tuple tin, or (2) tout1 is derived from tin1 and tout2 is

derived from tin2, tin1 6= tin2.

For case (1), let l1 and l2 be indexes such that tout1[col
′] = φ(path :

tin[col])[l1] and tout2[col
′] = φ(path : tin[col])[l2]. As (l1 < l2) ⇔

before(tout1, tout2), in order to prove before(tout1, tout2)⇒ (tout1 ≺ tout2),

it is sufficient to show (l1 < l2) ⇒ (tout1 ≺ tout2). Suppose l1 < l2. Then,

due to the properties of the FlexKeys we have tout1[col
′] ≺ tout2[col

′]. By the



3.3. MAINTAINING XML ORDER 54

rule in Table 3.1, col′ is now part of the Order Schema for the output table Q.

The fact that tout1 and tout2 are derived from the same tuple tin implies that

(∀i, i ≤ p)(tout1[oni] == tout2[oni]), with p the maximum index of the Order

Schema (basically the new column) as defined in Table 3.1. Thus, by Definition

3.3.2, onj = col and tout1 ≺ tout2.

For case (2), because before(tin1, tin2) ⇔ before(tout1, tout2) and by the

induction hypothesis before(tin1, tin2) ⇒ (tin1 ≺ tin2), in order to prove

before(tout1, tout2)⇒ (tout1 ≺ tout2), it is sufficient to show (tin1 ≺ tin2)⇒

(tout1 ≺ tout2). Suppose tin1 ≺ tin2. Thus a j as specified in Definition 3.3.2

must exist. There are two sub-cases: (2.a) j ≤ p, and (2.b) j > p, with p as in

Table 3.1. Case (2.a) can be easily reduced to that for the operators in Category I, as

the cells corresponding to all the j columns belonging to the Order Schema from

tin1 (tin2) are present in an unmodified format in tout1 (tout2).

For (2.b), when (j > p), it must be that p = m − 1 (which also implies

onm = col) and j = m by the rules in Table 3.1. This is because tin1 ≺ tin2,

and thus they must differ on cells corresponding to columns that are in the Order

Schema of the input XAT table, but are not retained in the output XAT table.

Thus, tin1[col] ≺ tin2[col]. The two output tuples tout1 and tout2 on the other

hand differ only in the keys in their cells corresponding to col′. By the definition

of the Navigate Unnest (see Section 2.2): (∃l1, l1 > 0)|(tout1[col
′] = φ(path :

tin1[col])[l1]), and (∃l2, l2 > 0)|(tout2[col
′] = φ(path : tin2[col])[l2]). As the

FlexKey assigned to a node always has the keys of all its ancestors as prefixes,

tout1[col
′] has the key in tin1[col] as prefix and tout2[col

′] has the key in tin2[col]

as prefix. Therefore tin1[col] ≺ tin2[col] ⇒ tout1[col
′] ≺ tout2[col

′] and conse-

quentially (tin1 ≺ tin2)⇒ (tout1 ≺ tout2).



3.3. MAINTAINING XML ORDER 55

Category V. The theorem holds by definition.

Category VI. If op is the operator Expose, it outputs an XAT document

rather than an XAT table. Thus all the XAT tables in the algebra tree have al-

ready been covered.

We have shown that (I) holds for the output XAT table of the operator op,

when op is any operator and thus completed the proof for (I). Using that result,

we can easily prove (II), that when (t1 ≺ t2) either before(t1, t2) is true or the

order between the tuples is irrelevant. Suppose the opposite holds, that there exist

two tuples t1 and t2 in an XAT table in the algebra tree such that (t1 ≺ t2) ∧

before(t2, t1). By (I), which has been proven, before(t2, t1) ⇒ t2 ≺ t1. But

t2 ≺ t1 and t1 ≺ t2 cannot be true simultaneously. Thus we get a contradiction.

2

Maintaining Order Among XML Nodes in Sequences

For sequences of XML nodes in a single cell that have to be in document

order, namely those created by the XML Difference, XML Intersection and

Navigate Collection, the FlexKeys of the nodes reflect their order. This is due

to the fact that the FlexKeys capture the correct document order among the

base XML nodes and the semantics of these operators do not specify the

order among constructed nodes. However, the Combine algebra operator

creates a sequence of XML nodes that are not necessarily in document order

and whose relative position depends on the relative position of the tuples

in the input XAT table that they originated from. Thus the order among

the XML nodes in the created sequence may be different from the order

captured by the node identity FlexKeys of these XML nodes. We thus must



3.3. MAINTAINING XML ORDER 56

provide a different scheme for maintaining this order.

function combine (Sequence in, Tuple t, ColumnName col)
Sequence out← copy(in)

if (col = OST [i] 2, 1 < i ≤ |OST |)
for all k in out

k.overridingOrder ← compose(ΠOST [1]t, .., ΠOST [i]t)
else if (col 6∈ OST )

for all k in out
k.overridingOrder ← (ΠOST [1]t, .., ΠOST [m]t, order(k)), m = |OST |

return out

Figure 3.3: The function combine

For two XML nodes n1 and n2 in the same cell in a tuple in an XAT table,

we define the expression before(n1, n2) to be true if the node n1 should

semantically be ordered before the node n2, false if n2 is before n1 and

undefined if the order between the two nodes is irrelevant.

To represent an order that is different than the one encoded in the FlexKey

k serving as the node identity of the node, we attach an additional FlexKey

to k (called Overriding Order) which reflects the node’s proper order. We

denote this as k.overridingOrder and we use order(k) to refer to the order

represented by k. When the FlexKey k has overriding order ko it is denoted

as k[ko]. If the overriding order of k is set, then order(k) = k.overridingOrder,

otherwise order(k) = k. When comparing lexicographically two FlexKeys

k1 and k2, order(k1) and order(k2) are really being compared. Thus k1 ≺ k2

is equivalent to order(k1) ≺ order(k2).

The Combine operator sets the overriding order for the nodes in its out-

put XAT table, as described in Figure 3.3. Thus, assuming that the input T

contains p tuples tinj , 1 ≤ j ≤ p. How Combine Ccol(T ) sets the overriding

2OST , the Order Schema of the input XAT table T , is known to the Combine operator
performing the combine function.



3.3. MAINTAINING XML ORDER 57

order depends on the presence of the column col in the Order Schema OST

of the input XAT table T . For the combine operator given as the sub-query

of the Group By operator (# 15) in Figure 3.2, $b and $e are in the Order

Schema of the input. Thus, when the input XML node referenced by T1 is

placed in the output XAT table it is assigned an Overriding Order composed

of the order represented by the FlexKeys present in columns $b and $e in the

tuple it is derived from, that is b.b..e.f . Thus T1 after being processed by

this Combine becomes T1[b.b..e.f ]

The XML collection operator XML Union
x
∪

col

col1,col2(T ) creates a new col-

lection, for each tuple it processes, from the contents of two input columns

col1 and col2 . A new order is imposed by this process among the nodes

originating from each of the input columns. We define this order by assign-

ing an Overriding Order for each node that reflects its input column order

in the union operation, if no Overriding Order keys are already defined. For

example, if col1 contains (b.f, b.l) and col2 contains (f.b) the output column

col3 will contain (b.f[a], b.l[b], f.b[c]). If nodes in the input columns already

have Overriding Order keys we extend these keys by adding a prefix to it

that reflects the input column order. For example, if col1 contains (b.f[b],

b.l[f]) and col2 contains (f.b) the output column col3 will contain (b.f[b.b],

b.l[b.f], f.b[f]). This order encoding ensures that we maintain order among

nodes from different input columns and at the same time maintain the orig-

inal order among nodes from the same input source. Other XML collection

operators (XML Unique, XML Difference, and XML Intersection) remove the

overriding order (if present) of the node identity FlexKeys that they place

in their output XAT tables. By definition (see Section 2.2) they produce a



3.3. MAINTAINING XML ORDER 58

column in which the nodes are in document order.

The Group By operator γcol[1..n](T, func) does not define or maintain or-

der among the created groups if the grouping is done by value. The Group

By in the XAT algebra might create collections, when the Group By performs

nesting operations (when its func argument is composed of a Combine op-

erator). In such a case nodes are grouped creating collections based on the

grouping columns. Order among nodes of each collection is of importance.

This order is maintained by Combine operator, as discussed above. If the

Group By is by node id, the order between the created groups follows the

Order Schema of the input XAT table.

Theorem 3.3.2 Let kout1 and kout2 be two FlexKeys in a same cell in an XAT

table T in an XAT algebra tree. Let these FlexKeys serve as node identities of the

XML nodes n1 and n2 respectively. Then with before(n1, n2) defined as above:

(I) before(n1, n2)⇒ (kout1 ≺ kout2), and (II) (kout1 ≺ kout2)⇒ (before(n1, n2)∨

(before(n1, n2) = undefined)).

Proof: For proving (I), we inspect the different cases depending on the type of

the operator op that outputs the XAT table T . The operators of interest are those

that output columns that may contain collections of FlexKeys. Such operators

are Navigate Collection, XML Union, XML Difference, XML Intersectionm

Group By, and Combine. All the other operators do not create collections of

FlexKeys, but may only retain in their output the collections present in their input

in unmodified format.

The case when the operator op is Navigate Collection is trivial. For any

two FlexKeys kout1 and kout2 in the output XAT table of Navigate Collec-



3.3. MAINTAINING XML ORDER 59

tion, before(n1, n2) holds only when n1 is ordered before n2 regarding document

order. In such case, (kout1 ≺ kout2) also holds, and thus (I) holds. Note that

the FlexKeys kout1 and kout2 can not have an overriding order set, as they are

retrieved from the Storage Manger by op.

The case when the operator op is any of XML Unique, XML Difference, or

XML Intersection is similar. Again, before(n1, n2) holds only when n1 is or-

dered before n2 based on document order. These operators remove the overriding

order of the FlexKeys kout1 and kout2 if present, thus, (kout1 ≺ kout2) must

also hold. The XML Union assigns (or maintain) the Overriding Order for nodes

hence before(n1, n2) holds only when n1 is ordered before n2 based on the Over-

riding Order keys order. For any two nodes in a collection created by the Group

By operator before(n1, n2) holds only when n1 is ordered before n2 based on the

Overriding Order keys order or on document order if Overriding Order keys

are not assigned.

For proving (I) when op is the operator Combine Ccol(T ), we inspect the

possible cases depending on the presence of the column col in the Order Schema

OST of the input XAT table T : (1) col = OST [1], (2) col = OST [l], 1 < l ≤

|OST |, or (3) col 6∈ OST .

Let kin1 and kin2 be the FlexKeys from which kout1 and kout2 are derived.

Thus both kin1 and kout1 (kin2 and kout2) are node identities for n1 (n2), but

may have different overriding order. Let t1 and t2 be the tuples in T such that

kin1 ∈ t1[col] and kin2 ∈ t2[col].

For both case (1) and case (2), when the column col is part of the Order

Schema of T , it must be that kin1 = t1[col] and kin2 = t2[col], as cells cor-

responding to the Order Schema never contain sequences, only single keys.



3.3. MAINTAINING XML ORDER 60

For case (1), we observe that before(n1, n2) can only hold if t1[col] ≺ t2[col].

The function combine does not modify the overriding order in this case, thus

kout1 ≺ kout2. Note that if t1 ≺ t2 but t1[col] ≺ t2[col] does not hold, then

by Definition 3.3.2 it must be that t1[col] == t2[col]. In such case kin1 == kin2

implying kout1 == kout2, which in turn yields n1 == n2. Hence, in such case

the order between n1 and n2 is irrelevant.

Similarly, for case (2), given that the Order Schema of T is OST = (on1, on2,

...onm), before(n1, n2) can only hold if (∃j, 1 ≤ j ≤ l) (((∀i, 1 ≤ i < j)

(t1[oni] == t2[oni]))∧(t1[onj] ≺ t2[onj])). As shown in Figure 3.3, the function

combine sets the overriding order of kout1 and kout2 as a concatenation of all

t1[onj] and t2[onj ] respectively, 1 ≤ j ≤ l. Thus, before(n1, n2) ⇒ (kout1 ≺

kout2). Again, if t1 ≺ t2 but (∀i, 1 ≤ i ≤ l)(t1[oni] == t2[oni]), then as

kin1 == kin2, and (kin1 == kin2) ⇒ (kout1 == kout2) ⇒ (n1 == n2), the

order between n1 and n2 is irrelevant.

For case (3), the column col may also hold sequences of XML nodes. Therefore,

there are two sub-cases: (3.a) kin1 and kin2 are in the same tuple t, i.e., t1 =

t2 = t, or (3.b) t1 and t2 are two different tuples. For case (3.a), order(kout1) and

order(kout2) are composed of the same keys except for the last key that represents

the order of kin1 and kin2 within the collection contained in t[col]. As in this

case before(n1, n2) for n1 and n2 in the output XAT table may only hold when

it holds for n1 and n2 in the input XAT table, the overriding order is correctly

set. For case (3.b), before(t1, t2) ⇔ before(n1, n2). As the overriding order of

kout1 and kout2 is composed of all the keys corresponding to the Order Schema

in t1 and t2 respectively, before(t1, t2) ⇒ (kout1 ≺ kout2). By transitivity,

before(t1, t2) ⇔ before(n1, n2) and before(t1, t2) ⇒ (kout1 ≺ kout2) imply



3.3. MAINTAINING XML ORDER 61

before(n1, n2)⇒ (kout1 ≺ kout2).

We have proven (I) for all the cases. Using that result, (II) can be proven by

contradiction, using the same arguments used for proving (II) in Theorem 3.3.1.

2

Maintaining Order of Internal Nodes of XML Nodes in Sequences

Order of Internal Nodes of Base XML Nodes. Some base XML nodes

(fragments) might be processed and exposed in the result as whole pieces

without inserting, deleting or changing any of their contents. The relative

local order among internal (children/descendant) nodes of a base XML

fragment does not change during execution time even if the order of the

whole fragment is changed. Hence the FlexKeys of these internal nodes

remain to reflect the relative order among them.

Order of Internal Nodes of Constructed XML Nodes. Order among

internal (children/descendant) nodes of a constructed node is determined

by the Tagger pattern and/or XML Union operations. Such order might be

different than the order of the underlying XML document. Moreover, chil-

dren nodes of a constructed node might be themselves constructed nodes

and/or originating from different source XML documents. Hence, there is

no relationship between their FlexKeys. For example, the constructed node

T1 in Figure 3.2 has two children nodes with FlexKeys b.f.b and e.f.f , corre-

sponding to the “title” and the “price” nodes respectively. These two nodes

are originating from two different source XML documents. The local order

among them is defined by the input column to the Tagger pattern (trough

an XML Union operation). We encode the local order among internal nodes



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 62

of constructed nodes by assigning Overriding Order keys. This applies to

any type of internal nodes (base or constructed). We assign the Overriding

Order keys a and b to the “title” and “price” nodes respectively.

3.3.3 Order in the Final XML Result.

Generally, when de-referencing the final result we may require partial re-

ordering as we will discussed later. For the example in Figure 3.2, the re-

sult of the XQuery expression is obtained by de-referencing the FlexKey T7.

First, the skeleton of the constructed node identified by T7 is retrieved and

the FlexKeys contained in that skeleton are de-referenced. The children of

T7 (a collection of two nodes T5 and T6) need to be returned in the correct

order. We sort these nodes based on their Overriding Order and return node

T5 first then T6. Now we take these two nodes one by one and de-reference

them recursively so that the resulting XML document is obtained. Note that

because the collections returned in the result are de-referenced one collec-

tion at a time and they are often small sets of nodes, sorting can often be

done in main memory thus becoming very efficient. Note that when we

obtain any base node, its descendants (if any) are returned in document

order without any sorting.

3.4 Discussion on our Proposed Order Solution

3.4.1 Support for Different Types of Order

Document Order. Given the order encoding schema discussed above we

can now maintain document order. This provides support for XQuery



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 63

queries that return the result (or part of it) in document order. It also pro-

vides support for XQuery functions and predicates that exploit document

order like before, after, range, and position. Figure 3.2 shows the full inter-

mediate result for the execution of our running example XQuery in Figure

1.2. The order schema columns of intermediate result tables are shaded.

We note that for the query shown in Figure 3.2 columns $b and $e serve

as the order determining columns (Order Schema) for all intermediate XAT

tables below the Group By operator. Such Order Schema is composed of the

Order Schemas of the input tables of the Join operator. The Group By de-

stroys this Order Schema while at the same time the Combine operator in

its sub-query creates a collection for each group. The Combine operator

defines order between nodes in the collection it creates. This is done by

assigning an Overriding Order key for each node in the created collection.

This Overriding Order key is composed of the keys in the corresponding

order determining columns in the input XAT table. Note that in this exam-

ple the way these Overriding Order keys are assigned ensures that the order

between any two newly constructed ”entry” nodes in the same group still

follows the underlying documents order.

Query Order Imposed By the Query order by Clauses. The order by

clauses in XQuery expressions are translated into OrderBy operators in

XAT query plans. Maintaining order in such queries is also done using or-

der determining columns (Order Schema). In this case we discard the order

that is based on document order (Only at the node level manipulated by

the order by clauses) when the Order By operator is encountered during ex-

ecution and we use a new Order Schema that is generated by the Order By



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 64

operator.

Figure 3.2 shows that before the Order By operator the Order Schema is

empty (as a result of the Group By operator). When the Order By operator is

processed, it adds a new column $y to the Order Schema. This column has

the order values. The Combine operator next uses the new order values in

column $y to override order of nodes in the collection it creates. In this case

the order between the newly constructed ”yGroup” nodes will follow the

order specified by these values.

Query Order Imposed by the Nesting of Variable Binding in the Query

for and let Clauses. Such variable nesting is translated into Join oper-

ations on the algebra level. Hence, the order treatment follows the rules

described above. These rules give a major influence on the order to the

data bound to the outside variable of the for clause and a minor influence

on the order to data bound to the inside variable of the for clause. Such or-

der is encoded only at the Order Schema level and no extra keys are needed

to reflect it at this point.

Query Order Imposed by the Query return clauses and by the New

Result Construction. On the algebra level this type of order is handled by

the Combine, the XML Union, the Tagger, and the Group By operators. The

Combine, the XML Union, and the Tagger operators all set the Overriding

Order keys for the nodes they process. Such Overriding Order now reflects

the relative order between the processed nodes. The Group By operator

preserves the original order between the nodes in each created group. Such

order is reflected by the nodes’ Overriding Order key, as discussed above.



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 65

3.4.2 The Cost of Maintaining Order

Cost Components. The cost of handling order in our approach is composed

of three main cost elements:

1) The cost of computing the Order Schema. This cost depends on the

number of operators in the query plan and does not depend on the size

of processed data. It involves traversing the algebra tree and assigning an

Order Schema for each XAT table in the algebra tree. This step can be inte-

grated with the query plan generation and optimization phases to avoid a

separate traversal for the tree.

2) The cost of assigning Overriding Order keys for processed XML nodes.

Only three operators out of all the seventeen operators shown in Table 3.1

need to assign Overriding Order for the nodes they process. These three

operators are the Combine, the XML Union, and the Tagger. Integrating

the process of assigning the Overriding Order keys with the actual query

execution of these operators would result in a lot of time saving.

3) The cost of sorting when we de-reference the final result. Such sort-

ing is a key-based sorting (on the FlexKeys), and is typically a partial sort-

ing. Sorting might be required mainly for collections created by the query

during execution (using the Combine, the XML Union, or the Group By op-

erators). In many cases such sorting might involve only one scan over the

nodes, if they are already sorted. This may occur when the correct order

of the processed nodes has not been destroyed by the query execution. All

internal nodes (children/descendants) of returned base nodes are directly

de-referenced from the Storage Manager in document order [DR03], thus



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 66

no sorting is required. For internal nodes of constructed nodes sorting de-

pends on what is included under the constructed node. A constructed node

may tag single nodes, collections of nodes, or combinations of them. The

skeleton representation of a constructed node created and stored during ex-

ecution time reflects the structure and the relative order among its internal

nodes and/or collections. Our system ensures that all internal nodes and

collections of constructed nodes are returned in the result directly in their

tagging order, hence not sorting is required. Sorting might only be required

for contents of collections as discussed above. In the worst case, total sort-

ing for all nodes in the result of an XQuery might be required only if the

result returns one collection of base leaf nodes or of constructed nodes each

of which is a parent of one base leaf node.

Proposed Optimizations. Here are some ideas on how to optimize our

proposed order solution:

• Some of the rules presented in Table 3.1 can be further optimized by

removing/replacing certain columns in the Order Schema. This would

reduce the number of columns in the Order Schema or replace them

with columns with smaller FlexKeys. Hence when producing order

keys based on the Order Schema we get smaller keys. For example,

for the operators Select and Theta Join if any of the columns present

in the selection or joining condition are not in the Minimum Schema

of the output XAT table, they can be dropped from the Order Schema

of output XAT table (if it has other columns) or replaced by the col-

umn(s) in which they originate from (if the Order Schema has no other



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 67

columns). This is because such columns are created to be used in

the Select or Join predicates and are not part of any later processing

operations. Hence their specific order is not of interest to the query.

For example, if an input XAT table for a Select operator has an Order

Schema that is composed of columns $a and $p, and assuming that

column $p is used in the Select condition and it is not in the Minimum

schema of the output XAT table of that operator. This signifies that

column $p is not needed for any next operation and its order is not of

importance to the result of the query. Hence, we can drop column $p

from the Order Schema of that operator output XAT table. This makes

the order among tuples in that output XAT table determined only by

the contents of column $a. Another example is column $col1 in Figure

3.2. This column is used in the Left Outer Join operator (#7) and is not

part of the Minimum Schema of the output table of that operator (since

it is not needed for any next operation). Since this is the only column

in the Order Schema, of the input XAT table of the operator, we replace

it with the column it originally came from (column $b). Column $b is

hence used to reflect the order instead of column $col1. In this case

if we are to extract the order of that table, at a later stage, we get the

smaller FlexKeys based on column $b instead of the larger FlexKeys in

column $col1.

• It is also possible to optimize the Order Schema using schema infor-

mation of the source XML documents if available. Such optimization

may again result in generating smaller order keys. For example, if a



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 68

Navigate Unnest operator navigates from “book” nodes in column $b

to “title” nodes (that are placed in column $col). And if Order Schema

contains $b. If schema information exists that specifies that there is

only one possible “title” child for each “book” node, we may keep

using column $b as the Order Schema of the output XAT table instead

of column $col. Again, the size of order keys extracted from column

$b is smaller than that order keys extracted from column $col. Such

reduction in order keys size is more significant when the navigation

operation involves many navigation steps.

• In many cases the query may not destroy the desired order of the re-

turned result. But we may still need to perform one scan over the re-

turned collections to conclude that it is in the desired order. One pos-

sible optimization to eliminate such unnecessary scan is to maintain

a flag for processed collection (one flag assigned to each collection).

This flag specifies if the order of processed collection(s) is preserved

or not. The value of this flag is set by different operators in the algebra

tree. When returning a collection in the final query result, if its flag

reflects that the collection order is not destroyed we can directly re-

turn the nodes in the collection without checking if it is in the desired

order or not.

• It might be also possible to tune the query optimization and execu-

tion itself to achieve better overall performance in terms of the total

cost of execution and order. For example, if savings form certain opti-

mization or execution strategy is wiped out by an added final sorting



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 69

cost we might choose another execution strategy, possibly of slightly

higher cost, that results in less overall cost for the execution and order

together. For example, if a hash-based Join hashes the smallest table

and scans the biggest table and joins tuples from the biggest table

with the hashed tuples, the result will be sorted based on the order of

the biggest table. Hence, in some cases (for example, if the two tables

are close in size) we may choose to hash the right input table in par-

ticular so we generate a result that reflects the major order of the left

input table. Since the order of the Join output follows the order of its

left input table as a major order and then the order of its right input

table as a minor order, this treatment reduces the final sorting time (or

eliminate it if the minor order of the right table is not of importance).

• In some cases it might be possible to avoid assigning Overriding Order

keys for nodes. For example, if a Tagger operator constructs a new

node and assigns some base nodes as children for it. If the tagging

pattern places these nodes in a relative order similar to that of their

source XML document, there is no need to assign Overriding Order

keys for these nodes.

3.4.3 Implications of our Order Solution

Migration to Non-ordered Bag Semantics. Our technique of encoding or-

der with FlexKeys and intermediate Order Schema enables migration of the

XAT algebra semantics from ordered bag semantics to non-ordered bag se-

mantics. That is, (1) the physical order among the tuples is no longer of



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 70

significance and (2) the physical order among the nodes in a cell is not of

significance. This implies that we separate out the reasoning about order

into a separate abstraction independent of each operator’s logic. In gen-

eral, algebra operators are thus not responsible for maintaining order of

intermediate results. One exception is the Order By operator. The Order By

operator has to define a new order among the data it processes. This cost

is encountered anyways regardless of the order solution used. The only

added cost in our approach for maintaining order while processing the Or-

der By operator is the cost of assigning new order keys to the data. Also,

while the Combine, the XML Union, and the Tagger operators do not per-

form any sorting, they assign new order keys for nodes while they process

them. All other operators process the data while they are unaware of its

order. In general, our solution does not require sorting of any intermediate

results even while achieving nested ordered XML restructuring.

Efficient Order-sensitive Query Processing. This transformation from

ordered to non-ordered bag semantics is the key ingredient to facilitate

XML query optimization. It removes the restrictions of manipulating se-

quences of XML data in a strict order. Order is encoded at the XML node

level and at intermediate result schema level. Operators do not need to be

aware of the order associated with data they manipulate. For that reason

operators have the flexibility to reshuffle data in any order they wish for

efficiency. This way, a Join operator could use any efficient join algorithm

(e.g., hash-based, index-based, or sort-merge join) producing the output

in any order dictated by the join implementation strategy without requir-

ing any intermediate sort. For example, the Join operator in Figure 3.4



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 71

joins its two input tables on the values in columns col2 and col4. Order-

determining columns (Order Schema) for each XAT table is shaded. The

number in a circle that appears besides each tuple illustrates the implicit

order of each tuple implied from the Order Schema. Now assume that the

join implementation outputs the resulting tuples in any arbitrary physical

order as in Figure 3.4. We are still capable of deriving the right order of tu-

ples in the output table (major order from left input table and minor order

from right input table) by comparing the keys in the columns representing

the Order Schema (columns col1 and col3) of the resulting table. The num-

bers in circles that appear next to tuples in the output table in Figure 3.4

show the order of tuples as we can derive it using the Order Schema. Note

that this order is only an implicit order. That is, the tuples are not actually

sorted based on this order at this point of query execution.

Join col2= col4

5

3

3

7

$col2

f.kb.b

f.gb.k

f.m

f.b

$col3

b.k

b.g

$col1

5

3

3

7

$col2

f.kb.b

f.gb.k

f.m

f.b

$col3

b.k

b.g

$col1

3

5

3

7

$col4

f.m

f.k

f.g

f.b

$col3

3

5

3

7

$col4

f.m

f.k

f.g

f.b

$col3

3

7

5

$col2

b.k

b.g

b.b

$col1

3

7

5

$col2

b.k

b.g

b.b

$col1

1

2

3

1

2

3

4

1

2

3

4

Figure 3.4: An example for order handling in the Join operator. Shaded
columns determine the Order Schema of each table and numbers appearing
in circles beside tuples determine the tuple induced order.



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 72

Efficient Order-sensitive View Maintenance. The migration to the non-

ordered bag semantics also facilitate efficient XML incremental view main-

tenance. This is because it ensures that most XAT XML operators become

distributive with respect to order operations on bag union, leading to more

efficient view maintenance. As an example, consider that the input table

of a Select operator has received an update in the form of a tuple inser-

tion. Since the Select operator becomes distributive, the inserted tuple can

be processed independently of other input tuples. If the inserted tuple sat-

isfies the operator predicate it is directly propagated to the output table.

Without the distributive feature, the operator would have to determine the

relative order of the inserted tuple among the output table. They may re-

quire storing and accessing auxiliary information to determine that order.

3.4.4 Other Discussions

Re-labeling (Reordering keys) on Updates. Unlike other order approaches

[FLSW03, JAKC+02, TVB+02] our order encoding schema guarantees that

we do not run out of keys even for a large batch of skewed insertions fo-

cused on possibly one small region within the underlying XML document.

The reason is two-fold: (1) we leave gaps between keys when we first as-

sign them (as in Figure 3.1), and (2) we are capable of producing a key

between any two keys at all times even if there is no gap between them.

This is because our key is composed of variable length byte strings as de-

scribed earlier. Thus, even if we run out of keys due to a large number of

inserts that fill the gap between two keys we can opens up new gaps by

adding one more character to the encoding. For example, if we need to in-



3.4. DISCUSSION ON OUR PROPOSED ORDER SOLUTION 73

sert a new node between two nodes with keys b.c and b.d we may simply

give the new node the key value b.ck. This will open up new gaps between

b.c and b.ck and between b.ck and b.d and so on. This prevents the need to

re-label keys not only for the source document node keys but also for the

order encoding of the processed data since we also use FlexKeys to encode

new order imposed by the query. Please, refer to the example of inserting a

new “author” with a key b.b.d that we have presented in Section 3.3.2.

Order Among Multiple Documents. Our order approach supports or-

der also for queries over multiple XML documents. There are two issues

to consider here: (1) base node key and order encoding and (2) query or-

der encoding. (1) On the base node level, each XML document has order

among its nodes encoded separately using the keys of its nodes as we have

shown earlier. The Storage Manager [DR03] ensures that each document will

have a unique key for the root node. Hence all nodes will have a unique

key among all documents. For example, although the two nodes b.b.f and

e.b.f share the suffix b.f , but because they are from two different docu-

ments (with root keys b and e), the key for each one of them is unique. For

any base XML node (fragment), originating from any document, the local

order of its internal nodes is reflected by the nodes’ FlexKeys, as discussed

in Section 3.3.2. (2) On the query level, the order among data from differ-

ent source documents is determined by the query itself. This is typically

handled by the order imposed by the nesting of variable binding in the

for and let clauses, and the order imposed by the query return clause and

the new result construction. Hence, the treatment of order among multiple

documents follow the same guidelines we gave for handling these types of



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 74

query imposed order.

3.5 Experimental Evaluation for the Cost of Handling

Order

We have tested the efficiency of our order solution and have found that it

provides support for different types of XQuery order with little overhead

for the query engine. Our evaluation for the cost of handling order focuses

on two main points. (1) What is the overhead added to the query process-

ing cost when we support different types of order-sensitive queries. (2)

Where does the cost of handling order come from and what are the cost

elements of order in different types of queries.

people
closed_auctions

site

person

name
address

street city country

profile

education

gender
business

age

@id

@income

Closed_auction

seller

buyer
@person

date

@person

interest

@category

open_auctions

open _auction

initial reserve

@id

Figure 3.5: Part of the structure of the “site.xml” file used in the experi-
ments.

We have implemented our order approach in Java and integrated it with

the Rainbow system [Zea03]. We have run the experiments on a Windows

PC with 733 MHz Pentium processor and 512MB of memory. We have

used the XMark benchmark data [SWK+02] in our experimental evalua-



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 75

tion. Figure 3.5 shows part of the structure of the XMark “site.xml” data

set that is relevant to the queries we use. We use XML files of different

sizes in our experiments, varying from 5MB to 25MB. We use four queries

(shown in Figure 3.6) that come with different order requirements. We have

designed each of the four queries to reflect mainly one form of the four or-

der types that we have discussed earlier. This ensures that we measure the

cost of each type of order in isolation of the other types. For each of the

four queries we show the overhead of handling order relative to the total

query execution time. We also break down the order cost in each query to

its cost elements. We now analyze the results we have obtained using these

queries.

Query 1. This query navigates to all the “profile” nodes (fragments)

reachable from the root of the XML document “site.xml” through the path

“/people/person”. The extracted XML fragments form a collection that is

tagged using the “result” tag. This query reflects only document order in

which order among all nodes in the result follows the order of the input

document. This applies to the order among the returned XML fragments

and also to the order among their internal nodes.

Figure 3.7(a) shows that the total cost of handling order in this query is

very small (negligible) compared to the query execution time. The break

down of this order cost is shown in Figure 3.7(b), measured using the input

XML file of size 25MB. The cost of maintaining order in a query that pro-

cesses only document order is mainly composed of two cost elements: (1)

the Order Schema computation cost and (2) final result sorting cost. The Or-

der Schema computation cost is fixed regardless of the size of the processed



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 76

<result>{
for $p in doc(“site.xml")

/people/person/profile
return

$p
}</result>

<result>{
for $c in distinct-values doc(“site.xml")

/people/person/address/city
order by $c/text()
return $c

}</result>

<result>
for $p in doc(“site.xml")/people/person

for $c in  doc(“site.xml")/closed_auctions/closed_auction
where $p/@id = $c/seller/@person

return
$c/date

</result>

<result>
{<customers>

for $p IN doc(“site.xml")/ people/person
return

<customer>{<location>$p/address/city/text()</location>} {$p/name}</customer>
</customers>}

{ <open_bids>
for $oa IN doc(“site.xml")/ open_auctions/open_auction
return

<bid> {$oa/reserve} {$oa/intial} </bid>
</open_bids>}
</result>

(a) (b)

(c)

(d)

Query 3

Query 1 Query 2

Query 4

Figure 3.6: Different XQuery expressions that are used in the experiments.

data (it only depends on the number of operators in the query plan). The

cost of the final sorting depends on the processed data size. It also de-

pends on how the query manipulates the order among processed nodes.

For Query 1 only partial sorting might be needed on the level of the re-

turned fragments (“profile” elements) if the correct order among those frag-

ments was destroyed during query time. Internal nodes of those nodes are

returned in document order without any sorting, as discussed earlier. Fig-

ure 3.7(b) shows that the cost of the final (partial) sorting for Query 1 is

very small. Query 1 did not perform any operation that destroys the order



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 77

among nodes in the returned collection. Hence a very small cost is needed

to conclude that the returned result is in the correct order and no sorting is

needed.

14870

25780

38887

48940

64357

0

10000

20000

30000

40000

50000

60000

70000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

33

37

40

43

46

33

0

13

64357

1

10

100

1000

10000

100000

Query Execution Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

(a) (b)

Figure 3.7: Results obtained for Query 1: (a) the order cost to the execution
cost on different input XML file sizes, and (b) the break down of order cost
on 25MB XML input file size.

Query 2. This query navigates to the “city” nodes reachable through the

path “/people/person/address”. A collection of distinct cities is created

using the distinct-values operator. This collection of distinct “city” elements

is sorted alphabetically on the “city” name by the order by clause. Finally

the collection is tagged using the “result” tag. This query reflects a query

order imposed only by the order by clause. No document order or any other

type of query order is affecting the result.

Figure 3.8(a) shows that the total cost of handling order in this query

is also very small (negligible) compared to the query execution time3. The

3Note that the cost of the processing (sorting) done by the order by operator is consid-
ered as part of the query execution cost and not as part of our order solution since such
cost is encountered anyways regardless of the order solution. Only cost elements that are



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 78

break down of this order cost is shown in Figure 3.8(b). The cost of main-

taining order in a query that imposes order through the order by clause is

mainly composed of three cost elements, (1) the Order Schema computation

cost, (2) the cost of assigning Overriding Order keys, and (3) the final result

sorting cost. The Order Schema computation cost is fixed regardless of the

size of the processed data. The cost of assigning Overriding Order keys and

the cost of the final sorting depend on the processed data size. For Query

2 the cost of assigning the Overriding Order keys is the highest among the

other order cost elements. This is mainly because all the returned nodes in

this query are affected by the order by clause and hence are assigned Over-

riding Order keys4. The order by operation in this query performs a sort for

the processed nodes generating an ordered collection at the intermediate

result. This is due to the current implementation of the query engine. This

order is not destroyed by any other operations in the query. Hence the final

sorting cost shown in Figure 3.8 involves mainly verifying that the returned

collection of “city” nodes is already in the desired order.

Query 3. This query navigates to two different collections. It navigates

to “/people/person” and navigates to “/closed auctions/closed auction”.

For all the “person” elements, the query returns a collection of “date” el-

ements (of “closed auction” elements) in which the person is a seller in a

closed auction. This query involves a join operation on “/person/@id” and

“closed auction/seller/@person”. Finally the collection is tagged using the

introduced by our order solution itself are measured as part of the order cost.
4Note that we are considering this cost as being entirely part of the overhead of our order

solution cost although it might be considered (or part of it) as part of the cost of executing
the order by operator.



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 79

24767

73450

158004

261656

385488

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

223

300

363

400

462

47

397

18

385488

1

10

100

1000

10000

100000

1000000

Query Execution Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

(a) (b)

Figure 3.8: Results obtained for Query 2: (a) the order cost to the execution
cost on different input XML file sizes, and (b) the break down of order cost
on 25MB XML input file size.

“result” tag. This query reflects a query order imposed only by the nesting

of variable binding in the for clauses. The order of the returned “date” el-

ements does not follow their document order. It follows the order of the

“person” elements as a major order and the order of the “closed auction”

element as a minor order. In other words, the “date” elements are not re-

turned in their document order but in the order the “person” elements (that

join with the “seller” elements) appear. If there are multiple “date” ele-

ments under different “closed auction” for the same “person” element, the

minor order takes place here and determines the order among those ele-

ments.

Figure 3.9(a) shows that the total cost of handling order in Query 3 is

also very small compared to the query execution cost. The break down of

this order cost is shown in Figure 3.9(b). The Order Schema computation

cost is slightly higher than the last two queries because the query plan of



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 80

Query 3 has more operators. The cost of assigning Overriding Order keys

here involves assigning Overriding Order keys to all the returned “date”

elements. Such keys reflect the major and the minor order imposed by the

for clause. The cost of the final sort is affected by the implementation of the

join operator. The implementation of the join operation here is performed

using a hash-based join. The XAT table representing the closed auctions is

the one that gets hashed because of its size. This caused only the minor

order of the processed data is destroyed. Hence returning the result in the

correct order requires minor sorting for the returned result. The cost of this

sort is shown in Figure 3.9(b).

15733

28940

42612

53987

76113

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

195

267

427

170

87

57

333

37

76113

1

10

100

1000

10000

100000

Query Execution Order Schema Overriding Order

Keys

Final Sort

Cost element

T
im

e
(m

s
)

(a) (b)

Figure 3.9: Results obtained for Query 3: (a) the order cost to the execution
cost on different input XML file sizes, and (b) the break down of order cost
on 25MB XML input file size.

Query 4. This query creates a result with a new structure by performing

many node construction operations as shown in Figure 3.6(d). This query

reflects mainly a query order that is imposed by new node construction and



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 81

the order specified in the return clauses5. Figure 3.10(a) shows that the total

cost of handling order in this query is very small compared to the query

execution cost. The break down of this order cost is shown in Figure 3.10(b).

