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ABSTRACT
Several XML DBMSs support XQuery and/or SQL/XML languages,
which are based on navigational primitives in the form of XPath ex-
pressions. Typically, these systems either model each XPath step as
a separate query plan operator, or employ holistic approaches that
can evaluate multiple steps of a single XPath expression. There
have also been proposals to execute as many XPath expressions as
possible within a single FLWOR block simultaneously in a data
streaming context.

We observe that blindly combining all possible XPath expres-
sions for concurrent execution can result in significant performance
degradation in a database system. We identify two main prob-
lems with this strategy. First, the simple strategy of grouping all
XPath expressions on a single document does not always work if
the query involves more than one data source or has nested query
blocks. Second, merging XPath expressions may result in unnec-
essary execution of branches that can be filtered by predicates in
other branches or elsewhere in the query. To rectify these problems,
IBM R© DB2 R© pureXMLTMadopts a combination of heuristic-based
rewrite transformations, to decide which XPath expressions should
be grouped for concurrent evaluation, and cost-based optimization
to globally order the groups within the query execution plan, and
locally order the branches within individual groups. Experimental
evaluation confirms that selectively grouping multiple XPath ex-
pressions allows for better query evaluation performance and re-
duces the query optimization complexity. These optimization tech-
niques have been implemented as part of IBM DB2 9.5 (pureXML).
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1. INTRODUCTION
DB2 pureXML [3, 4, 22] is a hybrid relational and XML database

engine. It provides native XML storage, indexing, navigation and
query processing through both SQL/XML [14] and XQuery [28],
using the XML data type introduced by SQL/XML. The XML nav-
igation component of DB2 pureXML is based on TurboXPath [16]
streaming engine, capable of executing multiple correlated XPath
expressions in a single traversal of an XML fragment.

This high-granularity query processing is in contrast to most
XML query processing engines today that model and execute each
XPath step as a separate operator. The low-granularity approach
has been used in: (1) systems that store XML as relational tables
[25, 17] where each XPath step is translated into a relational join,
(2) some native XML stores [10, 31], and (3) systems that closely
follow the operational semantics of XQuery [8, 11, 5]. In this ap-
proach, even for simple queries the number of operators in a query
execution plan is large, making it impossible to use a cost-based
optimizer with exhaustive plan enumeration. Some systems em-
ploy an intermediate approach with operators that execute multiple
steps of an XPath expression together [24, 6, 12]. This approach
has the benefit of smaller overhead and can be used when an exter-
nal XPath engine is used to evaluate XPath over the XML data.

It has been shown in [16] that bundling together as many XPath
expressions as possible for single-pass execution provides signifi-
cant performance improvements in a streaming environment. How-
ever, we observe, that blindly applying the same idea to a database
system produces mixed results, for two reasons.

First, in a streaming system the whole document is always scanned
during query processing. On the contrary, an XML database sys-
tem, such as DB2 pureXML , stores pre-parsed XML documents
and is able to access only the required fragments. Second, [16] sup-
ports only a small subset of XQuery, namely multiple
FOR/LET bindings and simple where-clause predicates, whereas
DB2 pureXML supports full XQuery and SQL/XML languages.

On the positive side, high-granularity approach improves perfor-
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mance of two important query patterns that we frequently see in
customer engagements. First pattern includes XML restructuring
queries that extract multiple fields from XML fragments to con-
struct new XML documents. The second pattern is the XMLTable
function of the SQL/XML [14] standard. XMLTable executes a set
of XQuery expressions and returns its result in the form of a ta-
ble. They are used widely for two reasons: First, most applications
and tools still operate on relational data, and XMLTable provides
the means to convert XML into relational tables. Second, SQL
and XMLTable are the only means for users to run XML analytics
queries, as XQuery does not include convenient grouping facilities
like SQL, or complex OLAP functions. Our experimental eval-
uation shows significant performance improvements for both pat-
terns, including up to 4 times speed-up in execution of individual
XMLTable calls.

Another benefit of combining multiple XPath expressions into
a single expression tree is the reduction in the number of XML
navigation operators in the query execution plan, which in turn re-
duces the search space of plans that the optimizer needs to consider.
This, in turn, enables the cost-based optimizer to apply dynamic
programming plan enumeration to more complex queries. Experi-
ments presented later in the paper show up to 50 times improvement
in compile time of complex queries due to XPath merging.

Unfortunately, reducing the search space carries the risk of elim-
inating the optimal query execution plan from consideration. We
identify two main causes for potential performance degradations.
First, complex XQuery and SQL/XML queries often contain value
joins and nested subqueries that can filter the results. In this case
merging XPath expressions may lead to unnecessary work in navi-
gating fragments that will be filtered out later in the query. Second,
even simple XPath expressions with local predicates may perform
better with two or more scans over the stored document. Solving
these two problems is the focus of this paper. Next, we illustrate
these problems in turn.

Consider the following query, which looks for every pending or-
der if the same customer previously made expensive orders :

QUERY 1.

for $ord in db2-fn:xmlcolumn(’TPCH.DOC’)/Order[
OrderStatus = "P"]

let
$c1 := $ord/LineItem/PartKey,

...
$c15 := $ord/LineItem/L_Comment

where exists( db2-fn:xmlcolumn(’TPCH.DOC’)/Order[
CustKey = $ord/CustKey and
OrderDate < $ord/OrderDate and
TotalPrice > X] )

return <res>...</res>;

Figure 1 shows four possible query execution plans for this query.
In the figure, we use a linear representation of our pattern trees,
which we will describe in Section 3.1. In this notation, we use
curly braces separated by comma to denote multiple next steps, and
we mark steps that compute an output variable, (i.e. an extraction
point) with ”→”, and also show the corresponding output variable.

