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ABSTRACT

We introduce the ActivityFlow specification language for flexible specification, composition,
and coordination of workflow activities. The most interesting features of the ActivityFlow
specification language include: (1) a collection of specification mechanisms, allowing workflow
designers to use a uniform workflow specification interface to describe different types (i.e., ad-
hoc, administrative, or production) of workflows involved in their organizational processes–
this feature helps to increase the flexibility of workflow processes in accommodating various
types of changes; (2) a set of activity modeling facilities, enabling workflow designers to
describe the flow of work declaratively and incrementally, allowing to reason about correct-
ness and security of complex workflow activities independently from their underlying imple-
mentation mechanisms; (3) an open architecture that supports user interaction as well as
collaboration of workflow systems of different organizations, and a set of workflow activity
restructuring operators to respond to dynamic changes of workflow activities. We end the
paper with a series of simulation-based experiments that demonstrate the effectiveness of these
restructuring operators and the implementation architecture of the ActivityFlow system.

Keywords:   business process; complex workflow activities; workflow evolution; extended
transactions; information system engineering; workflow management.

 INTRODUCTION

The focus of office computing today
has shifted from automating individual work
activities to supporting the automation of
organizational business processes. Ex-
amples of such business processes include
handling bank loan applications, process-
ing insurance claims, and providing tele-
phone services. Such requirement shift,

pushed by the technology trends, has pro-
moted the emergence of a new computing
infrastructure, workflow management sys-
tems (WFMSs), which provides a model
of business processes, and a foundation on
which to build solutions supporting the co-
ordination, execution, and management of
business processes (Hsu and Kleissner,
1996). One of the main challenges in
today’s WFMSs is to provide tools to sup-
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port organizations to coordinate and auto-
mate the flow of work activities between
people and groups within an organization,
and to streamline and manage business pro-
cesses that depend on both information
systems and human resources.

Workflow systems have gone through
three stages over the last decade
(McCarthy and Bluestein, 1991; Gawlick,
Hsu and Obermarck, 1994). First, home-
grown workflow systems were monolithic
in the sense that all control flows and data
flows were hard-coded into applications,
thus they are difficult to maintain and
evolve. The second generation of workflow
systems was driven by imaging/document
management systems or desktop object
managements. The workflow components
of these products are usually tightly coupled
with the production systems. Typical ex-
amples are smart form systems (e.g., ex-
pense report handling), and case folder sys-
tems (e.g., insurance claims handling). The
third generation workflow systems have an
open infrastructure, a generic workflow
engine, a database or repository for shar-
ing information, and use middleware tech-
nology for distributed object management.
Several research projects are contributing
towards building the third generation
workflow systems (Sheth, 1995; Sheth et
al., 1996; Mohan, 1994). Examples include
Exotica (Mohan, Alonso, Gunthor and
Kamath, 1995) from IBM, InConcert from
Xerox, ObjectFlow from DEC (Hsu and
Kleissner, 1996), and WorkManager from
HP. For an extensive survey of the
workflow automation software products
and prototypes, see Georgakopoulos,
Hornick and Sheth (1995).

Although there are more and more
successes in the workflow research and
development, it is widely recognized
(Mohan, 1994; Sheth et al., 1996) that there
are still technical problems, ranging from

inflexible and rigid process specification and
execution mechanisms, and insufficient
possibilities to handle exceptions, to the need
for uniform interface support for various
types of workflows (i.e., ad-hoc, adminis-
trative, or production workflows), for dy-
namic restructuring of business processes,
process status monitoring, automatic en-
forcement of consistency and concurrency
control, and recovery from failure, and for
improved interoperability between differ-
ent workflow servers. As pointed out
by Sheth et al. (1996), many existing
workflow management systems use a petri-
net based tool for process specification. The
available design tools typically support defi-
nition of control flows and data flows be-
tween activities by connecting the activity
icons with specialized arrows, specifying
the activity precedence order and their data
dependencies. In addition to graphical speci-
fication languages, many workflow systems
provide rule-based specification languages
(Dayal et al., 1990; Georgakopoulos et al.,
1995). Although these existing workflow
specification languages are powerful in
expressiveness, one of the common prob-
lems (even those based on graphical “node
and arc” programming models) is that they
are not “well-structured”. Concretely, when
used for modeling complex workflow pro-
cesses without discipline, these languages
may result in schemas with intertwined pre-
cedence relationships. This makes debug-
ging, modifying, and reasoning of complex
workflow processes difficult (Liu and
Meersman, 1996).

In this paper, we concentrate our dis-
cussion on the problem of flexibility and
extensibility of process specification and
execution mechanisms. We introduce the
ActivityFlow specification language for
structured specification and flexible coor-
dination of workflow activities. The most
interesting features of the ActivityFlow
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specification language include:
• A collection of specification mecha-

nisms, which allows the workflow de-
signer to use a uniform workflow speci-
fication interface to describe different
types (i.e., ad-hoc, administrative, or pro-
duction) of workflows involved in their
organizational processes, and helps to
increase the flexibility of workflow pro-
cesses in accommodating changes;

• A set of activity modeling facilities, which
enable the workflow designer to describe
the flow of work declaratively and in-
crementally, allowing reasoning about
correctness and security of complex
workflow activities independently from
their underlying implementation mecha-
nisms; and

• An open architecture, which supports
user interaction as well as collaboration
of workflow systems of different orga-
nizations.

The rest of this paper proceeds as
follows. In the next section we describe the
basic concepts of ActivityFlow and high-
light some of the important features. Then
we present our ActivityFlow specification
language and illustrate the main features
of the language using the telephone ser-
vice provisioning workflow application as
the running example. We describe a set of
workflow activity restructuring operators
and how they can be used in response to
dynamic change of ActivityFlow models,
including a series of simulation-based ex-
periments to demonstrate the effectiveness
of these restructuring operators. We dis-
cuss the implementation architecture of
ActivityFlow and implementation-related
issues, and conclude the paper with a dis-
cussion on related works and a summary.

BASIC  CONCEPTS  OF
ACTIVITYFLOW

Business Process vs
Workflow Process

Business processes are collection of
activities that support critical organizational
and business functions. The activities within
a business process have a common busi-
ness or organizational objective, and are
often tied together by a set of precedence
dependency relationships. One of the im-
portant problems in managing business pro-
cesses (by organization or human) is how
to effectively capture the dependencies
among activities and utilize the dependen-
cies for scheduling, distributing, and coor-
dinating work activities among human and
information system resources efficiently.

A workflow process is an abstrac-
tion of a business process, and it consists
of activities, which correspond to individual
process steps, and actors, which execute
these activities. An actor may be a human
(e.g., a customer representative), an infor-
mation system, or any combinations of the
two. A notable difference between busi-
ness process and workflow process is that
a workflow process is an automated busi-
ness process, namely the coordination, con-
trol and communication of activities are au-
tomated, although the activities themselves
can be either automated or performed by
people (Sheth et al., 1996).

A workflow management system  is
a software system which offers a set of
workflow enactment services to carry out
a workflow process through automated
coordination, control and communication of
work activities performed by both human
and computers. An execution of a
workflow process is called a workflow case



4   Journal of Database Management, 15(1), 1-40, Jan-Mar 2004

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

(Hollingsworth and WfMC, 1995; WfMC,
2003). Users communicate with workflow
enactment services by means of workflow
clients, programs that provide an integrated
user interface to all processes and tools
supported by the system.

Reference Architecture

Figure 1 shows the WFMS reference
architecture provided by the Workflow
Management Coalition (WfMC)
(Hollingsworth and WfMC, 1995). A
WFMS consists of an engine, a process
definition tool, workflow application clients,
invoked applications, and administration and
monitoring tools. The process definition tool
is a visual editor used to define the specifi-
cation of a workflow process, and we call
it workflow process schema in
ActivityFlow. The same schema can be
used later for creating multiple instances
of the same business process (i.e., each
execution of the schema produces an in-
stance of the same business process). The

workflow engine and the surrounding tools
communicate with the workflow database
to store, access, and update workflow pro-
cess control data (used by the WFMS only),
and workflow process-specific data (used
by both application and WFMS). Examples
of such data are workflow activity
schemas, statistical information, and con-
trol information required to execute and
monitor the active process instances. Ex-
isting WFMSs maintain audit logs that keep
track of information about the status of the
various system components, changes to the
status of workflow processes, and various
statistics about past process executions.
This information can be used to provide real-
time status reports about the state of the
system and the state of the active workflow
process instances, as well as various sta-
tistical measurements, such as the aver-
age execution time of an activity belonging
to a particular process schema, and the tim-
ing characteristics of the active workflow
process instances.

ActivityFlow discussed in this paper

Figure 1: Reference Architecture of Workflow Management Coalition
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can be seen as a concrete instance of the
WfMC reference architecture in the sense
that in ActivityFlow, concrete solutions are
introduced for process definitions,
workflow activity enactment services, and
interoperability with external workflow
management systems. Our focus is on the
ActivityFlow process definition facilities,
including the ActivityFlow meta-model , the
ActivityFlow workflow specification lan-
guage and graphical notation for
ActivityFlow process definition based on
UML Activity diagrams.

ActivityFlow Meta Model

The ActivityFlow meta-model de-
scribes the basic elements that are used to
define a workflow process schema, which
describes the pattern of a workflow pro-
cess and its coordination agreements. In
ActivityFlow, a workflow process schema
specifies activities that constitute the
workflow process and dependencies be-
tween these constituent activities. Activi-
ties represent steps required to complete a
business process. A step is a unit of pro-
cessing and can be simple (primitive) or
complex (nested). Activity dependencies
determine the execution order of activities
and the data flow between these activities.
Activities can be executed sequentially or
in parallel. Parallel executions may be un-
conditional, i.e., all activities are executed,
or conditional, i.e., only activities that sat-

isfy the given condition are executed. In
addition, activities may be executed repeat-
edly, and the number of iterations may be
determined at run-time.

A workflow process schema can be
executed many times. Each execution is
called a workflow process instance (or a
workflow process for short), which is a
partial order of activities and connectors.
The set of activity-precedence-dependency
relationships defines a partial order over
the given set of activities. The connectors
represent the points where the control flow
changes. For instance, the point where con-
trol splits into multiple parallel activities is
referred to as split point and is specified
using a split connector. The point where
control merges into one activity is referred
to as join point, and is specified using a
split connector. A join point is called AND-
join if the activity immediately following this
point starts execution only when all the
activities preceding the join point finish ex-
ecution. A join point is called OR-join when
the activity immediately following this point
starts execution as soon as one of the ac-
tivities preceding the join point finishes ex-
ecution. A split point that can be statically
determined (before execution) in which all
branches are taken is called AND-split. A
split point which can be statically deter-
mined in which exactly one of the branches
will be taken is called OR-split. Figure 2
lists the typical graphical representation of
AND-split, OR-split, AND-join, and OR-

Figure 2: UML Graphical representation of AND-split, OR-split, AND-join, and OR-join



6   Journal of Database Management, 15(1), 1-40, Jan-Mar 2004

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

join by the use of UML activity diagram
constructs (Rumbaugh, Jacobson and
Booch, 1999; Fowler and Scott, 2000).