The Order Schema computation cost is higher than that for the last three

queries because the query plan of Query 4 has more operators. The cost of

assigning Overriding Order keys is also high because it involves assigning

Overriding Order keys to all the nodes in the returned result (except for the

“result”). These Overriding Order keys reflect the query imposed order (and

document order for nodes “customer” and “bid”). A small final sort cost is

encountered while deriving the right order among the returned “customer”

and among the returned “bid” elements.

Although all results reported here have been run on the basic Rain-

bow system, i.e., without employing any of the order-oriented optimiza-

tion strategies pointed out earlier in Section 3.4, the cost of handling order

has still been shown to be negligible. We expect that the cost of handling

order can be even further significantly minimized by incorporating these

optimization techniques into the system.

5Some implicit document order is also present in this query, in which the con-
structed nodes “customer” and “bid” follow the document order of the “person” and the
“open auction” elements respectively. Note that the order among descendants of each of
these constructed nodes is different from that of their source elements.



3.5. EXPERIMENTAL EVALUATION FOR THE COST OF HANDLING

ORDER 82

16040

29499

44543

61223

83380

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

5MB 10MB 15MB 20MB 25MB

XML file size

T
im

e
(m

s
)

Execution Order

1330

1720

2537

877

687

60

2410

67

83380

1

10

100

1000

10000

100000

Query Execution Order Schema Overriding Order

Keys

Final Sort

Cost Element

T
im

e
(m

s
)

(a) (b)

Figure 3.10: Results obtained for Query 4: (a) the order cost to the execution
cost on different input XML file sizes, and (b) the break down of order cost
on 25MB XML input file size.



83

Chapter 4

Incremental Fusion of XML

Fragments through Semantic

Identifiers

4.1 Object Fusion

Object fusion is a core operation in information integration where medi-

ators collect and integrate data objects from different sources [PAGM96].

Such integration needs to support merging the corresponding objects re-

sulting from processing the source data objects into the result. In some

applications the data to be processed may not arrive all at once. One ex-

ample is materialized view maintenance where sources are updated and

materialized views are refreshed once source data updates are made avail-

able or even in a deferred mode. Another example is stream query pro-



4.1. OBJECT FUSION 84

cessing where data arrives as streaming units at different times. In such

cases we may have an initial materialized view extent (a partial result) as

well as newly computed pieces of data that result over time from process-

ing source updates (or stream units). These newly computed pieces of data

need to be correctly merged (fused) with the initial result.

Such merging is relatively easy when considering relational views be-

cause of their flat nature and known schema. While for XML data this

problem is more challenging due to many factors including the hierarchi-

cal nature of the data, the possibility of no known schema for the data, and

the powerful capabilities of XML query languages. XQuery views for ex-

ample can restructure the XML view to take on a structure and hierarchical

organization that is completely different from that of the base data, pos-

sibly turning children nodes into ancestors or generating multiple copies

of the same node. Order is another factor that adds to the complexity

to object fusion in XML views. Unlike other data models (such as rela-

tional, object-oriented, and even some semi-structured data models), XML

is an ordered data model. XQuery expressions return by default results

that have a well-defined order based on document order unless otherwise

defined. The result of an XQuery path expression is always returned in

document order. The order in the result of a FLWOR expression can in ad-

dition be imposed by the expression itself in several ways, including the

use of order by clauses, the nesting of for clauses, and the order defined by

the return clauses. See [ESDR05] for more details.

Example. Consider the two XML documents shown in Figure 1.1 and

the XQuery view in Figure 1.2(a) defined over these two sources. The result



4.1. OBJECT FUSION 85

of executing this XQuery expression over the source documents is shown

in Figure 1.2(b). Now assume that the “bib.xml” source document is up-

dated by appending the new book element shown in Figure 4.1(a), with its

tree representation shown in Figure 4.1(b)1, to the end of that XML docu-

ment (reflecting the desired document order). A view maintenance solu-

tion would need to propagate such an update into one update that can be

applied to the materialized view in Figure 1.2(b). The propagated update,

shown in Figure 4.1(c), needs to be applied correctly to the materialized

view to refresh it.

<book year = “1994”>
<title>Advanced programming

in the Unix environment</title>
<author><last>Stevens</last><first>

W.</first></author>

</book>

(a) (b)

book

title

“Advanced...”

bib

<bib>

……….

</bib>

(c)

result

yGroup

title

“Advanced...”

books

entry

price

“69.99”

Y=“1994”+
Year=“1994”

author

last first
“Stevens” “W.”

Figure 4.1: (a) A new “book” element to be inserted into the source docu-
ment “bib.xml” shown in Figure 1.1, (b) the corresponding XML tree, and
(c) the expected result of propagating the update through the view in Fig-
ure 1.2(a).

The question that we raise now is how to fuse the propagated update in

Figure 4.1(c) with the previously computed result shown in Figure 1.2(b).

We must decide for each incrementally propagated node if it should be

merged with any existing node (or even nodes) in the view extent into pos-

sibly one combined node, or if it should be added as a new node, separate

1For now we assume that the update is represented as a full XML fragment. We will
address source update representation and validation in more details in Chapter 5.



4.1. OBJECT FUSION 86

from existing ones, to the view extent. For example, to correctly refresh the

view extent in Figure 1.2(b) the propagated nodes “result”, “yGroup”, and

“books” should be merged with certain existing nodes (as we will show

later) while the nodes “entry”, “title”, and “price” should be added to the

view extent as new nodes separate from existing nodes. We also must de-

cide how the order of the materialized XML view is maintained as a result

of applying such an update to the view extent. In this example, to main-

tain the order of the view extent the newly added node “entry” should be

inserted right after the existing “entry” node with title = “TCP/IP Illus-

trated”. This is based on the query semantics and the source document

order. The new “entry” node should come second in the year “1994” group

as the source update creating this node comes second in the source docu-

ment among books with book year “1994”. In addition, among the children

of the newly inserted node “entry”, the “title” children should come before

the “price” children while preserving the document order among nodes in

each of these two collections.

Correctly applying the update to the materialized view means that the

refreshed materialized view should be equivalent to the materialized view

we would obtain if we were to recompute the query directly over the up-

dated sources. This includes maintaining the correct view order.

Similarly, the same scenario may also apply to the XML steam query

processing context. The view extent shown in Figure 1.2(b) can be seen as

a partial result, the book element newly appended to the source (Figure

4.1(b)) can be seen as an XML stream unit (transmitted as the next stream

element), and the XML fragment in Figure 4.1(c) can be seen as the result



4.1. OBJECT FUSION 87

of processing the XML stream unit before it is merged with the previous

partial result computed over previously streamed data.

Note that in the example shown above we use a relatively simple XQuery

view to illustrate the problem. The problem becomes more complex when

we consider more complicated XQuery views with multiple sub-query nest-

ings, complex node constructions, and more order manipulations.

In previous view maintenance solutions, this problem has been addressed

in a variety of ways. Some solutions [AMR+98, AFP03, ZGM98] have mate-

rialized large auxiliary data beyond the actual view contents. This materi-

alized auxiliary data helps relating objects in the materialized views to the

source data they are derived from. Other solutions [LD00, PAGM96, Suc98]

have used Skolem functions (or variations of them). See Section 10.2 for

more details on related work.

In this chapter we introduce our mechanism for generating semantic

identifiers for processed XML nodes. Such semantic ids enable identifier-

based fusion. Semantic ids encode derivation and order information for

view nodes. Hence, it enables us to understand how view nodes relate to

source nodes. Lastly, it enables the support of XML order requirements.

While inspired by our earlier work in [ESDR03, ESDR05] (presented in

Chapter 3) for order-sensitive XQuery processing, order now is part of the

generated semantic identifiers instead of being yet another separate anno-

tation.

Semantic identifiers have two main properties. (1) They are reproducible

for corresponding objects. By this we mean, if any two source XML nodes

generate the same node in the XML result when they are processed (even at



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 88

different times) the same identifier is guaranteed to be generated for these

two nodes. (2) They are compact in size, since the size of a semantic id

depends on the query size and not on size of source data used to derive

the node. A semantic id may merge lineage and order information when

possible.

Our solution works at the algebraic query representation level. Phase 1

takes place during the query plan generation and optimization phase. In

this phase, our solution takes the query algebra tree as input and automati-

cally defines rules of how lineage and order specifications can be computed

for processed nodes. Such rules are defined for each algebra operator. We

call such lineage and order specification the Context Schema. Phase 2 takes

place during query execution time. In this phase, semantic identifiers are

generated for processed nodes based on the Context Schema previously de-

fined in the first phase.

4.2 The Context Schema: Encoding Node Lineage and

Order Information

In this section we show how we encode lineage and order specification for

processed XML nodes, referred to as the Context of the nodes. We will use

this encoding later (in Section 4.3) to generate semantic identifiers for nodes

in the XML result.

We require that a Context specification is defined for each node and

collection of nodes processed by the query. While at first sight this may

seem expensive to maintain, in actuality it is not. We only define the Con-



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 89

text specifications schematically at the schema level of the query execution

model. In our case, it is defined for columns in the intermediate XAT ta-

bles. We call such schema-level method of defining the Context the Context

Schema. The Context Schema is generated during query translation and op-

timization time. During query execution time, we might need to obtain the

Context itself (from the Context Schema) for some of the individual nodes

when we generate or manipulate semantic identifiers. But such access of

actual nodes at the instance level is limited to only a few query operations,

as we will show later in Section 4.3.

4.2.1 Context Schema

We first define the Context of a node (or a collection). We then define how

the Context can be maintained using the Context Schema.

Definition 4.2.1 We define the Context (cxt) of a node (or a collection of nodes)

as a tuple (lngCxt, ordCxt), where lngCxt the Lineage Context of the node is

composed of a sequence of lineage values (lngV al1, lngV al2,.., lngV alu), and

ordCxt the Order Context of the node is either a sequence of order values (ordV al1,

ordV al2,.., ordV alv) or a null value. A lineage value lngV ali, 1 ≤ i ≤ u, can

be (1) a source node identifier, (2) a source data value, or (3) a special constant “*”

. An order value ordV alj , 1 ≤ j ≤ v, can be (1) a source node identifier or (2) a

newly generated order key by the query.

The Lineage Context (lngCxt) of a processed node (or a collection) as

defined above can be (1) derived directly from a specific source node, (2)

derived from a certain data value from the domain of values of the source



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 90

XML document, (3) not related to a specific source node or value (this case

applies only to collections of nodes), or (4) a composition of one or more of

(1), (2), and (3).

We will discuss how different operators define such Lineage Context later

in this section. For now we state some general guidelines for describing

the lineage information for each of the cases above. For (1) we use the

respective source node identifier. For (2) we use the value that the node is

bound to. For (3) we use a special constant “*”, indicating that the collection

itself is not bound to any specific source node. This case occurs if at a point

of the query execution the entire result is composed of one big collection of

nodes (this occurs when using a Combine operator). Then the lineage for

the entire collection depends on all the lineage of the nodes it is composed

of, which we denote by “*”. For (4) we use a composition of the respective

values.

To understand the Order Context (ordCxt) for a processed XML node (or

a collection) we need to consider three possible scenarios for order among

nodes in the XML result. (1) The order among the processed nodes, or even

between processed collections of nodes, follows document order2. For this

case the Order Context ordCxt assigned to a processed node is a sequence

of order values, where an order value is an identifier of certain source node

that reflects the document order of the processed node. (2) The order is

imposed by the query and is different than the document order (e.g., as

a result of some order by clauses). In this case the Order Context ordCxt

2Note that this does not only apply to source nodes but may also apply to constructed
nodes constructed over source nodes.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 91

assigned to a processed node is a sequence of order values. (3) There is no

order among processed nodes (or processed collections). In this case the

Order Context assigned to a processed node is null, signifying that there is

no order defined. This case happens when the order is destroyed as a result

of the query operation (e.g., Distinct).

We will now discuss how the Lineage Context and the Order Context are

encoded using the Context Schema. We wish to point out first that the order

among cells in each column will now be reflected by the Context Schema of

the column, as we will see next. Hence, using only the Context Schema we

can find the order of cells in each column independently from the order

in other columns. In some cases, the order among tuples in the XAT table

as a whole may be of importance. For instance, when the query involves

join operations, then in order to compute the order semantics for cells in

columns in the output XAT table (as part of the Context Schema) we need to

know the order of tuples in the input XAT tables. Hence, we maintain the

Order Schema (defined in Section 3.3 ) for queries that has join operations.

We call that now the Table Order Schema to distinguish it from the Order

Context computed for each individual column in the XAT table. For queries

with no join operations, the Order Context is sufficient to maintain the order.

We observe that the Context of processed nodes that bind to the same

query variable (a column in an XAT table) can be described using the same

rule. Hence, we can abstract the method of generating such Context during

query execution using the Context Schema. The Context Schema is defined for

each column in the XAT table. The Table Order Schema (introduced in Chap-

ter 3) is used in computing the Context Schema for some query operations



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 92

(e.g., joins) as shown in Table 4.1.

Definition 4.2.2 The Context Schema (CxtSma) for a column col in the XAT

table (corresponding to an implicit or an explicit query variable binding) is a rule

that defines how the Context, that is both lineage and order specifications of nodes

or collections of nodes, in that column can be extracted. The Context Schema has

the following syntax:

CxtSma ::= (Order)? + Lineage

Order ::= "()" | "("+OrdCols+")"

OrdCols ::= colName + ("," + OrdCols)*

Lineage ::= "[]" | ("[" + LngCols + "]")

LngCols ::= ((colName (","+ colName)*) | colsUnion

colsUnion ::= (colName + "{" + ColID+ "}") + "," + (colName + "{" + ColID+ "}")

ColID ::= FlexKey | empty

The Context Schema (CxtSma) for a column col is a composition of an

optional order prefix specification (Order) and a lineage specification (Lineage).

The order specification can be an empty list ”()” indicating that the order

information of nodes in col can be derived from the lineage specification. In

that case there is no need to have an extra encoding for order. If the lineage

specification does not reflect the order, the order specification will contain

a list of column names (colName) that determine how the order of nodes

in col can be derived. The absence of the order prefix specification (equals

to null) indicates that no order is defined for the column. In that case the

Order Context for any node in that column then is null. In general, the order

encoding portion in the Context Schema of a column enables us to derive the

order among cells in that column.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 93

The lineage specification of a column col is a list of XAT table column

names from which the lineage of nodes in col can be derived. The list

can be empty ”[]” indicating that nodes in this column has no lineage to

nodes in other nodes (we call it a self lineage). A non-empty list may con-

tain regular column names (colName) and/or annotated column names

(colsUnion). An annotated column name (colsUnion) is a column name

annotated with an identifier (ColID), namely a FlexKey identifiers that is

assigned by the XML Union operator. ColIDs are unique among columns

in the list of unioned columns and are used to distinguish columns used as

input to the union operation. This is used later when we generate seman-

tic identifiers to ensure the uniqueness of nodes originating from different

input columns when unioned. ColIDs also help in maintaining the order

among nodes originating from different columns that are unioned into one

collection. An empty ColID indicates that nodes in the column has been

assigned identifiers by an earlier XML Union operator.

The Lineage Context encoded in the Context Schema allows us to identify

tuples of an XAT table. Hence, we can determine if a newly processed tuple

match with previously processed tuple or not. As a result, we can merge

matched tuples. To define how the matching is done we first define a set of

XAT columns that is to be used in this matching process. We call this set of

columns the Evaluation Context Columns, or shortly ECC .

Definition 4.2.3 For any XAT table T we define the set of Evaluation Context

Columns ECC to be a subset of the set of columns of T where a column colj ∈

ECC if the Lineage Context of colj references only itself.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 94

Hence, for a column colj in ECC we conclude that (1) the column con-

tains only singleton nodes (does not store collections) and (2) the contents

of column colj can be processed separately from other columns as they have

no lineage to contents in other XAT columns.

Other columns in the XAT table that do not belong to ECC uses columns

in ECC as part of their Lineage Context. Each XAT table has ECC 6= null,

expect XAT tables generated by the Combine operator. Such XAT tables

will always have one column representing a collection created from all the

content of the input columns.

Using ECC we now define how two tuples can be matched.

Definition 4.2.4 Two tuples t1 and t2 of the same XAT table are considered to be

matching, denoted by t1 ≍ t2, if ∀ coli ∈ ECC , t1[coli] = t2[coli] with equality by

node identifiers if the coli contains identifiers or by value if it contains values. If

ECC is empty then t1 ≍ t2.

It is possible that a column in ECC might contain null values. For ex-

ample, when a tuple t is generated from a Left Outer Join where the input

tuple of t from the left input source of the operator did not join with any

tuple from the right input source of the operator. In this case all columns in

t corresponding to columns in the right input source will have null values.

We take that into consideration in Proposition 4.2.1.

Proposition 4.2.1 When applying the match operator between two tuples t1 and

t2 of the same schema, and for a column col ∈ ECC , if t1[coli] = null and t2[coli]

= null, then we consider that t1[coli] = t2[coli].



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 95

4.2.2 Rules for Computing the Context Schema

The Context Schema is first created for the Source operator since it is the

leaf operator in any XAT algebra tree. Other operators may create Context

Schemas for newly created columns or manipulate the Context Schema for

existing columns. Table 4.1 classifies the XAT operators into 12 categories

based on the way they handle the Context Schema. For each category we

specify the columns whose Context Schema is affected by the transforma-

tion. We show how the Context Schema is computed for those columns.

All other columns maintain the existing Context Schema, meaning that their

Context Schema does not change as a result of applying the operator. Table

4.1 uses the following conventions:

• col.ord: refers to the Order Context part of the Context Schema of the

column col

• col.lng: refers to the Lineage Context part of the Context Schema of the

column col

• p.col: refers to the input column col to a tagger pattern p

• T [coli]: refers to the column with index i in the XAT table T

• T [coli].cxtSma: refers to the Context Schema for a column coli in the

XAT table T

• T.OS: refers to the Table Order Schema (as defined in Chapter 3) of the

XAT table T



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 96

Cat. Operator op Affected column Assigned Context Schema

I Scol
xmlDoc col ()[]

II Φcol′

col,path(T ) col′ if(col.ord == empty), ()[col.lng]

υcol′

col (T ) elseif(col.ord == null), [col.lng]

ρcol,col′(T ) else, (col.ord)[col.lng]

III φcol′

col,path(T ) col′ if((col.ord == empty)||(col.ord == null)), ()[]

else, (col.ord + col′)[]

IV Ccol(T ) col [∗]

V T col
p (T ) col if(p.col.ord == empty), ()[]

elseif(p.col.ord == null), []

else, (p.col.ord)[]

VI γcol[1..n](T, Ccol) All columns if (grouping by id),

(col1.ord, .., coln.ord)[col1.lng, .., coln.lng]

else if (grouping by value), [col1.lng, .., coln.lng]

VII
x
∪

col

col1,col2(T ) col if((col1.ord == empty)&&(col2.ord == empty)),

()[col1.lng{fk1}, col2.lng{fk2}]

else, (col1.ord, col2.ord)[col1.lng{fk1}, col2.lng{fk2}]

(where fk1 and fk2 are Flexkeys reflecting order)

VIII δcol(T ) All columns [col.lng]

IX ×(T1, T2) T1[col1..colm] for(i = 1; i <= m; i + +)

1c (T1, T2) T1[coli].CxtSma = (T1[coli].ord + T2.OS)[T1[coli].lng]

=⊲⊳c(T1, T2) T2[col1..coln] for(i = 1; i <= n; i + +)

T2[coli].CxtSma = (T1.OS + T2[coli].ord)[T2[coli].lng]

X σc(T ), M(T1, T2) None N/A

XI τcol[1..n](T ) T [col1..colm] for(i = 1; i <= m; i + +)

T [coli].CxtSma = (col[1..n])[T [coli].lng]

Table 4.1: Rules for computing the Context Schema for different XAT opera-
tors.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 97

We now discuss how the Context Schema is computed for some opera-

tors based on the rulers shown in Table 4.1.

• Category I. The Source operator Scol′

xmlDoc first creates a Context Schema.

The Context Schema assigned to the output column col′ is (()[]). Based

on the semantics of the Context Schema in Definition 4.2.2 this means

two things. (1) The Lineage Context of the node in column col′ (rep-

resenting the entire document) is defined in terms of itself only (re-

flected by its FlexKey) and that it has no lineage to any other node.

(2) The order of the node in column col′ is also derived from the same

FlexKey (indicated by the empty list of order columns “()”).

• Category II. The Navigate Collection operator Φcol′

col,path(T ) does not break

the nesting relationship as a result of the navigation process. Hence,

it does not cause any change to the Lineage Context of nodes in the

output column col′. The collections created in col′ still relate to the

nodes from which they were extracted from. Hence, col′ is assigned

a Lineage Context that is equal to that of the matching input value col

([col.lng]). Determining the Order Context of col′ depends on the or-

der of the input column col. If col has an Order Context that is derived

from its Lineage Context (indicated by an empty Order Context), the

Order Context of col′ is the same as the lineage of col′. If there is no

Order Context assigned to col, then we do not assign an Order Context

to col′. Finally, if there is an Order Context assigned to col we assign

to col′ the same Order Context.

The XML Unique operator υcol′

col (T ) also assigns to the output column



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 98

col′ a Lineage Context that is equivalent to the Lineage Context of its

input column ([col.lng]). The Name operator ρcol,col′(T ) assigns to the

new column col′ the same Lineage Context as that of old renamed col-

umn col. Order Context computation for these two operators is similar

to that of the Navigate Collection operator.

• Category III. Since the Navigate Unnest operator φcol′

col,path(T ) performs

a navigation operation followed by an unnest operation, it breaks the

nesting relationship between the nodes we navigate to and the nodes

they are extracted from. Hence, the nodes that are in column col′ are

no longer dependent on other nodes (the entry point nodes) and their

Lineage Context is set to their own node identifiers ([col′]). In terms of

Order Context for col′, if col has no Order Context or an empty one, we

assign a new empty Order Context to col′. Namely , the Order Context

will be set to be equal to the Lineage Context of col′). If col has an Order

Context that is not empty, col′ gets an order that is composed of the

order of col as a major order and the order of the new column col′

as minor order. Hence the Order Context becomes (col.ord + col′), or

(col.ord) after optimization since col′ is already reflected in the Lin-

eage Context part. Note that as a special case, if the Navigate Unnest

operator navigates to the textual value of a node (text()), the Order

Context of col′ is set equal to the Order Context of col.

• Category IV. The Combine operator Ccol(T ) does not create any new

column, rather the contents of the combined column col are merged

to form one collection of nodes in a single tuple in the output table.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 99

Hence, the Context Schema of column col is changed. The old Context

Schema assigned to the combined column col is destroyed and a new

Context Schema is created for it. Since there is only one collection in the

output column we assign a constant Context to the combined column

col that reflects the “All” semantics. This “All” semantic means that

lineage of the collection in column col is not related to any particular

node(s). We abbreviate that Context using [“ ∗ ”]3. Note that since we

only have one tuple in the output XAT table, there is no order defined

between tuples. Hence, we set the Order Context to null.

• Category V. The Tagger operator T col
p (T ) constructs new XML nodes

in column col. These new nodes are assigned new ids. Such ids are

derived from the lineage information of nodes used to construct the

new node, as we will show later in Section 4.3. Hence, we assign a

Lineage Context for column col referencing the new ids in the column

itself. The Order Context of column col is determined based on the Or-

der Context of the input column of the tagger pattern (p.col) as shown

in Table 4.1.

• Category VI. The Group By operator γcol[1..n](T,Ccol) assigns as the

Lineage Context to each of the columns in the output XAT table a com-

position of the grouping columns’ Lineage Contexts. If the grouping

operation is value-based, the Group-By operator defines a null Order

3This can be seen as assigning a dummy parent node with an identifier “*” for the collec-
tion. Note that at the point when the Context [“ ∗ ”] is assigned, by the Combine operators,
we do not worry about uniqueness of such Context since we only have one big collection.
At later stage when this collection is unioned or merged with other results the Context of
the collection is expanded to reflect the uniqueness.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 100

Context to reflect the fact that there is no order among the created

groups. If the grouping operation is id-based (nesting), the Group-

By operator defines an Order Context for all columns in the output

XAT table that is equal to the composition of the Order Contexts of the

grouping columns.

• Category VII. The XML Union operator
x
∪

col

col1,col2(T ) creates new col-

lections in column col from the contents of columns col1 and col2.

The Lineage Context of the new column col is derived from the Lin-

eage Context of both columns col1 and col2. Hence the Lineage Con-

text for col will be [col1.lng{fk1}, col2.lng{fk2}] where fk1 and fk2

are identifying FlexKeys to distinguish between the two columns4.

For example if an XML Union operator is used for creating a col-

lection from two columns col1 and col2 the Context Schema might be

[col1.lng{a},col2.lng{b}]. Here a and b reflect the order in which the

columns are unioned.

Note that if the query plan has more than one XML Union opera-

tor, the identifying FlexKeys (in the ColID list in Definition 4.2.2)

used to distinguish between different columns are assigned based

on the overall order among columns used as input to all the XML

Union operators in a depth first traversal for the query plan. For

example, assume a query plan that includes two XML Union oper-

ators with input columns col1, col2, and col3 if the query plan in-

cludes
x
∪

col

col1,col2(T ) and then
x
∪

col′

col,col3(T ), the Lineage Context of col is

4This identifying extension is used later when we generate the semantic identifiers to
ensure uniqueness of the identifiers and to reflect order.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 101

defined as [col1{a}, col2{b}] and the Lineage Context of col′ is defined

as [col{}, col3{c}]5 . If another plan that represents the same query de-

fines the operator
x
∪

col

col2,col3(T ) and on top of it it defines
x
∪

col′

col1,col(T )

in this case the Lineage Context of col is defined as [col2{b}, col3{c}]

and the Lineage Context of col′ is defined as [col1{a}, col{}]. As a re-

sult of that, the same order prefix for sematic ids can be produced in

the two query plans during sematic ids generation time (Section 4.3).

This is important for opening up opportunities for optimization as

we discuss in Section 4.6.

If the Order Context of each of the source columns (col1 and col2) is

equivalent to its Lineage Context, then the order context of col is as-

signed to its Lineage Context. Otherwise, the Order Context of col is set

to the union of columns in the Order Contexts of the source columns.

• Category VIII. The Distinct operator δcol(T ) does not create any new

columns, rather it filters out tuples based on duplicate values in col-

umn col. The old Context Schema of the output column is discarded

and a new Context Schema [col] is assigned to the output XAT table.

The Distinct operator destroys order. Hence, hence a null Order Con-

text is assigned to the output column.

• Category IX. The Cartesian Product operator (×(T1, T2)), the Join op-

erator (1c (T1, T2)), and the Left Outer Join operator (=⊲⊳c(T1, T2)) do

not change the Lineage Context of columns in the output table. For the

Order Context, the treatment is different for those columns originating

5Assuming that col1, col2, and col3 each has a Lineage Context equal to [].



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 102

from the left input table than for those originating from the right in-

put column. For each column originating from the left input column

we assign to it a new Order Context that is a composition of the Order

Context of the column itself and the Table Order Schema of the right

table. For each column originating from the right input column we

assign to it a new Order Context that is a composition of the Table Or-

der Schema of the left table with the Order Context of the column itself.

This ensures that the resulting Order Context of columns in the output

XAT table reflect the order of left source XAT table as a major order

and the order of the right source XAT table as a minor order.

• Category X. The Select (σc(T1)) does not change the Context Schema

for any of its input columns. The same applies to the Merge operator

M(T1, T2).

• Category XI. The Order By (τcol[1..n](T )) does not change the Lineage

Context for any of its input columns. It only changes the Order Context

for all columns by assigning it to the order column(s) col[1..n]. Such

columns should contain the order values.

4.2.3 Example for Context Schema Computation

Figure 4.2 shows how the Context Schema is defined for columns in the in-

termediate XAT tables based on the rules shown in Table 4.1. The Context

Schema is shown in a subscript font to the right of column names (or below

them). The output XAT table of operator # 3, for example, has one column



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 103

SS ””bib.xmlbib.xml””
$S$S11

ff$S1,book/$S1,book/@@year/textyear/text()()
$y$y

DistinctDistinct($y($y))

CombineCombine $col7$col7

LOJLOJ$y$y= $col1= $col1

TT<entry>$col4</entry><entry>$col4</entry>
$col5$col5

TT<result>$col7</result><result>$col7</result>
$col8$col8

SS ””bib.xmlbib.xml””
$S$S22

ff $S1,book$S1,book
$b$b

ff$b, @year/text()$b, @year/text()
$col1$col1

~*c

$col8[ ]

~*c

$col8[ ]

2000b.f

1994b.b

$col1
()[$b]

$b
()[ ]

2000b.f

1994b.b

$col1
()[$b]

$b
()[ ]

2000

1994

$y [ ]

2000

1994

$y [ ]

b.f

b.b

$b
()[ ]

2000

1994

$y
($b)[ ]

b.f

b.b

$b
()[ ]

2000

1994

$y
($b)[ ]

FF$e, price$e, price
$col3$col3

e.b

e.f

$e
($b,$e)

[ ]

b.f

b.b

$b
($b,$e)

[ ]

{b.f.b}

{b.b.b}

$col2
($b,$e)

[$b]

2000

1994

$y
($b,$e)

[ ]

{e.b.b}

{e.f.b}

$col3
($b,$e)

[$e]

e.b

e.f

$e
($b,$e)

[ ]

b.f

b.b

$b
($b,$e)

[ ]

{b.f.b}

{b.b.b}

$col2
($b,$e)

[$b]

2000

1994

$y
($b,$e)

[ ]

{e.b.b}

{e.f.b}

$col3
($b,$e)

[$e]

ÈÈ $col2, $col3$col2, $col3
$col4$col4

e.b

e.f

$e
($b,$e)

[ ]

b.f

b.b

$b
($b,$e)

[ ]

{(a)b.f.b,
(b)e.b.b}

{(a)b.f.b,
(b)e.f.b}

$col4
()

[$b{a}, $e{b}]

2000

1994

$y
($b,$e)

[ ]

e.b

e.f

$e
($b,$e)

[ ]

b.f

b.b

$b
($b,$e)

[ ]

{(a)b.f.b,
(b)e.b.b}

{(a)b.f.b,
(b)e.f.b}

$col4
()

[$b{a}, $e{b}]

2000

1994

$y
($b,$e)

[ ]

GroupByGroupBy$y$y((CombineCombine$col5$col5))

TT<books>$col5</books><books>$col5</books>
$col6$col6

TT<<yGroupyGroup Y={$y}>$Y={$y}>$col6</col6</yGroupyGroup>>
$col7$col7

b.f..e.b

b.b..e.f

$col5
() [ ]

2000

1994

$y
($b,$e)

[ ]

b.f..e.b

b.b..e.f

$col5
() [ ]

2000

1994

$y
($b,$e)

[ ]

{b.f..e.bc}

{b.b..e.fc}

$col5 [$y]

2000

1994

$y [ ]

{b.f..e.bc}

{b.b..e.fc}

$col5 [$y]

2000

1994

$y [ ]

~2000c

~1994c

$col6 [ ]

2000

1994

$y[ ]

~2000c

~1994c

$col6 [ ]

2000

1994

$y[ ]

2000c

1994c

$col7()[ ]

2000c

1994c

$col7()[ ]
{1994c , 2000c}

$col7[*]

{1994c , 2000c}

$col7[*]

11

22

33

44

55

66

77

1212

1313

1414

1515

1616

1818

1919

2020

x

SS””prices.xmlprices.xml””
$S$S33

ff$S2,entry$S2,entry
$e$e

88

9

FF$b,title$b,title
$col2$col21111

e.l

e.f

e.b

$e ()[ ]

e.l

e.f

e.b

$e ()[ ]JoinJoin $b/title= $$b/title= $e/be/b--titletitle
1010b.f

b.b

$b
($b,$e)[ ]

e.b

e.f

$e
($b,$e)[ ]

2000

1994

$y
($b,$e)[ ]

b.f

b.b

$b
($b,$e)[ ]

e.b

e.f

$e
($b,$e)[ ]

2000

1994

$y
($b,$e)[ ]

OrderByOrderBy$y$y
1717

~2000c

~1994c

$col6 ($y)[ ]

2000

1994

$y()[ ]

~2000c

~1994c

$col6 ($y)[ ]

2000

1994

$y()[ ]

Figure 4.2: The algebra tree for XQuery expression in Figure 1.2(a) with
the Context Schema annotation, appearing in subscript font to the right (or
below) column names. Shaded column names represent the Table Order
Schema.



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 104

($y) representing the distinct values of years. Based on the rules in Table

4.1 it is assigned a Lineage specification that references itself [] and a null

Order specification (indicating that there is no order semantics for that col-

umn). The output XAT table of operator # 6 has two columns, namely $b

and $col1. Column ($b) stores the node identifier of extracted books. The

Lineage specification assigned to that column is derived from itself [], as this

column is obtained through a Navigate Unnest operation. The Order speci-

fication of that column is set to (), signifying that it is equal to the Lineage

specification ($b). Hence, if we wish to derive the order between nodes

in column $b we compare the FlexKeys in that column lexicographically.

Column $col1 gets a Context Schema ()[$b] (based on the second case in rule

category III in Table 4.1). The LOJ operator (# 7) does not affect the Lineage

specification. It only changes the Order specification. It uses the Table Order

Schema of the input tables (highlighted columns) and the input column’s

Order specification to determine the new Order specification. Based on the

rules in Table 4.1, the Order specification of column $y is set to ($b). The

Order specification of column $b is not affected because the left input table

has no Table Order Schema. The Join operator (# 10) also sets only the Order

Context of its output columns $y, $b, and $e as shown in Figure 4.2. Note

that for the operators on top of operator # 10, the Table Order Schema is no

longer needed to compute the Context Schema rules, since there is no other

Join operations. Hence, the Table Order Schema is not defined for these op-

erators.

As a result of the Navigate Collection operators # 11 and # 12, columns

$col2 and $col3 are created and each of them is assigned a Context Schema



4.2. THE CONTEXT SCHEMA: ENCODING NODE LINEAGE AND ORDER

INFORMATION 105

that is derived from that of the column it was extracted from. The XML

Union operator (operator # 13) creates new collections in column $col4

from the contents of columns $col2 and $col3. Hence, the Lineage specifi-

cation of column $col4 becomes a composition of the Lineage specifications

of columns $col2 and $col3 which are $b and $e respectively. We assign

to column $col4 the Lineage specification [$b{a}, $e{b}], where a and b are

special column source identifiers that are used to uniquely identify each

column and at the same time to reflect the relative order among the two

columns, as we have discussed above. The Order specification of the new

column $col4 is derived from the Order specifications of both input columns

which are $b and $e (for column $col2) and $b (for $col3). Hence, the Order

specification becomes ($b, $e), since removing the redundant $b will not af-

fect the order semantics. Since this Order specification is equivalent to the

Lineage specification, we simply set the Order specification to (). The Tagger

operator (operator # 14) constructs new nodes in column $col5 assigning a

Lineage specification [] that reflects that the lineage of this column depends

only on itself and not on any other columns. The Order specification of

$col5 is set equal to ()6. The Group By operator (operator # 15) changes

the Lineage specifications of all the output columns to be equivalent to the

Lineage specification of the grouping column $y. It also sets the Order speci-

fication of the output columns to null since the Group By destroys the order

among tuples (created groups)7.

6Note that only columns $y and $col5 remain in the output at this point. Other columns
are pruned out through an optimization process that discards columns that are not used by
later operators or that are not referenced by the Context Schema of any column.

7The value-based Group By destroys the order among XAT tuples while the id-based
Group By (representing a nesting operation) would define certain order among the created



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 106

The Tagger operator (operator # 16) constructs new nodes “books” in

column $col6 assigning a “self” Lineage specification to it [] and a null Order

specification because the input column $col5 has a null Order Context. The

Order By operator (operator # 17) sets the Order Context of all columns to

the ordering column $y. The remaining operators in the algebra tree are

easy to follow.

4.3 Generating Semantic Identifiers from the Context

Schema

We now describe how we utilize the Context Schema to generate the seman-

tic ids for processed XML nodes. This is done during query execution time.

4.3.1 From Context Schema to Node Identifiers

Definition 4.3.1 The Semantic Identifier (SemID) is an identifier assigned to

a node in the XML result. Such identifier is locally unique (among nodes with the

same parent node). It carries lineage information that references the source from

which the node is derived. It also encodes local order of the node among sibling

nodes. SemID is a composition of an optional order id prefix term (OrdPrefix)

and a body part that can be a base node id (BaseNodeID) or a constructed node

id (ConstNodeID). The body part carries lineage information and determines the

node type, namely source node or constructed node.

SemID ::= (OrdPrefix)? + (BaseNodeID | ConstNodeID)

OrdPrefix ::= "~" | OverRideOrd

groups, as shown in Table 4.1.



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 107

OverRideOrd ::= "(" + FlexKey + ")"

BaseNodeID ::= FlexKey

ConstNodeID ::= LngCxt + "c"

LngCxt ::= (FlexKey | "*" |StringLiteral) + (".." + LngCxt)*

In many cases, the lineage information encoded in the semantic id body

can reflect the node order as well. If this is not the case then a special order

prefix (OrdPrefix) is added to the semantic id body. The prefix order id

can be either a FlexKey representing a new order that overrides the order

implied by the lineage information encoded in the semantic id body or a

special constant “∼” indicating that there is no order defined locally for the

node.

The body of the semantic id depends on the type of the node. A node

in the view extent can be of two types: (I) a base node originating from a

source document that is exposed without any modification8, or (II) a newly

constructed node. The body of the semantic id SemID for a base node that is

exposed in the view is simply the same as its base id (a FlexKey). The body

of SemID for a constructed node is composed of a Lineage Context value

(lngCxt), as defined in Definition 4.2.1, and a constant suffix (c) indicating

that the id reflects a constructed node. The Lineage Context, as we discussed

earlier can be a FlexKey, a string value from the domain of values of the

source XML document, a constant “*”, or a composition of one or more of

the above types separated by a delimiter “..”. This Lineage Context can be

derived from the Lineage specification of the Context schema during query

execution when needed (to create semantic ids) as we will discuss next.

8Such node is an exact copy of the source node including its subtree.



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 108

In Section 4.2 we have discussed how the Context of a node (or a collec-

tion of nodes) is specified using the Context Schema. No node-level access is

needed to maintain such Context. We now show how we exploit the knowl-

edge encoded in the Context Schema to generate semantic identifiers.