This query extracts all 15 sub-elements of the lineitems of the
pending order and constructs a result object out of them. If we
merge all possible XPath expressions in the query, the only choice
of the optimizer is the plan of Figure 1(a), which has just two
XML navigation (XSCAN) operators. On the other hand, if we
do not merge any expressions, then the optimizer could generate
the plan in Figure 1(b), where the 15 LET clauses are executed
separately after the join. This query will benefit from merging
the 15 LET clauses with the first FOR clause (plan (a)), if the

[TotalPrice > X] predicate is not selective. However, if it is
selective the LET clauses do not need to be executed for the Order
elements eliminated by the join. Note that all 15 LET clauses can
always be executed together. The problem is deciding whether they
should be computed before or after the join.

We address this problem in two steps. First, we use heuristics to
partition XPath expressions into clusters that can each be safely ex-
ecuted by a single XSCAN operator without loss of performance.
Second, we use cost-based optimization to decide the execution or-
der of XSCANs and other operators in the query. For example,
for Query 1 our heuristics generate two expression trees. One for
/Order[OrderStatus="P"]/{CustKey,OrderDate},
which produces the values needed for the join, and the other for
all 15 LET clauses. Then, the optimizer produces the plans in Fig-
ure 1(c) and (d), and picks the cheaper one given the selectivity and
fanout of all the expressions. Under the condition where plan (a)
would outperform (b), the optimizer picks plan (d), and otherwise,
the optimizer chooses plan (c), which is even faster than (b).

To illustrate the second problem, consider the following exam-
ple:

QUERY 2.

for $cust in db2-fn:xmlcolumn(’CUST.DOC’)/customer
where $cust/status = "I"
return

<contact>
{cust/name, $cust//phone}

</contact>

This query could be merged into a single expression tree:
db2-fn:xmlcolumn(’CUST.DOC’)/

customer(FOR)[status = "I"]/
{name(LET),
.//phone(LET)}

Executing this tree in one-pass streamed navigation would entail
a full scan of every document. For each customer all its descen-
dants need to be navigated to collect name and phone sequences.
Since the qualifying status element could be the last child of
a customer element, there is no opportunity to short-circuit the
computation for customers that do not satisfy the predicate.

An alternative two-pass strategy may be to scan the children of
customer, and if a qualifying status child is found, scan all
descendants of customer to collect the results.

If certain conditions hold, such as a customer fragment is
sufficiently large, and the predicate is selective, but has not been
already applied by an index1, a two-pass execution strategy may
outperform the single-pass execution by orders of magnitude. The
choice between the strategies depends on data characteristics and
should be made by a cost-based optimizer, utilizing data distribu-
tion statistics. Fortunately, this choice is local to the XSCAN oper-
ator, i.e. it can be made irrespective of what other expressions exist
in the query.

We perform the local cost-based optimization for every XSCAN
operator in the query execution plan produced by the global query
optimization stage. The local optimizer instructs the XML naviga-
tion algorithm to split the XSCAN expression into a pipeline of one
or more fragments, with each fragment executed only after the pre-
vious one succeeds. For example, Query 2 is executed by a single
XSCAN that is split into two fragments:

1DB2 pureXML employs XML indexes to eliminate documents
that do not satisfy XPath predicates. These indexes contain frag-
ments of documents specified by XPath expressions to control stor-
age and update costs.
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XML Index

(/Order[OrderStatus = "P"])  

XSCAN

/Order[OrderStatus = "P"]/{
CustKey � $2,
OrderDate�$3,
LineItem/PartKey� $4,

…
LineItem/Comment � $18 }

XML Index

(/Order[CustKey = $2])

XSCAN

/Order[
CustKey = $2 and
OrderDate < $3 and
TotalPrice > X]

NL JOIN

XML Index

(/Order[OrderStatus = "P"])

XSCAN

/Order[OrderStatus = "P"] �$1
/{    CustKey � $2,

OrderDate�$3 }  

XML Index

(/Order[CustKey = $2])

XSCAN

/Order[
CustKey = $2 and
OrderDate < $3 and
TotalPrice > X]

NL JOIN

XML Index

(/Order[OrderStatus = "P"])  

XSCAN

/Order[OrderStatus = "P"] �$1
/{   CustKey � $2,

OrderDate�$3}  
XML Index

(/Order[CustKey = $2])

XSCAN

/Order[
CustKey = $2 and
OrderDate < $3 and
TotalPrice > X]

NL JOIN

XSCAN

$1/{  LineItem/PartKey� $4,
…

LineItem/Comment � $18 } 

XSCAN

$1/{ LineItem/PartKey� $4,
…

LineItem/Comment � $18 } 

XML Index

(/Order[OrderStatus = "P"])

XSCAN

/Order[OrderStatus = "P"] �$1  
XML Index

(/Order[CustKey = $2])

XSCAN

/Order[
CustKey = $2 and
OrderDate < $3 and
TotalPrice > X]

NL JOIN

XSCAN

$1/LineItem/PartKey � $4

XSCAN

$1/CustKey  � $2

XSCAN

$1/OrderDate �$3 

XSCAN

$1/LineItem/Comment � $18…

a)

b)

c)

d)

Figure 1: Query execution plans for Query 1

(’CUST.DOC’)/customer(FOR)[status = "I"], and
{/name(LET), //phone(LET)}.