The workflow process schema also
specifies which actors can execute each
workflow activity. Such specification is
normally done by associating roles with
activities. A role serves as a “description”
or a “place holder” for a person, a group,
an information system, or any of the com-
binations required for the enactment of an
activity. Formally, a role is a set of actors.
Each activity has an associated role that
determines which actors can execute this
activity. Each actor has an activity queue
associated with it. Activities submitted for
execution are inserted into the activity
queue when the actor is busy. The actor
follows its own local policy for selecting
from its queue for next activity to execute.
The most common scheduling policies are
priority-based and FIFO. The notion of a
role facilitates load balancing among ac-
tors and can flexibly accommodate changes
in the workforce and in the computing in-
frastructure of an organization, by chang-
ing the set of actors associated with roles.

Figure 3 shows a sketch of the
ActivityFlow meta-model using the UML
class diagram constructs (Rumbaugh et al.,
1999; Fowler and Scott, 2000). The follow-
ing concepts are the basics of the activity-
based process model:

• A workflow process consists of a set
of activities and roles, and a collection
of information objects to be accessed
from different information resources.

• An activity is either an elementary ac-
tivity or a composite activity. The ex-
ecution of an activity consists of a se-
quence of interactions (called events)
between the performer and the
workflow management system, and a
sequence of actions that change the state

of the system.
• An elementary activity represents a unit

of work that an individual, a machine, or
a group can perform in an uninterrupted
span of time. In other words, it is not
decomposed any further in the given
domain context.

• A composite activity consists of sev-
eral other activities, either elementary
or composite. The nesting of activities
provides higher levels of abstraction that
help to capture the various structures of
organizational units involved in a
workflow process.

• A role is a place holder or description
for a set of actors, who are the autho-
rized performers that can execute the
activity. The concept of associating roles
with activities not only allows us to es-
tablish the rules for association of ac-
tivities or processes with organizational
responsibilities, but also provides a flex-
ible and elegant way to grant the privi-
lege of execution of an activity to indi-
viduals or systems that are authorized
to assume the associated role.

• An actor can be a person, a group of
people, or an information system, that is
granted memberships into roles and that
interacts with other actors while per-
forming activities in a particular
workflow process instance.

• Information objects are the data re-
sources accessed by a workflow pro-
cess. These objects can be structured
(e.g., relational databases), semi-struc-
tured (e.g., HTML forms), or unstruc-
tured (e.g., text documents). Structured
or semi-structured data can be accessed
and interpreted automatically by the sys-
tem, while unstructured data cannot and
thus often requires human involvement
through manual activities.

Important to note is that activities in
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ActivityFlow can be (1) manual activities,
performed by users without further sup-
port from the system; (2) automatic activi-
ties, carried out by the system without hu-
man intervention, or (3) semi-automatic
activities, using specific interactive pro-
grams for performing an activity.

The Running Example

To illustrate the ActivityFlow meta-
model, we use a telephone service provi-
sioning process in a telecommunication
company. A synopsis of the example is
described below.

Consider a business process
TeleConnect that performs telephone-ser-
vice-provision task by installing and billing
telephone connections between the
telecomm company and its clients (Ansari,
Ness, Rusinkiewicz and Sheth, 1992,
Georgakopoulos et al., 1995). Suppose the
workflow process A:TELECONNECT
consists of five activities
A

1
:CLIENTREGISTER, A

2
:CREDIT

CHECK, A
3
:CHECKRESOURCE,

A
11

:INSTALLNEWCIRCUIT and

B:ALLOCATECIRCUIT (see Figure 4,
(A)). A: TELECONNECT is executed
when an enterprise’s client requests tele-
phone service installation. Activity
A

1
:CLIENTREGISTER registers the cli-

ent information and activity
A

2
:CREDITCHECK evaluates the credit

history of the client by accessing financial
data repositories. Activity A

3
:CHECK

RESOURCE consults the facility database
to determine whether existing facilities can
be used, and B: ALLOCATECIRCUIT
attempts to provide a connection by allo-
cating existing resources, such as allocating
lines (C: ALLOCATELINES), allocating
slots in switches (A

8
:ALLOCATESWITCH,

A
9
:ALLOCATESWITCH), and preparing a

bill to establish the connection
(A

10
:PREPAREBILL) (see Figure 4, (B)).

The activity of allocating lines
(C:ALLOCATELINES) in turn has a num-
ber of subtasks such as selecting nearest
central offices (A

4
:SELECTCENTRAL

OFFICES), and relocating existing lines
( A

5
: A L L O C A T E L I N E ,

A
6
:ALLOCATELINE) and spans (trunk

connection) between two allocated lines

Figure 3: ActivityFlow meta-model
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(A
7
:ALLOCATESPAN) (see Figure 4,

(C)). If A
3
:CHECKRESOURCE succeeds,

the costs of connection are minimal. The
activity A

11
:INSTALLNEWCIRCUIT is

designed to perform an alternative task that
involves physical installation of new facili-
ties in the event of failure of activity
A

3
:CHECKRESOURCE. The roles in-

volved with these activities are the
CreditCheck-GW, the Telecommunication
Company, and the Telecomm Contractor.
In addition, the Telecommunication Com-
pany is detailed into three roles: Telecomm-
HQ, T-central 1 and T-central 2. We use
the swimlane feature on UML activity dia-
grams to depict such different roles of ac-
tors as involved on performing activity in-
stances.

Advanced Concepts

ActivityFlow provides a number of
facilities to support advanced concepts such
as a variety of possibilities for handling er-
rors and exceptions. For example, at the
activity specification stage, we allow the
workflow designers to specify valid pro-

cesses and the compensation activities. At
run-time additional possibilities are offered
to support recovery from errors or crashes
by triggering alternative executions defined
in terms of user-defined compensation ac-
tivities or system-supplied recovery rou-
tines.

Time dimension is very important for
the deadline control of workflow processes.
In ActivityFlow, we provide a construct to
allow the workflow designer to specify the
maximum allowable execution durations
for both the activities (i.e., subactivities or
component activities) and the process (i.e.,
top activity). This time information can be
used to compute deadlines for all activities
in order to meet an overall deadline of the
whole workflow process. When an activ-
ity misses its deadline, special actions may
be triggered. Furthermore, this time infor-
mation plays an essential role in decisions
about priorities, and in monitoring deadlines
and generating time errors in the case that
deadlines are missed. It also provides the
possibility to delay some activities for a
certain amount of time or to a specific date.

The third additional feature is the con-

Figure 4: Telephone Service Provisioning Workflow
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cept of workflow administrator (WFA).
Modern business organizations build the
whole enterprise around their key business
processes. It is very important for the suc-
cess of process-centered organizations that
each process has a WFA who is respon-
sible for monitoring the workflow process
according to deadlines, handling exceptions
and failures that cannot be resolved auto-
matically. More specifically, he/she is able
to analyze the current status of a workflow
process, make decisions about priorities,
stop and resume a workflow process, abort
a workflow process, dynamically restruc-
ture a workflow process, or change a
workflow specification, etc. A special
workflow client interface is needed which
offers functionality to enable a workflow
process administrator to achieve all these
goals.

ACTIVITYFLOW PROCESS
DEFINITION LANGUAGE

Design Principles

Most workflow management systems
provide graphical specification of workflow
processes. The available design tools typi-
cally support iconic representation of ac-
tivities. Definition of control flows and data
flows between activities is accomplished
by connecting the activity icons with spe-
cialized arrows specifying the activity pre-
cedence order and their data dependencies.
In addition to graphical specification lan-
guages, many WFMSs provide rule-based
specification languages (Dayal, Hsu and
Ladin, 1990). One of the problems with
existing workflow specification languages
(even those based on graphical “node and
arc” programming models) is that they are
not well-structured languages, in the sense
that, when used without a discipline, these
languages may result in schemas with a

“spaghetti” of intertwined precedence re-
lationships, which makes debugging, modi-
fying, and reasoning of complex workflow
processes difficult (Liu and Meersman,
1996). As recognized by Sheth et al. (1996),
there is a need for finding a more struc-
tured way of defining the wide spectrum
of activity dependencies.

Thus, the first and most important
design principle in ActivityFlow is to de-
velop a well-structured approach to speci-
fication of workflow processes, by provid-
ing a small set of constructs and a collec-
tion of mechanisms to allow workflow de-
signers to specify the nested process struc-
ture and the variety of activity dependen-
cies declaratively and incrementally.

The second design principle is to sup-
port the specification of basic requirements
that are not only critical in most of the
workflow applications (Sheth et al., 1996)
but also essential for correct coordination
among activities in accomplishing a
workflow process. These basic require-
ments include:

• activity structure (control flow) and in-
formation exchange between actors
(data flows) in a workflow process.

• exception handling, specifying what ac-
tions are necessary if an activity fails or
a workflow cannot be completed.

• activity duration, specifying the estimated
or designated maximum allowable ex-
ecution time for both the workflow pro-
cess (top activity) and its constituent
activities. This time information is criti-
cal for monitoring deadlines of activities
and for providing priority attributes,
specifying priorities for activity sched-
uling.
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 Main Components of a
Workflow Specification

In ActivityFlow, a workflow process
is described in terms of a set of activities
and the dependencies between them. For
presentation convenience, in the rest of
paper we refer to a workflow process as
top activity and workflow component ac-
tivities as subactivities. We use activities
to refer to both the process and its compo-
nent activities when no distinction needs to
be made.

Activities are specified by activity
templates or so called parameterized ac-
tivity patterns. An activity pattern de-
scribes concrete activities occurring in a
particular organization, which have similar
communication behavior. An execution of
the activity pattern is called an instantiation
(or an activity instance) of the activity pat-
tern. Informally, an activity pattern consists
of objects, messages, message exchange
constraints, preconditions, postconditions,
and triggering conditions (Liu and
Meersman, 1996).

Activities can be composed of other
activities. The tree organization of an ac-
tivity pattern α is called the activity hier-
archy of α. The set of activity dependen-
cies specified in the pattern α can be seen
as the cooperation agreements among ac-
tivities that collaborate in accomplishing a
complex task. The activity at the root of
the tree is called root activity or workflow
process; the others are subactivities. An
activity’s predecessor in the tree is called
a parent; a subactivity at the next lower
level is called a child. Activities at leaf
nodes are elementary activities in the con-
text of the workflow application domain.
Nonleaf node activities are composite ac-
tivities. In ActivityFlow we allow arbitrary
nesting of activities since it is generally not
possible to determine a priori the maximum

nesting an application task may need.
A typical workflow specification con-

sists of the following five units:

• Header: The header of an activity speci-
fication describes the signature of the
activity, which consists of a name, a set
of input and output parameters, and the
access type (i.e., Read or Write). Pa-
rameters can be objects of any kind, in-
cluding forms. We use keyword In to
describe parameters that are inputs to
the activity and Out to describe param-
eters that are outputs of the activity.
Parameters that are used for both input
and output are specified using keyword
InOut.

• Activity Declaration: The activity dec-
laration unit captures the general infor-
mation about the activity such as the
synopsis (description) of the task, the
maximum allowable execution time, the
administrator of the activity (i.e., the user
identifier (UID) of the responsible per-
son), and the set of compensation ac-
tivities that are used for handling errors
and exceptions and their triggering con-
ditions.

• Role Association: This unit specifies the
set of roles associated with the activity.
Each role is defined by a role name, a
role type, and a set of actors that are
granted membership into the role based
on their responsibility in the business pro-
cess or in the organization. Each actor
is described by actor ID and role name.
We distinguish two types of roles in the
first prototype implementation of
ActivityFlow: user and system, denoted
as USER and SYS respectively.