Table 4.2 shows the node-level operations required for performing this

task. As shown in Table 4.2, we require node-level access for only four alge-

bra operations out of all the XAT operators shown in the table. Namely, the

Combine, the Tagger, the XML Union, and the Group By operators. Moreover

for these four operators we access only nodes (or values) that are avail-

able during execution time. We do not require access of any other nodes

(or values) outside this range. For example, we do not access descendants

of nodes or perform de-referencing for values. We define two functions

getLngCxt() and getOrdCxt() that when invoked for a node (or collection)

return the Lineage Context and the Order Context of that node (or collection),

respectively.

Table 4.2 shows 3 functions that are used by the four operators Combine,

Tagger, XML Union, and Group By to generate and maintain the semantic

ids. The logic of these functions is shown in Figures 4.3, 4.4, and 4.5. In

the actual system, these operations are not performed separately but are

integrated within the execution. Hence, they do not place any significant

overhead on the normal processing time.

The function assignOverRidOrd is used by the Combine operator to set

the order prefix part of the semantic id for combined nodes. This function

is also used by the Group By to set the order prefix part of the semantic id



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 109

Cat. Operator op Node Level operation

I Scol′

xmlDoc None

Φcol′

col,path(T )

II υcol
col1(T ) None

ρcol1,col(T )

III φcol′

col,path(T ) None

IV Ccol(T ) for each tuple t in T apply

assignOverRidOrd(t, col)

V T col
p (T ) for each tuple t in T apply

composeNodeIds(t, col, p)

VI γcol[1..n](T, Ccol) The Combine operator uses the function

assignOverRidOrd(t, col)

VII
x
∪

col

col1,col2(T ) for each tuple t in T apply

assignColIdPrfx(t, col1, col2)

VIII δcol(T ) None

×(T1, T2)

IX 1c (T1, T2) None

=⊲⊳c(T1, T2)

X σc(T ), M(T1, T2) None

XI τcol[1..n](T ) None

Table 4.2: Node-level operations required for generating the semantic node
identifiers.



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 110

for nodes in the created groups9.

function assignOverRidOrd (Tuple t, ColumnName col)
if (col.getOrdCxt() == empty)

do nothing
else if (col.getOrdCxt() == null)

for (each node niin t[col])
ni.assignOrdPrfx(”∼”)

else
for (each node niin t[col])

ni.assignOrdPrfx(ni.getOrdCxt())

Figure 4.3: Function assignOverRidOrd used by the
Combine Ccol(T ) and the Group By γcol[1..n](T,Ccol)
operators in Table 4.2.

The function composeNodeId (shown in Figure 4.4) is used by the Tagger

operator to generate semantic identifiers for newly constructed nodes. It

first generates the semantic identifier body from the Lineage Context of the

node. Then it generates the order prefix from the Order Context of the node

as shown in Figure 4.4.

function composeNodeIds (Tuple t, ColumnName col, TaggingPattern p)
for (each new node ni in col)

ni.assignId (t[col].getLngCxt())
if (col.getOrdCxt() == null)

ni.assignOrdPrfx(”∼”)
else if (col.getOrdCxt()! = empty)

ni.assignOrdPrfx(ni.getOrdCxt())

Figure 4.4: Function composeNodeIds used by the
Tagger operator T col

p (T ) in Table 4.2.

9Although the value-based Group By does not define order between created groups,
there might be order among nodes in each group.



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 111

The function assignColIdPrfx (shown in Figure 4.5) is used by the

XML Union operator to assign the order prefix part of the semantic iden-

tifier in a way that reflects the order among XML nodes originating from

different sides of the union process. At the same time it ensures the unique-

ness of the unioned nodes. The key as an order prefix is equal to the corre-

sponding ColID from the Context Schema, as discussed in Section 4.2.2. If

ColID for a column is empty, no order prefix is assigned because such an

empty ColID reflects that nodes in the column have been already assigned

order prefix by an earlier XML Union operator. See discussion in Section

4.2.2.

function assignColIdPrfx (Tuple t, ColumnName col1, ColumnName col2)
for (each node ni in col1)

ordKey = composeKey (FlexKey1, ni.getOrdCxt())
ni.setOrdCxt(ordKey)

for (each node nj in col2)
ordKey = composeKey (FlexKey2, nj .getOrdCxt())
nj.setOrdCxt(ordKey)

Figure 4.5: Function assignColIdPrfx used by the

XML Union operator
x
∪

col

col1,col2(T ) in Table 4.2.

4.3.2 Semantic Identifiers Assigned to different types of Nodes

Base Node Identifiers. An XML view might expose base nodes in the re-

sult. A node in this category should be an exact copy of its source node in

the input document with the same tag name, attributes and descendants.

A semantic identifier assigned to a base node that is exposed in the view

is composed mainly of its base node FlexKey identifier. The source node



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 112

identifier may not reflect the order of the exposed node in the view extent

due to transformations and operations performed by the query. As a re-

sult, the identifier assigned to the view node should reflect the new order.

Hence, we may associate a prefix order identifier to the FlexKey to reflect

the new order that is introduced by the query if the node FlexKey itself

does not reflect the node order in the view extent.

Constructed Node Identifiers. The Tagger operator T col
p (T ) is responsible

for constructing new nodes in the XAT algebra. The Tagger assigns a new

semantic id to each constructed node (XML fragment) in the output column

col using the generateNodeId function, shown in Figure 4.4. Such semantic

identifiers depends on what node (nodes) the constructed node is derived

from and what order the node should take in the view extent. Hence, the

generated semantic identifier might contain a source node FlexKey, a data

value, a constant value (*), or a combination of one or more of them, as we

have mentioned earlier. This depends on the Context of the column which

the Tagger uses as input. For example if a constructed node is build on

top of a collection with “*” as its Lineage Context the generated semantic

identifier for this node will be ∗c. If it is build on top of a node with a

Lineage Context equal to a data value “car” and a FlexKey c.b, and an Order

Context equal to b.b, the generated semantic identifier for this node will be

(b.b)car..c.bc .

Collections and Identifiers. While each collection of XML nodes is as-

signed a Context during query execution time, we do not actually mate-



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 113

rialize and allocate identifiers for the collections themselves. Instead, the

Context of an XML collection is only derived when generating semantic

ids for new XML nodes constructed on top of these collections at some

later stage. As discussed above, some operators (the Combine operator, the

XMLUnion operator, and the Group By operator) might manipulate iden-

tifiers of nodes in collections by setting the order prefix of the semantic id.

Identifying Intermediate XAT Tuples. Our Semantic identifier solution

also provides a mechanism to uniquely identify intermediate XAT tuples

as we state in Theorem 4.3.1. This enables us to define how propagation of

updates is done for single algebra operators, as we will discuss in Section

4.5.

Theorem 4.3.1 Tuples in an XAT table T can be uniquely identified by the con-

tents of columns in T that are in ECC of T .

Proof: The Source operator Scol
xmlDoc always come as a leaf operator in any XAT

tree. The Source operator generates an XAT table Q with one column. This col-

umn is the only column in the ECC list of Q. It is clear that this column uniquely

identifies the single tuple in Q. We conclude that we always start with an XAT

table that has an ECC that reflects the uniqueness among its tuple. Now we show

that this uniqueness is always preserved by the ECC of any XAT table generated

by other oppressors. We start with operators that may change the number of tuples

to the XAT tables or may change the contents of the ECC list:

• The Navigate Unnest operator φcol′

col,path(T ) adds a new column col′ to the

XAT table. For each reachable node through path from a tuple tini ∈ T , a



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 114

tuple toutj is generated. This means that tini might map to multiple tuples

in the output XAT table Q. Given our rules for computing the Context

Schema (in Table 4.1) and the definition of ECC (in Definition 4.2.3), the

new column col′ is added to ECC . Hence, the ECC of Q now contains the

same columns as in ECC of T in addition to col′. And since all the nodes

in col′ are guaranteed to have unique ids, by the definition of the Navigate

Unnest operator, we conclude that each tuple in Q is uniquely identified by

columns in the ECC of Q.

• The Tagger operator T col
p (T ) adds a new column that contains the newly

constructed nodes. Based on the definition of the Tagger operator, each tuple

in its input XAT table T maps to a single tuple in its output XAT table Q.

The new column col is added to the ECC of Q based on the rules in Table

4.1 and the definition of ECC (in Definition 4.2.3). The ECC of Q might

retain all columns from the ECC of T if each columns in ECC is used by

an operator on top of the Tagger operator or if it is referenced by by a another

column(s) in Q. In this case the ECC of Q clearly reflects the uniqueness

of tuples in Q. Columns that are used to construct new nodes in col might

be dropped from Q if they are no longer needed by later operators and if they

are not referenced by the Context Schema of other columns in Q. In this

case the ECC of Q still reflects the uniqueness of tuples in Q, as col is now

part of ECC and the ids that were in the columns that are projected out from

ECC are now encoded as part of the id of nodes in col.

• The Group By operator γcol[1..n](T,Ccol) assigns to its output XAT ta-

ble Q a totally new ECC list. This list contains the grouping columns



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 115

(col[1..n]). It is clear that each tuple in Q is uniquely identified by those

grouping columns.

• The Distinct operator δcol(T ) is similar to the Group By operator with one

exception is that it will have only one column in its output XAT table ECC

list (col).

• The join family of operators. Tuples in each input source XAT table is identi-

fied by the ECC of that table. The output XAT table of any of these operators

is assigned an ECC list that is equal to the concatenation of the ECC lists

of the input XAT tables. Clearly, such combined ECC will guarantee the

uniqueness of tuples in the output XAT table of the operator. One special

case here is the Left Outer Join operator where columns in its output XAT

table Q corresponding to columns from the right input source might contain

null values. Even for this case the ECC of Q still reflects the uniqueness of

tuples as the contents of columns corresponding to columns in the left input

source is guaranteed to be unique for any two tuples that has null values in

their corresponding columns in the right input table, by the definition of the

Left Outer Join operator.

• The Combine operator Ccol(T ) outputs only one tuple in Q. Q will always

have one tuple and the ECC of Q is empty.

• The Select operator σc(T ) filters out tuples that do not satisfy the predicate

c. Each tuple in the output XAT table Q maps to a tuple in T . The ECC of Q

is equal to the ECC of T , hence the uniqueness of tuples in Q is maintained

by the ECC of Q.



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 116

Other operators shown in Table 4.1 retain the uniqueness from tuples in their

input XAT tables T to tuples in their output XAT tables Q. This is because (i)

each tuple in T maps to one tuple in Q and vice versa and (ii) ECC of Q is equal

to ECC of T .

Hence, we conclude that Theorem 4.3.1holds.2

4.3.3 Example for Semantic Identifier Generation

In the algebra tree in Figure 4.2 we note that before the XML Union (op-

erator # 13) query processing is performed normally without the need to

perform any additional id-specific operations. The XML Union (operator

# 13) assigns source column prefix order ids (a and b) to the nodes in the

new column $col4. The Tagger (operator # 14) constructs new nodes “en-

try” from the collections in $col4 using the Context Schema of $col4. The

Lineage specification of column $col4 consists of columns $b and $e. Hence,

we derive the body of the semantic id from corresponding projected nodes

in these columns. For example, for the first tuple in the XAT table we gener-

ate the semantic id body b.b..e.f . Since the Order specification of $col4 also

refers to the same columns “()”, we conclude that the semantic id body rep-

resents the order. In particular, the semantic id itself reflects the document

order of the source “book” node as major order and document order of the

source “entry” node as minor order. The generated semantic id becomes

b.b..e.f c after adding the constant prefix “c”.

The Group By (operator # 15) groups the constructed nodes in column

$col5 by the year (column $y). The Order specification (in the Context Schema)

of the grouped column ($col5) indicates that the ids in that column already



4.3. GENERATING SEMANTIC IDENTIFIERS FROM THE CONTEXT

SCHEMA 117

reflect the order. Hence, we do not assign any prefix node ids. The Tagger

(operator # 16) constructs new nodes “books” for the collections in col-

umn $col5. The created nodes are assigned semantic ids that are derived

from the “year” values in column $y. Since the order specification of col-

umn $col5 is null, the Tagger operator assigns a prefix order constant “∼”

to each new node, indicating that no-order is defined for those nodes. For

example, the first constructed node is given a semantic node id “∼ 1994c”.

The Order By operator (operator # 17) does not perform any node id

manipulation. The Tagger (operator # 18) constructs new nodes “yGroup”.

with semantic ids 1994c (on top of the “books” node with id ∼ 1994c) and

2000c (on top of the “books” node with id ∼ 2000c). Note that the order

prefix and the id body for each of these semantic ids were the same. Hence,

they have been merged. Next the Combine (operator # 19) combines these

nodes into a collection. The input column ($col7) for the Combine operator

has a Order Context that is equal to the Lineage Context of that column, in-

dicated by the “()”. Hence, nodes in the created collection already reflect

the order, and no order prefix is assigned. Finally the Tagger (operator #

20) constructs a root node for the result on top of the collection in column

$col7. The semantic id assigned to this root node is ∼ ∗c as derived from

the Context Schema of column $col7 ([*]).

The final result of executing the query is shown in Figure 4.7(a). Note

that the generated semantic ids serve as local unique ids for nodes (among

all nodes with the same parent node) and at the same time encode the

nodes’ local order (semantic ids that start with ∼ reflect no-order seman-

tics).



4.4. XML FUSION USING SEMANTIC IDENTIFIERS 118

4.4 XML Fusion Using Semantic Identifiers

Now we introduce the method of id-based fusion for XML result pieces

using our semantic ids. We first define a mechanism for merging XML

fragments processed incrementally with the existing XML result. For this

we use the Deep Union operator. The Deep Union operator was introduced

in the context of the semi-structured data model in [BDT99]. We here adapt

the Deep Union operation to the general XML tree model.

Definition 4.4.1 The Deep Union (
⊔

) takes two sets of XML trees T1 and T2 and

recursively unions them. An XML tree t = r : ch is represented by its root node

r and the children list of that root node ch. The Deep Union first unions the root

nodes of the XML trees in T1 and T2 by node identifier and recursively performs

deep union on the respective lists of children nodes. The resulting set of XML trees

includes all XML trees in the two lists T1 and T2 with only one occurrence of any

matching root nodes.

T1
⊔

T2 = { r : chi
⊔

chj | r.id = ri.id= rj.id, ri : chi ∈ T1, rj : chj ∈ T2} ∪

{ ri : chi | ri : chi ∈ T1, 6 ∃ ri : chi ∈ T2 where ri.id=rj .id} ∪ { rj : chj | rj : chj

∈ T2, 6 ∃ ri : chi ∈ T1 where rj.id=ri.id}

Our solution enables views to be distributive over the Deep Union oper-

ator. This means that we can process insert source updates incrementally

without recomputing the view. For example, if the view V (S1, S2) = S1 ⊲⊳

S2 is distributive over the Deep Union operator, this means that we should

be able to maintain the view as follows: V (S1
⊔

△S1, S2) = (S1 ⊲⊳ S2)
⊔

(△S1 ⊲⊳ S2) where △S1 is an update to S1. In other words, we can prop-



4.4. XML FUSION USING SEMANTIC IDENTIFIERS 119

agate the update by simply processing △S1 ⊲⊳ S2 and merging the result

with the existing view extent (S1 ⊲⊳ S2).

Now we illustrate how to apply this to our running example view shown

in Figure 1.2 and the source update shown in Figure 1.2. Note here that

since the example view involves a self-join we treat each access to the same

source as a separate source. Hence, the view in Figure 1.2(a) is defined as

V (S1, S2, S3), where S1 =“bib.xml”, S2 =“bib.xml”, and S3= “prices.xml”.

As a result of the update △“bib.xml” shown in Figure 4.1(a) we need to

show that V (S1
⊔

△ S1, S2
⊔

△ S2, S3) = V (S1, S2, S3)
⊔

V (△S1, S2, S3)
⊔

V (S1,△S2, S3)
⊔

V (△S1,△S2, S3)
10. This is also equal to V (S1, S2, S3)

⊔

V (△S1, S2, S3)
⊔

V (S′1,△S2, S3) by merging the third and the fourth terms

and given that S′1 = (S1
⊔

△S1).

This is possible because when processing the source updates, our solu-

tion reproduces old node identifiers and generate new ones, as appropri-

ate, in a way that enables fusing the processed updates with the result. We

discuss the correctness of our solution in Section 4.5.

Example. First we assign appropriate Flexkeys to the new nodes in-

serted into the source document as shown in Figure 3.1(b). Next we process

the incremental parts of the propagation formula above. Namely, V (△S1, S2, S3)

and V (S′1,△S2, S3). Lastly we fuse the results of propagating the updates

with the original view extent V (S1, S2, S3). Figure 4.7(a) shows the orig-

inal view extent V (S1, S2, S3). Figures 4.7(b) and (c) show the results of

executing V (△S1, S2, S3) and V (S′1,△S2, S3) respectively. We show how

10Note that the query is performing a self join and S1 = S2 = “bib.xml”. Hence, an update
to “bib.xml” affects both S1 and S2.



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 120

V (S′1,△S2, S3) was obtained as an example in Figure 4.6. Merging the

incremental results, that is propagated updates in Figure 4.7(b) and (c),

with the original view extent (in Figure 4.7(a)) using the Deep Union op-

erator results in the refreshed view extent shown in Figure 4.7(d). Note

that only the XML fragment with root node b.l..e.lc is added to the view

extent. Other nodes that appear in the propagated updates are fused with

the corresponding nodes from the original view extent due to equivalent

ids. Also note that the order is maintained in the refreshed view extent,

as the order encoded in the node identifier b.l..e.lc indicates that it should

come second when compared with the other sibling node with id b.b..e.f c.

In general, the final result we get in Figure 4.7(d) is equivalent to the result

we would get if we were to process the view query over the entire source

document after applying the source update to it.

4.5 Distributive Property of Views on Insert Updates

Through the use of our semantic identifiers, views can be maintained in a

distributive manner on source update inserts. In Section 4.4 we have intro-

duced how such property is defined using the Deep Union operator. Now

we show how such property holds for the class of views we support. To do

this, we need first to show that individual algebraic operators in such views

are distributive. For this we define a union operation called TUnion (
t

⊔) that

we use to define the distributive property of individual algebraic operators

that manipulate XAT tables. TUnion is similar to the union operator in the

relational context, except that it now also catches the rich semantics of XML



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 121

SS ””bib.xmlbib.xml””
$S$S11

ff$S1,book/$S1,book/@@year/textyear/text()()
$y$y

DistinctDistinct($y)($y)

CombineCombine $col7$col7

LOJLOJ$y= $col1$y= $col1

TT<entry>$col4</entry><entry>$col4</entry>
$col5$col5

TT<result>$col7</result><result>$col7</result>
$col8$col8

SS ””bib.xmlbib.xml””
$S$S22

ff $S1,book$S1,book
$b$b

ff$b, @year/text()$b, @year/text()
$col1$col1

~*c

$col8[ ]

~*c

$col8[ ]

1994b.l

$col1
()[$b]

$b
()[ ]

1994b.l

$col1
()[$b]

$b
()[ ]

2000

1994

$y [ ]

2000

1994

$y [ ]

b.l

$b
()[ ]

1994

$y
($b)[ ]

b.l

$b
()[ ]

1994

$y
($b)[ ]

FF$e, price$e, price
$col3$col3

e.L

$e
($b,$e)

[ ]

b.L

$b
($b,$e)

[ ]

{b.l.b}

$col2
($b,$e)

[$b]

1994

$y
($b,$e)

[ ]

{e.l.b}

$col3
($b,$e)

[$e]

e.L

$e
($b,$e)

[ ]

b.L

$b
($b,$e)

[ ]

{b.l.b}

$col2
($b,$e)

[$b]

1994

$y
($b,$e)

[ ]

{e.l.b}

$col3
($b,$e)

[$e]

ÈÈ $col2, $col3$col2, $col3
$col4$col4

e.l

$e
($b,$e)

[ ]

b.L

$b
($b,$e)

[ ]

{(a)b.l.b,
(b)e.l.b}

$col4
()

[$b{a}, $e{b}]

1994

$y
($b,$e)

[ ]

e.l

$e
($b,$e)

[ ]

b.L

$b
($b,$e)

[ ]

{(a)b.l.b,
(b)e.l.b}

$col4
()

[$b{a}, $e{b}]

1994

$y
($b,$e)

[ ]

GroupByGroupBy$y$y((CombineCombine$col5$col5))

TT<books>$col5</books><books>$col5</books>
$col6$col6

TT<<yGroupyGroup Y={$y}>$Y={$y}>$col6</col6</yGroupyGroup>>
$col7$col7

b.l..e.l

$col5
() [ ]

1994

$y
($b,$e)

[ ]

b.l..e.l

$col5
() [ ]

1994

$y
($b,$e)

[ ]

{b.l..e.lc}

$col5 [$y]

1994

$y [ ]

{b.l..e.lc}

$col5 [$y]

1994

$y [ ]

~1994c

$col6 [ ]

1994

$y[ ]

~1994c

$col6 [ ]

1994

$y[ ]

1994c

$col7()[ ]

1994c

$col7()[ ]

{~1994c}

$col7[*]

{~1994c}

$col7[*]

11

22

33

44

55

66

77

1212

1313

1414

1515

1616

1818

1919

2020

x

SS””prices.xmlprices.xml””
$S$S33

ff$S2,entry$S2,entry
$e$e

88

9

FF$b,title$b,title
$col2$col21111

e.l

e.f

e.b

$e ()[ ]

e.l

e.f

e.b

$e ()[ ]JoinJoin $b/title= $e/b$b/title= $e/b--titletitle
1010b.L

$b
($b,$e)[ ]

e.l

$e
($b,$e)[ ]

1994

$y
($b,$e)[ ]

b.L

$b
($b,$e)[ ]

e.l

$e
($b,$e)[ ]

1994

$y
($b,$e)[ ]

OrderByOrderBy$y$y
1717~1994c

$col6 ($y)[ ]

1994

$y()[ ]

~1994c

$col6 ($y)[ ]

1994

$y()[ ]

Figure 4.6: Query processing for V (S′1,△S1, S2).



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 122

(a)

result

yGroup yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c 2000c

~1994c

~2000c

b.b..e.fc
b.f..e.bc

(a)b.b.b (b)e.f.b
(a)b.f.b (b)e.b.b

Y=“1994” Y=“2000”

result

yGroup

title

books

entry

price

~*c

Y=“1994”

(b)

(d)

result

yGroup yGroup

title
“TCP/IP.. ”

books

entry

price
“65.95”

title
“Data .. ”

books

entry

price

“39.95”

~*c

1994 c 2000c

~1994c ~2000c

b.b..e.fc b.f..e.bc

(a)b.b.b (b)e.f.b (a)b.f.b (b)e.b.b

Y=“1994”
Y=“2000”

title
“Advanced...”

entry

price
“69.99”

b.l..e.lc

(a)b.l.b (b)e.l.b

b.b..e.fc

(a)b.b.b (b)e.f.b

1994 c

~1994c

result

yGroup

title

books

entry

price

~*c

b.l..e.lc

(a)b.l.b (b)e.l.b

1994 c

~1994c

(c)
“Advanced...” “69.99”“TCP/IP…” “65.95”

Y=“1994”

Figure 4.7: The result of computing (a) initial view: V (S1, S2, S3), (b) in-
cremental result: V (△S1, S2, S3), (c) incremental result V (S′1,△S2, S3), and
(d) the refreshed XML result.

data stored in XAT tables. That is, TUnion operator merges matched XAT

tuples.

Definition 4.5.1 TUnion (
t

⊔) takes two XAT tables T1 and T2 with the same

schema and unions them. The result is an XAT table that contains a single oc-

currence of each pair of matching tuples (as specified in Definition 4.2.4) and all

non-matching tuples from T1 and T2. Each pair of matching tuples (t1 and t2) is

merged into a single tuple (tunion) that contains a single occurrence of the match-

ing nodes from t1[coli] and t2[coli], coli ∈ ECC , and the union of the contents of

t1[coli] and t2[coli], coli /∈ ECC .

T1
t

⊔ T2 = {t1|t1 ∈ T1 and 6 ∃t2 ∈ T2 where t1 ≍ t2} ∪ {t2|t2 ∈ T2 and

6 ∃t1 ∈ T1 where t2 ≍ t1} ∪ {tunion|∀t1 ∈ T1, ∃t2 ∈ T2 where t1 ≍ t2}



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 123

tunion is a tuple that conforms to the schema of t1 and has the same ECC as

t1. tunion is defined as follows:

∀coli ∈ tunion, tunion[coli] = t1[coli], if coli ∈ECC and tunion[coli] = (t1[coli]

∪ t2[coli]) if coli /∈ ECC . t1[coli] ∪ t2[coli] contains the union of contents of

t1[coli] and t2[coli] where nodes are matched by node id.

Our semantic identifier solution allows the algebraic operators shown

in Table 4.1 to become distributive over the TUnion operator on insert up-

dates. Hence, we can conclude that incremental fusion of separately pro-

cessed pieces of data gives the same result that we would get if we were to

process all the data together.

Theorem 4.5.1 Given our semantic identifier solution, all algebraic operators pre-

sented in Table 4.1 become distributive over the TUnion operator. For an unary

operator op with input XAT table T and △T is an update to T the following

equation holds: op(T
t

⊔ △T ) = op(T )
t

⊔ op (△T ). If op is a binary operator

with input XAT tables T1 and T2 and△T1 is an update to T1 this equation holds:

(T1
t

⊔ △T1) op T2 = (T1 op T2)
t

⊔ (△T1 op T2).

Proof: At this point △T1 represents only an insert update, we will discuss the

distributive property of operators for other types of updates in Chapter 7. We

use the notations shown in Table 4.3 throughout this proof. For simplicity of the

discussion we omit details about the order of nodes from this proof and we discuss

them separately in Corollary 4.5.2.

There are two possible scenarios when the update is applied to the input XAT

table T :



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 124

Notation Meaning

T The input XAT table of operator op, T = {tin1, tin2, .., tinn}

tini A tuple ∈ T , tini = [[ci,1, ci,2, .., ci,m]]

ci,j A cell in tini that corresponds to content of tuple tini for column colj

(i.e., ci,j= tini[colj])

n The number of tuples in T

m The number of columns in the schema of T

Q The output XAT table of operator op, Q = {tout1, tout2, .., touty}

y The number of tuples in Q

(can be smaller than, bigger than, or equal to n depending on the operator)

△T An update to T ,△T = {xin}

xin A tuple representing the update to T , xin = [[x1, x2, .., xm]]

xj cell in xin corresponding to column colj

(i.e., xj= xin[colj])

△Q The result of processing the update△T ,△Q = {xout1, xout2, .., xoutx}

xouto A a tuple resulting from processing the input update△T

Table 4.3: Notations used in the proof of Theorem 4.5.1.

• (I) ∃tini ∈ T and tini ≍ xin. In other words, the update tuple xin matches

a tuple tini in T . In this case we denote the updated XAT table T as T ′. T ′=

{tin1, .., tin
′
i, .., tinn} where tin′i replaces tini in the original XAT table

T . tin′i= [[c′i,1, c
′
i,2, .., c

′
i,m]] where c′i,j = ci,j = xj if colj ∈ ECC by the

definition of the TUnion, c′i,j = (ci,j ∪ xj) if colj /∈ ECC , 1 ≤ j ≤ m. We

denote the output XAT table resulting from executing the operator on T ′ as

Q′.

• (II) 6 ∃tini ∈ T where tini ≍ xin. In other words, the update tuple xin

does not match any tuple in T . In this case we denote the updated XAT

table as T ′′, T ′′= {tin1, tin2, .., tinn, xin}. We denote the output XAT table

resulting from executing the operator on T ′′ as Q′′.

Now we prove the theorem for different XAT operators for each of the two

scenarios.



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 125

For the Navigate Collection operator we find that:

• (I) Φcolk
colj ,path(T

t

⊔ △T ) = Φcolk
colj ,path(T ′) = Q′, Q′ = {tout1, .., tout′i, .., toutn}

where for the input tuple tin′i = tini
t

⊔ xin, tout′i is generated, tout′i =

[[ci,1, ci,2, .., ci,m, c′i,k]] where c′i,k is the result of applying path to tin′i. Con-

sider that the column we navigate from using path is colj , the result in c′i,k

is obtained by navigating from ci,j . ci,j is equal to (1) ci,j (and xj), if colj ∈

ECC or (2) c′i,j ∪ xj if colj /∈ ECC .

Now consider that we process T and△T separately. We find that Φcolk
colj ,path(T )

t

⊔ Φcolk
colj ,path(△T ) = Q

t

⊔ △Q = Q′ where△Q = {xout}, xout = [[x1, x2, ..,

xm, xk]], xk is the result of applying path to △T . Q
t

⊔ △Q = Q′ holds

because ∃ touti ∈ Q, touti ≍ xout, by the definition of the TUnion and as

ECC of Q is exactly the same as ECC of T . We find that touti
t

⊔ xout

= [[ci,1, ci,2, .., ci,m, (ci,k ∪ xk)]] and (ci,k ∪ xk) = c′i,k from above. Hence,

touti
t

⊔ xout = tout′i from above, by the definition of the TUnion and since

the two tuples touti and xout match by the same columns as tini and xin.

• (II) Φcolk
colj ,path(T

t

⊔ △T ) = Φcolk
colj ,path(T ′′) = Q′′, Q′′ = {tout1, tout2,

.., toutn, xout} where xout = [[x1, x2, .., xm, xk]], and xk is the result of

applying path to△T . Now consider that we process T and△T separately.

We find that Φcolk
colj ,path(T )

t

⊔ Φcolk
colj ,path(△T ) = Q

t

⊔ △Q = Q′′ where Q′′ =

{tout1, .., touti, .., toutn, xout}. This holds because since 6 ∃ tini ∈ T such

that tini ≍ xin and since the new column colk is a collection column (hence

colk /∈ ECC), by the definition of the TUnion we conclude that 6 ∃ touti ≍

xout.

For the Navigate Unnest operator we find that:



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 126

• (I) φcolk
colj ,path(T

t

⊔ △T ) = φcolk
colj ,path(T ′) = Q′, Q′ = {tout1, .., tout′i, .., touty},

y is the total number of nodes reachable from column colj through path,

y ≤ n. For the input tuple tini ≍ xin the navigation process through

path generates a set of output tuples {tout′i1, tout′i2, .., tout′io}, tout′iu =

[[ci,1, ci,2, .., ci,m, cu,k]], 1 ≤ u ≤ o, o is the number of nodes reachable from

node(s) in tin′i[colj ] through path. The collection of cells in column colk

resulting from the navigation from tin′i (each cell is stored in a separate tu-

ple) is {c1,k, c2,k, .., co,k}. Such result is generated by navigating from c′i,j ,

where c′i,j = ci,j = xj . If colj ∈ ECC , then this result is equivalent to the

result of navigating from either ci,j or xj . If colj /∈ ECC , then the result

is generated by navigating from c′i,j= (ci,j ∪ xj), which is also equal to the

union of navigating from ci,j and from xj .

Now consider that we process T and△T separately. We find that φcolk
colj ,path(T )

t

⊔ φcolk
colj ,path(△T ) = Q

t

⊔ △Q = Q′ where △Q = {xout1, xout2, .., xoutp},

xoutv = [[xoutv,1, xoutv,2, .., xoutv,m, xoutu,k]], 1 ≤ v ≤ p, p is the num-

ber of nodes reachable from node(s) in xin through path. Q
t

⊔ △Q = Q′

holds because if colk ∈ ECC , for every xoutv, ∃ touti ∈ T such that touti

≍ xoutv, by the definitions of the TUnion and the Navigate Unnest.

Hence each tuple in the resulting collection ({xout1, xout2, .., xoutp}) in

△Q matches a tuple in Q and we obtain Q’ as above.

• (II) φcolk
colj ,path(T

t

⊔ △T ) = φcolk
colj ,path(T ′′) = Q′′, Q′′ = {tout1, tout2, ..,

toutn, xout1, xout2, .., xoutp}, where no input tuple tini ≍ xin. Hence, the

resulting collection in column colk ({c1,k, c2,k, .., cn,k, x1,k, x2,k, .., xp,k})

(across all tuples in colk) is clearly composed of two subsets, (i) the first



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 127

subset {c1,k, c2,k, .., cn,k} resulting from navigating from column colj in

all tini and (ii) the second subset {x1,k, x2,k, .., xp,k} resulting from nav-

igating from colj in xin. Now consider that we process T and △T sep-

arately. We find that φcolk
colj ,path(T )

t

⊔ φcolk
colj ,path(△T ) = Q

t

⊔ △Q = Q′′

where △Q = {xout1, xout2, .., xoutp}, xoutv = [[xv,1, xv,2, .., xv,m, xu,k]],

1 ≤ v ≤ p, p is the number of nodes reachable from node(s) in xin through

path. Since 6 ∃ tini where tini 6≍ xin, we conclude that non of the tuples

in △Q will match a tuple in Q, by the definitions of the TUnion and the

Navigate Unnest. Hence, Q
t

⊔ △Q is clearly equivalent to Q′′ = {tout1,

.., tout′i, .., toutn, xout1, xout2, .., xoutp} and the column colk will contain

({c1,k, c2,k, .., cn,k, x1,k, x2,k, .., xp,k}) as above.

For the Combine operator we find that:

• (I) Ccolj(T
t

⊔ △T ) = Ccolj(T
′) = Q′, Q′ = {tout} = {[[(c1,j , .., c

′
i,j, .., cn,j)]]},

where c′i,j = ci,j = xj if colj ∈ ECC and c′i,j = (ci,j ∪ xj) if colj /∈ ECC , by

the definition of the TUnion. Now consider that we process T and△T sepa-

rately. We find that Ccolj(T )
t

⊔Ccolj(△T ) = Q
t

⊔△Q= {[[(c1,j , c2,j , .., cn,j)]]}

t

⊔ {[[(xj)]]}}. This is equal to {[[(c1,j , .., c
′
i,j , , .., cn,j)]]} where c′i,j = ti,j =

xj if colj ∈ ECC and c′i,j (ci,j ∪ xj) If colj /∈ ECC , by the definition of

TUnion. Hence, Q
t

⊔ △Q = Q′ holds.

• (II) Ccolj(T
t

⊔ △T ) = Ccolj(T
′′) = Q′′, Q′′ = {[[(c1,j , c2,j , .., cn,j , xj)]]}.

Now consider that we process T and△T separately. We find that Ccolj(T )
t

⊔

Ccolj(△T ) = {[[(c1,j , c2,j , .., cn,j)]]}
t

⊔ {[[(xj)]]} = {[[(c1,j , c2,j , .., cn,j , xj)]]}

= Q′′, by the definition of TUnion.

For the XML Union operator we find that:



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 128

• (I)
x
∪

colk

colj ,coll
(T

t

⊔ △T ) =
x
∪

colk

colj ,coll
(T ′) = Q′, Q′ = {tout1, .., tout′i, .., toutn},

tout′i = [[c1′i,1, .., c
′
i,j , .., c

′
i,l, .., c

′
i,m, c′i,k]]. colk is a collection column. Hence,

colk /∈ ECC . c′i,j = (c′i,j ∪ xj) if colj /∈ ECC , and c′i,j = ci,j = xj if colj

∈ ECC , by the definition of the TUnion. Also, c′i,l = (ci,l ∪ xl) if coll /∈

ECC , and c′i,l = c′i,l =xl if coll ∈ ECC . Hence c′i,k contains the union of

all contents of ci,j ∪ xj ∪ ci,l ∪ xl. Now consider that we process T and

△T separately. We find that
x
∪

colk

colj ,coll
(T )

t

⊔
x
∪

colk

colj ,coll
(△T ) = Q

t

⊔ △Q, Q

= {tout1, .., touti, .., toutn}, △Q = {xout} = {[[x1, x2, .., xm, xk]]}. We

find that since xin ≍ tini, and by the definition of the TUnion and since

colk is a collection column by the definition of the XML Unique, xout ≍

touti. Hence, Q
t

⊔ △Q = {tout1, .., tout′i, .., toutn} = Q′, tout′i = (xout

t

⊔ touti) = [[c′i,1, .., c
′
i,j , .., c

′
i,l, .., c

′
i,m, c′i,k]] where c′i,k contains the union of

node ids in ci,j ∪ xj and ci,l ∪ xl.

• (II)
x
∪

colk

colj ,coll
(T

t

⊔ △T ) =
x
∪

colk

colj ,coll
(T ′′) = Q′′, Q′′ = {tout1, tout2, .., toutn,

xout}. When we consider processing T and △T separately we find that
x
∪

colk

colj ,coll
(T )

t

⊔
x
∪

colk

colj ,coll
(△T ) = Q

t

⊔ △Q= {tout1, tout2, .., toutn, xout} =

Q′′. This holds because since ∃ tini ∈ T where tini ≍ xin and colk cannot

be ∈ ECC (given that it is a collection column), we conclude that ∃ touti ∈

Q where touti ≍ xout.

For the XML Unique operator we find that:

• (I) υcolk
colj

(T
t

⊔ △T ) = υcolk
colj

(T ′) = Q′, Q′ = {tout1, .., tout′i, .., toutn}, tout′i

= [[c′i,1, .., c
′
i,j , .., c′i,m, c′i,k]]. colj and colk are both collection columns (by

the definition of the XML Unique). Hence, colj /∈ ECC and colk /∈ ECC .

For tini ≍ xin, c′i,j = (ci,j ∪ xj). The resulting collection in c′i,k con-



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 129

tains all the node id in (ci,j ∪ xj) after eliminating duplicate ids. Now

consider that we process T and △T separately. We find that υcolk
colj

(T )
t

⊔

υcolk
colj

(△T ) = Q
t

⊔ △Q, where △Q = {xout} = {[[x1, x2, .., xm, xk]]}. We

find that since ∃ xin, xin ≍ tini, and since colk is a collection column

by the definition of the XML Unique and of the TUnion, xout ≍ touti.

Hence, Q
t

⊔ △Q = {tout1, .., tout′i, .., toutn} = Q′, tout′i = (xout
t

⊔ touti)

= [[c′i,1, .., c
′
i,j , .., c

′
i,m, c′i,k]] where c′i,k contains all the node ids in ci,j ∪ xj

after eliminating duplicate ids.

• (II) υcolk
colj

(T
t

⊔ △T ) = υcolk
colj

(T ′′) = Q′′, Q′′ = {tout1, tout2, .., toutn, xout}.

When we consider processing T and △T separately we find that υcolk
colj

(T )

t

⊔ υcolk
colj

(△T ) = Q
t

⊔ △Q= {tout1, tout2, .., toutn,X} = Q′′. This holds

because 6 ∃ tini ∈ T where tini ≍ xin and colk cannot be ∈ ECC (as colk

is a collection column), we conclude that 6 ∃ touti ∈ Q, where touti ≍ xout.