The main advantage of the global-plus-local optimization ap-
proach is the ability to optimize complex query expressions with-
out sacrificing query planning options. For maximum flexibility,
the optimizer should consider every feasible order of execution of
XPath steps in the query. The Query 1 above contains 38 XPath
Steps and two table accesses. Thus, optimizing this query is equiv-
alent to optimizing a 40-way join - not a trivial or solved problem.
By applying heuristics and partitioning the problem into pieces that
can be solved in isolation, we are able to successfully optimize
complex queries with many large XPath expressions.

The contributions of this paper can be summarized as follows:

• We describe the first complete framework for optimizing and
processing of XQuery and SQL/XML on stored data, capa-
ble of executing multiple XPath expressions simultaneously.
Our solutions have been implemented in DB2 pureXML , an
industrial XML database system.

• We propose a combination of heuristics-based and cost-based
optimization strategy to address the performance problems
of the high-granularity approach. We present a heuristic-
based algorithm for grouping and merging XPath expres-
sions. We extend the cost-based optimizer of DB2 pureXML
by providing a new cardinality estimation algorithm for com-

plex tuple-producing expressions. We provide a local op-
timization algorithm that considers multi-pass execution of
individual XSCAN operators. This optimization is applica-
ble to XPath expressions that compute a single variable, but
becomes even more important for merged expressions that
compute multiple variable bindings.

• We provide experiments which show the effectiveness of the
optimization strategy as well as the benefits of bundling mul-
tiple XPath expressions for XQuery and SQL/XML queries.

The rest of the paper is organized as follows. First, we discuss
related work in Section 2. Then, we provide an overview of DB2
pureXML , in Section 3. In Sections 4 and 5, we present the de-
tails of the heuristic and cost-based optimization respectively. We
present the results of our experimental study in Section 6. Finally,
we conclude in Section 7.

2. RELATED WORK
Several XML query processing engines have been proposed both

in academia and in industry [3, 34, 24, 11, 5, 8, 10, 21, 13]. A
comprehensive list of public XQuery implementations and links
can be found on the home page of W3C XQuery working group
(http://www.w3.org/XML/Query), and a detailed discussion of each
system is beyond the scope of this paper. To the best of our knowl-
edge, none of these systems considers grouping XPath expressions
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together and employs a high-granularity XPath processor which
can return tuples of variable bindings.

A considerable amount of current research has focused on the ef-
ficient processing of XQuery. Recently, there has been some work
on rewrite optimization of XPath expressions [19, 18, 8]. All of
these approaches create a single operator for each step of an XPath
expression, and hence focus on the optimized execution order of
those steps. There has been also some work on translating XQuery
and XPath queries into tree patterns [33, 13]. These pattern trees
can be executed by either holistic XPath processors [6] or by a se-
ries of structural joins [31]. Although [33] translates all XPath ex-
pressions within a FLWOR block into a single pattern tree, it does
not execute the pattern tree holistically, but translates it into struc-
tural joins, executing one step at a time. [1] has considered different
granularity of algebraic operators, however their high granularity
operations, called macro operators, were still implemented as trees
of structural joins. None of these approaches addresses the perfor-
mance problems we attack in this paper, and considers grouping a
set of XPath expression for efficient streaming execution.

The SQL Server 2005 support for XML datatype is based on
a pre-parsed XML representation stored in BLOBs [24]. To pro-
cess queries over this representation, the BLOB based representa-
tion is internally translated into a node table format that has one
row per node in the XML document. The row contains an encod-
ing of the path, the node type and the value of the node. XQuery
queries are translated to the algebra tree containing XML opera-
tors as well as traditional relational operators. During the Operator
Mapping phase of the query compilation, these algebraic opera-
tors are mapped to runtime operators. An algebraic operator, Xm-
lOp Path, is provided for evaluation of multi-step XPath expres-
sion. Depending on the path expressions and the indexes present,
this operator can be mapped to different runtime operator trees
composed of selections over the node table combined with joins.
Selections are used for the portions of the paths that can be eval-
uated by using indexes over the encoded paths in the table, as for
example when the query path does not contain wildcards. There-
fore it appears that in most of the cases, paths are translated to
multi-operator trees.

The XML support in Oracle’s DBMS uses a “hybrid” approach
[34]. In this architecture, a subset of XQuery is translated into the
existing relational algebra operators and system defined scalar and
table functions. The new XQuery related system-defined functions
perform tasks of evaluation of path expressions, aggregation, se-
quence operations, etc by processing bits of binary data represent-
ing XML fragments. The unsupported queries are translated into
opaque operators that run an external XQuery processor. Therefore
the granularity of this engine is on an XPath expression level.

Cost-based optimization for XML query processing have been
employed in systems such as Lore [20], Niagara [12], TIMBER [31]
and Natix [10]. The Lorel query language was OQL-based, and did
not have XML sequences, which are central to the XQuery lan-
guage and its optimization. Most systems that followed, adapted
a one step at a time approach and optimized individual structural
joins. These systems are related to our local optimization mod-
ule, however they only consider single variable bindings. Also,
since the optimization strategy is highly dependant on the index-
ing schemes and navigation operators available to the system, these
approaches are not applicable to DB2 pureXML .