• Data Declaration: The data declara-
tion unit consists of the declaration of
the classes to which the parameters of
the activity belong and the set of mes-
sages (or methods) needed to manipu-
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late the actual arguments. Constraints
between these messages are also speci-
fied in this unit (Liu and  Meersman,
1996).

• Procedure: The procedure unit is de-
fined within a begin and end bracket. It
describes the composition of the activ-
ity, the control flow and data flow of the
activity, and the pre- and post-condition
of the activity. The main component of
the control flow includes activity-execu-
tion-dependency specification, describ-
ing the execution precedence dependen-
cies between children activities of the
specified activity and the interleaving
dependencies between a child activity
and children of its siblings or between
children activities of two different sib-
ling activities. The main component of
the data flow specification is defined
through the activity state-transition de-
pendencies.

Dynamic Assignments of Actors

The assignment of actors (humans or
information systems) to activities accord-
ing to the role specification is a fundamen-
tal concept in WFMSs. At run time, flex-
ible and dynamic assignment resolution
techniques are necessary to react ad-
equately to the resource allocation needs
and organizational changes. ActivityFlow
uses the following techniques to fulfill this
requirement:

• When the set of actors is empty, the as-
signment of actors can be any users or
systems that belong to the roles associ-
ated with the specified activity. When
the set of actors is not empty, only those
actors listed in the associated actor set
can have the privilege to execute the
activity.

• The assignment of actors can also be

done dynamically at run time. The ac-
tivity-enactment service engine will grant
the assignment if the run time assign-
ment meets the role specification.

• The assignment of actors can be the
administrator of the workflow process
to which the activity belongs, as the
workflow administrator is a default role
for all its constituent activities.

The role-based assignment of actors
provides great flexibility and breadth of ap-
plication. By statically and dynamically es-
tablishing and defining roles and assigning
actors to activities in terms of roles,
workflow administrators can control access
at a level of abstraction that is natural to
the way that enterprises typically conduct
business.

Control Flow Specification: Activity
Dependencies

In ActivityFlow a number of facili-
ties are provided to promote the use of de-
clarative and incremental approach to
specification of activities and their depen-
dencies. For example, to make the specifi-
cation of activity execution dependencies
easier and more user friendly for the activ-
ity model designers, we classify activity de-
pendencies into three categories: activity
execution dependencies, activity interleav-
ing dependencies, and activity state transi-
tion dependencies. We also regulate the
specification scope of the set of activity
dependencies associated with each activ-
ity pattern to encourage incremental speci-
fications of hierarchically complex activi-
ties. For instance, to define an activity pat-
tern T, we require the workflow designer
to specify only the activity execution de-
pendencies between activities that are chil-
dren of a T activity, and restrict the activity
interleaving dependencies specified in T to
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be only the interaction dependencies be-
tween (immediate) subactivities of differ-
ent child activities of T, or between a T’s
child activity and (immediate) subactivities
of its siblings. As a result, the workflow
designers may specify the workflow pro-
cess and the activities declaratively and
incrementally, allowing reasoning about
correctness and security of complex
workflow activities independently from their
underlying implementation mechanisms.

In addition, we provide four constructs
to model various dependencies between
activities. They are precede, enable, dis-
able, and compatible. The semantics of
each construct are formally described in
Figure 5. The construct precede is de-
signed to capture the temporary prece-
dence dependencies and the existence de-
pendencies between two activities. For
example, “A precede B” specifies a be-
gin-on-commit execution dependency be-
tween the two activities: ``B cannot begin
before A commits”. The constructs enable
and disable are utilized to specify the en-
abling and disabling dependencies between
activities. One of the critical differences
between the construct enable or disable
and the construct precede is that enable
or disable specifies a triggering condition
and an action being triggered, whereas pre-
cede only specifies an execution prece-
dence dependency as a precondition that
needs to be verified before an action can
be activated, and it is not an enabling con-

dition that, once satisfied, triggers the ac-
tion. The construct compatible declares
the compatibility of activities A

1
 and A

2
. It

is provided solely for specification conve-
nience since two activities are compatible
when there is no execution precedence
dependency between them.

Recall the telephone service provi-
sioning workflow example given earlier.
After having entered the service request
in the client and service order databases,
the activity A

3
:CHECKRESOURCE tries

to determine which facilities can be used
when establishing the service. If
A

3
:CHECKRESOURCE commits, it

means that the client’s request can be met.
In case of failing on the allocation of the
service with existing lines and spans, but
being viable the installation of such new
circuit elements, a human field engineer is
selected to execute the activity
A

11
:INSTALLNEWCIRCUIT, which may

involve manual changes to some switch
and the installation of a new telephone line.
We have adopted the Eder and Liebhart
(1995) approach and model in ActivityFlow
diagrams to represent only expected ex-
ceptions. Such cooperation dependencies
among A

3
:CHECKRESOURCE,

B:ALLOCATECIRCUIT and
A

11
:INSTALLNEWCIRCUIT can be speci-

fied as follows:

1. A
3
 ∧  ¬ circuitAllocated precede A

11
.

(“circuitAllocated =false” is a precon-

Figure 5: Constructs for activity dependency specification  
 
Construct Usage Synopsis 
precede A1  precede A2 A2  can begin if A1 commits 
  condition(A1 )  precede A2 A2  can begin if condition(A1) = 'true' holds. 
  condition(A1 )  precede  condition(A2 ) If condition(A1) = 'true' then condition(A2) can be 'true' 
enable condition(A1 ) enable A2 condition(A1) = 'true' → begin(A2) 
 condition(A1 ) enable condition(A2 ) If condition(A1) = 'true' then condition(A2) will be 'true' 
disable condition(A1 ) disable A2 condition(A1) = 'true' → abort(A2) 
 condition(A1 ) disable  condition(A2 ) If condition(A1) = 'true' then condition(A2) cannot be 'true' 
compatible compatible(A1, A2) 'true' if A1 and A2 can be executed in parallel, 
  'false' if the order of A1 and A2 is important 
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dition for a human engineer to execute
A

11
 after A

3
 commits.)

2. (A
3
 ∧  circuitAllocated ) ∨  A

11
 enable

B. (if A
3
 commits and returns the true

value in its circuitAllocated output pa-
rameter, or a human field engineer suc-
ceeds on installing the line/span needed,
then B is triggered).

The first dependency states that the
commit of A

3
: CHECKRESOURCE and

the false value of the circuitAllocated out-
put parameter are preconditions for A

11
:

INSTALLNEWCIRCUIT. The second
dependency amounts to saying that if A

3
:

CHECKRESOURCE is successful on de-
fining existing facilities that satisfy the re-
quest, (circuitAllocated = true) or A

11
:

INSTALLNEWCIRCUIT have installed
the needed new facility, then B:
ALLOCATECIRCUIT is triggered. The
reason that we use the construct precede,
rather than enable, for specifying the first
dependency is because A

11
:

INSTALLNEWCIRCUIT involves some
manual work and thus must be executed

by a human field engineer. ActivityFlow
also allows the users to specify conditional
execution dependencies to support activi-
ties triggered by external events (e.g.,
Occurs(E

1
) enable A

1
).

Activity Specification: An Example

To illustrate the use of ActivityFlow
workflow specification language in describ-
ing activities of a nested structure, we re-
cast the telephone-service-provisioning
workflow, given previously. Figure 4 shows
the hierarchical organization of the
workflow process TELECONNECT. The
top activity TELECONNECT (see Figure
4, (A)) is defined as a composite activity,
consisting of the following five activities:
A

1
: CLIENTREGISTER, A

2
:

CREDITCHECK, A
3
: CHECK RE-

SOURCE, B:ALLOCATECIRCUIT, and
A

11
: INSTALLNEWCIRCUIT. The activ-

ity B: ALLOCATECIRCUIT (see Figure
4, (B)) is again a composite activity, com-
posed of four subactivities:

 
Activity TELECONNECT(In: ClientId:CLIENT, Start:POINT, End:POINT, Out: CircuitId:CIRCUIT) 
    Access Type: Write 
    Synopsis: Telephone service provisioning  
    Max Allowable Time: 2 weeks 
    Administrator: UID: 0.0.0.337123545 
    Exception Handler: none 
    Role Association: 
        Role name: Telecommunication Company 
        Role type: System 
    Data Declaration: 
        import class CLIENT, 
        import class POINT, 
        import class CIRCUIT; 
begin Behavioral Aggregation of component Activities: 
        A1: CLIENTREGISTER ( In: ClientId:CLIENT, Start:POINT, End:POINT)  
        A2: CREDITCHECK (In: ClientId:CLIENT, Start:POINT, End:POINT, Out: creditStatus:Boolean)  
        A3: CHECKRESOURCE ( In: ClientId:CLIENT, Start:POINT, End:POINT, Out: circuitAllocated:Boolean)  
        A11: INSTALLNEWCIRCUIT( In: ClientId:CLIENT, Start:POINT, End:POINT, Out: CircuitId:CIRCUIT)  
        B: ALLOCATECIRCUIT ( In: ClientId:CLIENT, Start:POINT, End:POINT, Out:  CircuitId:CIRCUIT)  
    Execution Dependencies: 
        ExeR1: A1  precede {A2, A3} 
        ExeR2: A3 ∧  ¬ circuitAllocated precede A11 
        ExeR3: (A3 ∧  circuitAllocated) ∨  A11 enable B 
    Interleaving Dependencies: 
        ILR1: A2 ∧  creditStatus precede A10  
    State Transition Dependencies: 
         STR1: abort(B) enable abort(self) 
end Activity 

Figure 6: Example specification of the top activity TELECONNECT
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C:ALLOCATELINES, A
8
: ALLOCATE

SWITCH, A
9
: ALLOCATESWITCH and

A
10

: PREPAREBILL. The activity
C:ALLOCATELINES (see Figure 4, (C))
is also a composite activity, with four
subactivities: A

4
: SELECTCENTRAL

OFFICES, A
5
: ALLOCATELINE, A

6
:

ALLOCATELINE, and A
7
: ALLOCATE

SPAN. Based on the structure of a
workflow process definition discussed pre-
viously, we provide an example specifica-
tion for the telephone service provisioning
workflow (top activity) in Figure 6, the com-
posite activities B: ALLOCATECIRCUIT
in Figure 7 and C: ALLOCATELINES in
Figure 8, and the elementary activity A

11
:

INSTALLNEWCIRCUIT in Figure 9.

A Formal Model for
Flow Procedure Definition

In this section, we provide a graph-
based model to formally describe the pro-

cedure unit of a workflow specification in
ActivityFlow. This graph-based flow pro-
cedure model provides a formal founda-
tion for ActivityFlow graphical user inter-
face, which allows the end-users to model
office procedures in a workflow process
using iconic representation.