For the Tagger operator we find that:

• (I) T colk
p (T

t

⊔ △T ) = T colk
p (T ′)= Q′, Q′ = {tout1, .., tout′i, .., toutn}, tout′i

= [[c′i,1, .., c
′
i,j , .., c

′
i,k]]. colj is the input column for p and colk is result

column containing the newly constructed nodes. The newly constructed

node in colk is assigned an id that is generated from the Context assigned to

colj , as we have discussed earlier in Section 4.3. This Context is obtained

from the value in the cell corresponding to the Context Schema column(s)

(which is always ∈ ECC) of colj . We denote the Context Schema column

for colj as coly . (i) If colj ∈ ECC then coly must be equal to colj and c′i,j=

ci,j = xj . Hence, the newly constructed node created in c′i,k is assigned an id

that is derived from the node in ci,j which will be also equal to the id we can



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 130

derive from the node in xj . (ii) If colj /∈ ECC , and since coly ∈ ECC , the

newly constructed node created in c′i,k is assigned an id that is derived from

the node the node in ci,y, c′i,j= (ci,j ∪ xj).

Now consider that we process T and△T separately. We find that T colk
p (T )

t

⊔ T colk
p (△T ) = Q

t

⊔ △Q = Q′. This holds because (i) if colj ∈ ECC , the

node in c′i,k is assigned an id that is derived from ci,j and the node in xk is

assigned an id that is derived from xj , and since ci,j = xj , we conclude that

ci,k = xk. (ii) if colj /∈ECC , the node in c′i,k is assigned an id that is derived

from ci,y and the node in xk is assigned an id that is derived from xy, and

since ci,y = xy we conclude that ci,k = xk. We finally conclude that xout ≍

touti.

• (II) T colk
p (T

t

⊔ △T ) = T colk
p (T ′′)= Q′′, Q′′ = {tout1, tout2, .., toutn, xout}.

When we process T and△T separately, we find that T colk
p (T )

t

⊔ T colk
p (△T )

= Q
t

⊔△Q = {tout1, tout2, .., toutn}
t

⊔ {xout} = {tout1, tout2, .., toutn, xout}

= Q′′. This hold because since 6 ∃ tini ∈ T where tini ≍ xin, we conclude

that 6 ∃ touti ∈ Q where touti ≍ xout, by the definition of Tagger operator

and the TUnion.

The Source operator differs from the other operators in that it takes an XML

document (xmlDoc) as input instead of an XAT table. Hence we represent an

update to the source of the Source operator as △xmlDoc and we use the Deep

Union instead of the TUnion to apply the update to its input. For the Source

operator we find that:

• (I) Scolk
xmlDoc

⊔

△xmlDoc = Scolk
xmlDoc′ = Q′, Q′ = {tout} = {[[c1,1]]}. When

we process T and △T separately, we find that Scolk
xmlDoc

t

⊔ Scolk
△xmlDoc = Q

t

⊔



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 131

△Q= {[[c1,1]]}
t

⊔ {[[x1,1]]} = {[[c1,1]]}= Q′, since c1,1 = x1,1 as the update

must have the same root id as the updated XML document root id.

• (II) The case in which xmlDoc does not match △xmlDoc by root node id

is not possible to occur under our assumptions because it means that the

source update inserts an entire new document (with new root node). This is

not considered an update to the existing source document, hence we do not

deal with it.

The Expose operator is also different than other operators. It takes an XAT ta-

ble as input and generates a set of XML document(s) as output (represented using

their root node ids). The Expose operator simply takes the nodes (or collections)

in column colj and expose them in the result as root nodes.

• (I) ǫcolj (T
t

⊔ △T ) = ǫcolj(T
′) = Q′, Q′ = {tid1, tid2,.., tidy} is the set of

exposed XML fragments roots tidi, y is the total number of nodes in colj

in T ′. It is easy to see that this result is equal to the result we obtain if we

process T and△T separately. In other words, ǫcolj(T )
t

⊔ ǫcolj(△T ) = Q′.

• (II) ǫcolj (T
t

⊔ △T ) = {tid1, tid2, .., tidu} ∪ {xid1, xid2,..,xidv} = Q′′,

where u is the total number of nodes in colj in T , v is the total number of

nodes in xinj . It is easy to see that this is equal to the result we get if we

process T and△T separately. In other words ǫcolj(T )
t

⊔ ǫcolj(△T ) = Q′′

For the purpose of this proof we consider a Group By operator that takes a

Combine operator as its input function, hence performing a grouping operation

(by value) or a nesting operation (by id). We also consider that the grouping col-

umn list contains only one column colj . We find that:



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 132

• (I) γcolj(T
t

⊔ △T,Ccolk) = γcolj (T
′, Ccolk)= Q′, Q′ = {tout1, .., tout′q, .., touty}

where the input tuple tin′i = tini
t

⊔ xin maps to the output tuple tout′q

that represents the group that tin′i belongs to. By the definition of the

Group By, a grouping column colj in T has to be a non-collection col-

umn. In Q, colj continues to be a non-collection column. It now becomes

∈ ECC . Now consider that we process T and△T separately. We find that

γcolj(T,Ccolk)
t

⊔ γcolj(△T,Ccolk) = Q
t

⊔ △Q = {tout1, tout2, .., touty}
t

⊔

{xout} = {tout1, .., tout′q, .., touty} = Q′, where tout′i = touti
t

⊔ xout. This

holds because since ∃ tini ∈ T , xin ∈ △T and tini ≍ xin and since tini,j

= xj , hence, xout ≍ toutq, and we conclude that tout′i = touti
t

⊔ xout.

• (II) γcolj(T
t

⊔ △T,Ccolk) = γcolj (T
′′, Ccolk)= Q′′. The update tuple xin

6≍ tini, yet tini,j may be equal to xinj or may not. If ti,j = xj , Q′′ =

{tout1, .., tout′o, .., touty}, where tout′i is a tuple that groups tini and xin.

If tini,j 6= xj , Q′′ = {tout1, tout2, .., touty, xout}, xout represents a new

group. Now consider that we process T and △T separately. We find that

γcolj(T,Ccolk)
t

⊔ γcolj (△T,Ccolk) = Q
t

⊔ △Q = {tout1, tout2, .., toutp}
t

⊔

{xout} = Q′′. Q′′ = {tout1, .., tout′i, .., toutp}, tout′i,j = (touti,j
t

⊔ xout) if

ti,j = xj . Q′′ = {tout1, tout2, .., toutp, xout} if ti,j 6= xj .

Other XAT relational-equivalent operators do not create collections or manip-

ulate them. Hence, it is easier to show how the distributive property holds for

each of them. We give, below , the proof for some of those operators as examples.

Correctness of other XAT relational-equivalent operators can be easily shown in a

similar manner.

For the Select operator with a simple predicate (predicates defined over non-



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 133

collection columns) we find that:

• (I) σc(T
t

⊔ △T ) = σc(T
′) = Q′, T ′ = {tin1, .., tin

′
i, .., tinn}, where tin′i

= (tini
t

⊔ xin). Q′ = {tout1, .., tout′u, .., touty} where tout′u in Q cor-

responds to tin′i in T , assuming that tin′i (also, tini and xin) passes the

selection predicate, 1 ≤ u ≤ y, 1 ≤ y ≤ n. Now consider that we pro-

cess T and △T separately. We find that σc(T )
t

⊔ σc(△T ) = Q
t

⊔ △Q =

{tout1, tout2, .., touty}
t

⊔ {xout} = Q′. Since both tini and xin pass the

predicate, Q′′ = {tout1, .., tout′u, .., toutn}, where tout′u = (toutu
t

⊔ xout),

as above.

• (II) σc(T
t

⊔ △T ) = σc(T
′′) = Q′′, where 6 ∃ tini ∈ T and tini ≍ xin.

Q′′ = {tout1, tout2, .., touty , xout}, assuming the xin passes the selection

predicate and maps to xout in the output. When processing T and△T sep-

arately we find that σc(T )
t

⊔ σc(△T ) = Q
t

⊔ △Q = {tout1, tout2, .., touty}

t

⊔ {xout} = {tout1, tout2, .., toutn, xout}= Q′′, since 6 ∃ toutu ∈ Q and

toutu ≍ xout, by the definition of the TUnion.

For the Distinct operator we find that:

• (I) δcol(T
t

⊔ △T ) = δcol(T
′) = Q′, Q′ = {tout1, .., tout′u, .., touty}, 1 ≤

y ≤ n, n is the number of tuples in T . tout′u is the result of processing the

Distinct operator over the tuple tin′i = (tini
t

⊔ xin). Note that colj is a non-

collection column, by the definition of the Distinct operator. Now consider

that we process T and △T separately. We find that δcol(T )
t

⊔ δcol(△T ) =

Q
t

⊔ △Q,△Q = {xout}. Q
t

⊔ △Q = Q′ holds because ∃ tini ∈ T such that

tini ≍ xin. The Distinct operator generates xout from xin, we find that

xout ≍ toutu and tu,j = xj by the definition of the TUnion.



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 134

• (II) δcol(T
t

⊔ △T ) = δcol(T
′′) = Q′′, Q′′ = {tout1, tout2, .., touty , xout}.

When we process T and △T separately we find that δcol(T )
t

⊔ δcol(△T ) =

Q
t

⊔ △Q = Q′′, △Q = {xout}. Q
t

⊔ △Q = Q′′ holds because 6 ∃ tini ∈ T

such that tini ≍ xin. We conclude that xout 6≍ toutu, toutu ∈ Q by the

definition of the TUnion.

The Theta Join operator takes two input XAT tables. We denote the left input

XAT table as T1 (with nl number of tuples) and the right XAT table as T2 (with nr

number of tuples). We assume the update △T1 updates the left input XAT table.

We find that:

• (I) 1c (T1
t

⊔ △T1, T2) = 1c (T ′1, T2) = Q′. Q′ = {tout1, .., tout′u1, tout′u2, ..

tout′up, .., touty}, 1 ≤ y ≤ nl∗nr, nl is the number of tuples in T1, nr is the

number of tuples in T2. The subset of Q containing {tout′u1, tout′u2, ..tout′up}

represents tuples resulting from joining the input tuple tin′i = (tini
t

⊔ xin)

from T1 with tuples in T2, on the predicate c. Now consider that we pro-

cess T1 and △T1 separately. We find that 1c (T1, T2)
t

⊔ 1c (△T1, T2) =

{tout1, tout2, .., touty}
t

⊔ {xout1, xout2, ..xoutp} = Q′, xoutu is the tuple

resulting from joining xin with a tuple in T2, 1 ≤ u ≤ p. This holds because

each tuple xouto in △Q matches a tuple toutu in Q, since all columns colj

in Q maintain the same status with respect to ECC as its corresponding

column in T1 or T2, and by the definition of the TUnion.

• (II) 1c (T1
t

⊔ △T1, T2) = 1c (T ′′1 , T2) = Q′′. Q′′ = {tout1, tout2, .., touty ,

xout1, xout2, .., xoutp}, 1 ≤ y ≤ nlbl, nl is the number of tuples in T1, nr

is the number of tuples in T2, 1 ≤ p ≤ nr. When we process T1 and △T1

separately we find that 1c (T1, T2)
t

⊔1c (△T1, T2) = {tout1, tout2, .., touty}



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 135

t

⊔ {xout1, xout2, ..xoutp} = {tout1, tout2, touty, xout1, xout2, .., xoutp}

= Q′′. This holds because since 6 ∃ tini ∈ T1 such that tini ≍ xin, and

given that columns in Q maintain there status with respect to ECC .

The Cartesian Product ×(T1, T2) operator follows the same logic as that of

the Theta Join operator. This also holds for The Left Outer Join =⊲⊳c(T1, T2)

operator on an update it its left input source. Updates to the right input of the

Left Outer Join operator requires a special treatment from the Theta Join opera-

tor. This is because the Left Outer Join operator may produce XAT tuples with

columns corresponding to T2 possibly containing null values. Since we consider

insert updates only at this point, one simple solution that enables this operator to

be distributive is to extend the definition of the match operator (Definition 4.2.4)

to allow what we call partial tuple matching. In particular, two tuples are matched

by comparing all non null values in their corresponding columns. Given this sim-

ple extension, the logic used for the showing the distributivity of the Theta Join

operator directly applies to the Left Outer Join operator. Note that this solution

will not work if we consider delete updates and/or aggregate functions. This is

because it might propagate some duplicate results. In an insert only environment,

such duplicate results merge with previously created result causing no effect on

it. We propose a general solution for maintaining the Left Outer Join operator in

Section 7.4 that supports different updates and aggregation.

The Merge M(T1, T2) operator can be generally maintained using the same

logic as that of join operators. Yet, the Merge operator can propagate updates from

each of its source independently without requiring knowledge of the other source,

see the definition of the Merge operator in Section 2.2. Hence, a more efficient



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 136

treatment for the Merge operator can be adapted that avoids the unnecessary access

to T2. The Merge operator M(T1, T2) can be maintained on an update △T1 to T1

as follows: M(T1
t

⊔ △T1, T2) = M(T1, T2)
t

⊔ M(△T1, {dT2}), where dT2 is the

default tuple of table T2. This default tuple contains a null value in all columns.

We will revisit the default tuple later in Section 7.4.

We conclude that Theorem 4.5.1 holds for all the operators shown in Table 4.1.

2

An insert update to the right input source of binary operator is gener-

ally treated in the same way as that of updates to the left input source, as

shown in Theorem 4.5.1. In particular, T1 op (T2
t

⊔ △T2) = (T1 op T2)
t

⊔

(T1 op△T2). This can directly be shown using the same logic used in prov-

ing Theorem 4.5.1. One exception to this is the Left Outer Join operator. An

insert update to the right input source of a Left Outer Join operator is main-

tained as follows: T1=⊲⊳c(T2
t

⊔ △T2) = (T1=⊲⊳cT2)
t

⊔ (T1 1c T2). This treat-

ment assumes the partial matching strategy proposed when discussing the

Left Outer Join operator in the proof of Theorem 4.5.1. We present a gen-

eral propagation rule for the Left Outer Join operator on all update types in

Chapter 7.

Corollary 4.5.2 Given the Context Schema rules in Table 4.1, the correct order

among any two cells c1 and c2 in a column col of an XAT table T , can be derived.

The Order Context part of the Context Schema defines how the order

among cells in a single column can be derived. This is similar in spirit to

what the Table Order Schema defined in Section 4.3 do. The main difference



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 137

is that the Order Context focuses only on a single column while the Table

Order Schema handles the order of entire tuples. The same logic used for

proving the correctness of the order maintained by the Table Order Schema,

as shown in Theorem 3.3.1, can directly be used to prove the correctness of

order maintained by the Order Context. More discussion on Order Context

and Table Order Schema can be found in Section 4.7.

The order among nodes in sequences (in XAT table cells) is maintained

through assigning overriding order prefix as discussed in Section 4.3. We

have shown in Theorem 3.3.2 the correctness of this treatment. The same

treatment is also adapted now (but we refer to it as the order prefix id)

as part of the semantic id with one difference that is now order prefix is

derived from the Context Schema instead of the Table Order Schema. This

enables ids to be more compact, as we discuss in Section 4.7.

Corollary 4.5.3 For a sequence of m updates X to an input XAT table T of an

operator opout
in (T ), where each update in X affects one single unique tuple from

T , the order of propagating and applying updates in X has no effect on the final

result.

Since each update in X is unique, for those operators that do not group

tuples, each update propagated to the output XAT table Q of opout
in (T ) is

unique, we can conclude, by using Theorem 4.5.1, that Corollary 4.5.3 holds.

For those operators that group the tuples in the output (e.g., Group By and

Combine operators), each update propagates to an insertion of node(s) into

the appropriate group in Q. Since each inserted node encodes its relative

order as we have shown in Section 4.3, the order of propagating and apply-



4.5. DISTRIBUTIVE PROPERTY OF VIEWS ON INSERT UPDATES 138

ing the different updates does not make any difference. Hence, Corollary

4.5.3 holds.

We have shown so far the correctness of propagating single updates

through a single update operator. We now discuss the correctness of prop-

agating updates through a view composed of one or more algebra operator.

Theorem 4.5.4 Given a view V = (S1, S2, ..., Sn) defined over input XML data

sources S1, S2, ..., Sn by an XAT algebraic expression E. Let△Si be an update to

the data source Si of E, 1 ≤ i ≤ n. Let V rec = V (S1, .., Si
⊔

△Si, .., Sn) be the

view extent after recomputation. Let V ′ = V (S1, .., Si, .., Sn)
⊔

V (S1, ..,△Si, .., Sn)

be the view after propagating and applying the update△Si using the Deep Union

operator (defined in Definition 4.4.1). We find that V rec = V ′.

Proof: We prove Theorem 4.5.4 by induction on the height h of the XAT algebra

tree E representing the view V .

Base Case: Since the leaf of the XAT tree should always be a Source operator

and the root of an XAT tree that extracts the result in XML format should be an

Expose operator, the base case h = 1 means that E has two levels. The algebra

tree E has two operators an Expose operator ǫcol′(T ) on top of a Source operator

Scol′

S1
. In this case the output XAT table of the Source operator is the input for the

Expose operator. The result of executing E over S1 is the view extent V , which is

equivalent11 to the source XML document S1, because E provides an entry point

to S1 and then exposes S1 without any manipulation. Now when the update△S1

is applied to S1 the result of executing E over △S1 is V ′, which is equivalent to

△S1. If we execute E over the updated source S′1 we get V rec, which is equivalent

11By equivalent here we mean deep equal.



4.6. THE STABILITY OF SEMANTIC IDENTIFIERS 139

to S′1. Since S1
⊔

△S1 = S′1 we conclude that V rec = V ′.

Induction Hypothesis: For a view V with algebra tree E of height h, V rec

= V ′ holds.

Induction Step: We now show that V ′ = V rec holds for an XAT algebra tree

of height h + 1.

When processing E over the update △Si, the Source operator at the leaf ac-

cessing △Si produces one tuple in its output XAT table. This tuple representing

an intermediate propagated update is then processed by the next operator produc-

ing possibly a sequence of updates (tuples), due to the fact that some operators may

produce more than one tuple by processing one input tuple (e.g., Navigate Unnest

and Joins). Each tuple in the propagated sequence of updates for any operator in

E might generate a unique tuple or might merge with other propagated update (in

case of grouping operator), as we have discussed in Corollary 4.5.3. The Expose at

the root of E extracts the final result constructed incrementally by all operators in

E while processing intermediate propagated updates. By Theorem 4.5.1 and Corol-

lary 4.5.3 , the intermediate updates generated as a result of the source update△Si

are correctly propagated to the root Expose operator of E. Hence, the final result

obtained by processing E over△Si will correctly fuse with the result we obtain by

processing E over the original data sources. Thus, we conclude that V rec = V ′ =

V (S1, .., Si, .., Sn)
⊔

V (S1, ..,△Si, .., Sn). 2

4.6 The Stability of Semantic Identifiers

Our semantic identifers have one important feature. They are stable under

query rewriting. By that we mean that the semantic identifiers generated



4.6. THE STABILITY OF SEMANTIC IDENTIFIERS 140

in the XML result are guaranteed to be the same for any two equivalent

query expressions. This feature is very important for our view framework

solution because it enables incremental maintenance plans to be optimized

freely while ensuring the reproducibility of semantic ids. We state this sta-

bility property more formally in Theorem 4.6.2. To facilitate the discussion

we first define the minimum semantic id. The minimum semantic id is a se-

mantic id that reflects only the uniqueness of the identifier and does not

necessarily reflect the order.

Definition 4.6.1 A minimum semantic id is a semantic id that is derived only

from the Lineage Context of XAT columns.

As we have discussed in Section 4.3.1, only three operators create or

manipulate semantic ids, namely the Tagger, the XML Union, and the Com-

bine operators. Among these operators only the Tagger and the XML Union

operators utilize the Lineage Context to create and manipulate semantic ids.

The Combine operator and the Tagger operator utilize the Order Context to

set the order prefix of semantic ids.

The order prefix assigned by the Combine operator and the Tagger op-

erator to semantic ids is derived from the Order Context as shown in the

functions assignOverRidOrd and composeNodeIds in Figures 4.3 and 4.4

respectively. Such order prefix is not required for ensuring the uniqueness

of XML nodes, as defined in Definition 4.3.1. This can easily be shown by

dropping such order prefix for semantic ids and following the same logic

used in proving Theorem 4.5.1 but now assuming that semantic ids do not

have such order prefix. On the other hand, the order prefix generated by



4.6. THE STABILITY OF SEMANTIC IDENTIFIERS 141

the XML Union operator is derived from the Lineage Context (in particular

from the ColID part defined in Definition 4.2.2). It is thus significant for

ensuing the uniqueness of semantic ids. Such order prefix distinguishes

nodes originating from different input columns of the XML Union operator

in addition to defining order among these nodes (see Section 4.2.2).

Based on the discussion above we state the following proposition.

Proposition 4.6.1 Matching XML nodes by node identifier, as done in Theorem

4.5.1, can be performed using the minimum semantic id.

For proving the stability property of semantic ids, and for simplifying

the proof, we will use Proposition 4.6.1 when matching two semantic ids.

Theorem 4.6.2 For any two equivalent query expressions E1 and E2, where E1

and E2 always produce the same result given the same input, the minimum se-

mantic id for all nodes in the XML results R1 and R2 generater by E1 and E2

respectively are guaranteed to be identical.

Proof: We prove the correctness of Theorem 4.6.2 by showing that operators that

generate or manipulate the minimum semantic id always rely on the same Lin-

eage Context for any two equivalent query expressions E1 and E2 regardless of

the order of operators in E1 and E2 in the query plans. In particular, these opera-

tors are the XML Union operator and the Tagger operator based on the discussion

above. Note that for a base XML node that is exposed in the result, only the XML

Union operator affects its minimum semantic id. In particular, it affects the or-

der prefix part of the id. The body part of the id for such node is always fixed and

is equal to the FlexKey of that node in the source. For a constructed node in the



4.6. THE STABILITY OF SEMANTIC IDENTIFIERS 142

XML result the XML Union operator affects the order prefix in its minimum se-

mantic id and the Tagger operator affects its boy part of its minimum semantic

id.

• The XML Union operator
x
∪

col

col1,col2(T ) uses the function assignColIdPrfx

(Figure 4.5) to assign an order prefix (derived from the ColID defined in

Definition 4.2.2) to each node in the resulting collections of nodes in column

col. These nodes can be either source nodes or constructed nodes. For a

query expression E1 performing only one XML Union operation, an equiv-

alent query expression E2 must also have one XML Union operation given

that the functionality of the XML Union operator is not replaceable by any

other operator or set of operators in the XAT algebra (Section 2.2). The prefix

order assigned to nodes in each of the two plans should be the same given that

the same mechanism is used for generating such ColIDs (same id labeling

mechanism).

For a query expression E1 performing more than one XML Union operation,

we require the equivalent query expression E2 to have the same number of

XML Union operations12 . The XML Union operations in E2 may appear

in any locations and/or order possibly different than those in E1. Given that

12Two equivalent query expression may have different number of XML Union operators
in only one case, if the result of an XML Union operation is unioned with itself. For example,

an expression might define
x

∪
col′

col1,col2(T ) and on top of it
x

∪
col′′

col′,col′(T ). An equivalent query

expression might instead have first two XML Union operators
x

∪
col

col1,col2(T ) and
x

∪
col′′

col1,col2(T )

first and on top of them an XML Union operator
x

∪
col′′′

col′,col′(T ). The first query expression
(with 2 XML Union operators) is an optimization of the second one (with 3 XML Union
operators). We require that such optimization to be either applied or not applied to the
two equivalent expressions. Hence, we get the same number of XML Union operators in
both expressions. As a result, the same ColID keys and order prefix for smectic ids are
generated.



4.6. THE STABILITY OF SEMANTIC IDENTIFIERS 143

E2 has to define the order among the sources of different column sources of

the XML Union operations similar to that in E1 to preserve the equivalency

semantics among E1 and E2. G iven that ColIDs are generated using the

same mechanism for both E1 and E2 in a depth first query tree traversal, as

discussed in Section 4.2.2, the same ColIDs are guaranteed to be assigned

to E1 and E2. We conclude that we get the same order prefix and hence the

same semantic ids (since the body of semantic ids is not affected here) for

nodes processed using E1 or E2.

• The Tagger operator T col
p (T ) uses the function composeNodeIds (Figure

4.4) to generate semantic ids for newly constructed nodes. The semantic id

body is derived from the Lineage Context of some column colj , where colj

is the input column to the Tagger pattern p. The Lineage Context of colj

is created by the operator that creates colj and may be manipulated by other

operators at later stage. Given a query expression E1 with a Tagger operator

T col
p (T ), an equivalent query expression E2 performing the same result con-

struction creates and maintains the same Lineage Context for colj as in E1.

This holds unless colj is affected by an operation that changes its Lineage

Context below the Tagger operator in one of the two expressions. Such op-

erations include: the Combine, the Tagger, and the Group By operators,

as shown in Table 4.1. If any of these operations affected colj in only one

of the query expressions and not the other one, the two expressions are not

equivalent. Hence, we conclude that the same minimum semantic ids are

produced by the Tagger operator for any two equivalent query expressions.

From the discussion above we conclude that Theorem 4.6.2 holds. 2



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 144

4.7 Discussion on our Proposed Semantic Identifier So-

lution

A Fully Automated Method for Generating Semantic Identifiers. Un-

like other solutions for generating identifiers [PAGM96, LD00], we do not

require any user interaction in defining how the semantic identifiers are

generated or specifying what input is used to generate them. Our solu-

tion analyzes the view at the algebraic level and automatically determines

how the semantic identifiers are to be generated through the rules and al-

gorithms presented in Section 4.2.

The Use of Values in Node Identifiers. For some applications, like ma-

terialized view maintenance, it is typically not desirable to use only data

values as input in generating identifiers. The reason is that this creates re-

strictions on updating such data. Our semantic ids are generated from base

node identifiers, data values, or a mixture of them in a way that avoids this

problem. As a matter of fact the way we use data values in our semantic

ids is desirable. This is because the semantic id of a node that contains a

data value is generated only whenever the node is actually bound to that

data value (except for the Order By operator). In other words, when the

relationship between the view node and the base value used in its id is a

direct existence relationship. For example the node with id 1994c in Figure

4.7(a) depends on the year value “1994”. Deleting this value(s) from the

input should and would be propagated to a deletion of this node from the

view.



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 145

Distributiveness of Algebra Operators. Our solution ensures that differ-

ent algebra operators are distributive with respect to the union operation,

as we have shown in Section 4.5. This is a core property that supports in-

cremental non-blocking query processing and enables efficient incremental

view maintenance and stream processing. For example, in the view main-

tenance domain, the Group By, the Distinct, and the Order By are typically

known to be non-distributive operators, meaning that we typically can-

not propagate a new update through any of these operators without some

knowledge of the data previously processed. In the stream processing do-

main such operators are typically seen as blocking operators, meaning that

we may need to wait until we receive certain amount of input data be-

fore we process the operator. But given our approach of utilizing values in

the semantic ids we are able to process XML fragments through these op-

erators as if they are distributive and non-blocking. For example, when

we propagate the inserted book, in Figure 4.1(a), we are able to propa-

gate such update through the Group-By and the Distinct operators without

any knowledge of the previously created groups or distinct values. This is

so because we are able to reproduce the correct semantic identifier for the

node “yGroup”, as shown in Figure 4.6. Such reproduced ids based on the

value allow us to correctly merge the result with the view extent, as shown

in Figure 4.7. When considering order-sensitive views, other techniques

that might support the distributive property of non-order aware views, like

Skolem functions, fail to support the distributive property of views in an

order-aware environment. Since our solution encodes the order in a way

that removes the responsibility of maintaining order from most operators,



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 146

the ordered bag semantics of the XQuery processing data model are mi-

grated to non-ordered bag semantics. Hence the distributive property of

the operators is preserved in the order-aware XML query processing envi-

ronment, as discussed in Section 4.5.

Another example is the Order By operator. In our solution we do not

perform any sorting operation or assign new sorted keys to the data when

we process the Order By operator. Instead we simply uses the value(s) of

the Order By attribute as the order prefix part of the semantic id. Hence, any

incoming fragments is assigned an order prefix that is driven from its Order

By attribute variables without the need to share ordering with previously

processed data. The semantic id of the fragment now contains information

that enables correct fusion with previous data (the id body) and informa-

tion that reflects its correct order in the result (the id prefix part).

What is Semantic About our Identifiers. Our generated identifiers carry

three types of semantics.

• Fusion semantics. The ability of the semantic identifiers to be repro-

ducible is the main reason for using such identifier in object fusion.

If, for example, new objects are to be added incrementally to the view,

their semantic ids will ensure that they are fused correctly with exist-

ing view objects.

• Lineage semantics. The identifiers we generate carry lineage informa-

tion that enables us to understand how nodes in the view are derived

from the data source. Such lineage information might be useful for



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 147

applications like view updating and tracing derivations of view ob-

jects. We will next discuss in detail how we can interpret such lineage

information.

• Order semantics. Our identifiers also carry order semantics. Order can

be maintained on incremental construction of the XML result. This

is a very important feature for XML views since they are typically

order-aware. See Chapter 3 for more details on order in XML views.

Understanding the Lineage Information in our Identifiers. We discuss

what information we can obtain from the semantic identifiers. First, we can

derive the node type. An id with a suffix constant “c” specifies a constructed

node (eg., b.bc). Any id without this suffix is an exposed base node (eg., b.b).

Second, useful lineage information can be extracted from the ids. For an

exposed base node, the id (after removing its order prefix if any) is directly

referencing the base node it is copied from. For example, a view node with

annotation (a)b.b.l is derived directly from the base node with FlexKey

identifier b.b.l.

The id of a constructed node consists of two parts, the order prefix part

and the body part. We may derive different conclusions depending on

what the body part is composed of. (1) If the body part of a constructed

node id is a single FlexKey identifier, this implies that the node is de-

rived and (bound) to a source node with that FlexKey. For example, the

id b.b..e.f c assigned to the “entry” node shown in Figure 4.7(a) implies that

this constructed “entry” node is bound to both a source node with id b.b

and a source node with id e.f . Hence, deleting one of these source nodes,



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 148

will result in deleting this “entry” node from the view extent. (2) An id

with a data value in its id body implies that the node is bound to this data

value. For example, the id ∼ 1994c for the “yGroup” node shown in Figure

4.7(a) implies that this constructed node is bound to the value “1994” in

the source document. (3) An id with a constant value “*” in its body im-

plies that the node is constructed over a collection of an arbitrary number

of nodes. These nodes depends on the input source(s). Such constructed

node is not affected by deleting any of its children. For example, let us

consider the id ∼ ∗c assigned for the “result” node shown in Figure 4.7(a)

implies that this constructed node is a parent of an arbitrary number of

nodes (“yGroup”). (4) The id body may be composed of one or more of the

above. For example, a node id b.b..∗c implies a constructed node that is de-

rived from a source node with an id b.b and a collection of arbitrary number

of nodes. Deleting the source node with id b.b should result in deleting the

constructed node for the view, while deleting any nodes from the collection

will not delete the constructed node.

The Generality of our Solution. Our solution defines special lineage and

order specifications (that we call the Context Schema) using the query exe-

cution model (XAT table). There are two main XML query execution mod-

els, (1) a tuple-oriented model, like the one we use here, and also used in

[IHW02] and (2) pattern tree model, like the one used in [JAKC+02]. We

need to understand how the pattern tree model maps to our model to be

able to generalize our solution to it. The tree-oriented model uses pattern

trees to match trees from the input documents. There is a direct mapping



4.7. DISCUSSION ON OUR PROPOSED SEMANTIC IDENTIFIER

SOLUTION 149

between the tree pattern and the XAT table model that we use, as each

attribute in the XAT table maps to a variable binding in the tree, such map-

ping is also identified in [IHW02]. Hence, for the pattern tree execution

models we simply need to define the Context Schema for the binding vari-

ables at the node level of the pattern trees. This corresponds to defining

them on the column level in the XAT tables.

Order Encoding via the Table Order Schema vs. via the Context Schema.

As the Context Schema defines how the order among nodes (or collections)

in a column can be computed it does not reflect the order among tuples

as a whole. Such order might not be important for some queries. But

for other queries, particularly those involving join operations, the order

among tuples is important since the order of the result of the join depends

on the overall order of each input XAT table (which may involve multi-

ple columns). Hence, we need to maintain the Table Order Schema for such

queries. We need to maintain the Table Order Schema for only the operators

below the join operation. On the other hand, although the order among

cells in each column is also reflected by the Table Order Schema, it makes the

order of each column dependent on columns possibly more columns than

needed. Hence, order keys derived for a column may become bigger in size

than needed. This wastes opportunities for merging order keys with node

ids (generated by Lineage Context) into compact encoding. For example, if

an XAT table contains a column for book elements ($b), a column for book

authors’ last names ($l) that is created by Navigate Unnest from $b, and

another column for book’s prices ($p) that is created by Navigate Unnest



4.8. EXPERIMENTAL EVALUATION FOR THE COST OF GENERATING

SEMANTIC IDENTIFIERS 150

from $b, the Table Order Schema for such XAT table will be ($l, $p). Hence,

the order among tuples in that XAT table is determined by comparing a

composition of the FlexKeys in columns $l and $p for different tuples lexi-

cographically. Although such order reflects correctly the order among cells

in each column, it uses unnecessarily long keys to represent that. For the

book column ($b) above it is sufficient to derive the order among its cells

from the FlexKeys of the books. Note that if a constructed node is build on

top of those books and if the order among those constructed nodes follow

the source document order (or part of it) we use a compact id that directly

reflects the order.

4.8 Experimental Evaluation for the Cost of Generat-

ing Semantic Identifiers

We have implemented our semantic identifier solution in Java within the

Rainbow system framework [Zea03]. We have run the experiments on a

Windows PC with 2.79 MHz Pentium 4 processor and 512MB of memory.

We have used the XMark benchmark data [SWK+02] in our experimental

evaluation. We first use a query (Query 1 in Figure 4.8) that exploits our

semantic identifier system intensively. In this query, most of the returned

nodes are constructed nodes. Hence, a lot of node construction and new

semantic id generation is required. The query also involves a mixture of

order decisions

Figure 4.9(a) shows the cost of generating semantic ids relative to the

total query execution time on different input XML document sizes. The



4.8. EXPERIMENTAL EVALUATION FOR THE COST OF GENERATING

SEMANTIC IDENTIFIERS 151

<result>
{<customers>
for $p in doc(“site.xml")/people/person

where $p/id/text() .<. 63750

return
<customer>{<location>$p/address/city/text()</location>} {$p/name}</customer>

</customers>}
{<open_bids>

for $oa in doc(“site.xml")/open_auctions/open_auction
where $oa/id/text() .<. 30000
return <bid> {$oa/reserve} {$oa/intial} </bid>

</open_bids>}
</result>

<result>
for $p in doc(“site.xml")/people/person
where $p/id/text() .<. 63750
return
$p/name

</result>

Query 1

Query 2

Figure 4.8: Two example XQuery expressions.

figure shows that this cost is negligible compared to the total cost of query

execution. Figure 4.9(b) shows the breakdown of the cost of our approach

and compares it to the cost of execution (using a 500MB input document

size). The cost of our solution is mainly composed of three components. (1)

The cost of computing the Order and Context Schemas. This cost depends

on the number of operators in the query plan and does not depend on the

size of data. (2) The cost of generating semantic ids for constructed nodes.

This cost depends on the size of processed data and on the amount of node

construction the query performs. (3) The cost of assigning the order pre-

fix for the semantic ids. Figure 4.9(b) shows that the cost of generating

new semantic ids on node constructions is higher than the other two cost

component. The cost of generating the Order and Context Schemas is very

small.



4.8. EXPERIMENTAL EVALUATION FOR THE COST OF GENERATING

SEMANTIC IDENTIFIERS 152

1

10

100

1000

10000

100000

1000000

10000000

Query

Execution

Context and

Order

Schema

Constructed

Node Keys

Order Prefix

Cost Item

T
im

e
(m

s
)

(a) (b)

45667

457702

849312

1258607

17752314534

9656

12767

905

4203

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

50MB 200MB 350MB 500MB 650MB

Input XML File Size

T
im

e
(m

s)

Semantic ID

Query Execution

Figure 4.9: Result obtained using Query 1 in Figure 4.8. (a) The overhead
of generating semantic identifiers to query execution time and (b) the break
down of the cost of generating semantic identifiers.

Query 2 shown in Figure 4.8 is a simpler query that does not perform

node construction (other than a new root). Figure 4.10(a) shows the cost

of semantic ids relative to the total query execution time on different input

XML document sizes. The cost in this case is negligible. Figure 4.10(b)

shows that the only cost associated with semantic ids in this query is the

cost of generating Order and Context Schemas. Such cost is smaller than that

of the first query because the second query has a much smaller algebra tree.

The cost of generating constructed nodes is close to zero since the query

constructs only one node (the root node). There is no cost for assigning

order prefix codes since the query returns the result in document order.

Such order is reflected through the source node ids and is maintained by

our solution at almost no cost (besides the negligible cost of the Order and

Context Schemas).



4.8. EXPERIMENTAL EVALUATION FOR THE COST OF GENERATING

SEMANTIC IDENTIFIERS 153

1

10

100

1000

10000

100000

1000000

Query

Execution

Context and

Order

Schema

Constructed

Node Keys

Order Prefix

Cost Item

T
im

e
(m

s
)

(b)

17929

92460

191225

300837

429657
10

10

10

10

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

50MB 200MB 350MB 500MB 650MB

Input XML File Size

T
im

e
(m

s)

Semantic ID

Query Execution

(a)

10

Figure 4.10: Result obtained using Query 2 in Figure 4.8. (a) The overhead
of generating semantic identifiers to query execution time and (b) the break
down of the cost of generating semantic identifiers.



154

Chapter 5

Validating Source XML

Updates

5.1 Modeling Source Updates

We define a set of update primitives for inserting, deleting, and value changes

of XML nodes. An update XQuery expression [TIHW01], like those shown

in Figure 1.3, is submitted to the storage manager [DR03] where the specific

nodes to be updated are determined. Then, we generate an update prim-

itive for each updated base node. Each update primitive specifies the full

path of the update annotated with source node ids. These update primi-

tives are:

• insert (n, k): Inserts a node with FlexKey n into the node with a full

path of FlexKeys k.

• delete (n, k): Delete a node with FlexKey n specified by the a full path



5.2. VALIDATING SOURCE UPDATES 155

of FlexKeys k.