Only DB2 [2] published a description of a cost-based optimizer
for an XQuery compiler and a relational-XML hybrid, which mod-
els entire XPath expressions with single variable bindings. We ex-
tend that work with cardinality estimation for tuple-returning ex-
pressions, producing multiple variable bindings.

The XML Navigation operator of DB2 pureXML is based on
the TurboXPath [16] streaming XPath processor. There have been
various proposals for evaluating XQuery/XPath over XML streams
[11, 30, 7]. Most of these systems are very limited in their scope of
features and only compute one variable binding at a time. BEA’s
streaming XQuery processor [11] is a complete XQuery implemen-
tation but it models each XPath step separately. [30] can execute
multiple FOR bindings concurrently, but handles a very limited
subset of XQuery. Furthermore, all these techniques are designed
for a streaming environment and do not address the performance
problems identified in this paper.

3. BACKGROUND
DB2 pureXML [3, 4, 22] stores XML data in columns of re-

lational tables, as instances of the XQuery data model (XQDM)
[29] in a structured type-annotated tree. By storing binary repre-
sentation of type-annotated trees, DB2 pureXML avoids repeated
parsing and validation of documents.This format preserves all the
information available in the post-validation instance of XML docu-
ments. Each node is given a unique identifier [26] that gives nodes
both logical and physical addressability that can be used by index-
ing and query evaluation. Each node also contains pointers to its
attributes and ordered children nodes.

DB2 pureXML query evaluation run-time contains three major
components for XML query processing: (1) XML navigation, (2)
XML index run-time and (3) the XQuery function library. Addi-
tionally, several relational runtime operators have been extended to
deal with XML data. The XML navigation operator evaluates path
expressions over the native store, by traversing the parent-child re-
lationships. It returns node references and atomic values to be fur-
ther processed by the query runtime. XSCAN operator is described
in more detail in [4] and [16]. One key feature of the XSCAN,
described in [4], is multipass processing, which for a single query
expression tree generates a set of correlated XML navigations, each
evaluating a group of XPath steps using a one-pass algorithm. We
make use of this feature to implement local optimization as dis-
cussed in Section 5.1.

DB2 pureXML supports value indexes defined by XPath expres-
sions. These indexes are used to answer path expressions which
contain value or general comparisons. The path expressions defin-
ing the XML index can contain wildcards and all XQuery axes, as
well as kind tests.

DB2 pureXML provides both a SQL/XML and an XQuery inter-
face. These two languages are composable: XQuery can be invoked
from SQL and vice versa. DB2 pureXML uses a single integrated
query compiler for both SQL/XML and XQuery. There is no trans-
lation from XQuery to SQL. After parsing, both SQL/XML and
XQuery queries are mapped into query graph model (QGM) [23]
and optimized by the hybrid query compiler [3, 4]. In its simplest
form, a QGM graph consists of operations (boxes) and quantifiers
(arcs) which represent the data flow between operations. More in-
formation on DB2 pureXML can be found in [3, 4, 22, 2].

To facilitate XML query processing, a new QGM operation, called
the ExpBox, was introduced in [3, 4] to represent XML navigation.
An ExpBox produces tuples of variable bindings, where each indi-
vidual binding is an instance of the XQuery data model[29], and is
either a singleton (FOR) or a sequence (LET). XML navigation is
modeled using XPath Step (XPS) trees, which we discuss next.
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3.1 XPath Representation

DEFINITION 3.1 (XPS NODE). An XPS node represents a sin-
gle XPath step and has 3 or more children (a, t, p, N). a is one of
the six XQuery axes, t is the test, which is a name test, a kind test,
or a wildcard test, p is the predicate, and N is a possibly empty set
of next steps. Each next step is another XPS node. p can be arbi-
trarily complex, and it is the special NULL constant when there is
no predicate on a step.

XPS trees are annotated with the following flags to capture the
FOR/LET semantics of FLWOR expressions.

1. isExtraction: This flag is set to true, if the XPS node is
linked to an output column of the containing ExpBox and
represents a variable binding, computing the result of an XPath
expression.

2. isFor: This flag is set to true if the XPS node represents the
last step of a FOR binding. If this flag is set to false, then
LET is implied. An XPS node can be marked as a FOR even
if it does not represent an extracted variable binding. We
need to remember the last step of a FOR binding so that nav-
igation run-time can apply the correct duplicate elimination
and document order rules.

3. EmptyOnEmpty (EOE): This flag signals when an empty
sequence needs to be created if there is no qualifying node.
This flag may be set to true only if the XPS node is marked
as extraction point. 2

DEFINITION 3.2 (EXTRACTION POINT). An extraction point
is an XPS node whose isExtraction flag is set to true.

DEFINITION 3.3 (MEP XPS TREE). A multiple-extraction
(MEP) XPS tree is a tree T (r,E), where r is the root of the tree
and is an XPS node, E is a set of extraction points.

Conceptually, XPS trees represent XPath expressions by captur-
ing the data flow step-by-step through XPS nodes, and hence are
able to model all XQuery axes, including parent, as well as any
complex XQuery expressions as the predicate. Generalized tree
patterns [33], on the other hand, is a structural representation of an
XPath expression, and hence can only model child and descendant
axes, and a limited set of predicates.