In ActivityFlow, we describe an ac-
tivity procedure in terms of (1) a set of
nodes, representing individual activities or
connectors between these activities (e.g.,
split and join connectors), and (2) a set of
edges, representing signals among the
nodes. Each node in the activity flow pro-
cedure is annotated with a trigger. A trig-
ger defines the condition required to fire
the node upon receiving signals from other
nodes. The trigger condition is defined us-
ing the four constructs described earlier.
Each flow procedure has exactly one be-
gin node and one end node. When the be-
gin node is fired, an activity flow instance
is created. When the end node is triggered,

Figure 7: Example specification of the composite activity ALLOCATECIRCUIT
 

Activity ALLOCATECIRCUIT(In: ClientId:CLIENT, Start:POINT, End:POINT, Out: CircuitId:CIRCUIT) 
    Access Type: Write 
    Synopsis: Circuit allocation  
    Max Allowable Time: 3 days 
    Administrator: UID: 0.0.0.337123545 
    Exception Handler: none 
    Role Association: 
        Role name: Telecommunication Company 
        Role type: System 
    Data Declaration: 
        import class CLIENT, 
        import class POINT, 
        import class CIRCUIT, 
        import class LINE, 
        import class SPAN; 
begin Behavioral Aggregation of component Activities: 
        C: ALLOCATELINES ( In: Start:POINT, End:POINT, Out: CircuitId:CIRCUIT)  
        A8: ALLOCATESWITCH ( In: Line1:LINE, Out: Span:SPAN)  
        A9: ALLOCATESWITCH ( In: Line2:LINE, Out: Span:SPAN)  
        A10: PREPAREBILL( In: ClientId:CLIENT, Line1:LINE, Line2:LINE, Span:SPAN, Out: CircuitId:CIRCUIT)  
    Execution Dependencies: 
        ExeR4: C ∧  A8 ∧  A9 precede A10 
    Interleaving Dependencies: 
        ILR2: A5 ∧  A7 precede A8  
        ILR3: A6 ∧  A7 precede A9  
    State Transition Dependencies: 
         STR2: abort(C) ∨  abort(A8) ∨  abort(A9) enable abort(self) 
end Activity 
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Figure 8: Example specification of composite activity ALLOCATELINES 
 

Activity ALLOCATELINES(In: Start:POINT, End:POINT, Out: CircuitId:CIRCUIT) 
    Access Type: Write 
    Synopsis: Line allocation  
    Max Allowable Time: 1 days 
    Administrator: UID: 0.0.0.337123545 
    Exception Handler: none 
    Role Association: 
        Role name: Telecommunication Company 
        Role type: System 
    Data Declaration: 
        import class POINT, 
        import class LINE, 
        import class SPAN, 
        import class CentralOff; 
begin Behavioral Aggregation of component Activities: 
        A4: SELECTCENTRALOFFICES ( In: Start:POINT, End:POINT, Out: Off1:CentralOff, Off2:CentralOff)  
        A5: ALLOCATELINE ( In: Start:POINT, Off1:CentralOff, Out: Line1:LINE)  
        A6: ALLOCATELINE ( In: End:POINT, Off2:CentralOff, Out: Line2:LINE)  
        A7: ALLOCATESPAN( In: Off1:CentralOff, Off2:CentralOff, Out: Span:SPAN)  
    Execution Dependencies: 
        ExeR5: A4 precede {A5, A6, A7} 
    State Transition Dependencies: 
         STR3: abort(A4) ∨  abort(A5) ∨  abort(A6) ∨  abort(A7) enable abort(self) 
end Activity 

 
Activity INSTALLNEWCIRCUIT(In: ClientId:CLIENT, Start:POINT, End:POINT, Out: CircuitId:CIRCUIT) 
    Access Type: Write 
    Synopsis: New line/span installation  
    Max Allowable Time: 1 week 
    Administrator: UID: 0.0.0.337123545 
    Exception Handler: none 
    Role Association: 
        Role name: Telecomm Contractor 
        Role type: User 
end Activity 

Figure 9: Example specification of elementary activity INSTALLNEWCIRCUIT

the activity flow instance terminates.

Definition 1   (activity flow graph)
An activity flow graph is described by a
binary tuple < N, E >, where N is a finite
set of activity nodes and connector nodes.
N = AN ∪  CN ∪  {bn, en}, where AN =
{nd

1
, nd

2
,..., nd

n
} is a set of activity nodes,

CN = {cn
1
, cn

2
,..., cn

n
} is a set of connec-

tor nodes, bn denotes the begin node and
en denotes the end node. Each node n

i
 ∈

N ( i = 1,.., n) is described by a quadruple
(NN, TC, NS, NT), where  NN denotes the
node name. TC is the trigger condition of
the node. NS is one of the two states of the

node: fired or not fired. NT is the node
type.

• If n
i
 ∈ AN → NT = {simple, com-

pound, iteration}
•  If n

i
 ∈ CN → NT = {AND-split, OR-

Split, AND-join, OR-join}

E = {e
1
, e

2
,..., e

m
} is a set of edges. Each

edge is of the form ndi → ndj. An edge
e

ij
: nd

i
 → nd

j
 is described by a quadruple

(EN, DPnd, AVnd, ES), where EN is the
edge name, DPnd is the departure node,
AVnd is the arrival node, and ES is one of
the two states of the node: signaled and
not signaled. We call e

ij
 an outgoing edge
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of node nd
i
 and incoming edge of node

nd
j
.❏❏❏❏❏  

For each node nd
i
, there is a path

from the begin node bn to nd
i
. We say that

a node nd
i
 is reachable from another node

nd
j
 if there is a path from nd

i
 to nd

j
.

Definition 2   (reachability)
Let G = < N, E > be an activity flow graph.
For any two nodes nd

i
, nd

j
 ∈  N, nd

j
 is

reachable from nd
i
, denoted by nd

i
 *→

nd
j
, if and only if one of the following con-

ditions is verified:
(1) nd

i
 = nd

j
.

(2) nd
i
 → nd

j
∈

  
E.

(3) ∃  nd
k
 ∈  N, nd

k
 ≠ nd

i
 and nd

k
 ≠

nd
j
 such that nd

i
 *→ nd

k
 and nd

k
 *→ nd

j
.

 ❏❏❏❏❏
A node nd

j
 is said to be directly reach-

able from a node nd
i
 if the condition (2) in

Definition 2 is satisfied.
To guarantee that the graph G = < N,

E > is acyclic, the following restrictions are
placed:
1) ∀  nd

i
, nd

j
 ∈  N, if nd

i
 → nd

j
 ∈  E then

nd
j
 → nd

i
 ∉ E.

2) ∀  nd
i
, nd

j
 ∈  N, if nd

i 
*→ nd

j
 then nd

j
*→ nd

i
 does not hold.

To illustrate the definition, let us re-
cast the telephone service provisioning
workflow procedure depicted in the Figure
4, (A) diagram, and described in Figure 6
in terms of the above definition as follows:
N = {(Begin, NeedService, notfired,
simple), (A

1
, NeedService, notfired,

simple), (A
2
, commit(A

1
), notfired,

simple), (OS
1
, commit(A

2
), notfired, OR-

Split), (A
3
, creditStatus =  true, notfired,

simple), (OS
2
, commit(A

3
), notfired, OR-

Split), (A
11

, circuitAllocated = false,
notfired, simple), (OJ

2
, circuitAllocated

= true ∨  commit(A
11

), notfired, OR-Join),
(B, terminate(OJ

2
), notfired, compound),

(OJ
1
, creditStatus = false ∨  commit(B),

notfired, OR-Join), (End, terminate(OJ
1
),

notfired, simple)}
E = {Begin → A

1
, A

1
 → A

2
, A

2
 → OS

1
,

OS
1
 → A

3
, OS

1
 → OJ

1
, A

3
 → OS

2
, OS

2

→ OJ
2
, OS

2
 → A

11
, A

11
 → OJ

2
, OJ

2
 → B,

B → OJ
1
, OJ

1
 → End}

Note that NeedService is a Boolean
variable from the ActivityFlow runtime
environment. When a new telephone ser-
vice request arrives, NeedService is true.
Figure 4 (A) shows the use of the UML-
based ActivityFlow graphical notations to
specify this activity flow procedure. When
a node is clicked, the node information will
be displayed in a quadruplet, including node
type, name, its trigger, and its current state.
When an edge is clicked, the edge infor-
mation, such as the edge name, its depar-
ture and arrival nodes, and its current state,
will be displayed. From Figure 4 (A), it is
obvious that activity node B is reachable
from nodes A

1
, A

2
, A

3
 and A

11
.

An activity flow graph G is instanti-
ated by an instantiation request issued by
an actor. The instantiation request provides
the initial values of the data items (actual
arguments) required by the parameter list
of the flow. An activity flow instantiation is
valid if the actor who issued the firing sat-
isfies the defined role specification.

Definition 3   (valid flow instantiation)
Let G = < N, E > be the activity flow and
u = (actor_oid, role_name) be an actor
requesting the activity flow instantiation T
of G. The flow instantiation T is valid if
and only if ∃ρ  ∈  Role(G) such that
role_name (u) = ρ.  ❏❏❏❏❏

When the actor who initiates a flow
instantiation request is not authorized, the
instantiation request is rejected, and the flow
instantiation is not created.

When a flow instantiation request is
valid, a flow instantiation, say T, is created
by firing the begin node of T.
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Definition 4   (activity flow instantiation)
Let G = < N, E > be the activity flow and
T denote a valid flow instantiation of G. T
is created by assigning a flow instance iden-
tifier and carrying out the following steps
to fire the begin node bn(T): set the state
of node bn(T) to be fired; set all the outgo-
ing edges of bn(T) to be signaled; per-
form a node instantiation for each node that
is directly reachable from the begin node
bn(T).

A node can be instantiated or trig-
gered when all the incoming edges of the
node are signaled, its trigger condition is
evaluated to be true. When a node is trig-
gered, a unique activity instance identifier
is assigned, and the node state is set to
fired. In ActivityFlow, all the nodes are ini-
tialized to not_fired and all the edges are
initialized to not_signaled.

Definition 5   (node instantiation)
Let G = < N, E > be the activity flow and
T denote a valid flow instantiation of G. A
node nd

k
 ∈  N can be instantiated if ∀ nd

i

∈  N such that nd
i
 ≠ nd

k
 and nd

k
 is directly

reachable from nd
i
, we have nd

i
 is in the

state fired, the instance identifier of T is
identified, the trigger of nd

k
 can be evalu-

ated.
A node nd

k
 is instantiated if the fol-

lowing steps are performed:
• updates to data items are applied in all

the nodes nd
i
 from which nd

k
 is directly

reachable.
• all the incoming edges of nd

k
 are set to

be signaled.
• nd

k
 is fired if (1) its trigger condition is

evaluated to be true and (2) it is currently
not fired or it is an iteration activity node
and its iteration condition is evaluated to
be true. ❏❏❏❏❏

In ActivityFlow, we use the term con-
ditional rollback to refer to the situations
that require revisiting the nodes previously

terminated or not fired. Conditional roll-
backs are a desirable functionality and en-
countered frequently in some business pro-
cesses. We provide the UML activity
iterator symbol (“*” into a compound ac-
tivity-node construct) for the realization of
conditional rollbacks. The use of iterating
activities has a number of interesting fea-
tures. First, by defining an activity with the
iterator symbol, being such activity a com-
posite activity, we identify the nodes that
can be or allowed to be revisited by the
subsequent activities in the same subflow
instance. Second, when using iteration
rather than explicitly backward edges, the
conditional rollback may be considered as
a continuation of the workflow instance
execution. We believe that the use of it-
eration provides a much cleaner graphical
notation to model cyclic activity workflows.

To reduce the complexity and facili-
tate the management of conditional roll-
backs, the only restriction we place on the
conditional rollback is the following: A call
to rollback to an activity node nd

k
 can only

be accepted if it comes from subactivity
nodes or sibling activity nodes of nd

k
.