• replace(n, k, new): Replace the value of the node with node identifiers

FlexKey n with a full path of FlexKeys k with a new value new.

Figure 5.1 shows update primitives defined for our running example

source updates (Figure 1.3). We model update primitives as XML trees

annotated with “+” and “-” signs signifying inserted and deleted nodes, as

shown in Figure 5.1. A value modification is modeled as a deletion of the

node representing the old value and an insertion of a node representing the

new value.

book

title

b.i (+)

b.i.b (+)

“Advanced ..”

bib

b

Year=“1994”(+) book

b.f  (-)

bib

b

entry

priceprice

e.f

e.f.b(-) e.f.b  (+)

“65.95”

prices
e

“70”

author

b.i.f (+)

last

b.i.f.b (+)

“Stevens”

first

b.i.f.f (+)

“W.”

(a) (b) (c)

insert(b.i,bib[b]) delete(b.f,bib[b]) replace(e.f.b,prices[e].entry[e.f],”70”)

title

b.f.b (-)

“Data..”

Figure 5.1: Three source update primitives corresponding to the three
XQuery updates in Figure 1.3.

5.2 Validating Source Updates

Before propagating an update we first check if the update is relevant to the

view to avoid unnecessary update propagation. We also determine any ad-

ditional requirements (information) not provided by the update, yet essen-

tial for propagating the update. This is needed because an XML update, as



5.2. VALIDATING SOURCE UPDATES 156

given by an XQuery update statement may not contain enough information

to allow propagating it. For example the delete update shown in Figure

1.3 that deletes a “book” element from “bib.xml” specifies the book to be

deleted by its “title” sub-element, this might not be sufficient for propagat-

ing the update. We use the view query to determine necessary information

for propagation as we will show next.

For that, we define a structure called the Source Access Pattern Tree, shortly

SAPT . A SAPT is a tree with paths of nodes representing XPath expres-

sions that are part of the XQuery view expression indicating mandatory

versus optional paths. The SAPT is similar in spirit to the Generalized Tree

Pattern [CJLP03] used in XQuery evaluation.

Definition 5.2.1 Source Access Pattern Tree (SAPT ) is an XML tree for a

view query for each XML document that the view V accesses. The SAPT has:

• A path of nodes pathi for each navigation path in the query. Each node in

SAPT is annotated with the variable(s) it binds to in the query. Such vari-

able binding might be explicitly defined by the view or it might be an implicit

binding assigned internally by query algebra operators. An edge connect-

ing two nodes represents either a parent-child relationship or an ancestor-

descendant relationship.

• Paths in SAPT are classified into two types. (1) Mandatory Paths Set

(MandPS). This set includes each path pathi in the view query that is re-

quired for evaluating the query. Such paths result from the for and where

clauses of the query. (2) Optional Paths Set (OptPS). This set includes

each pathi in V that is optional to the query evaluation. Hence, any XML



5.2. VALIDATING SOURCE UPDATES 157

fragment that does not include such path may still be evaluated by the query.

Paths in this set result from the return clause of the query. A path in the

view query may appear in both sets if it is mandatory for the query evalua-

tion and at the same time is returned in the return clause of the query.

• Nodes in SAPT are annotated with corresponding predicates from the query.

Note that a path defined in the let clause of the view query is classified

in SAPT based on the query clause it is used in. For example, if a let clause

defines a path, and this path is used in the return clause of the query, this

path is added to OptPS.

We do not define paths used in Order By clauses as we do not allow

updates to source nodes accessed by the Order By clause.

Figure 5.2 shows three SAPT s constructed for the view query shown

in Figure 1.2, one for each source document access. For each SAPT in

Figure 5.2, nodes corresponding to variable bindings are annotated with

these variables. For example, the node “year” node bound to variable $y in

S1 is annotated with a join predicte based on the view query. Nodes with

no variable binding annotation represent nodes in the navigation path (e.g.,

“bib” and prices). Figure 5.2 also shows the join predicates specified on the

“year” and the “title” nodes.

The SAPT of S1 (document “bib.xml” accessed at the outer for clause

of the query) has MandPS = { bib/book/@year } and has OptPS = {bib/book/

@year }.

The SAPT of S2 (document “bib.xml” accessed at the inner for clause

of the query) has MandPS = {bib/book, bib/book/@year, bib/book/title }



5.2. VALIDATING SOURCE UPDATES 158

and OptPS = {bib/book/title}. The SAPT of source S3 (document “prices.xml”)

has MandPS = {prices/entry, prices/entry/b−title} and OptPS = {prices/

entry/price}.

book

yeartitle

$b

$col2 $col1

bib

$col1 = S1: $y

entry

$e

price

prices

book

year

$y

bib

$y = S2: $col1

S1 S1 S2

$col3

b-title

$col2 = S3: $e/b-title $e/b-title = S2: $b/title

(b)(a) (c)

Figure 5.2: Source Access Patter Tree (SAPT ) for the view in Figure 1.2.

By matching each update tree representing a source update to the SAPT s

of the view query defined for the source document that the update affects,

we can determine (i) if the update is relevant to the view or not and (ii) if

the update carries sufficient information in order to be propagated.

5.2.1 Relevancy of Updates

After the update is modeled, as discussed above, it is then classified as be-

ing (1) relevant, (2) potentially relevant, or (3) irrelevant, as we will discuss

below in Definition 5.2.2. We use the notation path1 � path2 to denote that

path1 is a prefix path of path2. For example, bib/book � bib/book/@year.

Definition 5.2.2 An update△S to an XML source S accessed by a view query q

through a Source Access Pattern Tree SAPT (as defined above) is classified into

one of the following:



5.2. VALIDATING SOURCE UPDATES 159

• Relevant Update: if ∀ pathp ∈MandPS, ∃ paths ∈ △S where paths �

pathp and all non-join predicates in pathp are satisfied.

• Potentially Relevant Update: If△S does not satisfy the relevant update

condition above and at least one of the following conditions holds. (1) If ∃

pathp ∈ MandPS, ∃ paths ∈ △S where paths � pathp and all non-join

predicates in pathp are satisfied. (2) If ∃ pathp ∈ OptPS, ∃ paths ∈ △S

where pathp � paths. (3) If△S is a delete update and the update path paths

� pathp where pathp ∈MandPS or pathp ∈ OptPS.

• Irrelevant Update: otherwise.

Where MandPS and OptPS ∈ SAPT .

Relevant updates are ready for propagation. Irrelevant updates are not

propagated. It might be possible to convert a potentially relevant update

into a relevant update. Potentially relevant updates have to be filled with

missing XML fragments called propagation requirements. After providing

these propagation requirements we can decide if these updates are relevant

or not to the query, as we will discuss next.

Based on Definition 5.2.2, the insert update in Figure 5.1(a) is relevant to

both S1 and S2. The delete update in 5.1(b) is potentially relevant to both S1

and S2, since the path accessing the year attribute from the set MandPSs

is not in the update. The modify update in 5.1(c) is relevant to S3.

Note that the matching process also reveals that the “author” XML frag-

ment in the first update is not relevant to the query. Hence, we prune it out

from the update tree.



5.2. VALIDATING SOURCE UPDATES 160

5.2.2 Sufficiency of Updates

An update might be provided as an incomplete piece of XML fragment.

For example, the deletion update in Figure 1.3(b) specifies only the title of

the book to be deleted. Due to the lack of some of the information (namely,

in this case the year attribute) the update is classified as potentially relevant

to S1 based on its SAPT .

We derive the sufficiency of an update from Definition 5.2.2. In general,

a relevant update has sufficient information to be propagated by the view

query. A potentially relevant has insufficient information to be propagated.

With the help of the SAPT we can identify what information is miss-

ing. That missing information can then be obtained from the source docu-

ment. Alternatively, one could require the update definer to provide it so

that it can be added to the update. We call such information propagation

requirements. If the update does not become relevant after adding propaga-

tion requirements to it it is not propagated. For example, by providing for

the delete update in Figure 5.1(b) the “year” attribute (“year”= 2000), the

update becomes relevant. It can thus be propagated.

Note that we do not necessarily perform each of the three steps dis-

cussed above (modeling updates, relevancy check, and sufficiency check)

separately. When the update is modeled we may annotate it with relevancy

and sufficiency information based on SAPT . This forms a pattern tree that

when matched against the source document, while obtaining the update

specific information (ids), we also determine the relevancy and sufficiency

of the update.



5.3. BATCHING SOURCE UPDATES 161

Sufficiency of Delete Updates. The updates sufficiency guidelines pre-

sented above generally applies to delete updates with one exceptional case.

This exceptional case involves the deletion of a source node where the

view query returns a collection of descendant nodes nested under this node

without maintaining a Lineage Context for this collection. We call this case

deleting collections without Lineage Context from the materialized XML

view. We discuss it in more detail in Section 8.3.2.

5.3 Batching Source Updates

Relevant source update trees (also have sufficient information) are merged

into one batch update tree using Deep Union defined earlier in Chapter 4. We

may process a bulk of updates of different types at one time instead of pro-

cessing them separately. This achieves better performance over individual

processing of updates. The batched update tree also reflects the net effect

of source updates. Hence, any updates that cancel each other out are elim-

inated. For example, an insertion of a “book” element that is followed by

the deletion for the same “book” element will cancel out and will not be

propagated. This saves the system the cost of propagating such updates.

Figure 5.3(a) shows the batch update tree for the source document “bib.xml”.

Note that the SAPT of S1 matches all the nodes in Figure 5.3(a). The

SAPT of S2 matches all the nodes in Figure 5.3(a) except the title nodes.

The “year” attribute is added to the deleted “book” node, as discussed

above, and is assigned a “-” sign. The batch update tree for the updates on

“prices.xml”, shown in Figure 5.3(b), batches the modify update applied to



5.3. BATCHING SOURCE UPDATES 162

book

title

b.i (+)

b.i.b (+)

“Advanced ..”

bib
b

Year=“1994”(+)
book

b.f  (-)

entry

priceprice

e.f

e.f.b(-) e.f.b (+)

“65.95”

prices

e

“70”

(a) (b)

Year=“2000” (-)

D book.xml D prices.xml

title

b.f.b (-)

“Data..”

Figure 5.3: Batch update trees for (a) “bib.tex” and (2) “prices.xml”.

the source XML document “prices.xml”. Note that the batch update tree

for “bib.xml” does not contain the “author” XML fragment of the first up-

date since it is irrelevant to the view query and is pruned out, as we have

discussed above.



163

Chapter 6

Counting Solution for

Supporting XML Delete

Updates

6.1 Maintaining XML views on Delete Updates

Delete updates are generally harder to handle than insert updates. Deleting

a source node may not necessarily translate into a deletion of the node(s)

derived from it in the view extent, because a node in the view extent may

have multiple derivations from source nodes. Such derivation issue ap-

pears even in the simple relational SPJ views [BLT86, GMS93]. Another

issue is that deleting a source node might cause the deletion of an entire

subtree from the view extent.

In the context of relational views, the counting algorithm [BLT86, GMS93]



6.1. MAINTAINING XML VIEWS ON DELETE UPDATES 164

is a widely used solution for supporting deletions. It maintains for each tu-

ple in the view a count representing the number of derivations of that tuple

from source tuples. This count is incremented (or decremented) as a result

of insert (or delete) update operations. When the count of a tuple becomes

0 it is simply deleted from the view extent.

An extension to the counting solution above for supporting semi-structured

data has been proposed in [LD00]. This solution assigns two types of counts

to nodes in a semi-structured data tree. It adopts a bottom-up count com-

putation scheme for edge count in the trees where the count of an inner

edge depends on the counts of its children edges. This solution comes with

some drawbacks when handling deletes. In particular, when deleting an

edge from the source data, all edges in the subtree of that edge appear to be

needed as part of the update. Also deleting an edge from the view extent

requires deletion of all edges reachable over this edge first. Hence, deleting

big fragments from the view extent tends to be rather inefficient.

We propose an extension to the counting algorithm in [BLT86, GMS93]

for supporting XML view maintenance. Unlike [LD00], we define one type

of count for each node in the XML tree. The count of a node in our solution

is independent of the count of nodes in its subtree. For propagating a delete

update, our solution does not require the knowledge of the counts of the

nodes in the entire subtree of the deleted node. This brings the advantage

that it allows the deletion of an entire fragment from the XML view extent,

by deleting only its root node.



6.2. COUNT ANNOTATION FOR SOURCE DOCUMENTS AND SOURCE

UPDATES 165

6.2 Count Annotation for Source Documents and Source

Updates

When processing the query to compute the initial materialized view, nodes

in the source are treated as having a default count of 1. When processing

updates to source document, nodes in batch update trees annotated with

“+” or “-” signs are considered to have a count equal to 1 or -1 respectively.

Other nodes in the update tree (nodes with no “+” or “-” sign) are consid-

ered to have count equal to 0. Note that a node in an update tree can have

only a count of 0, 1, or -1. Batching of updates, where the same node might

be used by more than one update should still maintain these count guide-

lines. A node in an update tree will be inserted or deleted by exactly one

update. If such node is used later as part of the path of another update it

is considered to have a count of 0 with regards to this new update. Hence,

the count of the node will not be affected when adding 0 to it. For exam-

ple when representing the “book” fragment insertion as shown in the batch

update tree in Figure 5.3(a) all nodes in the “book” fragment are annotated

with count of 1. Assume that we want to insert a new sub-element called

“publisher” to that “book” element. In this case, the count of the “book”

node in the batch update tree remains to be 1, since the count assigned to

the “book” node in the new update is 0. The new “publisher” itself gets a

count of 1.

Nodes in the initial view extent have to be annotated with appropriate

counts to enable correct application of propagated updates. Hence, count

have to be computed during query execution time and during view main-



6.3. PROPAGATING COUNT ANNOTATIONS IN NORMAL QUERY

EXECUTION TIME 166

tenance time. Different algebra operator have different treatment for the

count annotation of processed XML nodes. We define general rules for

how count is computed during normal query execution time. These rules

also applies to computing count during view maintenance time with some

exceptions. We next discuss these rules of computing count annotations

first at normal query execution and then at view maintenance time.

6.3 Propagating Count Annotations in Normal Query

Execution Time

Nodes in the materialized view extent need to be annotated with appro-

priate counts. Hence, count annotations for nodes in the materialized view

extent need to be computed in normal query execution time. In Table 6.1

we define rules for computing count annotations of source nodes during

normal query processing time. As shown in Table 6.1 some of the XAT op-

erators manipulate count annotations, other operators process the nodes

without manipulating their counts. We now discuss these rules in more

detail.

• Category I. This category contains the Navigate Collection Φcol′

col,path(T )

and the Navigate Unnest φcol′

col,path(T ) operators. Destination nodes ac-

cessed by any of these two navigation operations are annotated with

the default count of 1 as discussed above. For example, all the “book”

nodes resulting from the Navigate Unnest operator (#5) in Figure 4.2

should be assigned a count of 1.



6.3. PROPAGATING COUNT ANNOTATIONS IN NORMAL QUERY

EXECUTION TIME 167

Cat. Operator op Affected Nodes Count Assigned

I Φcol′

col,path(T ) Nodes in col′, for (each node ni ∈ col′),

φcol′

col,path(T ) col′ ∈ t ni.count = 1

II δcol(T ) Nodes in col, for (each distinct node dni ∈ col),

υcol
col1(T ) col ∈ t dni.count=sum(nk.count)

(where nk ∈ T.col, nk = dn if op is δ,

and nk ∈ tl[col1], nk = dni, tl is input tuple to t

if op is υ)

III γcol[1..n](T, Ccol) Nodes in col[1..n] for (each grouping node gni ∈ colj),

col[1..n] ∈ t gni= sum(nk .count)

(where nk ∈ T.col, nk is grouped by gni)

IV
x
∪

col

col1,col2(T ) Collections in col, for (each collection ci ∈ col),

col ∈ t ci.count = xi.lngCxt.count

(where xi is node or collection ∈ tl[col1],

tl is input tuple to t)

V Ccol(T ) Collection in col, undefined count

col ∈ t

VI T col
p (T ) Nodes in col, for (each node ni ∈ col),

col ∈ t ni.count = xi.lngCxt.count

(where xi is node or collection ∈ tl[colp],

tl is input tuple to t, colp ∈ p)

×(T1, T2)

VII 1c (T1, T2) None propagate current counts

=⊲⊳c(T1, T2)

Scol′

xmlDoc propagate current counts

ρcol1,col(T )

VIII σc(T ) None

τcol[1..n](T )

M(T1, T2)

Table 6.1: Count computation rules for nodes in a resulting tuple t of an
operator op during Query Execution Time.



6.3. PROPAGATING COUNT ANNOTATIONS IN NORMAL QUERY

EXECUTION TIME 168

• Category II. The Distinct operator δcol(T ) sums the counts of values

contributing to the respective distinct value. For example, the Dis-

tinct operator (#3) in Figure 4.2 should assign a count of 1 for the

value 1994 since it represents only 1 distinct value of 1994 based on

the source XML document shown in Figure 1.1. The Unique operator

υcol
col1(T ) also removes duplicate but using node ids. The same rule for

computing the count applies also to the Unique operator.

• Category III. The Group By operator γcol[1..n](T,Ccol) assigns to each

grouping node or value the sum of counts of the grouped nodes. For

example, the Group By operator (#15) in Figure 4.2 should assign a

count of 1 for the value 1994 since it represents only 1 node in the

group that has a default count of 1.

• Category IV. The XML Union operator
x
∪

col

col1,col2(T ) retains the counts

of nodes in the resulting collection. The count of the created collec-

tion itself is equal to the count of the node referenced by the Lineage

Context of the left input source of the operator. Note that we do not

store this count, we only derive it when needed, typically when a

constructed node is build on top of the collection as we will discuss

later for the Tagger operator. For example, the count of the collection

in $col4 the first tuple of the output XAT table of the XML Union op-

erator (#13) in Figure 4.2 is equal to the count of the corresponding

node in column $b (node b.b).

• Category V. The Combine operator Ccol(T ) retains the count of nodes

in the created collection and assigns no count to the collection itself.



6.4. PROPAGATING COUNT ANNOTATIONS DURING VIEW

MAINTENANCE TIME 169

• Category VI. The Tagger operator T col
p (T ) assigns a count to the newly

constructed node that is equal to the count of the node (or collection

of nodes) that the new node is constructed over. If the new node is

constructed over a collection, the count assigned to the new node is

equal to the count of the collection, as discussed above. For example,

for new nodes created by the Tagger operator (#14) in column $col5

in Figure 4.2, the count of each new node is derived from the count of

the corresponding node in column $b. Another example is the node

created using the Tagger operator (#20) in Figure 4.2. This node gets

no count since it is constructed over a collection created using the

Combine operator. For such nodes the count is not needed because we

do not delete such node even if all of its children get deleted. This

type of node is only deleted if its parent (or an ancestor) in the view

extent (if any) is deleted. Hence, it would be deleted as part of the

deletion of the subtrees of that parent (ancestor).

• Category VII and Category VIII. Each operators in these two cate-

gories process nodes without manipulating their counts. They simply

propagate the current counts assigned to nodes as is.

6.4 Propagating Count Annotations During View Main-

tenance Time

Table 6.2 shows rules for computing the count annotation of nodes during

view maintenance time. Some of the operators shown in Table 6.2 (namely



6.4. PROPAGATING COUNT ANNOTATIONS DURING VIEW

MAINTENANCE TIME 170

Distinct, Group By, XML Union, XML Union, and Tagger operators) follow

the same logic as that used during normal query execution time for com-

puting count annotation, as shown in Table 6.1. Some other operators in

Table 6.2 (namely Navigate Collection, Navigate Unnest, and Join family of

operators) have logic specific to view maintenance. We discuss those oper-

ators with view maintenance specific logic below.

Cat. Operator op Affected Nodes Count Assigned

I Φcol′

col,path(T ) Nodes in col′, for (each node ni ∈ col′),

φcol′

col,path(T ) col′ ∈ t if (node ni is update node),

ni.count = update count annotation

else if (node ni is base node),

ni.count = ni.entryPointNode.count

if (op is φ),

for (each node nj ∈ colj where colj ∈ ECC),

nj .count = ni.count

(where ni is node reachable from nj through path)

II δcol(T ) Nodes in col, Same as in Table 6.1

υcol
col1(T ) col ∈ t

III γcol[1..n](T, Ccol) Nodes in col[1..n], Same as in Table 6.1

IV
x
∪

col

col1,col2(T ) Collections in col, Same as in Table 6.1

col ∈ t

V Ccol(T ) Collection in col, Same as in Table 6.1

col ∈ t

VI T col
p (T ) Nodes in col, Same as in Table 6.1

col ∈ t

VII ×(T1, T2) Nodes ∈ t for (each node ni ∈ col, col ∈ T1),

1c (T1, T2) ni.count = ni.count× tr .countFactor

=⊲⊳c(T1, T2) for (each node nj ∈ col, col ∈ T2),

nj .count = nj .count× tl.countFactor

(where tr ∈ T2 is input to t, tl ∈ T1 is input to t)

VIII Scol′

xmlDoc Same as in Table 6.1

ρcol1,col(T )

σc(T ) None

τcol[1..n](T )

M(T1, T2)

Table 6.2: Count computation rules for nodes in a resulting tuple t of oper-
ator op during View Maintenance Time.



6.4. PROPAGATING COUNT ANNOTATIONS DURING VIEW

MAINTENANCE TIME 171

• Category I. That contains the Navigate Collection Φcol′

col,path(T ) and the

Navigate Unnest φcol′

col,path(T ) operators process count differently dur-

ing view maintenance time. We define two rules. (1) When navi-

gating from a base node (typically obtained through a join operation

between an old source and an update). In this case each destination

node, resulting from the navigation from this base node, gets a count

that is equal to the count factor of its entry point base node. This count

factor is equal to 1 if the count of the entry point node is positive, -1

if the count of the entry point node is negative, or 0 if the count of

the entry point node is 0. For example, if during update propagation

time the count of a source ”book” element becomes 0, a navigation

to a “title” sub-element assigns a count equal of 0 to that “title” sub-

element. (2) If a node from the update is accessed through a Navigate

Unnest the count of nodes in the path to the updated node is set equal

to the count of the destination node1. This helps isolating the effect

of sharing prefix paths among source updates in batch update trees.

Hence, it ensures that the result of propagating a batch of updates is

equal to the total result of propagating each update separately. We

address this issue later in Theorem 7.2.2.

• Category VII. For any of the Join operators, the count of nodes in the

resulting tuple is determined as follows. First, each input tuple to

the join is assigned a tag that determines if the tuple represents (1) an

old tuple (obtained when joining the update from one source of the

1We assume that Navigate Unnest Operations have been pushed down below Group By
operations in XAT query plans.



6.5. CLASSIFYING INTERMEDIATE XAT UPDATES BASED ON COUNT

ANNOTATION 172

join with the old data in the other source), (2) an insert tuple, (3) a

delete tuple, or (4) a modify tuple. We define how an update tuple is

classified into insert, delete, or modify tuple in Definition 6.5.1. Based

on this classification each tuple in the input of the join is assigned

a count factor that can be (i) +1, if the tuple is tagged old or insert,

(ii) -1 if the tuple is tagged delete, and (iii) 0 if the tuple is tagged

modify. Second, when joining a tuple tl from one input XAT table

with a tuple tr from another XAT table, the count annotation of each

node in tl is multiplied by the count factor of tr and vice versa. For

example, if a join operation joins a tuple tl resulting from a source

update that has a count factor of -1 with a tuple tr from an old source

that has a count factor of 1, the count of all nodes in tr is multiplied

by -1. We represent the count factor of a tuple t as t.countFactor.

For a tuple t resulting from a join between tl and tr, t.countFactor =

tl.countFactor × t2.countFactor.

• Other categories compute the count similar to way the count is com-

puted in normal query execution time.

6.5 Classifying Intermediate XAT Updates Based on

Count Annotation

Based on the count annotation assigned to XML nodes in an intermedi-

ate XAT table we can classify an intermediate XAT tuple processed during

view maintenance time into: (i) an insert update, (ii) a delete update, or (iii)



6.5. CLASSIFYING INTERMEDIATE XAT UPDATES BASED ON COUNT

ANNOTATION 173

a modify update.

Definition 6.5.1 Given an XAT tuple t representing a propagated update to an

intermediate XAT table with {n1, n2, .., nm} being the list of nodes called the

ECC Nodes List (ECCNL) where nj is stored in t[j], colj ∈ ECC (as defined

in Definition 4.2.3, t is classified into one of the following:

• Insert update: if ∃ nj ∈ ECCNL where nj.count > 1.

• Delete update: if ∃ nj ∈ ECCNL where nj.count < 1.

• Modify update: if ∀ nj ∈ ECCNL, nj.count = 0.

Based on this classification, a count factor for t (denoted as t.countFactor)

can be derived, where t.countFactor = 1 if t is an insert update, t.countFactor

= -1 if t is a delete update, or t.countFactor = 0 if t is a modify update.

Definition 6.5.1 assumes that for any XAT tuple t all nodes in columns

that are in ECC can not have nodes with positive and negative counts at

the same time. As matter of fact given the algebra operators shown in Table

4.1, the count annotation for all nodes in columns in ECC is either positive

count, negative count, or 0, as we will show next in Lemma 6.5.1. A prop-

agated insert or delete update may have 0 count for some of its nodes in

ECCNL if the operators TDiff and TIntersect, presented in Section 7.3,

are used in the the incremental plans as specified in the propagation rules

in Theorems 7.3.3 and 7.4.1.

Lemma 6.5.1 For an XAT tuple t representing a propagated update where {n1, n2, ..,

nm} is a list of nodes called the ECC Nodes List (ECCNL) where nj is stored



6.5. CLASSIFYING INTERMEDIATE XAT UPDATES BASED ON COUNT

ANNOTATION 174

in t[j], colj ∈ ECC , given the algebra operators shown in Table 4.1, we find that

one of the following equations is guaranteed to always hold:

• ∀ nj ∈ ECCNL, nj.count > 0;

• ∀ nj ∈ ECCNL, nj.count < 0;

• ∀ nj ∈ ECCNL, nj.count = 0;

where 1 ≤ i ≤ m.

Proof: By examining the rules for computing the Context Schema in Table 4.1

and the rules for computing the count in Table 6.2, we find that the following

operators either affect ECCNL (by adding new columns to ECC hence adding

new nodes to ECCNL) or affect the counts of nodes in ECCNL.

• The Source operator always generates a tuple with one single column and

one single node. This node is the only node in ECCNL of t. Hence, Lemma

6.5.1 holds.

• The Navigate Unnest operator adds the destination node resulting from the

the navigation process to ECCNL. Nodes that already exist in the list are

assigned a count that is equal to the count factor of the destination node,

based on the count rules above, in Table 6.2. Hence, Lemma 6.5.1 holds.

• The Tagger operator creates a new column in the output XAT table and adds

this column to the ECC of the XAT table. Hence, the newly constructed

node is added ECCNL. This node is assigned a count that is equal to the

count of the node referenced by the Lineage Context of the input column



6.6. COUNT-AWARE DEEP UNION OPERATOR 175

of the new node. Hence, the count of the new node will not violate Lemma

6.5.1.

• For the Group By operator, the ECCNL of the XAT table generated by a

Group By operator contains only the grouping node(s). Based on our count

treatment above, the grouping value in a tuple is assigned a count that is

equal to the sum of counts of the grouped nodes. Hence, Lemma 6.5.1 holds.

• The Distinct operator will always generate one column in the output XAT

table. The ECC of that XAT table will contain only that column. Hence,

Lemma 6.5.1 holds.

• The Theta Join operator and the Cartesian Product operator multiplies

the count of each node in each input tuple from one XAT table by the count

factor of the tuple it joins with from the other XAT table, as discussed above.

Hence, the resulting joined tuple satisfies Lemma 6.5.1.

Other operators have no effect on nodes in ECCNL or the counts of these

nodes. 2

6.6 Count-aware Deep Union Operator

We extend the definition of the Deep Union in Definition 4.4.1 to incorporate

counting as follows:

Definition 6.6.1 The Deep Union (
⊔

) takes two sets of XML trees T1 and T2

and recursively unions them. An XML tree t = r : ch is represented by its root

node r and the children list of that root node ch. The Deep Union first unions



6.7. COUNTING EXAMPLE 176

the root nodes of the XML trees in T1 and T2 by node identifier and recursively

performs deep union on the respective lists of children nodes. The resulting set

of XML trees T includes all XML trees in the two lists T1 and T2 with only one

occurrence of any matching root nodes. For any two matching nodes ri and rj

from T1 and T2 respectively, the node that represents them in T is assigned a count

that is equal to the summation of counts of ri and rj .

T1
⊔

T2 = { r : chi
⊔

chj | r.id = ri.id= rj.id, r.count = (r1.count + r2.count),

ri : chi ∈ T1, rj : chj ∈ T2} ∪ { ri : chi | ri : chi ∈ T1, 6 ∃ ri : chi ∈ T2 where

ri.id=rj .id} ∪ { rj : chj | rj : chj ∈ T2, 6 ∃ ri : chi ∈ T1 where rj .id=ri.id}

If r1.count is undefined or r2.count is undefined then r.count is undefined.

The case of undefined count occurs when using a Combine operator, as

shown in Table 6.2. Note that if the count of the merged node becomes 0,

the node is deleted from the XML tree with its entire subtree.

6.7 Counting Example

Given the source XML documents shown in Figure 1.1 and the XQuery

view shown in Figure 1.2. Now assume that an update deletes the first “en-

try” fragment from the source document “prices.xml”. Figure 6.1(a) shows

the source “prices.xml” before the update where each source node is an-

notated with a default count of 1. Figure 6.1(b) shows the update tree rep-

resenting the update after being annotated with appropriate information

and counts. Applying the update to the source document should result in

deleting the entire fragment with root node id e.b, as shown in Figure 6.1(c).

Now consider that we want to propagate the update to the view extent.



6.7. COUNTING EXAMPLE 177

The initial view extent is shown in Figure 6.1(d). Now we propagate the

source update described above to the view extent. This should result in the

propagated update tree shown in Figure 6.1(e). We postpone the discussion

on the details of the propagation process to Chapter 7.

Applying the propagated update shown in Figure 6.1(e) to the initial

view extent in Figure 6.1(d), using the Deep Union, results in deleting the

entire fragment with root node “yGroup” with id 2000c from the view ex-

tent. Figure 6.1(f) shows the refreshed view. Applying the update is done

by first merging the root node of the initial view extent with the root node of

the update, since they both match by their semantic ids. Then the “yGroup”

node with id 2000c from the initial view extent is matched with “yGroup”

node with identical id from the propagated update tree. Then the counts

of both nodes are summed. This results in a count of 0. As a result, we can

directly delete this “yGroup” node with id 2000c from the view extent with

its entire subtree.



6.7. COUNTING EXAMPLE 178

(d)

result

yGroup yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [1] 2000c [1]

b.b..e.fc[1]

(a)b.b.b [1] (b)e.f.b[1] (a)b.f.b[1] (b)e.b.b[1]

Y=“1994”[1]
Y=“2000” [1]~1994 c [1]

b.f..e.bc [1]

~2000c [1]

(e)

result

yGroup

title
“Data ..”

books

entry

~*c

2000c [-1]

(a)b.f.b[-1]

Y=“2000” [-1]

b.f..e.bc [-1]

~2000c [-1]

(f)

result

yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

~*c

1994 c [1]

b.b..e.fc[1]

(a)b.b.b [1] (b)e.f.b[1]

Y=“1994”[1]
~1994 c [1]

prices

entry entry

price price

e[1]

e.b[1]
e.f[1]

e.b.b[1] e.f.b[1]

“Data…”
b-title

e.b.f[1]

b-title
“39.95” “65.95” “TCP/IP.. ”

entry

price

e.l[1]

e.l.b[1]

b-title
“69.99” “Advanced..”

e.f.f[1] e.l.f[1]

prices

entry

e[0]

e.b[-1]

b-title

e.b.f[-1]

“Data…”

prices

entry

price

e[1]

e.f[1]

e.f.b[1]

b-title
“65.95” “TCP/IP.. ”

entry

price

e.l[1]

e.l.b[1]

b-title
“69.99”

e.f.f[1] e.l.f[1]

“Advanced..”

(a) (b) (c)

prices.xml Dprices.xml Updated prices.xml

Initial view extent Propagated updates refreshed view extent

Figure 6.1: Delete update example showing how count is handled.



179

Chapter 7

An Algebraic Approach for

Propagating XML Updates of

Different types

We take an algebraic approach in defining how update propagation is done.

The algebraic approach has many advantages over the procedural approach

used in some view maintenance solutions [GMS93, GJM97, AP98]. These

advantages, also highlighted in [GL95, GK98], include:

• It is easy to extend the algebraic view maintenance solution by adding

new rules for other operators.

• it is easy to compose multiple propagation rules for multiple opera-

tors to support expressions including these operators, unlike the pro-

cedural approach where this is not always possible.



7.1. VIEWS WITH SINGLE OPERATOR 180

• It is easy to show the correctness of algebraic view maintenance algo-

rithms.

• it expresses changes to the view extent in the form of expressions in

the same language used to define the view. Hence, these expressions

can be optimized by any query optimizer.

First we define how updates are processed in a distributive manner us-

ing single algebra operators. Then we define the distributive property of

views composed of multiple algebraic operators.

7.1 Views with Single Operator

As we have discussed earlier in Chapter 4, we define the distributivity of

algebra operators with respect to the operator TUnion. So far we have

considered updates that represent only insert updates. Now we consider

updates of any type. We first extend the TUnion defined in Definition 7.1.1

to incorporate counting treatment. This allows us to handle different types

of updates.

Definition 7.1.1 TUnion (
t

⊔) takes two XAT tables T1 and T2 with the same

schema and unions them. The result is an XAT table that contains a single oc-

currence of each pair of matching tuples (as specified in Definition 4.2.4) and all

non-matching tuples from T1 and T2. Each pair of matching tuples (t1 and t2) is

merged into a single tuple (tunion) that contains a single occurrence of the match-

ing nodes from t1[coli] and t2[coli], coli ∈ ECC , and the union of the contents of

t1[coli] and t2[coli], coli /∈ ECC .



7.1. VIEWS WITH SINGLE OPERATOR 181

T1
t

⊔ T2 = {t1|t1 ∈ T1 and 6 ∃t2 ∈ T2 where t1 ≍ t2} ∪ {t2|t2 ∈ T2 and

6 ∃t1 ∈ T1 where t2 ≍ t1} ∪ {tunion|∀t1 ∈ T1, ∃t2 ∈ T2 where t1 ≍ t2}

tunion is a tuple that conforms to the schema of t1 and has the same ECC as

t1. tunion is defined as follows:

∀coli ∈ tunion, tunion[coli] = t1[coli], if coli ∈ECC and tunion[coli] = (t1[coli]

∪ t2[coli]) if coli /∈ ECC . t1[coli] ∪ t2[coli] contains the union of contents of

t1[coli] and t2[coli] where nodes are matched by node id.

Node Count: The count annotation of any node n ∈ tunion[coli] is equal to

the sum of counts of the two matching nodes n1 and n2 from t1[coli] and t2[coli]

respectively where n.id = n1.id = n2.id, or equal to the count of n1 or n2 which

ever of them exists and matches n by id.

n.count =















































































n1.count + n2.count ∃ n1 ∈ t1, ∃ n2 ∈ t2 where

n.id = n1.id = n2.id

n1.count ∃ n1 ∈ t1, n.id = n1.id and

6 ∃ n2 ∈ t2 where n.id = n2.id

n2.count ∃ n2 ∈ t2, n.id = n2.id and

6 ∃ n1 ∈ t1 where n.id = n1.id

For ∀ node n ∈ tunion[coli] where coli /∈ ECC if n.count = 0, n is deleted.

Tuple Count Factor: tunion.countFactor is computed based on the new

counts of nodes in tunion following the guidelines discussed in Section 6.5.

Empty XAT Tuples. The
t

⊔ may generate what we call Empty XAT Tu-

ples.



7.1. VIEWS WITH SINGLE OPERATOR 182

Definition 7.1.2 An XAT tuple t generated during update propagation time is

called an Empty XAT Tuple if ∀ coli ∈ ECC , t[j].node.count = 0 and ∀ coli of t

/∈ ECC , t[j].collection is empty.

The
t

⊔ operator may generate such a tuple in one particular case; when

merging an XAT tuple t1 representing a delete update with a tuple t2 that it

deletes from an XAT table. The
t

⊔ deletes any Empty XAT Tuple generated as

a result of merging the update tuple with a tuple for the XAT table, hence

removing the tuple from the XAT table, as we state in Proposition 7.1.1.

Proposition 7.1.1 An Empty XAT Tuple (Definition 7.1.2) generated by the
t

⊔

operator during view maintenance time is deleted.

We now establish the distributiveness of operators over the TUnion op-

erator given any type of updates.

Theorem 7.1.2 For an update△T , of any of the types defined in Definition 6.5.1,

to the input XAT table T of an operator op, from the operators defined in Table 6.1,

the equation op(T
t

⊔ △T ) = op(T )
t

⊔ op (△T ) holds. For a binary operator the

equation (T1
t

⊔ △T1) op T2 = (T1 op T2)
t

⊔ (△T1 op T2) holds, if no grouping

operation exists below T1 or T2 in the query plan.

Proof: In Theorem 4.5.1 we have proven the distributiveness property of the XAT

algebra operators on insert updates only and with no consideration to node counts.

We now build on the proof of Theorem 4.5.1 to address the correctness of the dis-

tributive property of operators given updates of any type. We use the notations

shown in Table 4.3. In particular, we use T and Q to denote the input and the out-

put XAT tables of the operator respectively, xin to denote the tuple representing



7.1. VIEWS WITH SINGLE OPERATOR 183

the update △T to T , and xouto to denote a tuple in the propagated updates to Q.

In addition we use tini to denote a tuple in T that matches with xin (if any) and

toute to denote a tuple in Q that matches with xouto (if any).

Insert Updates. An insert update may have one of two cases (I) ∃ tini ∈

T where xin ≍ tini and (II) 6 ∃ tini ∈ T where xin ≍ tini. We have shown

in the proof of Theorem 4.5.1 the distributiveness of operators under these two

cases when counting is not considered. The reasoning used in Theorem 4.5.1, for

showing the correctness of update propagation, directly applies to insert updates

where nodes are annotated with positive counts representing the insertion of nodes.

One difference is that we perform summation of counts of any two matched nodes,

as defined in 7.1.1. We now discuss the count treatment in each of the two cases

above.