4. HEURISTIC-BASED MERGING OF
XPATH EXPRESSIONS

In this section, we describe an algorithm, which takes as input
the resulting QGM after the rewrites have been applied and tries to
merge XPath expressions to generate XPS trees with multiple ex-
traction points. The goal of this algorithm is twofold: First, it parti-
tions a set of XPath expressions within a single query block that are
over the same document into clusters so as not to preclude the opti-
mizer from producing an optimal execution plan. Second, it tries to
merge the XPath expression within the same cluster into an MEP
XPS tree. The pseudo code for Algorithm MultipleExtMerge is
given in Figure 2.
2Note that we need to model EmptyOnEmpty and FOR as two sep-
arate flags. Because DB2 pureXML has rewrite transformations
which can convert LETs into FORs and turn off EmptyOnEmpty
flag for LETs. In this paper, we are not discussing those rewrites.

MultipleExtMerge
Input: QGM after rewrites
Output: QGM containing MEP XPS trees

with multiple output variables

( 1) for each SELECT box do
( 2) compute dependency graph
( 3) ClusterExpBoxes
( 4) for every two ExpBox underneath do
( 5) if (both have the same cluster id)
( 6) and (one ExpBox computes context of other
( 7) or they both have the same context) then
( 8) if (CircularDependency(E1,E2) = false) then
( 9) mergeExpBoxes(E1,E2)
(10) if (successful) then
(11) update dependency graph
(12) reset iteration over ExpBoxes

Figure 2: XPath Merging Algorithm

It is important to note that what constitutes a query block is not
defined by the user query, because the rewrite transformations may
merge multiple query blocks, effectively unfolding nested FLWOR
and SQL/XML expressions into a single query block. We define
a query block as identified by QGM, as a SELECT box, after all
rewrite and XPath transformations have been applied. The details
of these rewrites are beyond the scope of this paper, but we note
that they simplify the initial QGM considerably. As a result, we
can handle complex nested FLWOR expressions with any type of
return clause, although we only try to merge ExpBoxes underneath
the same SELECT box.

Algorithm MultipleExtMerge employs a dependency graph to
compute the clusters as well as to make sure the merge rewrite
maintains a valid data flow in QGM. An XPS tree within an Exp-
Box cannot use an output variable produced by the same ExpBox.

We say that an XPS tree in an ExpBox is dependent on another
ExpBox, if the output columns of the latter are used as input to
evaluate former.

DEFINITION 4.1. A dependency graph G(V, E) of an SELECT
box s is a directed acyclic graph, where

1. V = {x | x is an ExpBox underneath s}, and

2. E = {(v1, v2) | v2 is dependent on v1}.

Algorithm MultipleExtMerge first computes this dependency
graph for the SELECT box it is currently examining. Then, the
algorithm invokes ClusterExpBoxes which uses the dependency
graph to assign cluster numbers to individual ExpBoxes. Only Exp-
Boxes within the same cluster will be considered for merging.

ClusterExpBoxes starts assigning cluster numbers by identify-
ing a set of source nodes S in the dependency graph. I.e. a set of
ExpBoxes that do not depend on others. These are XPath expres-
sions whose context is either a document root, or whose context
comes from other operations outside the current SELECT box. All
nodes in S get cluster number 0.

For the rest of the ExpBoxes the cluster number is assigned based
on their dependencies and their participation in external operations.
We say that an ExpBox participates in an external operation if one
of its output columns is used in a subquery outside the current SE-
LECT box, or it participates in a value-based join with either a
relational column or another XML document. We also say that an
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ExpBox participates in an external operation, if any of the Exp-
Boxes that depend on it, participates in an external operation.

Starting with nodes in S, ClusterExpBoxes traverses the depen-
dency graph, and for every node v considers its dependants. If
none of the dependant ExpBoxes participate in external operations,
all of them get the same cluster number as v (denoted cn(v)). If
some of the dependant ExpBoxes do participate in external opera-
tions, these ExpBoxes get cluster number cn(v), while the rest of
the dependants of v, get cluster number cn(v) + 1.

The goal of clustering is to identify groups of ExpBoxes, which
operate on the same document, and do not have interaction with
other operations in the query. These ExpBoxes can be merged
safely because we would not be limiting the optimizer’s options.

EXAMPLE 4.2. Consider Query 1. For this query, the start
set S contains two ExpBoxes, which contain the XPath expres-
sion /Order[OrderStatus = ”P”] and /Order[CustKey =
$ord/CustKeyand]. The output of ExpBoxes containing
$ord/CustKey and $ord/OrderDate are used in a join oper-
ation, and hence are given the same cluster number 0 with the one
that computes $ord, and all 15 LET clauses are assigned cluster
number 1. In effect, we cluster ExpBoxes before the join into one
group and all other ExpBoxes into another group. This way, the
cost-based optimizer has the choice to decide whether to do the
join before computing the 15 LET extractions, or do it afterwards.

Once we compute the clusters for ExpBoxes, we then try to
merge the ExpBoxes if they are in the same cluster. However, not
every pair of ExpBoxes within a cluster can be merged. Some can-
not be merged because the resulting pattern tree will violate the
valid data flow in QGM, while others cannot be merged because
the resulting expression cannot be expressed in a single pattern tree.
Next, we describe these cases.

Before merging two ExpBoxes, MultipleExtMerge invokes an-
other algorithm, CircularDependency (line 8), to check whether
merging the two ExpBoxes would create a cycle in the dependency
graph, by employing a standard cycle detection algorithm [27]. Ev-
ery time we successfully merge two ExpBoxes, the dependency
graph is updated to maintain a valid data flow in the query graph.