Figure 10 shows an example which
recasts the composite activity
C:ALLOCATELINES discussed earlier by
allowing a conditional rollback of some al-
location line activities (A

5
:ALLOCATE

LINE, A
6
:ALLOCATELINE and

A
7
:ALLOCATESPAN). It permits the ex-

ecution of a set of C:ALLOCATELINES
and evaluates which instance is more prof-
itable. The others are rollbacked. We model
this requirement using iteration (see Fig-
ure 10).

By clicking the iteration-type activity
node, the information about its subflow will
be displayed. The rollback condition is also
displayed. In this case, it says that if
C:ALLOCATELINES is successful then
the AND-Split type connection node fol-
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lowing C:ALLOCATELINES is fired.
Then, activities A

8
:ALLOCATESWITCH

and A
9
:ALLOCATESWITCH are fired.

Otherwise, a new C:ALLOCATELINES
instance is fired until the profit level required
may be reached.

Definition 6   (termination property)
An activity flow instance terminates if its
end node is triggered. A flow instance is
said to satisfy the termination property if
the end node will eventually be fired. ❏❏❏❏❏

The termination property guarantees
that the flow procedure instantiation will
not “hang”.

Definition 7   (precedence preserving)
Let G = < N, E > be the activity flow. An
activity flow instance of G is said to satisfy
precedence preserving property if the node
firing sequence is compatible with the par-
tial order defined by the activity precedence

dependencies in G. ❏❏❏❏❏
In ActivityFlow, these two latter prop-

erties are considered as correctness prop-
erties, among others, for concurrent execu-
tions of activities. For a detailed discussion
on preservation of the correctness proper-
ties of workflow activities, see Liu and Pu
(1998a).

DYNAMIC WORKFLOW
RESTRUCTURING OF
ACTIVITYFLOW MODELS

To maintain the competitiveness in a
business-oriented world, enterprises must
offer high-quality products and services. A
key factor in successful quality control is
to ensure the quality of all corporate busi-
ness processes, which include clearly de-
fined routing among activities, association
among business functions (e.g. programs)
and automated activities, execution depen-
dency constraints and deadline control, at
both activity level and whole workflow pro-
cess level. Besides the workflow charac-
teristics, most workflow applications are
expected to have 100% uptime (24 hours
per day and 7 days per week). Production
workflow (Leymann and Roller, 2000) is a
class of workflow that presents such char-
acteristics and the workflow processes have
a high business value for the organizations.

The enterprise commitment with a
deadline for each of its workflow process
execution becomes one of the design and
operation objectives for workflow manage-
ment systems. However, deadline control
of workflow instances have led to a grow-
ing problem that conventional workflow
management systems do not address,
namely how to reorganize existing workflow
activities in order to meet deadlines in the
presence of unexpected delays. Besides,
having long-lived business-process in-

Figure 10: An example using iterator
connectors
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stances, workflow designs must deal with
schema evolution with the proper handling
of ongoing instances. These problems are
known as the workflow-restructuring prob-
lem.

This section describes the notation
and issues of workflow restructuring, and
discusses how a set of workflow activity
restructuring operators can be employed
to tackle the workflow-restructuring prob-
lem on ActivityFlow modeling. We restrict
our discussion in the context of how to
handle unexpected delays. A deeper study
on such context can be found in Ruiz, Liu
and Pu (2002).

Basic Notions

Activity restructuring operators are
used to reorganize the hierarchical struc-
ture of activity patterns with their activity
dependencies remaining valid. Two types
of activity restructuring operators are pro-
posed by  Liu and Pu (1998): Activity-Split
and Activity-Join. Activity-Split operators
allow releasing committed resources that
were updated earlier, enabling adaptive re-
covery and added concurrency (Liu and
Pu, 1998a). Activity-Join operators, the
inverse of activity-split, combine results
from sub-activities together and release
them atomically. The restructuring opera-
tors can be applied to both simple and com-
posite activity patterns and can be com-
bined in any formation. Zhou, Pu and Liu
(1998) present a practical method to imple-
ment these restructuring operators in the
context of the Transaction Activity Model
(TAM) (Liu and Pu, 1998a).

In TAM, activities are specified in
terms of activity patterns. An activity
pattern describes the communication pro-
tocol of a group of cooperating objects in
accomplishing a task (Liu and Meersman,
1996). We distinguish two types of activi-

ties: simple activity pattern or composite
activity pattern. A simple activity pat-
tern is a program that issues a stream of
messages to access the underlying data-
base (Liu and Pu, 1998a). A composite
activity pattern consists of a tree of com-
posite or simple activity patterns and a set
of user-defined activity dependencies: (a)
activity execution and interleaving depen-
dencies, and (b) activity state-transition
dependencies. The activity at the root of
the tree is called root activity; the others
are called sub-activities. An activity’s pre-
decessor in the tree is called parent; a sub-
activity at the next lower level is called a
child. Activity hierarchy is the hierarchi-
cal organization of activities (see Figure 4
for an example).

A TAM activity has a set of observ-
able states S and a set of possible state
transitions ϕ:S → S, where S = {begin,
commit, abort, done, compensate} (Liu
and Pu, 1998) (see Figure 11). When an
activity T is activated, it enters in the state
begin and becomes active. The state of T
changes from begin to commit if T com-
mits, and to abort if T or its parent aborts.
If T’s root activity commits, then its state
becomes done. When T is a composite
activity, T enters the commit state if all its
component activities legally terminate, i.e.,
commit or abort. If an activity aborts, then
all its children that are in begin state are
aborted and its committed children, how-
ever, are compensated for. We call this
property termination-sensitive depen-
dency (Liu and Pu, 1998a) between an
activity A

C
 and its parent activity A

P
, de-

noted by A
P
 ~> A

C
. This termination-sensi-

tive dependency, inherent in an activity hi-
erarchy, prohibits a child activity instance
from having more than one parent, ensur-
ing the hierarchically nested structure of
active activities. When the abort of all ac-
tive sub-activities of an activity is com-
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pleted, the compensation for committed sub-
activities is performed by executing the
corresponding compensations in an order
that is the reverse of the original order.

Definition 8   (TAM activity)
Let α denote an activity pattern and S
denote a set of activity patterns. Let
AD(α) denote a set of activity dependen-
cies specified in α, children(α) denote
the set of child activity patterns of α ,
and Pattern(T) denote the activity pat-
tern of activity T. An activity T is said to
be a TAM activity if and only if it satis-
fies the following conditions:

• ∃ α ∈ Σ , Pattern(T) =α.
• ∀ P ∈ AD(α), P(T) = true.
• ∀ S  ∈ children(T), T ~> S and S is α

TAM activity.   ❏❏❏❏❏
Another property of an activity hi-

erarchy is the visibility of objects between
activities. The visibility of an activity re-
fers to its ability to see the results of other
activities while it is executing. A child ac-
tivity A

C
 has access to all objects that its

parent activity A
P
 can access, i.e., it can

read objects that A
P
 has modified (Liu and

Pu, 1998a). TAM uses the multiple ob-
ject version schemes (Nodine and Zdonik,
1990) to support the notion of visibility in
the presence of concurrent execution of
activities. The Root activity at the top of
the activity hierarchy contains the most
stable version of each object, and guaran-
tees the possibility to recover its copies of

objects in the event of a system failure.

Workflow Restructuring Operators

There are three types of activity-split
operators: serial activity-split (s-Split),
parallel activity-split (p-Split), and
unnesting activity-split (u-Split).

• The s-Split operator splits an activity into
two or more activities that can be per-
formed and committed sequentially. It
establishes a linear execution depen-
dency among the resulting activities
which is captured by using the precede
construct.

• The p-Split splits an activity into two or
more activities that can be submitted and
committed independently of each other.
The only dependency established be-
tween them is the compatibility among
all split activities and can be represented
by compatible construct.

• The u-Split splits C activity by unnesting
the activity hierarchy anchored at C. U-
Split operators are effective only on
composite activity patterns.

A series of specializations are intro-
duced for activity split, including s-Split -
serial activity-split, (sa-Split - serial-alter-
native activity-split), and p-Split - parallel
activity-split, (pa-Split - parallel-alternative
activity-split, cc-Split - commit-on-commit
activity-split, and ca-Split - commit-on-
abort activity-split). These specializations

Figure 11: TAM activity state transition graph
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tackle situations where it is necessary to
synchronize concurrent split activities and
when certain activities can be performed
only if another aborts.

An activity-split operation is said to
be valid if and only if the resulting activi-
ties: (1) satisfy the implicit dependencies
implied in the activity composition hierar-
chy such as the termination-sensitive de-
pendency, i.e., TAM activities; (2) all ex-
isting activity dependencies are semanti-
cally preserved after the split; and (3) do
not introduce any conflicting activity de-
pendencies (Liu and Pu, 1998).

Similarly, activity-Join has two spe-
cialized versions: join-by-group (g-Join)
and join-by-merge (m-Join).

• The g-Join operator groups two or more
activities by creating a new activity as
their parent activity, while preserving the
activity composition hierarchy of each
input activity. A g-Join is considered
legal if the input activities are all sibling
activities or independently ongoing ac-
tivities, i.e., they do not have common
parent activity.

• The m-Join operator physically merges
two or more activities into a single ac-
tivity. An m-Join is considered legal, if
for each pair of input activities (C1, C2),
C1 and C2 are sibling activities, or one
is a parent activity of another, or they
are independently ongoing activities.

Restructuring Possibilities on
TeleConnect Workflow

Most workflow designs take into ac-
count the organizational structure, the com-
putational infrastructure, the collection of
applications provided by the corporate en-
terprises, and the cost involved. Such de-
signs are based on the assumptions that the
organizational structure is an efficient way

to organize business processes (workflows)
and the computational infrastructure has the
optimal configuration within the enterprise.
However, such assumptions may not hold
when unexpected delays happen and when
such delays severely hinder the progress
of ongoing workflow executions.

Typical delays in execution of busi-
ness workflows are due to various types
of failures or disturbances in computational
infrastructure, including instabilities in net-
work bandwidth, and replacement of low
power computing infrastructure in coping
with server failures. Such disturbances can
be transient or perennial, unexpected or
intentional, and can affect an expressive
number of processes.

Figure 12 shows the typical implemen-
tation architecture of the Telecomm com-
putational infrastructure, which is used in
our experimental study. Each telecommu-
nications central T-central has a computer
server to support its activities and to man-
age its controlled lines and switches. In the
Telecomm Headquarters, Telecomm-HQ,
a computer server supports all the man-
agement activities and controls the infor-
mation with respect to communication
among its branches (spans), centralizes the
billing, etc. The credit check gateway
CeditCheck-GW executes the dialog be-
tween Telecomm and credit operators and
banks to check the current financial situa-
tion of the clients. Figure 12 describes a
typical computational capacity of comput-
ing systems as well as the network con-
nection speeds assumed in the experiments
reported earlier. We have adopted TPC-
W (T.-W. Subcommittee, 2001) to show
the power of computing systems because
we have assumed all Telecomm informa-
tion systems are web-based e-commerce
applications.