• Case (I) can only occur for an insert update when T is affected by a grouping

operation (value-based grouping, id-based nesting, or distinct). In this case

the insert update will merge with one of the groups in T . Applying xin to T

will result in merging xin with a tuple tini ∈ T creating tin′i. tin′i contains

a single occurrence of any two matching nodes in grouping columns from

xin and tini, where the counts of these matching nodes are summed. Each

node in a grouped column colj in xin representing a new node insertion (has

count of 1) will not match with any node in column colj of tini. Hence, each

grouped column colj in tin′i will contain the union of old nodes in column

colj from tini and the new node inserts in column colj from xin. op can

be any of the operator shown in Table 6.2 except the operators Source (only

a leaf node), Navigate Unnest (pushed down below grouping operators in



7.1. VIEWS WITH SINGLE OPERATOR 184

our XAT query plans, as we mentioned in Section 6.4), Unique (is not

allowed on top of grouping columns since it operates on collections), and the

join family of operators (we address this class of views separately in Theorem

7.3.3). We now discuss how the count is treated in the case of recomputation

and in the case of update propagation. We have two classes of nodes.

– Nodes in grouping columns. In this case, if op is recomputed over

merged input tuple tin′i = (tini
t

⊔ xin), the count assigned to nodes in

the grouping column will not change, based on the counting rules in

Table 6.2. Now consider that xin is processed separately. This should

result in a propagated update tuple xout that merges with toutiu (a

tuple resulting from processing tini, where tini ≍ xin), as we have

showed in Theorem 4.5.1. The count of each two matching nodes in

grouping columns in xout and toutiu is summed. This is clearly gives

the same count we obtain when we recompute op over tin′i. Note that

this result applies also to new nodes constructed over the grouping

columns (since each new node gets the same count as the count of the

node it is constructed over), as defined in Table 6.2. New nodes con-

structed over collection columns also get count that depends on the

count of the grouping column, as defined in Table 6.2. Hence, this

conclusion also applies to them.

– Nodes in grouped columns. As mentioned above a node in a grouped

column of xin that represents an inserted node (with count of 1) will

never match a node in xini. Hence, the count of such a node will not

be summed with any other counts. As a result, if op is recomputed



7.1. VIEWS WITH SINGLE OPERATOR 185

over merged input tuple tin′i = (tini
t

⊔ xin), the count assigned to

such nodes will generally stay the same. One exception if op is the

Unique operator where nodes with the same ids in each collection are

merged into one node and their counts are summed. Now consider that

xin is processed separately. This should result in a propagated update

tuple xout that merges with toutiu as we discussed above. As shown

in Theorem 4.5.1, nodes in the grouped column of xin will correctly

be unioned to grouped nodes in the corresponding grouped columns of

toutiu. Such merging will result in no merging between nodes from

xin and nodes from toutiu in all cases, except when op is the Unique

operator. As a result all the nodes retain their initial count of. If op is

the Unique operator, each node from xin merges with matching nodes

from toutiu and their counts are summed. This is equivalent to the

result we obtain through recomputation.

• In case (II) when xin does not match with any tuple in T we consider two

scenarios.

– op is any operator except grouping operators (value-based grouping,

id-based nesting, or distinct). In this case, the tuple(s) xout resulting

from the propagation of xin is guaranteed not to match with any tuple

in Q, as shown in Theorem 4.5.1. Hence, no nodes are merged and no

counts are summed.

– op is any of the grouping operators. In this case, each tuple xout might

match with a tuple in Q. The new count resulting from merging any

two matching nodes is clearly the same if such merging is done as a



7.1. VIEWS WITH SINGLE OPERATOR 186

result of operator recomputation or as a result of update propagation.

Hence, the correctness of insert update propagation with count annotation is shown.

Delete Updates. Unlike an insert update where the tuple representing the

update may or may not match with an existing tuple in the XAT table it updates,

a delete update will always match with an existing tuple in the XAT table. We

distinguish between two possible cases:

• xin deletes a tuple from T . In this case each node in xin will have a count

that is equal to the count of the matching node it deletes in tini multiplied

by -1. This is guaranteed because if the node to be deleted does not represent

a group, it will always have a count of 1 and at the same time the count

annotation of a node deletion in the update tree is always -1, as we discussed

in Section 6.2. If the node to be deleted represents a group, its count can be

any positive number. Each delete operation to a node contributing to that

grouped node will decrement the count associated with the grouping node.

Applying xin to T first and recomputing the op should result in deleting

a tuple tini that matches xin from T . Hence, a tuple toutk
1 in the output

XAT table Q of op (representing the result of processing tini) will not exist.

When processing xin separately by op, a tuple xout is generated. xout will

match a tuple toutk in Q, as we have shown in the proof of Theorem 4.5.1.

Merging xout with toutk results in a tuple tout′k that is an Empty XAT

Tuple, as defined in Definition 7.1.2. Hence, tout′k is deleted from Q. The

Empty XAT Tuple tout′k is guaranteed to be generated. In order for xin

1A set of tuples, rather than one tuple, may be generated by some operators. For simpli-
fying the discussion, we assume that one tuple is generated.



7.1. VIEWS WITH SINGLE OPERATOR 187

to delete a tuple tini from T , xin should have exactly the same nodes as in

tini with counts equal to that of nodes in tini multiplied by -1. In this case

xin
t

⊔ tini will result in an Empty XAT Tuple that is deleted from T . Now

when we apply op to xin the propagated update tuples xout is guaranteed

to have the same nodes as the tuple toutk resulting from processing tini, as

we have shown in Theorem 4.5.1. This includes old nodes that are already

in tini and new nodes in toutk created by navigation and node construction

operations. For xout those new nodes will get a count of -1, based on rules

in Table 6.2. Merging xout with toutk generates the Empty XAT Tuple

tout′k that is deleted from Q. Hence, the theorem holds.

• xin does not delete a tuple from T . This is only possible if tuples in T

represent groups (T was processed by a Group By or a Distinct operation)

and tini, that xin matches with, represents more grouped tuples than what

xin represents. The sum of counts of any two corresponding nodes in the

grouping columns of tini and xin is going to be bigger than 0, because the

grouping node in tini represents more grouped nodes in the current result

(positive count) than what the grouping node in xin represent in terms of

grouped nodes to be deleted (negative count). In this case, applying xin first

to T and then recomputing the operator should result in a tuple tout′k in

Q that is generated from processing the updated source tuple tin′i. When

processing xin separately through the operator, a tuple xout is generated.

xout will match a tuple toutk in Q. Merging xout and toutk results in

a tuple tout′k that is equivalent to that obtained through recomputation, as

shown in the proof of Theorem 4.5.1. The count of nodes of matching nodes



7.1. VIEWS WITH SINGLE OPERATOR 188

will correctly be handled following the sam logic used in previous case, with

one difference is that the count of grouping nodes will not become 0.

Hence, Theorem 7.1.2 holds for delete updates.

Modify Updates. A modify update is represented as a tuple with all nodes

in columns ∈ ECC are with count equal to 0, as defined in Definition 6.5.1. The

propagation of such update follows the same logic as that of a delete update that

matches with a tuple in T , as discussed above. The only difference is that the modify

update will have 0 count for all nodes in columns in ECC instead of positive

numbers. Hence, merging a node with count equal to 0 with an old node will not

cause the sum to become 0. As a result, the propagation of a modify update will

not create a Empty XAT Tuple and hence will not delete any tuples from Q. Note

that nodes in columns that are not ∈ ECC of a tuple representing a modify update

might be representing insertion or deletion. A modify update might propagates

an insert or delete update if it was processed by a Navigate Unnest operator that

navigates to nodes representing insertions or deletions . This is because, based on

counting rules in Table 6.2, the count of nodes in ECC columns of the propagated

update tuple will be set to 1, if the node reachable by the navigation path has count

of 1, or will be set to -1, if the node reachable by the navigation path has count of -1.

For this point the appropriate logic for propagating the update, as discussed above,

based on its type (insert or delete) applies. 2

Maintaining a Binary Operator on Updates to its Right Input Source.

An update to the right input source of binary operator is generally treated

in the same way as that of updates to the left input source, as shown in

Theorem 7.1.2. In particular, T1 op (T2
t

⊔ △T2) = (T1 op T2)
t

⊔ (T1 op△T2).



7.2. VIEWS WITH MULTIPLE OPERATORS 189

This can directly be shown using the same logic used in proving Theorem

7.1.2. One exception to this is the Left Outer Join operator. Such operator

requires a special treatment on updates to its right input source. We address

that in more detail in Section 7.4.

Maintaining a Binary Operator Defined on top of Grouping Opera-

tions. A binary operator, in particular any operator from the join family of

operators, that receives updates to its input source where such source has

been previously processed by a grouping operation (value-based grouping,

id-based nesting, or distinct) is not maintainable using the equation in The-

orem 7.1.2. We address this issue and provide a separate treatment for it in

Section 7.3.

7.2 Views with Multiple Operators

We define the distributive property for XML views with more than one

algebra operator (a query plan) over the Deep Union since the input and the

output for such views are XML trees.

Theorem 7.2.1 Given a view V (S1, S2, ..., Sn) defined over input XML data

sources S1, S2, ..., Sn by an XAT algebraic expression E. Let△Si be an update to

one of E’s data sources Si, 1 ≤ i ≤ n. Let V rec = V (S1, .., Si
⊔

△Si, .., Sn) be the

view extent after recomputation. Let V inc = V (S1, .., Si, .., Sn)
⊔

V IMP (S1, ..,

△Si, .., Sn) be the view after propagating and applying the updates, V IMP is an

incremental maintenance plan derived from V . Then V rec = V inc holds. 2



7.2. VIEWS WITH MULTIPLE OPERATORS 190

V IMP is equal to V if the input XAT tables of the Join operation in V are

not affected by a grouping operation. In this case, V IMP only differs from

V in that it is augmented with the counting logic of view maintenance as

described in Section 6.4. Queries involving join operations may receive

updates to several of their sources. For a view V (S1, S2) where the source

S1 receives an update △S1 and S2 receives an update △S2, the refreshed

view extent is computed as follows: V (S1

⊔

△S1, S2

⊔

△S1) = V (S1, S2)
⊔

V IMP (S1,△S1)
⊔

V IMP (△S1, S2)
⊔

V IMP (△S1,△S2) .

Theorem 7.2.1 is similar to Theorem 4.5.4 with one main difference be-

ing that V IMP here uses operators augmented with counting as shown in

Table 6.2. In Theorem 7.1.2 we have shown the correctness of propagating

updates through these operators. The same logic used for proving Theorem

4.5.4 directly applies to Theorem 7.2.1.

Note that a source update as discussed above can be a single update

tree or a batch update tree.

Theorem 7.2.2 For a set of update trees {UT1, UT2, ..., UTn} batched using the

Deep Union operator into a batched update tree BUT , the following holds: V (BUT )

= V (UT1)
⊔

V (UT2) ...
⊔

V (UTn).

Proof: We have two possible cases:

1). Single updates share only the root node. In this case the count annota-

tion of nodes in the path of each update is not affected by the other updates2.

The result of propagating the batch update tree will be clearly equivalent to

the result of propagating each single update tree separately.

2Note that we typically assume that the update affects node(s) deeper than the root node.
Hence, the root node in any update tree will have a count of 0.



7.2. VIEWS WITH MULTIPLE OPERATORS 191

2). Single updates may share some other nodes beside the root node..

In this case some updates may share prefix paths in the batch update tree.

By the definition of the Deep Union operator (Definition 6.6.1, the count

annotation of a shared node will be equal the summation of counts of all

nodes sharing it from the different updates. The resulting count for a shared

node will still be either 1, -1, or 0, since a node can be inserted or deleted

by only one update. Whenever the node is used as part of the path to an

update it is assigned a 0 count. In other words, each node in the batch

tree always reflects one type of update, whether it is shared or not, based

on its count. For example, if an update is inserting a node n for the first

time it is assigned a count of 1. If n is used in the path of another update

that inserts a new node that is a descendant node to n, in this case n is

assigned a count of 0 in that second update. Batching these two updates

into one batch update tree will not change the count assigned to n (1+0

=1). When propagating the batch update tree, the Source operator at the

leaf of the maintain plan XAT tree generates a tuple that has the root node

of the batch update tree. Such root node will have a count of 0, as updates

are typically located deeper than that root node. So far different updates

are hidden below this root node. At later stage when navigation operations

are used these updates might be exposed in intermediate XAT tuples. If

a Navigate collection is used next that navigates to multiple nodes in the

batch update tree, this will create a tuple with column(s) in ECC containing

node(s) in the path to the distention nodes (with counts of 0) and a new

column colk containing the collection that holds the destination nodes. Each

of the destination nodes is uniquely identified and is annotated with a count



7.2. VIEWS WITH MULTIPLE OPERATORS 192

representing its update type. These update nodes are separate from each

other at this point. The propagation of each of them in batch is equal to the

propagation of each of them separately, since each of them affects separate

nodes. In other words, we can break this tuple containing this collection

of destination nodes into multiple tuples where each tuple contains exactly

the same nodes in ECC columns with the same count (0) and contains a

collection in column colk that has one of the update nodes. Each of these

tuples is clearly separate from other tuples and updates a unique node. If a

Navigate Unnest is used to navigate to nodes in the batch update tree, each

node will be extracted in a separate tuple. Each of these tuples will represent

the specific update type based on the count of the destination node that we

navigate to, as counts of nodes in ECC columns are set equal to the count

of the destination node, based on our count computation rules in Table 6.2.

Hence, we conclude that whether the nodes in the path to an updated node

are shared or not, we can still extract the appropriate counts for nodes in

that path based on the update type. Note that so far we have shown that the

updates in a batch tree are separate from each other in terms of the nodes

they affect. Different nodes representing updates might affect the same node

in the result if a grouping operation is used. In such case each of the update

nodes contributes to the grouping node based on its count, as shown in the

proof of Theorem 7.1.2.

Hence, we conclude that Theorem 7.2.2 holds. 2



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 193

7.3 General Views with Join and Grouping Operations

If input sources of the join are affected by a grouping operation then propa-

gating updates using the expression in Theorem 7.1.2 may generate results

that are duplicates of previous results generated when processing the initial

data.

Example. Consider the Join operation in Figure 7.1(a) defined over two

input sources T1 and T2. Assume that T1 was affected by a grouping op-

eration that grouped tuples by the contents of column col2 and applied a

Combine operator to contents of column col1. We also assume that T2 was

affected by a grouping operation that grouped tuples by the contents of col-

umn col4 and applied a Combine operator to contents of column col3. Note

that counts assigned to nodes in grouping columns col1 and col3 reflect the

number of grouped nodes. The result of this Join operation is the XAT table

Q, shown in Figure 7.1(a). Now assume that T1 receives an update△T1 and

that T2 receives an update△T2, both shown in Figure 7.1(b). If we were to

apply these updates to T1 and T2 and to recompute the Join operator, we

would get the XAT table Q′ shown in Figure 7.1(c).

Now instead consider that we want to maintain this operator incremen-

tally. If we were to use the view maintenance logic we proposed above for

maintaining this Join operator we would maintain the operator as follows:

((T1

t

⊔ △T1)join (T2

t

⊔ △T2)) = (T1join T2)
t

⊔ (T1join△T2)
t

⊔ (△T1join T2)
t

⊔

(△T1join△T2) .

Figures 7.2(a), (b), and (c) show the execution of the incremental main-

tenance plans (T1join△T2), (△T1join T2), and (△T1join△T2) respectively



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 194

(a)

(b)

JoinJoin $col1= $col3$col1= $col3

{x[1]}

{w[1]}

$col2

70[1]

50[1]

$col1

{x[1]}

{w[1]}

$col2

70[1]

50[1]

$col1

{b[1] , c[1]}

{a[1]}

$col4

70[2]

50[1]

$col3

{b[1] , c[1]}

{a[1]}

$col4

70[2]

50[1]

$col3

{x[1]}

{w[1]}

$col2

70[2]

50[1]

$col3

{b[1] , c[1]}

{a[1]}

$col4

70[1]

50[1]

$col1

{x[1]}

{w[1]}

$col2

70[2]

50[1]

$col3

{b[1] , c[1]}

{a[1]}

$col4

70[1]

50[1]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

T1 T2

{d[1]}

$col4

70[1]

$col3

{d[1]}

$col4

70[1]

$col3

DT1 DT2

(c)

JoinJoin $col1= $col3$col1= $col3

{x[1] , y[1],
z[1]}

{w[1]}

$col2

70[3]

50[1]

$col1

{x[1] , y[1],
z[1]}

{w[1]}

$col2

70[3]

50[1]

$col1

{b[1] , c[1]

, d[1]}

{a[1]}

$col4

70[3]

50[1]

$col3

{b[1] , c[1]

, d[1]}

{a[1]}

$col4

70[3]

50[1]

$col3

{x[1] ,
y[1], z[1]}

{w[1]}

$col2

70[3]

50[1]

$col3

{b[1] , c[1] ,
d[1]}

{a[1]}

$col4

70[3]

50[1]

$col1

{x[1] ,
y[1], z[1]}

{w[1]}

$col2

70[3]

50[1]

$col3

{b[1] , c[1] ,
d[1]}

{a[1]}

$col4

70[3]

50[1]

$col1

T1’ T2’

Q
Q’

Figure 7.1: An example showing a Join operation over sources affected by
grouping operations. (a) Initial view extent computation. (b) Source up-
dates. (c) Recomputed view extent.

and their results. We show in Figure 7.2(d) the combined results of these

three maintenance plans, obtained through TUnion operation as defined

in Definition 7.1.1. Note that when applying this combined incremental

result in Figure 7.2(d) to the materialized view extent Q in Figure 7.1(a) it

does not refresh it correctly. In other words, we do not get the same result

we obtain if we were to recompute the operator over the updated sources,

as shown in Figure 7.1(c). In particular, the combined incremental result

in Figure 7.2(d) (i) adds 2 additional counts to the node with value 70 in

column col1, (ii) propagates a duplicate copy of the node z in column col2

by mistake, (iii) adds 2 additional counts to the node with value 70 in col-

umn col3, and (iv) propagates a duplicate copy of each of the nodes b and

c in column col4. Hence, the refreshed result Q′ is incorrect. Moreover, if



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 195

Q is not materialized and is an input to another operator in a bigger query

plan, such duplicate results will affect the correctness of maintaining any

materialized view generated from this plan.

(a)

(b)

JoinJoin $col1= $col3$col1= $col3

{x[1]}

{w[1]}

$col2

70[1]

50[1]

$col1

{x[1]}

{w[1]}

$col2

70[1]

50[1]

$col1

{x[1]}

$col2

70[1]

$col3

{d[1]}

$col4

70[1]

$col1

{x[1]}

$col2

70[1]

$col3

{d[1]}

$col4

70[1]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

T1

{d[1]}

$col4

70[1]

$col3

{d[1]}

$col4

70[1]

$col3

DT1

DT2

(c)

{b[1] , c[1]}

{a[1]}

$col4

70[2]

50[1]

$col3

{b[1] , c[1]}

{a[1]}

$col4

70[2]

50[1]

$col3

T2

JoinJoin $col1= $col3$col1= $col3

{y[1], z[1]}

$col2

70[2]

$col3

{b[1] , c[1]}

$col4

70[2]

$col1

{y[1], z[1]}

$col2

70[2]

$col3

{b[1] , c[1]}

$col4

70[2]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

{y[1], z[1]}

$col2

70[2]

$col1

DT1

JoinJoin $col1= $col3$col1= $col3

{y[1], z[1]}

$col2

70[1]

$col3

{d[1]}

$col4

70[2]

$col1

{y[1], z[1]}

$col2

70[1]

$col3

{d[1]}

$col4

70[2]

$col1

{d[1]}

$col4

70[1]

$col3

{d[1]}

$col4

70[1]

$col3

DT2

{x[1], y[2],
z[2]}

$col2

70[5]

$col3

{b[1] , c[1]

, d[1]}

$col4

70[5]

$col1

{x[1], y[2],
z[2]}

$col2

70[5]

$col3

{b[1] , c[1]

, d[1]}

$col4

70[5]

$col1

(d)

DQ (combined)

DQDQ

DQ

Figure 7.2: Computing the propagated updates resulting from the source
updates shown in Figure 7.1(b). (a) T1join△T2. (b) △T1join T2. (c)
△T1join△T2 . (d) The combined result of the three expressions (a), (b),
and (c).

We now analyze the reasons for obtaining such incorrect incremental

result.

• When computing (T1join△T2). We find that △T2 joins with the sec-

ond tuple in T1 (we denote it as T1[2]). This propagates a tuple that

has all nodes from △T2 and all nodes from T1[2]. Comparing this to



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 196

what we would get if we were to recompute the operator after ap-

plying△T2 to T2 we find that△T2 should only contribute to the new

result the new node in column col4 (node d) and an increase in the

count of the grouping value 70 in column col3 by 1, reflecting the ad-

dition of this one new node to the group. Nodes originating from T1

should be introduced in the refreshed result Q′ one time as they join

with the updated group from T2. This is not the case when we main-

tain the operator incrementally. Nodes from T1[2] are introduced in

the initial result when they join with T2[2]. Later in view maintenance

time, when T1[2] joins with △T2, duplicate result of nodes from T2[2]

are propagated to the view extent by mistake.

• When computing (△T1join T2). The same issue occurs as in (T1join△T2)

but the duplicate result comes from T2[2]. This is because T1 is af-

fected by a grouping operation and nodes from T2[2] are introduced

in the result twice, one time when joined in initial query execution

with T1[2] and second time when they join whith △T2. While they

should be joined and introduced in the result one time only if △T2

were to be applied first to T2 and the join is to be recomputed.

• When computing (△T1join△T2). This expression should not con-

tribute any result to the view extent. This is because nodes from

△T1 have been accounted for in the result, in this example, as the

expression (△T1join T2) has already propagated a tuple containing

them. Nodes from △T2 have been also accounted for as the expres-

sion (T1join△T2) has already propagated a tuple containing them.



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 197

Hence, the generated tuple shown in Figure 7.2(c) due to processing

(△T1join△T2) has duplicate results and should not be propagated.

Note that we can not simply solve this problem by removing the ex-

pression for the maintenance plans (△T1join△T2). This is because in

some cases (△T1join△T2) might still want to propagate nodes from

any of the two updates used by this expression. For example, if △T1

does not join with any tuple in T2, Then nodes from △T1 have to be

propagated through this expression.

In the previous example we have shown the problem created by hav-

ing the input source(s) of a join operation affected by grouping operations.

The example illustrates one possible scenarios. Other scenarios are possi-

ble. For example, any of the sources might not be affected by a grouping

operation, an update operation is a delete or a modify update, and a delete

operation deletes an entire group from the input XAT table.

We now propose a general equation for maintaining join operators whether

or not its input(s) were affected by a grouping operation and on any type

of updates.

The equation we propose next (in Theorem 7.3.3) adds to each incre-

mental plan expression from above a compensating expression that re-

moves the effect of duplicate results possibly created by having the input

sources of the join operator being affected by grouping operations, as illus-

trated in the example above.

We first define two operators TDiff
t

− and TIntersect
t

⊓ that are used

to compute the difference and intersection of XAT tuples.



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 198

Definition 7.3.1 TDiff (
t

−) takes two XAT tables T1 and T2 with the same schema

and finds the difference between them. The result is an XAT table that contains

single occurrence of each pair of matching tuples (as specified in Definition 4.2.4)

and all the non-matching tuples from T1.

Each pair of matching tuples (t1 and t2) is merged into a single tuple (tdiff )

that contains a single occurrence of the matching nodes from t1[coli] and t2[coli]

if coli ∈ ECC , and the difference of the contents of t1[coli] and t2[coli] if coli /∈

ECC .

T1
t

− T2 = {t1|t1 ∈ T1 and 6 ∃t2 ∈ T2 where t1 ≍ t2} ∪ {tdiff |∀t1 ∈ T1,

∃t2 ∈ T2 where t1 ≍ t2}

tdiff is a tuple that conforms to the schema of t1 and has the same ECC as t1.

tdiff is defined as follows:

∀coli ∈ tdiff , tdiff [coli] = t1[coli]

Node Count: The count annotation of any node n ∈ tdiff [coli] is equal to the

difference in counts between the two matching nodes n1 and n2 from t1[coli] and

t2[coli] respectively where n.id = n1.id = n2.id, or equal to the count of n1 if 6 ∃ n2

∈ t2[coli] where n1.id = n2.id.

n.count =















































n1.count− n2.count ∃ n1 ∈ t1, ∃ n2 ∈ t2 where

n.id = n1.id = n2.id

n1.count ∃ n1 ∈ t1, n.id = n1.id and

6 ∃ n2 ∈ t2 where n.id = n2.id

For ∀ node n ∈ tdiff [coli] where coli /∈ ECC and if ∃ n1 ∈ t1 and ∃ n2 ∈ t2

where n.id = n1.id = n2.id, in this case if n1.count− n2.count = 0, n is deleted.



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 199

Tuple Count Factor: tdiff .countFactor is computed based on the new counts

of nodes in tdiff following the guidelines discussed in Section 6.5.

Empty XAT Tuples. Similar to the
t

⊔ operator, the
t

− operator may also

generate Empty XAT Tuples (Definition 7.1.2).

Proposition 7.3.1 An Empty XAT Tuple (Definition 7.1.2) generated by the
t

−

operator during view maintenance time is deleted.

Definition 7.3.2 TIntersect (
t

⊓) takes two XAT tables T1 and T2 with the same

schema and finds the intersection between them. The result is an XAT table that

contains single occurrence of each pair of matching tuples (as specified in Defini-

tion 4.2.4).

Each pair of matching tuples (t1 and t2) is merged into a single tuple (tintersect)

that contains a single occurrence of the matching nodes from t1[coli] and t2[coli]

if coli ∈ ECC , and the intersection of the contents of t1[coli] and t2[coli] if coli /∈

ECC .

T1
t

⊓ T2 = {∅|t1 6≍ t2, t1 ∈ T1, t2 ∈ T2} ∪ {tintersect|∀t1 ∈ T1,∃t2 ∈ T2

where t1 ≍ t2}

tintersect is a tuple that conforms to the schema of t1 and has the same ECC as

t1. tintersect is defined as follows:

∀coli ∈ tintersect, tintersect[coli] = t1[coli] if coli ∈ ECC and tintersect[coli]

= (t1[coli] ∩ t2[coli]) if coli /∈ ECC . t1[coli] ∩ t2[coli] contains any intersecting

nodes from t1[coli] and t2[coli] where nodes are matched by node id.

Node Count: The count annotation of all node n ∈ tintersect[coli] is set to 0.

Tuple Count Factor: tintersect.countFactor is equal to t1.countFactor ex-

pect when ∃ n ∈ tintersect[coli], where coli ∈ ECC , (n1.count + n2.count) = 0



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 200

where n1 ∈ t1[coli], n2 ∈ t2[coli], n.id = n1.id = n2.id. In this case tintersect.countFactor

= 0.

Empty XAT Tuples. The
t

⊓ operator does not delete a node n resulting

from matching two nodes, even if n ∈ coli, coli /∈ ECC . This is because

we want to maintain the fact that such intersection occurs. For any two

cells t1[coli] and t2[coli] where t1 ≍ t2 and coli /∈ ECC , tintersect will contain

an empty collection if none of the nodes in t1[coli] and t2[coli] match. For

any two matching tuples t1 and t2, all nodes in columns in ECC will have

count equal to 0. We conclude that an Empty XAT Tuple is generated by

the
t

⊓ operator in the following case: if ∃ t1 in T1, t2 in T2 where t1 ≍ t2

and ∀ coli /∈ ECC none of the nodes in t1[coli] matches nodes in t2[coli].

In contrast to the
t

⊔ and the
t

− operators, we do not delete any Empty XAT

Tuple generated by the
t

⊓ operator during view maintenance time, as we

state in Proposition 7.3.2, because we still want to maintain the fact that t1

and t2 intersect by columns in ECC , see definition of the match operator

4.2.4.

Proposition 7.3.2 An Empty XAT Tuple (Definition 7.1.2) generated by the
t

⊓

operator during view maintenance time is not deleted.

Now we give our equation for propagating updates though join opera-

tions. A join operation here can be the Theta Join operator or the Cartesian

Product operator. The Left Out Join operator has a separate treatment that

we present in Section 7.4. We will use the term join to refer to any of the

Theta Join operator or the Cartesian Product operator in out next discussions.



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 201

Theorem 7.3.3 A join operator with input sources T1 and T2, and△T1 and△T2

as updates to these sources, can be maintained using the following expression:

(T1

t

⊔ △T1) join (T2

t

⊔ △T2) =

(T1 join T2)
t

⊔

((T1 join△ T2)
t

− (T1 join (△ T2

t

⊓ T2)))
t

⊔

((△T1 join T2)
t

− ((△T1

t

⊓ T1) join T2)))
t

⊔

((△T1 join△T2)
t

− (((△T1

t

⊓ T1) join△T2))
t

⊔ (△T1 join (△ T2

t

⊓ T2))).

Proof: For a join operator with T1 and T2 as input XAT tables, we consider differ-

ent cases where the input sources may or may not be affected by grouping opera-

tions given different update scenarios. We represent the tuple update to T1 as △T1

= {xin}= [[x11, x12, .., x1m]], where x1j is the jth cell in the update tuple and m is

the total number of columns in T1. Similarly, we represent the tuple update to T2

as △T2 = {xin2} = [[x21, x22, .., x2n]], where x2k is the kth cell in update tuple and

n is the total number of columns in T2.

Input Sources to the Join are not affected by grouping operations. We

want to show that when sources are not affected by grouping operations, the main-

tenance expression: ((T1 join △ T2)
t

− (T1 join (△ T2

t

⊓ T2)))
t

⊔ ((△T1 join T2)
t

−

((△T1

t

⊓ T1) join T2)))
t

⊔ ((△T1 join△T2)
t

− (((△T1

t

⊓ T1) join△T2))
t

⊔ (△T1 join

(△ T2

t

⊓ T2))) is simply equal to (T1 join△ T2)
t

⊔ (△T1 join T2)
t

⊔ (T1 join△T2)
t

⊔

(△T1 join△T2). Consider an update △T1 to an input source XAT table T1 of a

join operation. We first want to show that (△T1 join T2)
t

− ((△T1

t

⊓ T1) join T2)

= (△T1 join T2), △T1 might be representing an insertion, deletion, or modification

operation. Hence, we have the following cases:

• △T1 represents an insert update. We find that 6 ∃ a tuple tini ∈ T1 where



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 202

xin ≍ tini since the insert update must have new node id(s). Hence, the

compensating expression ((△T1

t

⊓ T1) join T2))) in the maintenance plan

does not generate any tuples. There is no tuple in T1 that intersects with

△T1 based on the definition of TIntersect above.

• △T1 represents a delete update. We find that ∃ a tuple tini ∈ T1 where xin

≍ tini. The expression ((△T1

t

⊓ T1) join T2))) in the maintenance plan

generates for each tuple generated by (△T1 join T2) a tuple that is equal

to it but with all its node count equal to 0. This is because the TIntersect

operator, as defined in Definition 7.3.2, between △T1 and T1 generates a

tuple equal to the update tuple △T1 but with all node counts set to 0. The

count factor of this generated tuple is set to 0, based on Definition 7.3.2.

Hence, when this tuple is joined with T2 it multiplies the nodes in the joined

tuple(s) from T2 by the tuple count factor 0, that was set by the TIntersect

as we mentioned above.

When subtracting the compensating tuple(s) generated by ((△T1

t

⊓ T1)

join T2))) from the update tuple(s) generated by (△T1 join T2) using the
t

−

operator, the update tuples are not affected.

• △T1 represents a modification tuple. We find that for △T1, ∃ tini ∈ T2

where xin ≍ tini. The expression (△T1 join T2) in the maintenance plan

generates tuples where all nodes originating from T2 are assigned a count of

0. This is due to the 0 multiplicity factor of△T1. Note that nodes originat-

ing from columns that are not in ECC of △T1 might have counts of 0, 1,

or -1. The compensating expression ((△T1

t

⊓ T1) join T2))) in the mainte-

nance plan generates tuples with all its node counts equal to 0, based on the



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 203

definition of the TIntersect operator. This is similar to the delete update

case above.

For all the update types above we conclude that (△T1 join T2)
t

− ((△T1

t

⊓ T1)

join T2))) = (△T1 join T2) . This is because the compensating expression ((△T1

t

⊓

T1) join T2))) = (△T1 join T2) has no effect as it generates no tuples for insert

updates. For delete and modify updates it generates tuple(s) that when subtracted

from the tuple(s) generated by (△T1 join T2) using the
t

− operator have no effect

as we have illustrated above.

Using the same logic we can easily reach the conclusions that (T1 join△T2)
t

−

(T1 join (△ T2

t

⊓ T2))) = (T1 join△T2) and that ((△T1 join△T2)
t

− (((△T1

t

⊓ T1)

join △T2)))
t

⊔ (△T1 join (△ T2

t

⊓ T2))) = ((△T1 join△T2) . Hence, putting the

above together we can conclude that for a join with input sources not affected by

grouping operations this holds: ((T1

t

⊔ T1) join (T2

t

⊔ T2)) = (T1 join T2)
t

⊔ (T1

join△ T2)
t

⊔ (△T1 join T2)
t

⊔ (△T1 join△T2)

Input Sources to the Join are affected by grouping operations. Next we

will discuss the correct propagation semantics of updates on sources affected by

grouping operations. We will show that our maintenance plan expression achieves

this semantics under different update types. We will break the maintenance plan

expression into its three main component expressions and discuss each component

separately.

• The expression ((T1 join △ T2)
t

− (T1 join (△ T2

t

⊓ T2))) . Given that T2

is affected by a grouping operations, each tuple in T2 has a set of grouping

columns GrpingCS and a set of grouped columns GrpedCS. If △T2 is to

be applied to T2 before the join is performed using the TUnion operator as



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 204

defined in Definition 7.1.1, this will result in one of two cases:

– △T2 merges with an existing tuple in T2. This case occurs if there is a

tuple tin2 ∈ T2 that matches △T2, as defined in Definition 4.2.4. As-

sume that the result of joining tin2 with a tuple tin1 ∈ T1 is the tuple

tout in the output XAT table of the join operator. A correct propaga-

tion of the update requires that added, deleted, or modified nodes and

incremental modifications to counts of nodes in △T2 are to be propa-

gated up to the corresponding columns in tout. While at the same time

for those nodes in tout originating from tin1 nothing should change.

Using the expression ((T1 join △ T2) to maintain the join view on

△T2 is going to generate duplicate results for nodes originating from

tin1, as shown in the example above. This is because the tuple result-

ing from applying (T1 join△ T2) is going to propagate to tout nodes

originating from tin1 that should not be propagated. As these nodes

are redundant because they have been already propagated through the

join with the tuple tin2 that the update matches with. In other words,

if we apply the update to tin2 first then join with tin1 we will end up

with one single occurrence of each node in tin1 in the result. While

if we process the update separately we end up propagating duplicate

nodes from tin due to the join with the update.

Now let us consider our solution for this problem. We propose the

following maintenance expression: ((T1 join △ T2)
t

− (T1 join (△ T2

t

⊓ T2))) . The expression (T1 join (△ T2

t

⊓ T2))) compensates for the

duplicates that may be created by the extra join between T1 and△ T2.



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 205

Depending on the update type, the compensating expression creates a

compensating tuple compTup as follows.

1). If the update is an insert update, compTup will contain all columns

originating from tin1 with the same node content and the same

counts. In addition it will contain all columns originating from

△T2 but with node counts set to 0 (due to the TIntersect op-

erator). Performing
t

− between ((T1 join △ T2) and (T1 join

(△ T2

t

⊓ T2))) as defined in Definition 7.3.1 generates a propa-

gated tuple where (i) all nodes in columns originating from △T2

are the same and (ii) columns originating from the joined tuple

tin1 contain empty collections, if they are in GrpedCS or con-

tain nodes with 0 counts, if they are in GrpingCS. The nodes

in columns in GrpingCS are needed as part of the identifier of

the propagated tuple when merging this propagated tuple with the

previously computed result of the join. They do not however affect

the count of the nodes they merge with. Hence, when the propa-

gated update is applied to the result of the join only the appropriate

nodes are updated.

2). If the update is a delete update and it does not delete the entire

collection from T2. In other words, if the update is not deleting the

last node(s) from the grouped collection of nodes in T2. In this case

compTup will contain all columns originating from tin1 with

the same content (same nodes with negative counts resulting from

multiplying them by the -1 count factor of △T2) and all columns



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 206

originating from △T2 but with node counts set to 0. Similar to

the case of the insert above, performing the
t

− operation between

((T1 join△ T2) and (T1 join (△ T2

t

⊓ T2))) will compensate for the

redundant result from tin1 and propagates a correct tuple. If we

do not apply compTup we will end up propagating more deleted

nodes that what should be deleted.

3). If the update is a delete update and it deletes the entire collection

from T2. In other words, if this covers the case when the update

is deleting the last node(s) from the grouped collection of nodes in

T2. This should cause the entire group to delete. By the definition

of TIntersect, the count of all intersecting nodes in the grouping

columns of the resulting tuple becomes equal to 0 and the count

factor of the update tuple becomes 0. Hence, when this tuple is

joined with tin1, then the counts of nodes in tin1 are multiplied by

0. As a result, compTup will contain for all columns originating

from tin1, the same content but with node counts equal to 0. Also

for all columns originating from △T2, they will contain the same

content but with node counts equal to 0. Performing
t

− between

((T1 join△ T2) and (T1 join (△ T2

t

⊓ T2))) as defined in definition

in 7.3.1 generates a propagated tuple that is exactly equal to (T1

join △ T2) . This tuple reflects the correct propagation semantics

since when propagated it deletes from the output XAT table of the

join operator a tuple tout that would have not been placed in the

output if we were to apply △T2 to T2 first (resulting in removing

tin2 from T2). Then tin2 would no longer join with a tuple tin1



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 207

from T1 to generate tout.

4). If the update is a modify update. In this case compTup will con-

tain all columns originating from tin1 with the same node content

and node counts and all columns originating from△T2 with node

counts set to 0. The expression (T1 join △ T2) generates a tuple

that has all nodes in tin1 with counts equal to 0 (due to multiply-

ing by the 0 count factor of △T2). It also has all nodes from △T2

with their assigned counts. For a node in a column in GrpingCS

of△T2 that count must be 0, based on Lemma 6.5.1. For a node in

a column in GrpedCS of △T2 that count might be -1 reflecting

the deletion of leaf node with an old value, 1 reflecting the inser-

tion of a new leaf node with a new value, or 0 reflecting a node in

the path to modified leaf node(s). Note that it is possible to have

nodes with different counts in a GrpedCS of a modify update if

the sum of these counts is equal to 0. We still classify such up-

date as a modify update since it modifies the contents of the group

by inserting, deleting, or modifying and does not cause insertion,

deletion, or change in the count annotation of the group itself. Per-

forming the
t

− between this tuple and compTup will generate a

correct tuple to propagate.