$i $j

$k

$l

Figure 3: Example Dependency Graph

EXAMPLE 4.3. Consider the following query:
for $i in db2-fn:xmlcolumn("T.doc")//x
for $j in $i/a/b
for $k in $j//d
for $l in $j/c[$k=d]/e
return ($k, $l)

The corresponding dependency graph is shown in Figure 3. Sup-
pose that we are trying to merge the nodes corresponding to $j
and $l, the resulting graph would have a cycle between $j-l and $k
nodes. We can see that $k binding depends on $j, hence $j needs to
be computed first. But, the newly merged $j-l XPS tree depends on
$k, hence a circular dependency.

Algorithm MultipleExtMerge uses an XPath merge routine and
tries to create the maximal XPS tree, which contains as many ex-
tractions as possible. It looks at two ExpBoxes at a time and merges
them if they do not create a cycle in the dependency graph and they
satisfy the necessary conditions, which we explain next. Suppose
we are trying to merge two ExpBoxes, e1 and e2, containing XPS
trees xps1 and xps2, respectively. We distinguish two cases:

1. Case 1: xps1 computes the context of xps2. 3

2. Case 2: xps1 and xps2 have the same context node

The merge process proceeds as follows: In Case 1, we locate the
XPS node n in xps1, which is an extraction point and computes
the context variable of xps2. We, then, remove the first step of
xps2 ($x/a/b becomes /a/b). The first step in an XPS tree specifies
the context of navigation. For example, in $x/a/b $x is the context
step. Finally, we insert the remaining steps of xps2 as next children
into n. Note that due to earlier merges, the first step of xps2 might
have more than one next step. In Case 2, we remove the first step
of xps2, and insert the remaining children as next steps into the
context step of xps1. Note that the context step of xps1 is also the
context for xps2.

In general, we need to be careful when there is a predicate on
the context step of xps2 in Case 1, and on the context step of ei-
ther xps1 or xps2 in Case 2. We cannot simply discard the first
step if there is a predicate on it. The solution is to rewrite xps2 in
Case 1 (xps1 and xps2 in Case 2), by injecting an extra self step,
and moving the predicate to this new self step. This simple
rewrite will transform an XPath expression of the form

$i[pred]/optional next steps

into

$i/self :: node()[pred]/optional next steps

However, this transformation is only possible, 1-) if the context
variable is not a LET binding, and 2-) the predicate is not a posi-
tional predicate (a predicate which depends on context position or
context sequence, such as fn:last or fn:position).

EXAMPLE 4.4. Consider the following query fragment:

let $j:= $i//a/b
for $k in $j[2]/c

We cannot merge these two XPath expressions, because the result-
ing expression cannot be expressed in a single XPS tree. It is in-
correct to merge these two path expressions into the expression
$i//a/b[2](→$j)/c, because this one returns the c children of the
second b under every a element, whereas the original query asks
for the c children of the second b under all a elements.

5. COST-BASED OPTIMIZATION
DB2 pureXML includes a cost-based optimizer, which is de-

scribed in detail in [2]. The optimizer uses XML and relational
data distribution statistics to estimate cardinality and execution cost
of alternative execution plans for pure XML and hybrid XML-
relational queries, and picks the cheapest.

The optimizer includes a number of novel features. In addition
to normal relational operators, such as table scan, index access,
joins, etc, our query plans also include an XSCAN operator which
models the XML Navigation algorithm. An XSCAN operator is
3We also consider the symmetric case.
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constructed for every ExpBox in the final QGM representation of
a query. The cardinality estimation algorithm computes two values
for every XSCAN operator: the cardinality, i.e. the number of tu-
ples the operator is expected to return and sequence size, which is
the average number of XML items in the sequences that are being
returned. Recall, that values of XML type are XQDM instances
that are always sequences of zero or more XML items. The cardi-
nality of an XSCAN operator is the product of the input cardinality,
selectivity of all the applied predicates, and the fanout of the navi-
gation expression, i.e., the number of output rows produced by the
navigation per average input.

The fanout computation algorithm (described in [2]) employs
linear path data distribution statistics, that contain information on
how many times each path occurs in the XML collection, and on
distribution of data values (if any) that can be found by following
the path.

To support MEP expressions, we developed a new cardinality
estimation algorithm that computes (a) fanout of navigation trees
with multiple next steps and extractions, and (b) sequence size for
every column produced by the MEP navigation expression.

The algorithm makes a distinction between XPath Step (XPS)
nodes inside predicate steps, which we call predicate XPS, and
XPS nodes that are not inside any predicate of any ancestor XPS,
which we call navigation XPS. For example, in /a[b/c = 5]/d,
XPath Steps /a and /d are navigation XPS and /b and /c are pred-
icate XPS nodes.

The new algorithm runs in two steps. First, it traverses the pred-
icate XPS nodes and uses the data distribution statistics to compute
cumulative selectivity P (X) for a predicate subtree of every nav-
igation XPS X. This step runs exactly as described in [2]. If X
does not have a predicate, we define P (X) = 1.

MultipleExtFanout
Input: Tuple-extracting XPS Tree.
Output: Fanout F and sequence size SS for every navigation
XPS node.