Recall the telephone-service-provi-
sion introduced earlier, and assume that this
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workflow process was designed to match
the organizational structure with respect to
its administrative structure and correspond-
ing responsibilities. From the activity hier-
archy shown in Figure 4, the activity
A:TELECONNECT consists of two com-
posite activities: B:ALLOCATECIRCUIT
and C:ALLOCATELINES. The execution
dependencies of these compound activities
(A, B and C) are given in Figures 6, 7 and 8.
We can conclude that A

2
:CREDITCHECK

must be completed before B:ALLOCATE
CIRCUIT because A

10
:PREPAREBILL

depends on A
2
:CREDITCHECK and

A
10

:PREPARE BILL is a sub-activity of
B:ALLOCATE CIRCUIT. By combining the
hierarchical structure of those composite ac-
tivities and their corresponding execution de-
pendencies, we present the workflow de-
sign, without compound activities, in Fig-
ure 13.

In the presence of delays, restructur-
ing operators can be applied to rearrange
the activity hierarchy anchored by
A:TELECONNECT. The goal is to add
concurrency during execution of their in-
stances. Such added concurrency means
the earlier release of committed resources
to allow access by other concurrent activi-
ties (Liu and Pu, 1998). The TAM opera-
tors that permit increase of concurrency
among TAM activities are p-Split and u-
Split. For simplicity, we discuss only the

use of the u-Split operator because it does
not demand previous knowledge of the in-
ternal structure and behavior of the target
activity.

By applying u-Split on
A:TELECONNECT, it is possible to unnest
its compound activities B:
ALLOCATECIRCUIT or C: ALLOCATE
LINES. Then, two different restructured
workflows with added concurrency are
obtained: unnesting C: ALLOCATELINES
(Figure 14) and unnesting B: ALLOCATE
CIRCUIT (Figure 15). When compared
with the initial workflow designs shown in
Figure 4, unnesting C: ALLOCATELINES
permits the start of activity A

8
:

ALLOCATESWITCH or A
9
: ALLOCATE

SWITCH in case of delay in execution of
A

6
: ALLOCATELINE or A

5
: ALLOCATE

LINE respectively. Similarly, unnesting B:
ALLOCATECIRCUIT allows the start of
composite activity C: ALLOCATELINES
before the credit check activity A

2
:

CREDITCHECK commits. We have cho-
sen to control instances of activity A

2
:

CREDITCHECK to decide if B:
ALLOCATECIRCUIT needs restructur-
ing. In addition, A

6
: ALLOCATELINE is

the chosen activity to be controlled when
examining the need for C:
ALLOCATELINES restructuring because
both A

5
 and A

6
 show the same behavior in

the workflow model. The results on restruc-

Figure 12: A typical computing environment for the Telecomm Company
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turing C by controlling A
6
 are similar to

those obtained by controlling A
5
.

Simulation Environment

To study the effectiveness of activity
restructuring operators, we built a simula-
tor using CSIM18 (Mesquite Software, Inc.,
1994) that performs workflow models.
These models consist of simple and com-
posite workflow activities such as TAM
(Zhou et al., 1998). The typical computing
environment depicted in Figure 12 is used

to quantify the disturbance effects and to
tune the simulator. We discussed further
experiments with a range of parameter set-
tings that expand and support the results
outlined here. Here we briefly describe the
simulator, focusing on the aspects that are
pertinent to our experiments.

 To simulate the TELECONNECT
workflow activity, we assume 60 seconds
being the upper average limit for the elapsed
time of one workflow instance execution.
In other words, a TeleConnect workflow

Figure 13: Plane graphical representation of the flow procedure of activity TELECONNECT
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instance carries out by 60-second upper limit
when the installation of new facilities (ex-
ecution of activity A

11
: INSTALLNEW

CIRCUIT) is not required. We represent
the elapsed time of activity instances using
the uniform statistical distribution, since
these activities involve a combination of
computer and human activities of unpre-
dictable duration within a known range of
reasonable values.  Figure 16 shows the
type of computer system where each ac-
tivity executes the corresponding activities
in the simulation, and the minimum and
maximum elapsed time values taken.

For the sake of simplicity, we assume
only three different time intervals for the
elapsed time of activity instances. For each
time interval corresponds to one comput-
ing system type. Activity instances execut-
ing at Telecomm-HQ (A

1
, A

3
, A

4
, A

7
 and

A
10

) show elapsed time between 3.2 sec-
onds and 5.2 seconds. 6.4 seconds - 10.4

seconds is the elapsed time interval for
activity instances executed on any T-cen-
tral systems (A

5
, A

6
, A

8
 and A

9
) and A

2
 in-

stances present elapsed time between 2.0
seconds and 22.0 seconds when execut-
ing on CreditCheck-GW system. We adopt
these time intervals because:
(1) Telecomm-HQ is the most powerful
system in the computing environment and
hosts the workflow management system
(WfMS); (2) as regards Telecomm-HQ,
the elapsed time of each activity instance
(executed at T-central, or at CreditCheck-
GW) considers also the time to flow data
and commands into network connections;
(3) CreditCheck-GW represents a comput-
ing system beyond the responsibilities of
the Telecomm Company technical staff and
with a quite variable response time.

We adopted the 90% percentile prin-
ciple from TPC-C (T.-C. subcommittee,
2001) to define the 60-second limit. TPC-

.  

 

  

Figure 14: TELECONNECT workflow design
after u-Split of C

Figure 15: TELECONNECT workflow design
after u-Split of B
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C defines 90% percentile as the upper limit
for response time on benchmarking com-
plex OLTP application environments. Thus,
90% percent of the activity instances ex-
ecuted in Telecomm-HQ must show an
elapsed time not greater than 5.0 seconds.
Analogously, 10.0 seconds and 20.0 sec-
onds correspond to T-central and
CreditCheck-GW activity instances, re-
spectively. The exponential statistical dis-
tribution, describing jobs that arrive inde-
pendently, has been used to define the time
interval between the start of each workflow
instance. These values considered, the
simulation environment has been calibrated
to execute 165 workflow instances in par-
allel. Such fine-tuning has been obtained
by using 0.2 second as the input for the
exponential statistic function.

We assess the effectiveness of
workflow restructuring by comparing the
execution of TELECONNECT workflow
with and without restructuring of its com-
posite activities B: ALLOCATECIRCUIT
and C: ALLOCATELINES. As defined
earlier, the sub-activities A

2
:

CREDITCHECK and A
6
: ALLOCATE

LINE are the chosen activities to be con-
trolled, namely, the latency of these activi-
ties will be increased in the presence of
disturbance. The population of the set of
workflow instances (cases executed in
parallel) varies from 1 to 300. Then, the
same populated set of workflow instances
is executed for each variation of
TELECONNECT workflow. Figure 17
shows the activities being controlled at the
simulation, the type of disturbances con-

sidered and the amount of delays occurred.
To simulate a controlled activity instance
facing a disturbance, the elapsed time ob-
tained from the uniform statistical function
is increased by the value stated in Figure
17. For example, if uniform function re-
turns 7.0 seconds for an A

2
 instance, and

CreditCheck-GW faces very low spare
gateway computer disturbance, the simu-
lator increases this elapsed time by 100%.
Hence, such A

2
 instance is simulated con-

sidering 14.0 seconds as its elapsed time.
There are two types of disturbances

stated in Figure 17. The first type is the
disturbance caused by a computing system
with lower computational power. Three dif-
ferent computational powers are chosen:
slightly low spare computer, low spare com-
puter and very low spare computer. We
consider that a slightly low computer
causes a typical delay of 20% on the aver-
age elapsed time of the controlled activity
and represents a computing system with a
similar performance to the original one.
Analogously, low computers and very low
computers cause typical delays of 50% and
100%, respectively. The last two represent
significantly slower computing systems. We
adopt these three computing system dis-
turbances for both controlled activities as
being typical of real situations. Different
elapsed time increases could be assumed
to perform the simulation experiments. Such
assumptions are reasonable because the
typical elapsed time of an activity execu-
tion is the sum of its CPU-time, I/O-time
and network-transfer-time. Hence, a loss
in performance is expected when replac-

Activity(ies) Computer System Min. Max. 
A1, A3, A4, A7, A10 Telecomm-HQ 3.2 sec. 5.2 sec 
A5, A6, A8, A9 T-central 6.4 sec. 10.4 sec. 
A2 CreditCheck-GW 2.0 sec. 22.0 sec. 

Figure 16: Parameter values for the uniform statistical function
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ing a computer system by one of lower
power. However, such loss hardly matches
the same reducing degree of computational
power. At least, the network connection
remains with the same transfer speed.

The second type is the disturbance
caused by a network delay. In this case,
the disturbances stated in Figure 17 are
peculiar to each controlled activity because
the network connection speeds are rather
different (10Mbits/sec among Telecomm-
HQ and T-centrals, and 1Mbits/sec be-
tween Telecomm-HQ and CreditCheck-
GW). However, the network speeds
adopted depict just typical transfer rates
found in the real world. Different network
speeds could be assumed to perform the
simulation experiments. For the controlled
activity A

6
, we assume a slight delay of 10%

caused by network speed falling to 1Mbit/
sec and an average delay of 40% by
256kbits/sec network speed. In the same
way for the controlled activity A

2
, we as-

sume an average delay of 36% caused by
a low 256kbits/sec network connection and
a high delay of 80% due to a network con-
nection with 56kbits/sec. As a result, we
have used a wide range of delays to test
workflow restructuring in different situa-
tions.

In this section, the CSIM-based simu-
lator is used primarily to demonstrate the
properties of the restructuring operation
rather than carry out a detailed analysis of

the algorithm for execution restructuring
operators. To study the behavior of the re-
structuring operators in the experiments,
various delays were generated by simply
applying a uniform probabilistic function
provided in CSIM, rather than stochasti-
cally generating delays. Consider the val-
ues in Figure 16 as an example. The elapsed
time for each activity instance can be esti-
mated using the average of the Min and
Max values, or more realistically, the
elapsed time of activity instances should
be measured as random values within a
time interval because two instances of the
same activity can perform a different num-
ber of I/O operations, demand a different
amount of data transfer across the network
and execute different sets of CPU opera-
tions. Taking into account all typical elapsed
time for activity instances, the expected
elapsed time for a TeleConnect workflow
instance is 45.6 seconds (without A

11
:

INSTALLNEWCIRCUIT execution). By
applying u-Split of B: ALLOCATE CIR-
CUIT, such elapsed time becomes 33.6
seconds. When an activity instance of A

2
:

CREDITCHECK suffers the effects of one
disturbance listed in Figure 17, the elapsed
time of a TELECONNECT workflow in-
stance grows linearly while the elapsed
time of the restructured version remains
the same up to a 110% delay amount. Only
when the delay amount exceeds 110% of
the elapsed time of a restructured

Activity Type of disturbance Elapsed time increase 
A6 Slightly low spare computer 20% 
A6 Low spare computer 50% 
A6 Very low spare computer 100% 
A6 Low 1Mbits/sec network connection 10% 
A6 Low 256kbits/sec network connection 40% 
A2 Slightly low spare computer 20% 
A2 Low spare computer 50% 
A2 Very low spare computer 100% 
A2 Low 256kbits/sec network connection 36% 
A2 Low 56kbits/sec network connection 80% 

Figure 17: Effects of disturbances on the elapsed time of controlled activities A2 and A6
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TELECONNECT workflow, does the
elapsed time also start to grow linearly.
However, these results take into consider-
ation none of the effects of the disturbances
in the other computational components. As
demonstrated before, such disturbances
overload the environment and deteriorate
the performance of its components, and the
average elapsed time of TELECONNECT
workflow instances presents different be-
havior.