– △T2 does not merge with an existing tuple in T2. This case is possible

only for insert updates that create new groups. In other words, if there

is no tuple tin2 ∈ T2 that matches△T2, as defined in Definition 4.2.4.

Such updates will append tuples to T2. Hence, the treatment for this



7.3. GENERAL VIEWS WITH JOIN AND GROUPING OPERATIONS 208

case is similar to that discussed above for insert updates on a source not

affected by grouping operations, since these updates also append tuples

to T2. Hence, we reach the conclusion: (△T1 join T2)
t

− ((△T1

t

⊓ T1)

join T2))) = (△T1 join T2) .

• The expression ((△ T1 join T2)
t

− ((△T1

t

⊓ T1) join T2)) . The reasoning for

this expression is similar to that of ((T1 join△ T2)
t

− (T1 join (△ T2

t

⊓ T2)))

that we have discussed above but with T1 being updated instead of T2.

• The expression ((△T1 join△T2)
t

− (((△T1

t

⊓ T1) join △T2)))
t

⊔ (△T1 join

(△ T2

t

⊓ T2))) . This expression propagates the join of △T1 and △T2 ac-

counting for possible duplicates created as any of the updates△T1 and△T2

may merge with an existing group in T1 and T2 respectively. Consider the

following two cases:

– △T1 and △T2 both merge with existing tuples in T1 and T2 respec-

tively. The compensating subexpression (△T1 join (△ T2

t

⊓ T2))) gives

a tuple compensating for the duplicates in △T1 due to joining it with

△T2, if △T2 matches a tuple in T2. The reasoning for this compen-

sating sub-expression is similar to that of (T1 join (△ T2

t

⊓ T2))) that

we have discussed above with one difference being that△T2 joins with

△T1 instead T1. The same applies to the sub-expression (((△T1

t

⊓

T1) join △T2))) . Performing a
t

⊔ operation among these two Sub-

expressions merges the compensating tuples they generate into one

combined compensating tuple. This combined compensating tuple re-

moves duplicates nodes from the propagated update resulting from (△T1

join△T2) .



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 209

– △T1 or △T2 do not merge with any existing tuples in T1 and T2 re-

spectively. Given previous conclusions, if△T1 does not merge with T1

the propagation equation is equal to ((△T1 join△T2)
t

− (△T1 join (△

T2

t

⊓ T2)) . If △T2 does not merge with T2, the propagation equation

is equal to ((△T1 join△T2)
t

− ((△T1

t

⊓ T1) join△T2))) . If △T1 does

not merge with T1 and △T2 does not merge with T2, the propagation

is simply equal to ((△T1 join△T2) .

We finally conclude that the expression ((△T1 join△T2)
t

− (((△T1

t

⊓ T1) join

△T2)))
t

⊔ (△T1 join (△ T2

t

⊓ T2))) correctly propagates updates for join operations.

2

7.4 Views with Left Outer Join Operations

The Left Outer Join might generate tuples with null values in columns cor-

responding to the right input source of the operator. This happens when a

tuple from the left input source does not merge with any tuples from the

right input source. Maintaining the Left Outer Join operator on updates to

its left input source is straight forward similar to maintaining the Theta Join

operator as discussed above. In particular, (T1
t

⊔ △T1)=⊲⊳cT2 = (T1=⊲⊳cT2)
t

⊔

(△T1=⊲⊳cT2). The problem arises when we want to maintain the Left Outer

Join operator on updates to the right input source (T2) as we illustrate in the

following example.

Example. Consider the Left Outer Join operation in Figure 7.3(a) defined

over two input sources T1 and T2. The result of this operation is the XAT

table Q, shown in Figure 7.3(a). The first tuple in Q has null values in



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 210

columns col3 and col4, this is because the input tuple for that tuple (first tu-

ple in T1) did not join with any tuple from T2. Now assume that T2 receives

two updates, one of them is an insert update and the other is a delete up-

date, both batched in the XAT table△T2 shown in Figure 7.3(b). If we were

to apply these updates to T2 and to recompute the Left Outer Join operator,

we would get the XAT table Q′ shown in Figure 7.1(c). Q′ contains a tuple

that replaces the old tuple in Q that contained null values. Q′ also contains

a new tuple that replaces the second tuple that was in Q. This new tuple

has null values for columns col3 and col4, reflecting the fact that source in-

put tuple of that tuple in Table T1 is no longer joining with any tuple in T ′2

after applying the delete update to T2. Figure 7.3(d) shows the delta up-

date △Q we would obtain if we were to use the incremental maintenance

plan (T1=⊲⊳c△T2) for maintaining the view. Clearly T1=⊲⊳c(T2
t

⊔ △T2) is

not equal to (T1=⊲⊳cT2)
t

⊔ (T1=⊲⊳c△T2)

The example above shows two possible side effects of propagating up-

dates to the right input source of the Left Outer Join operator: (i) a previ-

ously created tuple that contains null values should be deleted and (ii) a

new tuple that contains null values should be inserted. When maintain-

ing the Left Outer Join operator we need to account for these two cases. In

addition we need to make the propagation rule general enough to support

other cases when such side effects are not needed and when propagating

modify updates. We propose an algebraic equation for maintaining the Left

Outer Join operator on updates to its right input source that takes all these

into consideration. Unlike the solution in [GK98] we propose a generic

equation that supports all types of updates. This enables the propagation



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 211

of bulk updates possibly of different types at the same time. Our equation

also propagates minimal updates, meaning that we do not propagate delete

updates to tuples that are not in the output of the operator and we do not

delete a tuple and then reinsert it. As a result, we do not require additional

rules for ensuring minimality as in [GK98].

We first define a special tuple, called the Default Tuple of an XAT table.

(a)

LOJLOJ $col1= $col3$col1= $col3

x[1]

w[1]

$col2

70[1]

50[1]

$col1

x[1]

w[1]

$col2

70[1]

50[1]

$col1

b[1]

a[1]

$col4

70[1]

40[1]

$col3

b[1]

a[1]

$col4

70[1]

40[1]

$col3

x[1]

w[1]

$col2

70[1]

Null

$col3

b[1]

Null

$col4

70[1]

50[1]

$col1

x[1]

w[1]

$col2

70[1]

Null

$col3

b[1]

Null

$col4

70[1]

50[1]

$col1

T1 T2

Q

b[-1]70[-1]

d[1]

$col4

50[1]

$col3

b[-1]70[-1]

d[1]

$col4

50[1]

$col3

DT2

(b)

(c)

LOJLOJ $col1= $col3$col1= $col3

d[1]50[1]

a[1]

$col4

40[1]

$col3

d[1]50[1]

a[1]

$col4

40[1]

$col3

x[1]

w[1]

$col2

Null

50[1]

$col3

Null

d[1]

$col4

70[3]

50[1]

$col1

x[1]

w[1]

$col2

Null

50[1]

$col3

Null

d[1]

$col4

70[3]

50[1]

$col1

T1 T2’

Q’

x[1]

w[1]

$col2

70[1]

50[1]

$col1

x[1]

w[1]

$col2

70[1]

50[1]

$col1

x[-1]

w[1]

$col2

70[-1]

50[1]

$col3

b[-1]

d[1]

$col4

70[-1]

50[1]

$col1

x[-1]

w[1]

$col2

70[-1]

50[1]

$col3

b[-1]

d[1]

$col4

70[-1]

50[1]

$col1

(d)

DQ

Figure 7.3: An example showing a Left Outer Join operation over a an
updated right input source. (a) Initial view extent computation. (b)
Source updates. (c) Recomputed view extent. (D) delta updates if we use
(T1=⊲⊳c△T2).

Definition 7.4.1 The Default Tuple dcf
T for an XAT table T is a tuple that has

the same schema of T and contains null values for all columns. The parameter cf

represents the count factor of that tuple and can be set to 0, 1, or -1.

We also define the Semi Join operator (⊲<) to facilitate our discussion.



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 212

Definition 7.4.2 The Semi Join operator T1 ⊲<c T2 is a derived operator that is

defined as follows:

T1 ⊲<c T2 = ΠT1.cols(T1 1c T2)

where ΠT1.cols is the Project operator that keeps only all columns from the XAT

table T1. The Project operator does not affect the Context Schema or node counts

in columns of T1.

We now present our algebraic equation for maintaining the Left Outer

Join operator on updates to its right input source.

Theorem 7.4.1 For a Left Outer Join operator T1=⊲⊳cT2 with an update△T2 to

T2, the following holds:

T1=⊲⊳c(T2
t

⊔ △T2) = (T1=⊲⊳cT2)
t

⊔

((T1 1c △T2)
t

⊔ ((T1 ⊲<c δcr(△T2))
t

− (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2))))×{d
−1
T2
}))

where ⊲<c is the Semi Join operator (as defined in Definition 7.4.2), d−1
T2

is the

default tuple of table T2 (as defined in Definition 7.4.1), with a count factor set to

-1, and cr is the column ∈ T2 that is used in the join predicate c.

Proof: The incremental maintenance plan in this algebraic equation is composed

of two main expressions; (I) the main delta expression: (T1 1c △T2) and (II) the

compensating expression: ((T1 ⊲<c δcr(△T2))
t

− (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2))))

× {d−1
T2
}). The main delta expression clearly computes the propagated update re-

sulting from joining△T2 with T1. The compensating expression computes any

tuples with null values that need to be inserted or deleted from the operator result

as a result of propagating △T2. We denote the tuple generated from processing a

tuple tl from T1 that does not join with any tuple from T2 as tnull
l . Columns in

tnull
l corresponding to columns in tl contains the same values as their correspond-



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 213

ing columns in tl. Columns in tnull
l corresponding to columns in T2 contains null.

We consider that △T2 represents an insert, delete, or modify tuple to T2. For the

simplicity of the discussion we assume that △T2 contains only one update tuple.

Yet, our result applies to any number of update tuples possibly of different types.

We also assume that △T2 can join with only one tuple tl from T1. We include a

discussion at the end of this proof that builds on our conclusions to show that our

solution works for batch of updates of possibly different types and for joins with

multiple tuples.

We now discuss the correctness of the compensating expression on different

update types. For each case analyze the result obtained from the compensating

expression on four steps: (I) the result of the sub-expression: (T1 ⊲<c δcr(△T2),

(II) the result of the sub-expression: (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))), (III) the

result of applying the
t

− operator between sub-expression (I) and sub-expression

(II), and (IV) the result of applying the × operator between sub-expression (III)

and d−1
T2

.

Insert Updates. If the insert update does not join with any tuple from Tl we

clearly get no result from the main delta expression and from the compensating

expression. If△T2 joins with a tuple tl from T1, we have two possible cases:

• If tl was not previously joined with any tuples from T1. In this case, the

previous result generated by (T1=⊲⊳cT2) contains tnull
l . This tuple should be

deleted. We show that the compensating expression propagates an up-

date tuple xnull
l that deletes tnull

l . We show that in three steps (I) The sub-

expression: (T1 ⊲<c δcr(△T2) gives the tuple tl from T1 that should join with

△T2. (II) The sub-expression: (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))) gives noth-



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 214

ing in this case because the update△T2 does not intersect with old tuples in

T2 on the join predicate value. (III) Applying the
t

− operator between sub-

expression (I) and sub-expression (II) gives t2. (IV) Applying the operator

× between t2 and the d−1
T2

(the default tuple of T2 with count factor set to -1)

gives us a tuple xnull
l . xnull

l is equal to tnull
l but with count annotation for

each node in non-null columns in xnull
l set to -1 times the count annotation

of the corresponding node in tnull
l . Hence, xnull

l deletes tnull
l from previous

result. Note that the main delta expression (T1 1c △T2) generates an in-

sertion tuple that accounts for the fact that △T2 joins with tl from T1. This

tuple is a full tuple and has no null values.

• If tl was previously joined with tuples from T1. In this case for tl

that △T2 joins with, the previous result (T1 1c △T2) does not contain

tnull
l , as described above. Hence, the compensating expression should not

propagate any update. We show that as follows. (I) The sub-expression:

(T1 ⊲<c δcr(△T2) gives the tuple tl from T1 that should join with△T2. (II)

The sub-expression: (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))) gives a tuple exactly

equal to t2. (III) Applying the
t

− operator between sub-expression (I) and

sub-expression (II) gives an Empty XAT Tuple by the definition of the

match operator (Definition 4.2.4) and the definition of the Empty XAT

Tuple (Definition 7.1.2). By Proposition 7.3.1, this Empty XAT Tuple is

deleted, hence we end up with an empty result. (IV) Applying the opera-

tor × between the empty result we get from sub-expression III and the d−1
T2

gives nothing. Hence, we conclude that the maintenance plan propagates

only (T1 1c △T2).



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 215

Delete Updates. A delete update always joins with a tuple from Tl. We have

two possible cases:

• If △T2 deletes the last tuple from T2 that joins with tl. In this case we

should propagate an update that inserts the tuple tnull
l into the operator’s

result. The compensating expression generates such tuple as follows. (I)

The sub-expression: (T1 ⊲<c δcr(△T2) gives the tuple tl from T1 that should

join with△T2. Note that all node counts in tl are negative values since they

were multiplied by the -1 count factor of △T2, based on our count rules in

Table 6.2. (II) The sub-expression: (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))) gives a

tuple exactly equal to t2 but will all node counts set to 0. This 0 node count

is obtained because the intersection between (δcr(T2)) and (δcr(△T2)) gives

a tuple with 0 count factor (as the count of nodes in column cr from T2 and

△T2 must sum to 0 and by the definition of the
t

⊓ operator in Definition

7.3.2). When we compute the ⊲<c operator between this tuple and T1 we

obtain tl with all node counts set to 0, by our count rules in Table 6.2. (III)

Applying the
t

− operator between sub-expression (I) and sub-expression (II)

gives tl. (IV) Applying the operator × between the result of (III) and d−1
T2

gives tnull
l , a tuple with nodes corresponding to columns in T1 and null

values corresponding to columns in T2. Note that the node counts in tnull
l

are all positive due to multiplying the negative counts in tl by the -1 count

factor of d−1
T2

. Note that the main delta expression (T1 1c △T2) generates a

deletion tuple that accounts for the fact that△T2 joins with tl from T1. This

tuple is a full tuple and has no null values.

• If△T2 does not delete the last tuple from T2 that joins with tl. In this case we



7.4. VIEWS WITH LEFT OUTER JOIN OPERATIONS 216

should not propagate any update that inserts a tuple tnull
l into the operator’s

result. Hence, the compensating expression should not propagate any

update. We show that as follows. (I) The sub-expression: (T1 ⊲<c δcr(△T2)

gives the tuple tl from T1 that should join with△T2. (II) The sub-expression:

(T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))) gives a tuple exactly equal to t2 and with

the same node counts. This is because the predicate value in △T2 intersects

with the predicate value of T2 but since its is not deleting the last tuple

in T2 the sum of counts of these values in T2 and △T2 does not become

0, like the last case. (III) Applying the
t

− operator between sub-expression

(I) and sub-expression (II) gives an Empty XAT Tuple by the definition of

the match operator (Definition 4.2.4) and the definition of the Empty XAT

Tuple (Definition 7.1.2). By Proposition 7.3.1, this Empty XAT Tuple is

deleted, hence we end up with an empty result. (IV) Applying the operator×

between the empty result we get from sub-expression III and the d−1
T2

gives

nothing. Hence, we conclude that the maintenance plan propagates only

(T1 1c △T2).

Modify Updates. A modify update always joins with a tuple from Tl (similar

to delete updates). The modify update will never cause the deletion of insertion

of tnull
l as discussed above. Hence, the compensating expression should not

propagate any update. The logic for showing that this holds is exactly equal to that

used for the second case of the delete update above.

We conclude that Theorem 7.4.1 holds for all type of updates.

It is easy to build on the discussion above to show that Theorem 7.4.1 holds

when △T2 represents a batch of updates of the same or different types. The main



7.5. VIEWS WITH SELF JOINS 217

delta expression: (T1 1c △T2) propagates the appropriate full tuples representing

insertion, deletion, or modification operation. The compensating expression:

((T1 ⊲<c δcr(△T2))
t

− (T1 ⊲<c (δcr(T2)
t

⊓ (δcr(△T2)))) × {d
−1
T2
}) computes the

net compensating effect of all the updates in△T2 joining with the same tuple in T1

on the predicate value. Such net effect is computed through the use of the Distinct

operations δ in the compensating expression. The Net effect will always be one of

three cases (I) the propagation of one tuple that deletes tnull
l , (II) the propagation of

one tuple that inserts tnull
l , or (III) not propagating anything. The compensating

expression computes a separate net compensating effect for diffident tuples in T1

even they have the same join predicate value. This is because those tuples are

granted not match by their columns in ECC . 2

Left Outer Join Operations with Input Sources Affected by Grouping

Operations. Given the class of XQuery views we support it is possible that

only the left input source of the Left Outer Join operator to be affected by a

grouping operation. In this case, maintaining the Left Outer Join operator

on updates to that source is done following the same logic used for main-

taining the Theta Join and the Cartesian Product operators, presented in The-

orem 7.1.2. In particular, (T1
t

⊔ △T1)=⊲⊳cT2 = (T1=⊲⊳cT2)
t

⊔ ((△T1 =⊲⊳c T2)
t

−

((△T1
t

⊓ T1) =⊲⊳c T2))) .

7.5 Views with Self Joins

To process updates to views that have self joins in a distributive man-

ner, each occurrence of the accessed source XML document is treated as

a separate document. Hence, if a view V (S) accesses S twice perform-



7.6. VIEWS WITH AGGREGATE FUNCTIONS. 218

ing a self join we treat the view as being defined over two data sources

V (S1, S2) where S1 = S2 = S. The view maintenance is performed as fol-

lows: V (S1

⊔

△S1, S2

⊔

△S2) = V (S1, S2)
⊔

V IMP1(△S1, S2)
⊔

V IMP2 (S1,△S2)

⊔

V IMP3 (△S1,△S2) . This is similar to the treatment we have used in Sec-

tion 4.4 but now with incremental maintenance plans being augmented

with counting functionality we can support different types of updates. The

view in Figure 1.2(a) is an example for this case where the query accesses

the same source “bib.xml” twice performing a self join. We will show later

an example of propagating different types of updates through this view.

7.6 Views with Aggregate Functions.

Our solution can easily support the maintenance of the aggregate func-

tions min, max, count, sum, and average in a distributive manner on insert

updates. Each node in the view extent that represents an aggregation, is

assigned a function that computes the new aggregate value when applying

propagated updates. This treatment is similar to that used in [LD00]. Each

of the functions assigned to nodes representing aggregation mainly uses

the propagated aggregate value. It may also use the old aggregate value

and the count annotation associated with the node if needed. For example,

assume a node in a view extent represents an average price equal to 50 for a

certain book. Also assume that the count associated with that node is equal

to 3 (representing three prices). Now assume a source update that inserts

two new prices for that book, namely 50 and 70. This update propagates to

an average price of 60 with count of 2. Applying this propagated update



7.7. UPDATE PROPAGATION EXAMPLE 219

to the previously computed average node refreshes it to ((50*3)+ (60*2))/

(3+2) = 54.

Some aggregate functions are not distributive on delete operations, par-

ticularly max and min. Solutions from the literature for maintaining non-

distributive aggregate function, like [PSCP02], can be adapted to support

maintaining such non-distributive aggregate functions in our framework.

7.7 Update Propagation Example

We represent the XQuery view in Fig 1.2(a) as V (S1, S2, S3) where both

S1 and S2 represent the source document “bib.xml” accessed twice by the

query performing a self join. S3 represents the source document “prices.xml”.

Given that all the three sources of the query are updated we maintain the

materialized view generated by the query as follows: V (S1

⊔

△S1, S2

⊔

△S2,

S3

⊔

△S3) = V (S1, S2, S3)
⊔

V IMP1(S1, S2,△S3)
⊔

V IMP2(S1,△S2, S3)
⊔

V IMP2

(S1,△ S2,△S3)
⊔

V IMP3 (△S1, S2, S3)
⊔

V IMP3 (△S1, S2, △S3)
⊔

V IMP4(△S1

,△S2, S3)
⊔

V IMP4 (△S1,△S2,△S3) . Where V IMP1 is a derived view main-

tenance plan that is equivalent to V , but augmented with view maintenance

counting logic as discussed in Section 6.4. V IMP2 is a derived view main-

tenance plan augmented with view maintenance counting logic and the

maintenance equation for updates on the right input source of Left Outer

Join operators, given in Theorem 7.4.1, is used for operator # 7 in Figure 4.2.

V IMP3 is a derived view maintenance plan augmented with view mainte-

nance counting logic and the general maintenance equation for Join opera-

tors, given in Theorem 7.3.3, is used for operator # 10 in Figure 4.2. V IMP4



7.7. UPDATE PROPAGATION EXAMPLE 220

is a derived view maintenance plan augmented with view maintenance

counting logic and in addition the maintenance equation for updates on

the right input source of Left Outer Join operators, given in Theorem 7.4.1,

is used for operators # 7 in Figure 4.2 and the general maintenance equa-

tion for Join operators, given in Theorem 7.3.3, is used for operators # 10 in

Figure 4.2.

Executing the seven incremental maintenance plans above gives the re-

sults shown in Figure 7.4. The resulting propagated updates (XML trees)

shown in Figure 7.4 are annotated with semantic ids and counts. Some of

the semantic ids are reproductions of previously generated ids and others

are new ones. We will discuss next how the semantic ids and the counts are

used in refreshing the view extent.



7.7. UPDATE PROPAGATION EXAMPLE 221

(a)

VIMP1(S1,S2,DS3)

result

yGroup yGroup

title

“Advanced ..”

books

entry

price

“69.99”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [1]
2000c [-1]

b.i..e.lc[1]

(a)b.i.b [1] (b)e.l.b[1] (a)b.f.b[-1] (b)e.b.b[-1]

Y=“1994”[1]
Y=“2000” [-1]~1994 c [1]

b.f..e.bc [-1]

~2000c [-1]

(d)

result

yGroup yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [0] 2000c [-1]

b.b.e.fc[0]

(a)b.b.b[0] (b)e.l.b[0] (a)b.f.b[-1] (b)e.b.b[-1]

Y=“1994”[0]
Y=“2000” [-1]

~1994c[0]

b.f..e.bc [-1]

~2000c [-1]

(b)

result

yGroup

price

books

entry

price
“65.95”

~*c

1994 c [0]

b.b.e.fc[0]

(b)e.f.b[-1]
(b)e.f.b[1]

Y=“1994”[0]~1994 c [0]

“70”

(c)

(e)

result

yGroup yGroup

title

books

entry

price

“69.99”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [0] 2000c [1]

b.i..e.lc[0]

(a)b.i.b[0] (b)e.l.b[0] (a)b.f.b[1]

Y=“1994”[0]
Y=“2000” [1]~1994 c [0]

b.f..e.bc [1]

(f)

~2000c [1]

(b)e.b.b[1]

(g)

VIMP2(S1,DS2,S3) VIMP2(S1,DS2,DS3)

VIMP3(DS1,S2,S3) VIMP3(DS1,S2, DS3) VIMP4(DS1,DS2,S3) VIMP4(DS1,DS2, D S3)

title

“TCP/IP …”

(a)b.b.b [0]

“Advanced ..”

Figure 7.4: Obtaining delta update trees.



222

Chapter 8

Applying Propagated XML

Updates

8.1 Refreshing the View Extent on Different Types of

Updates

We use the Deep Union operator (Definition 6.6.1) to apply delta update

trees to the existing materialized XML view (also a tree). From the root

of the two trees, the Deep Union recursively matches nodes using their ids.

Nodes with matching ids are merged into one node and their count anno-

tations are summed. When the Deep Union operation is finished, all the

counts of affected nodes in the view extent are updated. As a last step,

nodes with counts equal to 0 are removed. Given our counting solution,

we can even delete a node and its entire subtree from the view extent dur-

ing the application of the Deep Union if the node counts becomes 0 without



8.2. EXAMPLE OF APPLYING PROPAGATED UPDATES 223

worrying about individually deleting nodes in its subtree first. Hence, Deep

Union terminates at the deleted root node without accessing any node in its

subtree. This achieves high efficiency for deleting large XML fragments

from the view extent.

8.2 Example of Applying Propagated Updates

Figure 8.1(a) depicts the original view extent. Figure 8.1(b) depicts the com-

bined delta update trees from Figure 7.4. Applying the Deep Union opera-

tor to these two trees generates the refreshed view extent shown in Figure

8.1(c). Note that any two nodes from the two trees with equivalent se-

mantic node ids are merged into one node and their counts are summed.

For example, the nodes “yGroup” with id 1994c are merged into one node.

Its count becomes 2. Nodes with different ids are represented separately.

For example, the node b.i..e.f c appears as a new node in the view extent.

The delta update tree in Figure 8.1(b) contains the node “yGoup” with id

= 2000c and count = -1. This node merges with a corresponding node in

the view extent that has the same id and a count of 1. Hence, the count of

the merged node becomes 0. At this point, we disconnect the entire XML

fragment rooted at this node and terminate the Deep Union traversal for this

fragment here.

The net effect of applying the delta update tree in Figure 8.1(b) to the

view extent in Figure 8.1(a) is the deletion of the XML fragment with root

node “yGroup” with id 2000c, insertion of the XML fragment with root

node “entry” with id b.i..e.lc and change the “price” value of the node



8.3. DISCUSSION ON REFRESHING THE VIEW EXTENT 224

with id (b)e.f.b. The count of nodes bound to the 1994 book year group

increments to 2. The result shown in Figure 8.1(c) is the exact result we

would have gotten if we were to recompute the view extent over the up-

dated sources.

(a)

result

yGroup yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [1] 2000c [1]

b.b..e.fc[1]

(a)b.b.b [1] (b)e.f.b[1] (a)b.f.b[1] (b)e.b.b[1]

Y=“1994”[1]
Y=“2000” [1]~1994 c [1]

b.f..e.bc [1]

~2000c [1]

(b)

result

yGroup yGroup

title

“TCP/IP …”

books

entry

price

“65.95”

title
“Data ..”

books

entry

price

“39.95”

~*c

1994 c [1] 2000c [-1]

b.b.e.fc[0]

(a)b.b.b[0] (b)e.l.b[-1] (a)b.f.b[-1]

Y=“1994”[1]
Y=“2000” [-1]~1994 c [1]

b.f..e.bc [-1]

price

(b)e.f.b[1]

“70”

title

entry

price

“69.99”

b.i..e.lc[1]

(a)b.i.b [1] (b)e.l.b[1] (b)e.b.b[-1]

(c)

result

yGroup

title

“TCP/IP …”

books

entry

~*c

1994 c [2]

b.b.e.fc[1]

(a)b.b.b[1]

Y=“1994”[2]
~1994 c [2]

price

(b)e.f.b[1]

“70”

title

entry

price

“69.99”

b.i..e.lc[1]

(a)b.i.b [1] (b)e.l.b[1]

~2000c [-1]

“Advanced ..”

“Advanced ..”

Figure 8.1: Applying combined propagated updates to initial view extent
to refresh it. (a) Initial view extent, (b) delta updates, and (3) refreshed view
extent.

8.3 Discussion on Refreshing the View Extent

8.3.1 The Order of the Refreshed View Extent

Note that since the order is encoded as part of the semantic ids, the view

extent preserves the order. Nodes from the update that are merged with

existing nodes do not affect the order (e.g., node b.b..e.f c), as they have an



8.3. DISCUSSION ON REFRESHING THE VIEW EXTENT 225

order equivalent to the order of the nodes they were merged with. Nodes

inserted into the view extent come with their own order. For example, the

node b.i..e.lc is inserted after the node b.b..e.f c (which is the correct order

based on source document order and the query order semantics). Although

insertion affects the relative order of proceeding nodes in the view extent,

our solution does not require any relabeling of order keys. See discussion

in Section 3.4.4.

8.3.2 Deleting Collections of XML Fragments Without Lineage

Context from the Materialized XML View

Some queries may return collections of nodes (fragments) without unnest-

ing nodes in these collections and without maintaining a Lineage Context for

these collections. In other words, each returned collection is not identified

separately in the XML result. For example, the query:

<result>

for $b in doc(“bib.xml”)/bib/book

return

$b/author

< /result>

returns for each “book” binding, a collection that contains all “author”

children nodes of that “book”. Each collection is not identified because

its Lineage Context (its parent “book” node) is not maintained in the view

extent. The Lineage Context of each collection is maintained for example



8.3. DISCUSSION ON REFRESHING THE VIEW EXTENT 226

if a constructed node is built on top of each collection. For example, <

authorList >$b/author< /authorList >. In this case and given our sem-

natic identifier solution each “authorList” node is assigned an id that is

derived from the id of the “book” node related to each collection.

If a delete update deletes a ”book” node from “bib.xml”, this delete

update should be reflected to the view extent by deleting all the ”author”

nodes of that book. We represent this source update using an update tree

that contains a “book” node annotated with the specific node id of the

‘book” node to be deleted, as discussed in Chapter 5. Propagating this

update through the query with constructed nodes “authorList” on top of

the author collections result in a delta update tree that contains a root node

“result” and an “authorList” node with id that matches the id of the “au-

thorList” on top of the collection of authors to be deleted. Hence, refreshing

the view extent using this delta update deletes the relevant “authorList”

and its entire subtree, hence deleting the collection of authors related to the

deleted “book” node.

Now let us consider the query above without the constructed nodes

“authorList”. Propagating the same source update through the query gen-

erates a delta update tree with only a root node “result”. Clearly, apply-

ing this delta update to the materialized view will not delete the “author”

nodes related to the deleted “book” node.

One possible solution to this case is to provide all the “author” nodes

of the deleted “book” node as part of the source update tree. Hence, the

propagated delta update tree will contain all “author” nodes to be deleted.

This is not a practical solution as we wish to represent source updates us-



8.3. DISCUSSION ON REFRESHING THE VIEW EXTENT 227

ing minimum information. Another solution is to assign a dummy parent

node to each collection of “author” nodes in the view extent. Such dummy

parent node maintains the Lineage Context of each collection (which is the

related “book” id in this example), hence allowing the identification of each

collection separately during view maintenance time. Such solution can be

implemented by extending the Combine and the XML Union operators to

attach the relevant Lineage Context ids for the collections they process.



228

Chapter 9

Experimental Evaluation

We have implemented our solution in Java on top of the Rainbow sys-

tem framework [Zea03]. We have run the experiments on a Windows PC

with 2.79 MHz Pentium 4 processor and 512MB of memory. We use the

XMark benchmark data [SWK+02] in our experimental evaluation and the

two queries in Figure 4.8. Query 1 in Figure 4.8 performs a lot of re-

sult construction with most of the returned nodes being constructed. The

query also involves a mixture of order decisions, in which some nodes are

returned in document order (e.g., customers and bids) and others are re-

turned in an order imposed by the query (e.g., order among customers and

bids and among the children of each of them separately). Query 2 in Figure

4.8 is a simpler query that does not perform node construction.



9.1. COST OF ENABLING VIEW MAINTENANCE 229

9.1 Cost of Enabling View Maintenance

The query engine has to support two main features when processing XML

data to enable view maintenance at a later stage: (1) semantic ids (Chapter

4)1 and (2) counting annotation (Chapter 6). Our experiments show that

this cost is small relative to the query execution time. As shown in Figure

9.1, using a source document of size 500MB and query selectivity 50%, we

break the cost associated with generating semantic ids into two sub-costs:

(i) the cost of computing the Context Schema and (i) the cost of generating

the keys. Context Schema computation is a one-time processing cost at the

query tree generation time. It only depends on the size of the query algebra

tree. Figure 9.1 shows that this cost is very small for both queries (Query

2 has a smaller query tree size). The cost of key generation includes the

cost of generating new semantic identifier keys for new constructed nodes

and the cost of assigning overriding order prefix keys. This cost depends

on both how much node construction and order manipulation the query

performs. It also depends on the size of the processed data.

Query 1 performs a lot of node constructions, where most of the re-

turned nodes in the result are constructed ones. It also defines explicit or-

der among nodes. Yet this cost is still small relative to the query execution

time, as shown in Figure 9.1. The cost of key generation drops to almost 0

for Query 2, as shown in Figure 9.1, as this query constructs only one node

(the root node of the document). It does not enforce any new order upon

the processed data. Hence, no overriding order prefix keys are assigned

1Note that Context Schema (presented Chapter 4) used to generate semantic ids utilizes
the Order Schema (presented Chapter 3).



9.2. VARYING SOURCE DOCUMENT SIZES 230

to the processed nodes. Query 2 still returns results in document order, as

required by XQuery semantics. Such order is reflected through the source

nodes ids and is maintained by our solution at almost no cost (besides the

negligible small cost of computing the Context Schema). The counting cost

in Query 1, very small, is mainly caused by the count annotation assigned

to the newly constructed nodes. Other processed nodes have a default node

count of 1 that does not change. For Query 2 the counting cost drops to 0

since no new node construction is performed.

Query 1

1268083

135 9554 97

0

200000

400000

600000

800000

1000000

1200000

1400000

Execution Context

Schema

Key

Generation

Counting

Cost Element

T
im

e
(m

s
)

Query 2

300780

50 0 0

0

50000

100000

150000

200000

250000

300000

350000

Execution Context

Schema

Key

Generation

Counting

Cost Element

T
im

e
(m

s
)

Figure 9.1: Cost of enabling view maintenance feature.

9.2 Varying Source Document Sizes

We compare the performance of our view maintenance solution to view

recomputation for different base source XML document sizes. We vary the

size of the source document from 50MB to 650MB. We fix the selectivity

of the query to 50%. This means that the query returns 50% of the result

that it would return if we were to remove the selection condition. We use

a source update that inserts a new person fragment. Figure 9.2 (two charts



9.2. VARYING SOURCE DOCUMENT SIZES 231

at top) shows that the cost of maintaining the view incrementally is very

small compared to the cost of recomputation. The increase in the cost of

maintaining the view incrementally is much smaller than the increase in

the cost of recomputation as the size of source document increases.

In the lower part of Figure 9.2, we show the break of the view mainte-

nance cost down into the two costs of propagate and apply. It shows that

the cost of propagating the update is fixed regardless of the source docu-

ment size. The cost of the apply phase increases with the increase in the

source document size. Given the fixed selectivity of the query, the size of

the view extent also increases requiring more work at the apply phase.

Query 2

1

10

100

1000

10000

100000

1000000

50MB 200MB 350MB 500MB 650MB

Source Documnet Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Query 1

0

50

100

150

200

250

300

350

400

450

50MB 200MB 350MB 500MB 650MB

Source Documnet Size

T
im

e
(M

S
)

Propagate

Apply

Query 2

0

50

100

150

200

250

300

50MB 200MB 350MB 500MB 650MB

Source Documnet Size

T
im

e
(M

S
)

Propagate
Apply

Query 1

1

10

100

1000

10000

100000

1000000

10000000

50MB 200MB 350MB 500MB 650MB

Source Documnet Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Figure 9.2: Top charts showing varying source document size for (a) Query
1 and (b) Query 2. Bottom charts showing the break down of the view
maintenance cost.



9.4. VARYING UPDATE SIZES 232

9.3 Varying View Selectivity

We vary the selectivity of the queries from 20% to 100%. We use a source

document with size 100MB and an insert update. Figure 9.3 shows that

view maintenance also performs well on different selectivity levels of the

query. The cost of view maintenance slightly increases with the increase

in the selectivity. This is mainly due to the size of the view extent getting

bigger as the selectivity increases. Hence, more work is done at the apply

phase.

Query 2

1

10

100

1000

10000

100000

1000000

20% 40% 60% 80% 100%

Query Selectivity

ti
m

e
(m

s
)

Recomputation

View Maintenance

Query 1

1

10

100

1000

10000

100000

1000000

20% 40% 60% 80% 100%

Query Selectivity

ti
m

e
(m

s
)

Recomputation

View Maintenance

Figure 9.3: Varying query selectivity.

9.4 Varying Update Sizes

We measure the performance of the system for updates of different sizes.

We have used a source document of size 50MB. We fix queries selectivity to

50%. We vary the size of updates from 20% to 100% of the size of the initial

source data used to construct the view extent. First we test insert updates.

We start from a source document of a constant size and the insert update



9.4. VARYING UPDATE SIZES 233

causes this size to grow. Figure 9.4 shows that our incremental view main-

tenance has a superior performance over recomputation even for update

sizes up to 100% of the initial data size. As a matter of fact, the increase

in the view maintenance cost due to the increase in the update size almost

matches the increase of the cost of recomputation. This is mainly because

the cost of view maintenance for a certain size of source updates is almost

equal to the cost of processing this update when applied first to the source

document and then processed during recomputation time. Recomputation

in addition has the cost of processing the initial source data before the up-

date.

The cost of view maintenance for a certain update is composed of the

three cost elements. (1) Cost of processing the updates similar to regular

query processing. This cost is the main cost in view maintenance as shown

in Figure 9.4. (2) Cost of accessing counts associated with source update

nodes to specify the update type. This cost is a small percentage of the total

cost of view maintenance as shown by Figure 9.42. (3) Cost of applying the

propagated updates to the view extent. This cost is also small as shown in

Figure 9.4.

Now we test the delete updates. We use the same updates as above (but

now as delete updates) and the same queries with the same selectivity. We

set the source document to be always of fixed size after applying updates of

different sizes. Therefore the recomputation cost is fixed for different sizes

of the delete updates as shown in Figure 9.5, as the final data after delete

2This cost is overestimated in our current system due to inefficient treatment of update
count annotation.



9.5. DELETION OF ENTIRE FRAGMENTS 234

Query 1

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

20% 40% 60% 80% 100%

Insert Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Query 2

0

5000

10000

15000

20000

25000

30000

35000

40000

20% 40% 60% 80% 100%

Insert Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Query 1

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

20% 40% 60% 80% 100%

Insert Size

T
im

e
(m

s
)

Apply
Update Count Annotation
Processing (Propagation)

Query 2

0

5000

10000

15000

20000

25000

20 30 30 40 50

Insert Size

T
im

e
(m

s
)

Apply
Update Count Annotation
Processing (Propagation)

Figure 9.4: Top charts showing varying size of insert update. Bottom charts
showing break down of view maintenance cost.

stays the same. Figure 9.5 shows that view maintenance achieves superior

performance on delete updates up to sizes around 100% of the initial source

data size.