( 1) for each navigation XPS node in the top-down traversal of
the input XPS tree do
( 2) if (X isFor)
( 3) N(X) = St(X)/St(Y )
( 4) F (X) = N(X) ∗ P (X)
( 5) SS(X) = 1
( 6) else
( 7) N(X) = SS(Y ) ∗ St(X)/St(Y )
( 8) if (N(X) > 1)
( 9) SS(X) = N(X) ∗ P (X)
(10) F (X) = K-th moment of B(N(X), P (X))
(11) else
(12) F (X) = N(X) ∗ P (X)
(13) SS(X) = 1
(14) if (XisEOE)
(15) oldF = F (X)

(16) F (X) = (1 − P (X))N(X)

(17) SS(X)∗ = oldF /F (X)

Figure 4: Fanout Computation Algorithm

Second, fanout F and sequence size SS of every navigation XPS
X is computed in a single top-down traversal of the XPS tree by the
algorithm of Figure 4.

We model each step as navigation that computes a sequence of
N(X) items, followed by a predicate that applies to each item uni-
formly and independently. For an XPS marked as FOR, the N(X)
is the average number of XML items the navigation will find, per
parent context. On line 3, Y is the XPS parent step of X. The
St(X) is the number of items found by a linear path from root to
X, as estimated using the data distribution statistics. If X is the
root we define St(Y ) = 1. Notice, that F (X) computation for
FOR steps does not take into account the sequence size of the in-
put – it is taken into account by the parent computation, if the parent
is a LET step.

For an XPS marked as LET the computation is more involved
(lines 6-13), since it needs to account for the size of the context
(parent) sequence. Also, sequences constructed by this XPS may
need to be iterated a number of times by FOR-marked children,
producing a Cartesian product for every sequence. In this case,
the size of every sequence needs to be raised to the K-th power,
where K is the number of FOR-marked children. In statistics, the
average value of the elements of some list raised to the K-th power
is called the K-th moment[15]. We assume that for any XPS X
the probability of a predicate evaluating to true is the same P (X)
for every element in the initial sequence of size N(X) constructed
by the navigation. Thus, final sequence sizes after the predicate
application are distributed according to a binomial distribution with
parameters N(X) and P (X). The K-th moment of a binomial
distribution B(N(X), P (X)) is:

N(X)∑

i=0

C
N(X)
i

∗ P (X)i ∗ (1 − P (X))N(X)−i ∗ iK

In our case, K is the number of children of X that are marked
as FOR. Computationally simple closed formulas exist for small
values of K, which is likely to be the case in practice. For larger
K’s there are well known approximation techniques [15]. The K-th
moment computation does not make sense for N(X) ≤ 1. In this
case we assume that only singleton sequences are produced (lines
11-13).

To handle XPS marked as empty-on-empty (EOE), line 16 adds
the number of empty sequences returned to F (X). The SS(X) is
updated in line 17 to account for the fact that the total number of
result nodes is still the same, but they are now spread over the new
(larger) number of sequences.

Fanout of the navigation expression as a whole is computed af-
ter the entire XPS tree is traversed and all the node fanouts are
assigned. Tree fanout is the product of all navigation node fanouts.

5.1 Local Optimization
In many cases, if an XPS tree does not contain any selective

predicates, or if these predicates have already been applied by the
index, or if the entire document is small enough to fit on a sin-
gle page, etc., a single document traversal that skips unnecessary
fragments is in fact the optimal execution strategy for an XSCAN
operator. However, many queries, such as Query 2 in Section 1,
may perform better with two or more passes over the document.

The task of the local optimizer is to partition the XSCAN’s XPS
tree into a sequence of tree fragments. The XSCAN runtime will
execute each fragment in the sequence, only if the previous frag-
ment returns a non-empty result. Fragment execution is imple-
mented by recursive calls to the navigation runtime, utilizing the
multipass processing feature of DB2 pureXML [3, 4].

In the worst case, the optimal fragment sequence may contain as
many fragments as there are XPath Steps in the expression. How-
ever, in practice very few fragments are usually needed to achieve

1071



near-optimal performance. The first fragment in the sequence has
by far the greatest effect on the XSCAN performance.

Based on this observation, we devised an algorithm that com-
bines greedy partitioning, with a dynamic programming fragment
ordering.

The greedy partitioning algorithm works as follows. First, every
single path fragment, i.e., some XPS node X and all its ancestors,
is considered for the role of the first fragment in the sequence. The
resulting XSCAN costs are estimated, assuming no further parti-
tioning, and the fragment that results in the cheapest XSCAN is
picked. If the cheapest resulting XSCAN is still more expensive
than a single-pass evaluation, the algorithm terminates and a single-
pass XSCAN evaluation is picked.

Next, we consider adding other paths into the first fragment as
long as the addition lowers the overall XSCAN cost estimate. The
most beneficial paths are added first. Once the beneficial path addi-
tions are exhausted, the first fragment is finalized. The XPS nodes
of the tree, not included in the first fragment, now form one or more
tree fragments. Each of these fragments could possibly be split fur-
ther, so the same partitioning algorithm is recursively applied to
each one of them.

The algorithm has polynomial complexity. In the worst case it
will require O(N3) executions of XSCAN costing formulae, where
N is the number of XPS nodes in the expression tree. Each XSCAN
cost estimate is computed by a single tree traversal in at most O(N)
time.

The resulting partitions are ordered using standard DB2 pureXML
join ordering algorithms, i.e., full enumeration of the ordering al-
ternatives using dynamic programming, unless the number of frag-
ments is too large in which case greedy join ordering is used. The
join ordering algorithms respect dependencies between fragments.
For instance if fragment A contains parent of the root node of frag-
ment B, then A must be executed before B. Thus, first fragment
picked by the greedy algorithm is guaranteed to remain first, since it
contains the root of the XPS tree, which contains the context node.