Experimental Results

The goal of our experimental study is
to show the benefits and costs of dynamic
activity restructuring. Concretely, the ex-
periments are set to maximize parallel ex-
ecution of ongoing workflow instances
(WI) by reorganizing the hierarchical struc-
ture of the root activity. Our experiments
examine and compare the workflow ex-
ecution with and without restructuring in
the following two situations: (1) a tempo-
rarily non-optimal runtime environment, and
(2) an unexpected malfunction in some in-
frastructure component. The types of dis-
turbances considered are listed in Figure
17.

To properly evaluate the effective-
ness on restructuring workflow instances,
a simulation for TeleConnect workflows
without restructuring is performed in an
environment without disturbances. The goal
of this simulation is to determine the popu-
lation of ongoing WI executed in parallel
that presents the highest average elapsed
time satisfying the 60-second company
goal. The resulting population becomes the
reference to understand the effectiveness
of workflow restructuring in a runtime en-
vironment with disturbances. To authenti-
cate this population, sets of TeleConnect
WI with different populations (from 1 to
300 cases in parallel) are executed consid-

ering the environment specified earlier. Fig-
ure 18 plots the simulation results for each
set of WI.

In Figure 18, the x-axis shows the
population of each set of WI. In other
words, it shows how many WI are ex-
ecuted in parallel and concurrently have
used the limited resources of the comput-
ing environment. The y-axis presents the
corresponding average elapsed time of a
set of WI. The line shows the results for
the TeleConnect workflow. As expected,
a higher number of WI executed in parallel
raises their average elapsed time. The spe-
cial point marked in Figure 18, (165, 59.8),
shows the desired population: 165 is the
number of workflow instances, executing
in parallel, that presents the highest aver-
age elapsed time and satisfies the 60-sec-
ond upper limit.

We adopted only one type of graph
to present the experimental results already
discussed. All graphs plot the average
elapsed time of 165 WI executed in an en-
vironment where instances of a controlled
activity (A2 or A6) face the delays defined
in Figure 17. The dashed line depicts re-
sults for WI without restructuring and the
continuous line plots result, considering a
restructuring criterion. The x-axis shows
the percent values of delays the controlled
activity faces and the y-axis shows the av-
erage elapsed time of WI. Each asterisk in
the continuous line corresponds to one of
the percent values listed in the column
elapsed time increase of  Figure 17. In
the graphs related to controlled activity A2
(Figures 19 and 21), the asterisks corre-
spond to average WI elapsed time for 20%,
36%, 50%, 80% and 100% of percent de-
lays. Similarly, the asterisks in the graphs
related to controlled activity A6 (Figures
20 and 22) correspond to 10%, 20%, 40%,
50% and 100% of percent delays. The uni-
formity of this graph permits us to directly
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compare simulation results for different
restructuring criteria (at start and check-
point 25%) and the control of different ac-
tivities (A2 and A6).

Experiment 1: Temporarily Non-
Optimal Environment
The goal of this experiment is to com-

prehend the advantages and limitations of
workflow restructuring, when the runtime
environment presents one of the distur-
bances stated in Figure 17. The restructur-
ing of activities takes place before the start
of each WI. We compare cases of running
TeleConnect workflows with and without
restructuring for each disturbance listed.
Each case has 165 WI in the set. The is-
sue that must be answered by this experi-
ment is: which disturbances in the comput-
ing environment can be properly managed
if workflow restructuring takes place at the
start of controlled activities? To answer this
question, it is necessary to check the aver-
age WI elapsed time of the WI set for each
percent value of delay on executing con-

trolled activity instances. A particular dis-
turbance can be properly managed by
workflow restructuring if the resulting av-
erage WI elapsed time is less or equal to
60 seconds. Figure 19 show results for the
controlled activity A2 and Figure 20 shows
results for A6, the other controlled activity.

The dashed line in Figure 19 plots the
average WI elapsed time of TeleConnect
workflow without restructuring for the dif-
ferent delay instances of A2 face. The
average WI elapsed time grows linearly as
A2 delays increase. For example, 50% of
average A2 delay increase corresponds to
74.9 seconds for the average WI elapsed
time. Similarly, 100% corresponds to 91.6
seconds. Taking into account 50% and
100% of average A2 delay means about
18 seconds and 24 seconds, respectively,
for the average elapsed time of A2 in-
stances; an increase of 6 seconds in the
A2 average elapsed time then implies an
increase of 16.7 seconds to the average
WI elapsed time. In other words, for each
additional second of delay for A2 instances,

Figure 18: Results on simulating TeleConnect WI without delays and disturbances
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2.78 extra seconds for the average WI
elapsed time will result, a 2.78 growth fac-
tor. This result shows the overload caused
by disturbances into the computing envi-
ronment. This dashed line is present also in
Figure 21 with exactly the same results and
meaning. It is the reference to compare
results from different restructuring crite-
ria.

The continuous line in Figure 19 plots
average WI elapsed times with B restruc-
turing at the start. In this simulation, all 165
WI are restructured before the start of their
A2 instances. The average WI elapsed time
grows as A2 delays increase. But its growth
factor also increases. For example, in the
segment 0% to 20% (average A2 elapsed
times 12 seconds and 14.4 seconds, respec-
tively) the average WI elapsed time grows
from 49.5 seconds to 49.6 seconds. Hence,
the growth factor is 0.04 (average WI
elapsed time grows 0.04 seconds for each
second of delay in the average elapsed time
of A2 instances). But considering the seg-
ment 50% to 100% (18 seconds and 24
seconds, respectively), the average WI
elapsed time grows from 53.5 seconds to
67.4 seconds, and the growth factor is 2.3.
The transition between the two segments
above presents 1.08 as the growth factor.
A growth factor of less than 1.0 means

that the computing environment still pre-
sents availability to perform more WI. On
the other hand, growth factors greater than
1.0 show an overloaded environment.
Moreover, the point where the line shows
60 seconds for average WI elapsed time is
73%. Hence, disturbances that cause de-
lays on A2 instances up to 73% are prop-
erly managed if B workflow restructuring
takes place at start.

Similar to Figure 19, the dashed line
in Figure 20 plots the average WI elapsed
time of TeleConnect WI without restruc-
turing for delays in A6 instances. The av-
erage WI elapsed time grows as A6 de-
lays increase. For delays over 20%, the
growth factor is virtually constant. In fact,
the delays 20%, 40%, 50% and 100% (av-
erage A6 elapsed times 10.1 seconds, 11.8
seconds, 12.6 seconds and 16.8 seconds,
respectively) correspond to 64.5 seconds,
71.1 seconds, 74.4 seconds and 91.3 sec-
onds, and the growth factor increases from
3.9 to 4.0. For the two first segments, (0%,
59.8 seconds) - (10%, 61.4 seconds) and
(10%, 61.4 seconds) - (20%, 64.5 seconds),
the growth factors are 1.9 and 3.7, respec-
tively. These results confirm the assump-
tion that delays on activity instances over-
load the computing environment, as ob-
served in the dashed line of the Figure 19.

Figure 19: B restructuring at start

  
Figure 19: B restructuring at start Figure 20: C restructuring at start 

Figure 20: C restructuring at start
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This dashed line is also used as the refer-
ence to compare results from different re-
structuring criteria in Figure 22, with ex-
actly the same results and meaning.

The continuous line in Figure 20 plots
average WI elapsed times with C restruc-
turing at the start. All 165 WI are restruc-
tured before the start of A6 instances. This
line shows virtually the same shape depicted
by the dashed line, with y-values about 0.7
seconds shorter. For example, 63.9 seconds
corresponds to 20% of delay and 90.5 sec-
onds corresponds to delay of 100%. It
means a very narrow gain on C restructur-
ing and only delays not greater than 4%
are properly managed with C restructuring
at the start.

Experiment 2: Unexpected
Malfunction of Infrastructure
Component
The goal of this experiment is to ex-

amine the pros and cons of dynamic
workflow restructuring, when the runtime
environment presents some disturbance
and the restructuring of activities takes
place during the execution of WI. The dis-
turbances are detected at 25% checkpoint.
We compare cases of running TeleConnect
workflows with and without restructuring
for each disturbance listed in Figure 17.
Each case has 165 WI in the set.

The choice of 25% as a checkpoint
to verify whether a particular WI should
be restructured represents the ability of the
WfMS to monitor the computational envi-
ronment and to react early when it detects
disturbances. Considering the Min and Max
values defined in Figure 16 for each activ-
ity, the expected elapsed time (E-ET) for
an A2 instance is 12 seconds and, for an
A6 instance, is 8.4 seconds. When an on-
going instance of A2 (or A6) is running, at
25% for its E-ET the simulator estimates
which will be its real elapsed time. If the

estimated elapsed time overcomes its E-
ET then the workflow restructuring takes
place. For a simulation controlling A2 in-
stances, the simulator estimates the elapsed
time of an ongoing A2 instance at 3 sec-
onds of its starting. If the estimated value
is greater than 12 seconds then the corre-
sponding WI is restructured by u-Split of
B. Similarly, if A6 instances are being con-
trolled, the checkpoint occurs at 2.1 sec-
onds of an ongoing A6 instance execution
and the restructuring takes place if the es-
timated elapsed time value overcomes 8.4
seconds. Consequently, the simulator only
restructures an ongoing WI if it estimates
the elapsed time of the activity instance
being controlled are greater than its E-ET.
Moreover, each set of simulated WI prob-
ably has restructured and not restructured
instances. Hence, the issue that must be
answered by this experiment is: which dis-
turbances in the computing environment
can be properly managed if dynamic
workflow restructuring is checked at 25%
checkpoint on controlled activities? To an-
swer this question it is necessary to check
the average WI elapsed time of the WI
set, with and without restructuring, for each
delay value on executing controlled activ-
ity instances. A particular disturbance can
be properly managed if the resulted aver-
age WI elapsed time is less or equal to 60
seconds. Figure 21 shows results for the
controlled activity A2 and Figure 22 shows
results for A6. As stated before the dashed
line in Figures 21 and 22 are exactly the
same as those depicted in Figures 19 and
20, respectively.

The continuous line in Figure 21 plots
average WI elapsed time where B restruc-
turing affects only WI with delayed A2 in-
stances. It shows a different behavior when
compared with a previous restructuring
criterion, restructuring at the start, depicted
in Figure 19. In fact, the growth factor of
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this line starts near 0.0 and begins to grow
after 20% of average delay for A2 in-
stances. In the graph, the asterisks plot the
following points: (0%, 56.6 seconds), (20%,
56.7 seconds), (36%, 57.5 seconds), (50%,
59.0 seconds), (80%, 64.8 seconds) and
(100%, 69.8 seconds). The percent values
for average delays of A2 instances corre-
spond, respectively, to 12.0 seconds, 14.4
seconds, 16.3 seconds, 18.0 seconds, 21.6
seconds and 24.0 seconds. Then, the
growth factors for each segment are: 0.04,
0.4, 0.9, 1.6 and 2.1. The growth factor
close to 0.0 in the first segment (between
0% and 20%) means that workflow re-
structuring can properly manage delays on
A2 instances up to 20% without increasing
the load over the computing environment
and, consequently, without perturbing other
running applications. On the other hand,
only the disturbances that cause delays of
up to 54% are properly managed by B
workflow restructuring with 25% check-
point. By comparing with the results from
earlier, B workflow restructuring at 25%
checkpoint supports lower delays on A2
instances considering the 60-second com-
pany goal.