9.5 Deletion of Entire Fragments

We measure the performance of our system when a source update causes

the deletion of a relatively big fragment from the view extent. Figure 9.6(a)

shows Query 3 that navigates to “people” element and returns a new node

“persons-list” that has as children all the names and addresses of persons in

“people”. Now assume that an update deletes the source node “people”.



9.5. DELETION OF ENTIRE FRAGMENTS 235

Query 1

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

20% 40% 60% 80% 100%

Delete Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Query 2

0

5000

10000

15000

20000

25000

20% 40% 60% 80% 100%

Delete Size

T
im

e
(m

s
)

Recomputation

View Maintenance

Figure 9.5: Varying size of delete update for (a) Query 1 and (b) Query 2.

This should result in deleting the entire “persons-list” fragment from the

view extent. Due to our method of representing source updates and our

count treatment, our view maintenance propagates this update very effi-

ciently. It deletes the entire “persons-list” fragment from the view extent

directly by deleting its root.

Figure 9.6(b) shows the performance of our solution on different sizes

of deleted XML fragments represented using the number of “person” frag-

ments it contains. We compare our approach to the approach in [LD00]

where all the internal nodes in the “persons-list” fragments have to be

deleted first in a bottom-up fashion, before the root of the fragment can

finally be deleted. Figure 9.6(b) shows the performance of our approach

(entire fragment deletion) and the performance of the alternate approach

(individual deletions). Our solution maintains the view extent in constant

time regardless of the size of the deleted fragment. The alternate approach

has its cost increase linearly with the increase in the fragment size.



9.5. DELETION OF ENTIRE FRAGMENTS 236

<Result>{
for $p in document(“site.xml")/people
return
<persons-list>{

<person>{$p/person/name}
{$p/person/address}

</person>
</persons-list>}

</Result>

Query 3

0

2000

4000

6000

8000

10000

12000

14000

16000

2550 5100 7650 10200 12750

Fragment Size (Number of Person Sub-fargemnts)

T
im

e
(m

s
)

Individual Deletions

Entire Fargment Deletion

Query 3

Figure 9.6: (a) Query 3 and (b) cost of deleting “persons-list” fragment in
Query 3.



237

Chapter 10

Related Work

10.1 View Maintenance Related Work

View Maintenance in Relational Databases. The incremental maintenance

of materialized views has been extensively studied for relational databases

[BLT86, GM95, GMS93, ZGMHW95, CW91, GL95, MK00, Qua96, MQM97,

PSCP02, GM05].

Blakeley et. al. [BLT86] have proposed an algebraic solution for main-

taining SPJ views. [BLT86] defines algebraic rules for propagating up-

dates for different algebra operators. For example, for a join view V =

T1 1 T2, if T1 receives an insert update △T1, the algebraic rule for prop-

agating△T1 is: (T1 ∪△T1) 1 T2 = (T1 1 T2) ∪ (△T1 1 T2). The propagation

of updates through expressions composed of multiple operators can sim-

ply be done by repeatedly applying the algebraic propagation rules based

on the query expression.

Ceri and Widom [CW91] have proposed an incremental solution for the



10.1. VIEW MAINTENANCE RELATED WORK 238

view maintenance problem of a subset of the SQL views that is based on

production rules. Their approach supports sub-query nesting of one level

only and does not support views with duplicates or views with aggrega-

tion. The solution in [CW91] is not algebraic and requires access to the

source data for propagating all types of updates.

Gupta et al. [GMS93] have proposed a solution for maintaining SQL

and Datalog views with duplicates. The solution in [GMS93] also requires

access to source data and is not easy to generalize because it is procedural.

Griffin and Libkin [GL95] have proposed an algebraic solution to main-

tain views with duplicates. They have emphasized the advantages of the

algebraic solution over the algorithmic (procedural) solution. These advan-

tages include the simplicity of extending the solution to more query oper-

ations, the ease of proving correctness of the solution, and the possibility

of optimizing the maintenance expressions generated by the solution using

the traditional query optimizer. The solution in [GL95] supports views with

any number of select, project, join, bag union, and monus algebra opera-

tions. The solution in [GL95] also supports views with aggregation where

such aggregation is restricted to one aggregate operator that comes as the

top-most operator in the view expression. Propagating updates based on

the algebraic rules proposed in [GL95] can not be done using a simple

application of the propagation rules as done in [BLT86]. This is because

these propagation rules do not ensure minimality of the propagated up-

dates, meaning that they might propagate unnecessary updates. For that,

[GL95] have adopted recursive algorithms for propagating updates that

employ rules to ensure minimality of the propagated updates. These al-



10.1. VIEW MAINTENANCE RELATED WORK 239

gorithms compute insertion and deletion updates for each subexpression

in the maintenance plan as source updates are propagated through these

subexpressions.

Quass [Qua96] has extended the work in [GL95] to support view main-

tenance for general views with aggregation. The maintenance expressions

obtained in [Qua96] are rather inefficient as they perform recomputation

for the aggregate values affected by the update. Griffin and Kumar [GK98]

have proposed a solution for maintaining outer join queries that follow

the same algebraic framework of [GL95]. [GL95] does not consider aggre-

gation. The algebraic propagation rules in [Qua96] and [GK98] may also

generate non-minimal updates, like in [GL95]. Hence, similar recursive

propagation algorithms as the ones used in [GL95] are used in [Qua96] and

[GK98] to guarantee minimality of the propagated updates.

Mumick et al. [MQM97] have proposed a technique for maintaining

views with only one aggregate operator on top of a SPJ expression. [MQM97]

uses a technique called the summary table technique. In contrast to the

solutions in [GL95, Qua96, GK98], that propagates insertion and deletion

updates, the solution in [MQM97] computes a summary of all changes and

then applies this summary of changes to the materialized view to refresh it.

In [MK00] the problem of making aggregate views self-maintainable

by maintaining additional relations, called auxiliary views, is investigated.

Palpanas et al. [PSCP02] have proposed an incremental maintenance algo-

rithm that maintains views with aggregate functions that are not distribu-

tive over all update operations. They perform selective recomputation to

maintain such views where only the set of affected groups is efficiently re-



10.1. VIEW MAINTENANCE RELATED WORK 240

computed. The work in [PSCP02] supports only views with one aggregate

function that comes at the top of the query expression.

Gupta and Mumick [GM05] have generalized the summary table tech-

nique proposed in [MQM97] into a technique called the change table tech-

nique that enables the maintenance of general views with aggregate and

outer join expressions. This approach is shown to be more efficient than

propagating inserts and deletes. The solution in [GM05] relies on a com-

plex apply operator that varies in functionality depending on the operators

in the query plan and the propagated updates. One main advantage of

the work in [GM05] is that it makes aggregate operations and outer join

operators self-maintainable.

Although XML views typically include relational-like operations, the

solutions proposed above can not directly be used in maintaining XML

views. This is due to many factors, as we have discussed in Section 1.2,

including the flexibility and richness of XML data, the additional require-

ments of relational-like operations in XML views, and the nature of XML

updates. Our proposed view maintenance solution is algebraic similar to

some of the work presented above (e.g., [GL95, GM05]). Hence, it has the

advantages associated with the algebraic approach as mentioned above.

Yet, our propagation rules enable the maintenance of relational-like opera-

tions in the rich settings of XML views. Our solution is similar to [MQM97,

GM05] in that it computes the net effect of propagating source updates at

each maintenance subexpression instead of propagating inserts and delete

tuples.



10.1. VIEW MAINTENANCE RELATED WORK 241

View Maintenance in Object-relational and Object-oriented Databases.

To a lesser degree, view maintenance has been studied for object-relational

and object-oriented views. Skld [Sk94] have proposed solution for main-

taining object-relational views. His solution is an extension to the work in

[BLT86] and supports only limited types of updates. Liu et al. [LVM00]

have proposed an extension to the solution in [GMS93] for maintaining

OR-SQL views.

Among the object-oriented view maintenance solutions [KR96, KR98,

ZHK96, AP98, AFP03], only [AFP03] provides an algebraic solution to the

problem of maintaining object-oriented views that follows the general re-

lational algebraic framework we disused above and that we also follow in

this work. [AFP03] is the first object-oriented view maintenance solution

to produce incremental maintenance plans in an algebraic level. [AFP03]

supports the standard object-oriented query language OQL, unlike [KR96,

KR98, AP98], and supports a large class of object-oriented views, unlike

[ZHK96, AP98]. The solution in [AFP03] enables many views to be self-

maintainable on some updates, unlike solutions that requires access to source

data on all updates (e.g., [KR98]) or solutions that materialize intermediate

data (e.g., [ZHK96]). The solution in [AFP03] requires materialization of all

OID-s of objects contributing to each object in the view. This is required to

maintain the lineage between objects in the materialized view extents and

the source object they are derived from. We avoid such need through the

use of reproducible semantic identifiers.



10.1. VIEW MAINTENANCE RELATED WORK 242

View Maintenance in Semi-structured and XML Databases. Few pro-

posals have addressed the problem of maintaining XML and semi-structured

views. Zhuge and Garcia-Molina [ZGM98] have proposed a solution for

the maintenance of select-project graph structured views defined as col-

lections of objects. Maintenance for such materialized views over semi-

structured data based on the graph-based data model OEM and the query

language Lorel is studied by Abiteboul et al. [AMR+98]. Unlike our work,

[AMR+98] considers only simple atomic update operations: insertion or

deletion of an edge between existing objects, or the change of the value of

an atomic object. Also they do not consider order. We handle bulk updates

possibly of different types and at the same time support order. Quan et

al. [QCR00] have proposed an efficient maintenance technique for materi-

alized views over dynamic web data. [QCR00] is limited to XPath expres-

sions and does not consider order. [QCR00] uses auxiliary data of size that

depends on the source data size. Sawires et al. [STP+05] have proposed a

solution for maintaining a subset of XPath expressions. Their solution re-

quires auxiliary data that depends on the expression size and the answer

size and does not depend on the source data size.

Liefke and Davidson [LD00] have proposed a framework for defining

and maintaining views over hierarchical semi-structured data. The view

definition language (WHAX-QL) in [LD00] is a restricted variation of XML-

QL. The work in [LD00] does not support explicit union operations and

uses a special id mechanism that may generate keys with a deeply nested

structures. [LD00] places restrictions on updating source data bound to

some variables in the view. Other restrictions include supporting only sim-



10.1. VIEW MAINTENANCE RELATED WORK 243

ple nested query expressions, and no support for order. Their treatment to

delete update operations is inefficient, as we have discussed in Section 6.1.

Bohannon et al. [BCF04] have proposed two solutions for incremen-

tal evaluation of ATGs, a formalism for schema-directed XML publishing.

The first, the reduction approach, pushes most of the view maintenance

work to the underlying RDBMS. This depends on combination of features

not yet available even for the most advanced DBMSs. The second, the

Bud-cut approach, performs most of the view maintenance work in the

middleware. It requires several round-trips between the middle-ware and

the DBMS resulting in high communication cost. In addition, maintenance

queries sent to the DBMS may be large in number and complex. The solu-

tions in [BCF04] does not support views defined on top of full fledged XML

sources.

In [ESWDR02] we have proposed a solution for incremental mainte-

nance of XQuery views. This solution did not provide an efficient solu-

tion for handling XML order. In [DESR03], we have extended our work

[ESWDR02] to be the first technique for maintaining order-sensitive XML

views. In both [ESWDR02, DESR03], updates are defined as primitives.

Rules for propagating each update are defined for each query algebraic op-

erator. [ESWDR02] and [DESR03] do not support bulk updates, and require

materialization of portions of intermediate data. The propagation of up-

dates [ESWDR02, DESR03] requires a special purpose execution. Our new

framework proposed in this dissertation for solving the problem of main-

taining XQuery views avoids the shortcoming above. This framework does

not require intermediate result materializations and generates incremental



10.2. OTHER RELATED WORK 244

maintenance plans in the same language used by the view.

10.2 Other Related Work

Source XML node encoding. Object identity is widely used in semi-structured

databases [Lie99, LD00] and in object-oriented databases [FE01]. W3C rec-

ommends that each node in an XML document should have a node identi-

fier [W3C05]. Some XML algebra operators perform functionalities like du-

plicate elimination using the node identifiers [W3C05]. Several techniques

have been proposed for encoding order of XML documents. [TVB+02] de-

scribes three order encoding methods: global, local and dewey encodings.

In the global encoding method, each node is assigned a number that rep-

resents the node’s absolute position in the document, while in the local en-

coding method each node is assigned a number that represents its relative

position among its siblings. The dewey order encodes the full path from the

root node to the current node. The dewey order is shown to outperform the

other two on workloads composed of both queries and updates. These or-

der encoding methods might require renumbering certain portions of the

XML tree in the presence of updates. [DR03] proposed an order encoding

for XML documents nodes (called FlexKey) which is based on dewey ids.

This method avoids the problem of renumbering in the case of updates by

using variable length byte strings instead of numbers. Another encoding

technique, used in [AKJK+02, JAKC+02], associates a numeric start and

end label with each data node in the XML document. The intervals between

these labels are defined such that every descendant node has an interval



10.2. OTHER RELATED WORK 245

that is strictly included in its ancestors’ interval. One disadvantage of this

method is that re-labeling of nodes might be required if a large number of

insertions are taking place within the same small label range. In addition,

it is not possible to derive directly the label of a parent (or an ancestor) of

a node given only its label, unlike in the case of Flexkey [DR03] and Dewey

[TVB+02] encodings.

XML Order. Many solutions for XML data management use relational

database technology [FK99, STH+99, TVB+02] as the underlying storage

medium. Supporting the ordered nature of the XML data in the relational

model context is an issue since order information is lost while converting

from XML to the relational data representation [NLB+01]. Many solutions

for semi-structured data have been extended to support XML data [GMW99,

Lie99]. These solutions do not support order requirements of XQuery ex-

pressions.

Concurrently with these efforts to exploit existing database technolo-

gies, native XML storage manager systems [DR03, KM00] have also been

proposed. An advantage of such native storage is that XML documents

may be clustered in physical XML document order, thus facilitating effi-

cient children/descendant access. Such tree navigation is very frequent in

XML query processing [JAKC+02].

The Agora system [MFK01a], which stores XML in relational tables,

provides support for handling order-sensitive XQuery expressions. XQuery

queries are first normalized, then translated and rewritten into SQL queries

to be executed over the relational tables. However, this solution is limited



10.2. OTHER RELATED WORK 246

to XQuery queries that semantically match SQL and can be translated and

rewritten into SQL. Additionally, order handling is an expensive process

where an XQuery is translated into many SQL queries requiring several

passes and materializing of intermediate XML results.

Shanmugasundaram et al. [SSB+00, SSB+01] have introduced mecha-

nisms to publish relational data and object-relational data as XML docu-

ments. These solutions provide support for document order. Tatarinov et

al. [TVB+02] have proposed a solution for supporting ordered XML query

processing using the relational database technology. This solution mainly

focuses on handling order on XPath expressions, and provides support for

some XQuery order-based functionalities like before and after operators and

the range predicate. The work in [TVB+02] focuses on document order and

does not handle different types of order imposed by XQuery expressions.

Timber [JAKC+02], a native XML data management system, provides sup-

port for document order and query order. However, to preserve order, sort-

ing for some of the intermediate results appears to be required during ex-

ecution [JAKC+02]. The order handling strategy in Timber is built on top

of the node start-end labeling described above. Hence, it suffers from the

disadvantages of this labeling technique, discussed above. [FLSW03] intro-

duces a solution for maintaining source XML document order that works

in both a static and dynamic database environment. However, re-labeling

of nodes might be required in some cases.

Our proposed order approach (Chapter 3) supports different types of

XQuery order, namely document order and order imposed by the query

itself in a variety of ways. A key point in our solution is that the order



10.2. OTHER RELATED WORK 247

is implicitly encoded in the node identifier and in the intermediate result

schema in a way that allows the migration of intermediate results from or-

dered bag semantics into non-ordered bag semantics. Unlike in [JAKC+02]

our operators no longer need to be aware of the order of data they process.

Also we do not need to incorporate any sorting operations for intermedi-

ate results. Our operators becomes distributive with respect to order. This

opens up more optimization opportunities and allows for efficient incre-

mental view maintenance.

Incrementally Assembling XML Results. In the apply phase of view main-

tenance, propagated updates are used to refresh the materialized views.

This involves determining how to correctly merge propagated updates with

the materialized views. This problem is more challenging in the context of

object-oriented and semi-structured data models than in the context of the

flat relational data model. Some solutions [AFP03] solves this problem by

materializing auxiliary data that defines the lineage between view data and

the source data it is derived from.

Some view maintenance solutions [BCF04, LD00] have avoided the ma-

terialization of auxiliary data through the use of mechanisms for generating

reproducible identifiers for the view objects. For example, the work pro-

posed in [LD00] for maintaining semi-structured views annotates edges in

the processed trees with special keys that can be used in the merging pro-

cess. The proposed key system may generate keys with a deeply nested

structure. It also comes with some limitations to the view maintenance so-

lution itself including a limitation on updating source values used in con-



10.2. OTHER RELATED WORK 248

structing the keys.

Other solutions [PAGM96, BCF04] use Skolem functions to generate

identifiers that can be used for fusing propagated updates with materi-

alized views. Skolem functions were first used in the context of object-

oriented systems [Mai86] to produce object identifiers and later were used

in many integration and mediation systems [PAGM96, PVM+02]. The use

of Skolem functions typically requires specifying these functions at the

query syntax level by indicating what input is to be used by them to gen-

erate the identifiers. Papakonstantinou et al. [PAGM96] have proposed

a technique for generating semantic object identifiers based on a special

use of Skolem functions to fuse semi-structured data specified using the

MSL mediator specification language. This work [PAGM96] supports only

simple views. It requires semantic identifiers to be defined as part of the

mediator specification process by the view definer.

To the best of our knowledge, no Skolem function solution introduced

in the literature so far supports incremental fusion of the class of XML

views that we consider. In particular, none of them supports order-aware

views. For example, no Skolem function solution supports the unique iden-

tification and order semantics of views that allow multiple copies of the

same source node (or constructed nodes bound to the same source nodes)

to appear as siblings in the result. This is important for incremental view

maintenance since certain updates to the source node might, for example,

insert only one of the node copies and not the others. This would also af-

fect the local order among the node siblings in the view extent. Unlike the

approaches that use Skolem functions or similar mechanisms to generate



10.2. OTHER RELATED WORK 249

identifiers, our solution does not require manual specification of what in-

put values they should take to generate ids when writing the query.

In the context of their data integration work, Ives et al. [IHW02] have

proposed a solution for combining and restructuring XML views over stream-

ing XML data by adding extra attributes to the intermediate tuples that de-

scribe the structure of the returned result. Their solution does not support

the case of 1:n parent-child relationships in the returned output in which

an element can occur more than once in different combinations of input

bindings. This restricts the solution from handling query expressions with

correlated nested sub-queries, which are very common in XQuery.

Fegaras et al. [FLBC02] have proposed a mechanism for assembling

streamed XML fragments to construct the XML result on the client side.

Their solution is based on a special annotation called the fillers-holes anno-

tation. The work in [FLBC02] requires fillers and holes to be defined before

streaming the XML fragments. Once an XML fragment is streamed, only

fillers to previously defined holes into it can be processed. New inserts to

other locations in the XML fragments afterwards are not allowed.

Lineage Tracing. In addition to the areas discussed above, our work re-

lates to the problem of tracing lineage (derivations) of objects in view re-

sults [BB99, RS98, CW01, FP03, BKT01] Buneman et al. [BKT01] have ar-

gued that the view maintenance problem and expressing the why-provenance

of views (one of the two types of the data lineage problem) are loosely re-

lated. They have also argued that the view maintenance problem is harder

than expressing the why-provenance of views because the why-provenance



10.2. OTHER RELATED WORK 250

does not account for additions to the source and does not address the issue

of how to reconstruct the view on source updates. As a future work, we

plan to investigate how we can utilize or semantic identifier solution to

provide a lineage tracing solution for data in XML views.



251

Chapter 11

Conclusions and Future Work

11.1 Summary and Contributions

The broader contribution of this dissertation is a comprehensive frame-

work for maintaining XQuery views. Our solution produces incremental

maintenance plans in the same algebraic language used to construct the

view extent, making it easy to incorporate our view maintenance solution

in any XML query engine. This should facilitate the adoption of our XML

view maintenance solution within future commercial XML engines.

Our solution supports an expressive class of XQuery views including

XPath expressions, FLWOR expressions, and element constructors. This in-

cludes also support for nested queries, order-sensitive queries, and general

queries involving grouping and join operations. It also avoids intermediate

result materialization and makes most of the views self-maintainable.

We first propose an efficient solution for maintaining order in XML

query processing and view maintenance. Our solution supports XML source



11.1. SUMMARY AND CONTRIBUTIONS 252

document order and all types of XQuery imposed order. Our order solution

does not require any intermediate result materialization or sorting.

We also propose a solution to the problem of incrementally constructing

XML views. Our solution utilizes special semantic identifiers to perform

id-based fusion of XML fragments. Our semantic identifiers have two im-

portant properties: (i) they are reproducible and (ii) they compactly encode

lineage and order semantics of XML nodes. As a result, the semantic iden-

tifiers we generate allow a large class of XML views to be distributive on

insert updates. Our semantic identifiers do not require manual specifica-

tion of how identifiers for different queries are to be generated nor do they

require materialization of intermediate data.

We also propose a technique for modeling and validating source XML

updates that propagates a structure that batches bulk XML updates pos-

sibly of different types. The batch update structure encodes only relevant

updates using minimum yet sufficient information for propagation.

To support view maintenance for delete updates and for views with

aggregate functions, we propose a counting algorithm that enables tracing

derivations of nodes in XML view extents. A unique feature of our solution

is that it enables the deletion of XML nodes from the view extent without

requiring the knowledge of all nodes in its subtree. Hence, we may delete

an entire fragment from the view extent by simply disconnecting the root of

that fragment from the view extent. Using our semantic id solution and our

counting solution we enable a large class of XQuery views to be distribu-

tive not only under insert updates but also under delete and value change

updates.



11.1. SUMMARY AND CONTRIBUTIONS 253

We also propose an algebraic update propagation solution that derives

incremental maintenance plans for the query view definition. When such

plans are evaluated over the source updates, they compute delta changes

to be applied to the materialized view maintenance. One main advantage

of this approach is that the evaluation of incremental maintenance plans

does not require a special purpose execution. Instead, the evaluation of

such plans can be performed using the current XML query engines af-

ter adding semantic id and counting functionality to it. This is similar to

what commercial relational systems do to support incremental view main-

tenance of relational view extents. Another main advantage of our solu-

tion is that most of the incremental maintenance plans we generate are

self-maintainable. Hence, they only use the update to compute the delta

effect on the materialized view extent. Incremental maintenance plans that

are not self-maintainable are guaranteed to be at least distributive. Hence,

they incrementally compute the delta effect on the materialized view extent

without recomputing it.

We finally propose a mechanism for refreshing materialized XML views

by applying propagated delta updates. Our apply algorithm uses the Deep

Union operator. It ensures that the refreshed view extent is equal to the

one that we would get if we were to recompute the view over the updated

sources. Our apply algorithm provides efficient treatment for delete up-

dates, were entire XML fragments can be deleted when their root node is

deleted.

We have implemented a prototype of our solution over the Rainbow

XML query engine, developed at WPI. We have performed extensive exper-



11.2. FUTURE WORK 254

imental studies for our proposed solution to verify its practicality and effi-

ciency. We have measured the overhead that comes with required extension

to the regular query engine to support this view maintenance feature. In

particular, supporting order-aware processing, reproducible semantic node

identifiers, and count annotations. Our results confirm that such extension

comes with very small overhead to the query execution time. We have also

measured the cost of maintaining queries incrementally on different types

of updates.

Our experiments also show that maintaining views incrementally us-

ing our solution is more efficient than recomputing views even for large

sizes of updates. Experiments confirm that our solution provides an ef-

ficient treatment for delete updates that delete entire fragments from the

view extent.

11.2 Future Work

There are many interesting and open research issues beyond the issues ad-

dressed in this dissertation.

One possible future direction is to increase the expressiveness of views.

This includes for example non-monotonic views where a source insert up-

date might cause a propagation of delete update(s) or a delete update might

cause a propagation of insert update(s). Such views are not distributive and

we do not consider them in this work.

One other possible future direction is to study query optimization for

order-sensitive XML queries to achieve better overall performance and to



11.2. FUTURE WORK 255

reduce final sorting.

Another possible future direction is to study special optimizations of

incremental maintenance plans and exploiting materialization as part of

query optimization. Also to investigate the possible use of XML schema

for achieving more efficient view maintenance.

Another possible future direction is to develop a solution for making

general views with join and grouping operations self-maintainable. Gupta

and Mumick [GM05] have studied this class of views in the relational con-

text where grouping is always accompanied by aggregation. We would

like to build on that solution to enable the XML views we support to be

self-maintainable.

One other possible future direction is to exploit semantic identifiers in

other domains. For example semantic identifiers might facilitates updating

of XML views, tracing derivations of XML view nodes, and XML stream

query processing. In [ESRM05b], we have performed initial work that ex-

ploits semantic identifiers to enable non-blocking XML stream query pro-

cessing.

Another future direction is to develop a cost model that can be used

in deciding between maintaining views incrementally and re-computing

them.



256

Bibliography

[AFP03] M. A. Ali, A. A. A. Fernandes, and N. W. Paton. MOVIE:
An incremental maintenance system for materialized object
views. DKE Journal, 47(2):131–166, 2003.

[AKJK+02] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Sri-
vastava, and Y. Wu. Structural Joins: A Primitive for Efficient
XML Query Pattern Matching. In ICDE, pages 141–152, Feb
2002.

[AMR+98] S. Abiteboul, J. McHugh, M. Rys, V. Vassalos, and
J. Wiener. Incremental Maintenance for Materialized Views
over Semistructured Data. In VLDB, pages 38–49, August
1998.

[AP98] R. Alhajj and F. Polat. Incremental View Maintenance in
Object-Oriented Databases. Data Base for Advances in Infor-
mation Systems, 29(3):52–64, 1998.

[BB99] P. Bernstein and T. Bergstraesser. Meta-data support for data
transformations using microsoft repository. IEEE Data Engi-
neering Bulletin, 22(1):9–14, March 1999.

[BCF04] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of
schema-directed XML publishing. In SIGMOD, pages 503–
514, 2004.

[BDT99] P. Buneman, A. Deutsch, and W. C. Tan. A deterministic
model for semi-structured data. In Workshop on Query Pro-
cessing for Semistructured Data and Non-Standard Data Formats,
pages 114–123, Jan 1999.



BIBLIOGRAPHY 257

[BKT01] P. Buneman, S. Khanna, and W.-C. Tan. Why and Where:
a characterization of data provenance. In ICDT, pages 316–
330, 2001.

[BLT86] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Updat-
ing Materialized Views. In SIGMOD, pages 61–71, 1986.

[BT99] C. Beeri and Y. Tzaban. SAL: An Algebra for Semistructured
Data and XML. In ACM SIGMOD Workshop on the Web and
Databases (WebDB), pages 37–42, 1999.

[CJLP03] Z. Chen, H. Jagadish, L. V. Lakshmanan, and S. Paparizos.
From Tree Patterns to Generalized Tree Patterns: On Efficient
Evaluation of XQuery. In VLDB, pages 237–248, 2003.

[CW91] S. Ceri and J. Widom. Deriving Production Rules for Incre-
mental View Maintenance. In VLDB, pages 577–589, 1991.

[CW01] Y. Cui and J. Widom. Lineage Tracing for General Data Ware-
house Transformations. In VLDB Journal, pages 471–480,
2001.

[DESR03] K. Dimitrova, M. El-Sayed, and E. A. Rundensteiner. Order-
sensitive View Maintenance of Materialized XQuery Views.
In ER, pages 144–157, Oct. 2003.

[DFF+99] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Su-
ciu. A query language for XML. Computer Networks (Amster-
dam, Netherlands: 1999), 31(11–16):1155–1169, 1999.

[DR03] K. Deschler and E. Rundensteiner. MASS: A Multi-Axis Stor-
age Structure for Large XML Documents. In CIKM, pages
520–523, Nov 2003.

[ESDR03] M. El-Sayed, K. Dimitrova, and E. A. Rundensteiner. Ef-
ficiently Supporting Order in XML Query Processing. In
WIDM, pages 147 – 154, November 2003.

[ESDR05] M. El-Sayed, K. Dimitrova, and E. A. Rundensteiner. Effi-
ciently Supporting Order in XML Query Processing. Data
and Knowledge Engineering, 54(3), September 2005. to appear.

[ESRM05a] M. El-Sayed, E. A. Rundensteiner, and M. Mani. Incremental
Fusion of XML Fragments through Semantic Identifiers. In
IDEAS, 2005. to appear.



BIBLIOGRAPHY 258

[ESRM05b] M. El-Sayed, E. A. Rundensteiner, and M. Mani. Online
Processing for Streams of Arbitrary Disassembled Out-of-
order XML Fragments. Technical Report WPI-CS-TR-05-08,
Worcester Polytechnic Institute, April 2005.

[ESWDR02] M. EL-Sayed, L. Wang, L. Ding, and E. A. Rundensteiner. An
Algebraic Approach for Incremental Maintenance of Materi-
alized XQuery Views. In WIDM, pages 88–91, 2002.

[FE01] L. Fegaras and R. Elmasri. Query Engine for Web-Accessible
XML data. In The VLDB Journal, pages 251–260, 2001.

[FK99] D. Florescu and D. Kossman. Storing and Querying XML
data using an RDBMS. IEEE Data Engineering Bulletin,
11(3):27–34, 1999.

[FLBC02] L. Fegaras, D. Levine, S. Bose, and V. Chaluvadi. Query Pro-
cessing of Streamed XML Data. In CIKM, pages 126 – 133,
2002.

[FLSW03] D. K. Fisher, F. Lam, W. M. Shui, and R. K. Wong. Efficient
Ordering for XML Data. In CIKM, pages 350–357, Nov 2003.

[FP03] H. Fan and A. Poulovassilis. Tracing data lineage using
schema transformation pathways. Knowledge Transformation
for the Semantic Web, IOS Press:64–79, 2003.

[GJM97] A. Gupta, H. V. Jagadish, and I. S. Mumick. Maintenance
and self maintenance of outer-join views. In The Third Inter-
national Workshop on Next Generation Information Technologies
and Systems (NJITS), 1997.

[GK98] T. Griffin and B. Kumar. Algebraic change propagation for
semijoin and outerjoin queries. SIGMOD Records, 27(3):22–
27, 1998.

[GL95] T. Griffin and L. Libkin. Incremental maintenance of views
with duplicates. In SIGMOD, pages 328–339, 1995.

[GM95] A. Gupta and I. S. Mumick. Maintenance of Materialized
Views: Problems, Techniques, and Applications. In IEEE
Bulletin of the Technical Committee on Data Engineering, 18(2),
pages 3–18, June 1995.



BIBLIOGRAPHY 259

[GM05] H. Gupta and I. Mumick. Incremental maintenance of aggre-
gate and outerjoin expressions. Information Systems, 2005. to
appear.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintain-
ing Views Incrementally. In SIGMOD, pages 157–166, 1993.

[GMW99] R. Goldman, J. McHugh, and J. Widom. From Semistruc-
tured Data to XML: Migrating the Lore Data Model and
Query Language. In WebDB Proceedings, pages 25–30, 1999.

[IHW02] Z. G. Ives, A. Halevy, and D. Weld. An XML query engine
for network-bound data. The VLDB Journal, 11 (4):402–402,
December 2002.

[Int99] International Organization for Standardization (ISO) &
American National Standards Institute (ANSI). ISO Interna-
tional Standard: Database Language SQL - Part 2: Founda-
tion (SQL/Foundation). In ANSI/ISO/IEC 9075-2:99, Septem-
ber 1999.

[JAKC+02] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Laksh-
manan, A. Nierman, S. Paparizos, J. M. Patel, D. Srivastava,
N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER: A Native XML
Database. 11(4):274–291, 2002.

[KM00] C.-C. Kanne and G. Moerkotte. Efficient Storage of XML
Data. In ICDE, page 198, 2000.

[KR96] H. A. Kuno and E. A. Rundensteiner. Using Object-Oriented
Principles to Optimize Update Propagation to Materialized
Views. In ICDE, pages 310–317, 1996.

[KR98] H. A. Kuno and E. A. Rundensteiner. Incremental mainte-
nance of materialized object-oriented views in MultiView:
strategies and performance evaluation. In IEEE Transaction
on Data and Knowledge Engineering, volume 10(5), pages 768–
792, 1998.

[LD00] H. Liefke and S. B. Davidson. View Maintenance for Hierar-
chical Semistructured Data. In DWKD, pages 114–125, 2000.



BIBLIOGRAPHY 260

[Lie99] H. Liefke. Horizontal Query Optimization on Ordered
Semistructured Data. In WebDB Informal Proceedings, pages
61–66, 1999.

[LSPC00] W. Lehner, R. Sidle, H. Pirahesh, and R. W. Cochrane. Main-
tenance of cube automatic summary tables. In SIGMOD,
pages 512–513, 2000.

[LVM00] J. Liu, M. W. Vincent, and M. K. Mohania. Maintaining
Views in Object-relational Databases. In CIKM, pages 102–
109, 2000.

[Mai86] D. Maier. A logic for objects. In Workshop on Foundations of
Deductive Database and Logic Programming, Washington, DC,
USA, pages 6–26, 1986.

[MFK01a] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML Queries on Heterogeneous Data Sources. In VLDB,
Roma, Italy, pages 241–250, Sept. 2001.

[MFK01b] I. Manolescu, D. Florescu, and D. Kossmann. Answering
XML Queries on Heterogeneous Data Sources. In VLDB,
pages 241–250, 2001.

[MHM04] N. May, S. Helmer, and G. Moerkotte. Nested Queries and
Quantifiers in an Ordered Context. In ICDE, pages 239–250,
2004.

[MK00] M. K. Mohania and Y. Kambayashi. Making Aggre-
gate Views Self-maintainable. Data Knowledge Engineering,
32(1):87–109, 2000.

[MQM97] I. S. Mumick, D. Quass, and B. S. Mumick. Maintenance of
data cubes and summary tables in a warehouse. In SIGMOD,
pages 100–111, 1997.

[NLB+01] U. Nambiar, Z. Lacroix, S. Bressan, M. L. Lee, and Y. G. Li.
XML Benchmarks Put to the Test. In the Third International
Conference on Information Integration and Web-Based Applica-
tions and Services (IIWAS), September 2001.

[PAGM96] Y. Papakonstantinou, S. Abiteboul, and H. Garcia-Molina.
Object Fusion in Mediator Systems. In VLDB, pages 413–424,
1996.



BIBLIOGRAPHY 261

[PSCP02] T. Palpanus, R. Sidle, R. Cochrane, and H. Pirahesh. Incre-
mental Maintenance for Non-Distributive Aggregate Func-
tions. In VLDB, 2002.

[PVM+02] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and
R. Fagin. Translating Web Data. In VLDB, pages 598–609,
2002.

[QCR00] L. P. Quan, L. Chen, and E. A. Rundensteiner. Argos: Ef-
ficient Refresh in an XQL-Based Web Caching System. In
WebDB, pages 23–28, May 2000.

[Qua96] D. Quass. Maintenance Expressions for Views with Aggre-
gation. In SIGMOD, pages 110–118, 1996.

[RS98] A. Rosenthal and E. Sciore. Propagating integrity informa-
tion among interrelated databases. In the Second Working
Conference on Integrity and Internal Control in Information Sys-
tems, pages 5–18, 1998.

[Sah01] A. Sahuguet. Kweelt: More than just ”yet another frame-
work to query XML!”. In Demo Session Proceedings of SIG-
MOD’01, page 602, 2001.

[Sk94] M. Skld. Active Rules based on Object Relational Queries-
Efficient Change Monitoring Techniques. PhD Thesis, School
of Engineering, Linkoping University, 1994.

[SSB+00] J. Shanmugasundaram, E. J. Shekita, R. Barr, M. J. Carey,
B. G. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently Pub-
lishing Relational Data as XML Documents. In VLDB, pages
65–76, 2000.

[SSB+01] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. Lind-
say, H. Pirahesh, and B. Reinwald. Efficiently publishing re-
lational data as XML documents. VLDB Journal, 10(2–3):133–
154, 2001.

[STH+99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt,
and J. Naughton. Relational Databases for Querying XML
Documents: Limitations and Opportunities. In VLDB, pages
302–314, 1999.



BIBLIOGRAPHY 262

[STP+05] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Can-
dan. Incremental Maintenance of Path-Expression Views. In
SIGMOD, 2005.

[Suc98] D. Suciu. An Overview of Semistructured Data. SIGACTN:
SIGACT News (ACM Special Interest Group on Automata and
Computability Theory), 29(4):28–38, 1998.

[SWK+02] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,
D. Florescu, and R. Busse. XMARK: A benchmark for XML
Data Management. In VLDB, pages 974–985, 2002.

[TIHW01] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updat-
ing XML. In SIGMOD, pages 413–424, 2001.

[TVB+02] I. Tatarinov, S. Viglas, K. Beyer, J. Shanmugasundaram,
E. Shekita, and C. Zhang. Storing and Querying Ordered
XML Using a Relational Database System. In SIGMOD,
pages 204–215, 2002.

[W3C98] W3C. XMLTM . http://www.w3.org/XML, 1998.

[W3C99] W3C. XML Path Language (XPath) Version 1.0. W3C Recom-
mendation. http://www.w3.org/TR/xpath.html, Novem-
ber 1999.

[W3C05] W3C. XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery/, February 2005.

[WRM05] S. Wang, E. A. Rundensteiner, and M. Mani. Optimization
of Nested XQuery Expressions with Orderby Clauses. In
XSDM’05, 2005. to appear.

[Zea03] X. Zhang and et al. Rainbow: Multi-XQuery Optimization
Using Materialized XML Views. In SIGMOD Demo, page
671, 2003.

[ZGM98] Y. Zhuge and H. Garcia-Molina. Graph Structured Views
and Their Incremental Maintenance. In ICDE, pages 116–
125, February 1998.

[ZGMHW95] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom. View
maintenance in a warehousing environment. In SIGMOD,
pages 316–327, 1995.



BIBLIOGRAPHY 263

[ZHK96] G. Zhou, R. Hull, and R. King. Generating Data Integration
Mediators that Use Materialization. Journal of Intelligent In-
formation Systems, 6(2/3):199–221, 1996.

[ZPR02] X. Zhang, B. Pielech, and E. A. Rundensteiner. Honey, I
Shrunk the XQuery! — An XML Algebra Optimization Ap-
proach. In WIDM, pages 15–22, Nov. 2002.