The partitioning algorithm relies on cost estimation, which is
done by modeling navigation and buffering work that needs to be
performed by an XSCAN operator in order to execute a given se-
quence of tree fragments. The details of the cost model are beyond
the scope of this paper.

6. EXPERIMENTAL RESULTS
In this section, we present experimental evaluation of the global

and local optimization techniques, and the MEP XML navigation
operation described in this paper in in DB2 pureXML . We investi-
gate the performance of XQuery and SQL/XML queries with and
without the use of MEP and our optimization strategies.

All experiments were run on a 4 processor system 1.4 GHz POWER
4 Power PC system with one of the processors dedicated to the
experimental evaluation. The database bufferpool uses 40 MB of
RAM.

In our experiments we used two datasets: XBench [32] and a
dataset based on the TPCH database benchmark [9]. For the TPCH
dataset we generated 15000 XML documents; each document con-
tained data from a single row of the Orders table and all the cor-
responding rows of the LineItems table. In other words, each doc-
ument contained an Order root element, with columns from the
Order table as children as well as all the corresponding line items
from the Lineitems table nested as children. For each document we
randomly generated from 0 to 70 line items. Represented as text,
the size of the dataset is 250MB.

Based on the TPCH database, we crafted a query with an
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Figure 5: Speed-up of XMLTABLE query evaluation.

XMLTABLE function that extracts multiple column values from
LineItem elements of XML documents. Below is a version of this
query that extracts three columns.

select x."SuppKey"
from tpchsmall,

xmltable(’$doc/Order/LineItem’
passing doc as "doc"

Columns
"PartKey" int PATH ’PartKey/text()’,
"SuppKey" int PATH ’SuppKey/text()’,
"LineNumber" int PATH ’LineNumber/text()’
) as x;

In order to quantify the impact of MEP, we varied the number
of extracted columns, and measured the time for evaluation of the
extraction portion of the query plan (ignoring result construction).
The speed-up resulting from use of MEP is shown in Figure 5. The
plan that does not use MEP, first extracts a reference for the line
item node, and then passes it to a number of consecutive XSCAN
operators that extract one column at the time. The MEP plan con-
tains a single XSCAN operator. The experiments show that the
MEP approach scales much better in terms of query evaluation
time. The speedup ranges from 50% to 300% and increases almost
linearly with the number of extraction points.

Figure 6 shows the graph of the query compilation times for
the same XMLTABLE query set. For the 15 extraction points, the
query compilation time is 0.2 timerons4 with MEP and 5.11 with-
out MEP. The compile time for non-MEP plans tops at 13 extrac-
tion points. Up to this point, our query optimizer used a dynamic
programming algorithm to enumerate all possible execution orders
of XSCANs. After this point, the plan search space became too
large for the dynamic programming algorithm, and the optimizer
switched to a greedy algorithm, which is more efficient, but can
produce suboptimal plans. We conclude that using MEP substan-
tially reduces the query compilation time and expands the range of
queries for which we can use better optimization methods.

We study the effect of optimization strategies using Query 1.
Figure 7 shows its performance as a function of selectivity of the
query predicate [TotalPrice > X]. We compare three approaches:
no MEP merging, resulting in the query plan of Figure 1 (b), full
MEP merging as in Figure 1 (a), and our global optimization ap-
proach, which clusters the query XPath expressions into three XS-
CAN operators and allows the cost based optimizer to pick between
4We do not report actual compilation or running times, because our
experimental evaluation was done on a commercial system.
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Figure 7: The execution time of Query 1 under different opti-
mization strategies.

plans of Figure 1 (c) and (d). Local optimization is not necessary
for this experiment, because indexes are used (as shown in Fig-
ure 1) to eliminate non-qualifying documents. Figure 7 shows that
our global optimization indeed takes full advantage of simultane-
ous execution of multiple XPath expressions, without sacrificing
the optimal plan.

To illustrate the need for local optimization we ran the single-
-document part of the XBench benchmark [32]. The queries of
this benchmark do not provide many opportunities for MEP to im-
prove performance, but they show off the danger of merging the
local predicates and subsequent extractions together. To further
enhance the effect, we ran the benchmark without any use of in-
dexes. Figure 8 shows that merging multiple expressions into a sin-
gle XSCAN, without doing local optimization, seriously degrades
the performance. The local optimization by itself is somewhat use-
ful in this scenario, but it becomes critical once the expressions are
merged.

7. CONCLUSION
In this paper, we described the high-granularity XML query opti-

mization in DB2 pureXML . To our knowledge, this is the first com-
plete framework for optimizing complex XQuery and SQL/XML
queries by utilizing a high-granularity streaming XPath processor.
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Figure 8: The speed-up of XBench benchmark queries.

We proposed heuristic-based rewrites to decide which XPath ex-
pressions should be grouped for concurrent evaluation, and cost-
based optimization methods to globally order the groups within
the query execution plan, and locally order the branches within
individual groups. The results of our experimental study shows
that blindly combining all XPath expressions on a single docu-
ment for simultaneous execution can significantly degrade query
performance. However, with our optimization strategy the high-
granularity paradigm allows for better query evaluation performance
and reduces the query optimization complexity. We expect many
XQuery and SQL/XML queries, such as those with XMLTable func-
tion, to benefit significantly from this new approach.
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