Figure 22 plots average WI elapsed
time for different delays affecting A6 in-
stances. The continuous line shows results
where C restructuring takes place on WI

with delayed A6 instances. For delays over
20% the behavior of this line is the same
as that presented in Figure 20 by the con-
tinuous line. The slight difference is at the
start of the line. At 0%, the average WI
elapsed time is 59.7 seconds while the same
point, in the dashed line, is 59.8 seconds.
These times at 10% are, respectively, 61.1
seconds and 61.4 seconds. It means a lower
gain on C restructuring than that depicted
in Figure 20 and only delays under 3% are
properly managed with C restructuring at
25% checkpoint.

Experimental Observations and
Discussion

The experiments presented in the last
section show the effectiveness of the u-
Split operator on restructuring workflow
instances facing disturbances in the opera-
tional environment, under certain conditions.
Experiments 1 and 2 demonstrate B re-
structuring of workflow instances (WI)
before start or, at least, at 25% of expected
elapsed time of controlled activity, permit-
ting the achievement of the 60-second up-
per limit for three types of disturbance:
slightly low spare gateway computer, low
spare gateway computer and low
256kbits/sec network connection (Fig-
ure 17). However, workflow-restructuring

Figure 21: B restructuring at 25% Figure 22: C restructuring at 25% 
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instances of activity A6 achieve the 60-
second upper limit for none of the types of
disturbances in Figure 17. Hence, only one
of the two restructuring possibilities pre-
sented earlier is effective on satisfying the
company goal when delays happen, and
only part of the disturbances are properly
managed.

To better evaluate the effectiveness
of workflow restructuring in the experi-
ments presented earlier, the experimental
results are consolidated in Figures 23 and
24 for the controlled activities A2 and A6,
respectively. The idea is to put in one graph
the results of the workflow restructuring
experiments. All Figures consider 165 as
the population of simultaneous WI under
execution.

Figure 23 shows the gains on restruc-
turing A2 instances when occasionally fac-
ing delays. The x-axis depicts the percent
values of average delays for A2 instances
when facing disturbances. The y-axis de-
picts the gain on restructuring A2 by the
difference between the average elapsed
time of the set of workflow instances with-
out restructuring and the average elapsed
time of the same set with restructuring. The
continuous line plots result for B restruc-
turing is executed before the start of A2
instances. The dotted-dashed line plots re-
sults for B restructuring is at the 25%
checkpoint . In a similar way, Figure 24

shows the gains on restructuring A6 in-
stances. The x-axis depicts the percent
values of average delays for A6 instances
when facing disturbances, and the y-axis
depicts the same difference of Figure 23
y-axis.

Figure 23 shows that the gains result-
ing from restructuring B increase indepen-
dent of the moment the restructuring takes
place. Moreover, restructuring is more ef-
fective if it takes place earlier. The same
result is possible to be observed in Figure
24 but the values are too small. Figure 23
also presents the difference between av-
erage WI elapsed time growing faster for
dynamic B restructuring at 25% checkpoint
and considering lower delays (until 40%).
Figure 25 shows the values used to plot the
lines in Figure 23 and permits to observe
better the behavior of its graphs. Consid-
ering Max and Min values in Figure 16, the
percent values presented in Figure 17 cor-
respond to 14.4 seconds (20%), 16.3 sec-
onds (36%), 18.0 seconds (50%), 21.6 sec-
onds (80%) and 24.0 seconds (100%). For
0%, the related average elapsed time is 12.0
seconds. For example, at 20% delay, the
y-value in the dotted-dashed line (restruc-
turing at 25% checkpoint) is 11.2 seconds.
In the same curve, 4.4 seconds correspond
to 0% of A2 delay. Hence, for 2.4 seconds
of delay increase, B restructuring at 25%
checkpoint grows 6.8 seconds in y-value.

Figure 23: Gains on B restructuring Figure 24: Gains on C restructuring

  
Figure 23: Gains on B restructuring Figure 24: Gains on C restructuring 



 Journal of Database Management, 15(1), 1-40, Jan-Mar 2004  33

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

In other words, for each second of A2 de-
lay, B restructuring at 25% checkpoint in-
creases the difference between the aver-
age WI elapsed time without restructuring
and with restructuring by 2.8 seconds. Then,
2.8 is the growth factor in this segment. In
fact, B restructuring at 25% presents the
higher growth factor in the interval 0% -
50%. Consequently, such restructuring cri-
terion is the most effective to dynamically
manage delays during execution of WI be-
cause it permits us to achieve the company
goal for expressive delays on controlled
activity A2, up to 54%, and it does not im-
ply a significant increase of the load over
the computing environment (only affected
WI are restructured).

It is not possible to predict the exact
amount of elapsed time saved after restruc-
turing a workflow instance. The delay
caused by a disturbance depends on the
configuration and current workload of the
computing infrastructure, and these factors
are changing constantly. However, it is pos-
sible to characterize scenarios where the
chances to save elapsed time are great.
Each scenario corresponds to a possible
workflow modeling based on the corre-
sponding hierarchy of activity patterns. For
the Telecomm Company, the
TELECONNECT workflow is the base
scenario (Figure 4) and the workflow model
variants obtained by restructuring compos-
ite activities are the others (Figures 14 and
15). The analysis of the repercussions
caused by a disturbance on the base and

variant scenarios permit the evaluation of
the possible benefits on restructuring the
base workflow model. According to the
simulation experiments, it is possible to state
the restructuring of AllocateCircuit as be-
ing highly beneficial while the restructur-
ing of AllocateLines is not. In fact, the re-
structuring of AllocateLines would not re-
sult in effective elapsed time saving of ac-
tivity instances. Consequently, the model-
ing of a business process by a hierarchy of
activity patterns must present restructur-
ing opportunities. Nevertheless, these re-
structuring opportunities must enable a con-
siderable amount of saved elapsed time
when activities are running on a disturbed
environment. It is important that the restruc-
turing process take place only when the
restructured workflow instance saves a
considerable amount of time, because such
process restructuring takes time when per-
formed.

For a business process, such scenario
analysis suggests that restructuring is ben-
eficial for workflow instances facing some
types of delays. Moreover, it suggests also
that it is beneficial even in situations with-
out facing delays. Although B workflow
restructuring at start is not the most effec-
tive criterion on dynamically managing dis-
turbances, such criterion presents the high-
est difference between average WI elapsed
times: 10.3 seconds for A2 without delays
(0% in Figure 23). Hence, workflow re-
structuring can be a way to improve per-
formance of workflow instances when their

Average delay 
of A2 (%) 

Restructuring 
at start 

Restructuring at 
25% checkpoint 

0% 10,3 3,2 
20% 15,5 8,4 
36% 19,4 12,9 
50% 21,4 15,9 
80% 23,5 20,1 
100% 24,2 21,7 

Figure 25: Differences between average WI elapsed times for WI with and without B
restructuring
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workflow models do not explore all pos-
sible concurrency among activities. When
considering the workflow models to reflect
the organizational structure, among other
aspects, the restructuring approach pre-
sented in this paper enables the optimiza-
tion of a company business process with-
out necessarily the reengineering of the
enterprise.

 IMPLEMENTATION ISSUES

The implementation architecture for
the first prototype of ActivityFlow is based
on the World Wide Web (WWW) technolo-
gies. We use the HTML (HyperText
Markup Language) to represent informa-
tion objects required for workflow pro-
cesses and to integrate different media types
into a document. We access information
from multiple remote information sources
available on the Internet by using the uni-
form addressing of information via URLs
(Uniform Resource Locators) and the
transmission of data via HTTP (Hypertext
Transfer Protocol), The HTML fill-in forms
are the main interaction media between
users and a server.

Figure 26 shows the implementation
architecture of ActivityFlow. The HTTP
server translates the requests from the us-
ers in the HTML forms to calls of the cor-
responding procedures of the prototype
system of ActivityFlow using a CGI inter-
face or a Java interface. The prototype
implementation consists of three main com-
ponents:

1. The workflow actor interface toolkit:
It includes Web-based workflow pro-
cess definition tool, administration and
monitor tool, and workflow-application
client-interface program.

• Workflow process definition tool
   We provide two interfaces for process

definition: one is script-based language
and the other is graphical interface that
use the graph-based concepts such as
nodes and edges between nodes. When
a script language is used, the process
definition tool will compile and load the
workflow schema into the workflow
database. We also provide a facility to
map the script-based specification to
iconic representation that can be dis-
played using a Web-browser. When a
graphical interface is used to define the
workflow procedure unit, a form will also
be provided to capture the information
required in the units such as header, ac-
tivity declaration, role association, and
data declaration. A script-based speci-
fication can also be generated upon  re-
quest.

• Administration and monitoring tool
     This module contains functions for cre-

ating, updating and assigning users, roles
and actors, for the inspection and modi-
fication of the running process accord-
ing to deadlines and priorities, including
terminating undesired flow instances,
and re-structuring on-going activities.
The interactions with the users are sup-
ported primarily by creating and receiv-
ing HTML pages and forms.

• Workflow client interface
     This module provides a number of con-

venient services for workflow clients,
such as viewing the process state infor-
mation, the worklist of an on-going pro-
cess, and linking to the other relevant
information, i.e., process description, pro-
cess history, process deadlines, etc.. It
interacts with the users via HTML pages
and forms.

We are currently exploring the possi-
bility of using or adapting production soft-
ware, such as Caprera from Tactica (see
URL http://www.tactica.com/) for manag-
ing and maintaining the activity dependency
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specifications.

2. The workflow activity engine: It pro-
vides basic workflow enactment ser-
vices, such as creating, accessing, and
updating workflow activity description,
providing the correctness guarantee for
concurrent execution of activities and ap-
plication-specific coordination control,
and using the deadlines and priorities for
scheduling and re-scheduling activity
flows. We have done some initial study
on the correctness properties of concur-
rent activity executions, such as com-
patibility and mergeability, using user-
defined activity dependencies (Liu and
Pu, 1998a). We are exploring possibili-
ties to build value-added adapters on top
of existing on-line transaction process-
ing (OLTP) monitors, for example, us-
ing some recent results in open imple-

mentation (Barga and Pu, 1995) of ex-
tended transaction models (Elmagarmid,
1992) and the micro-protocols (Zhou, Pu
and Liu, 1996) built on top of the Transarc
Encina.

3. The distributed object manager: It pro-
vides consistent access to information
objects from multiple and possibly re-
mote information sources. The main ser-
vices include resource manager, trans-
action router, and run-time supervisor.
This component is built on top of the
DIOM prototype system, an adaptive
query mediation system for querying
heterogeneous information sources (Lee,
1996).

To adapt our implementation archi-
tecture to the open system environment,
we allow a flexible configuration of the
actor interface, the workflow engine base,
and the distributed object manager. For

Figure 26: Implementation Architecture of ActivityFlow
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example, one scenario is to let the actor
interface, the engine base and the distrib-
uted object manager all exist on different
servers. Another scenario is to let the ac-
tor interface toolkit exist on one server and
the activity engine base the distributed ob-
ject manager exist on the same server but
different from the actor interface server.
We may also take the scenario that the
actor interface toolkit and the activity en-
gine base exist on the same server and the
distributed object manager exists on a dif-
ferent server.

RELATED WORK AND
CONCLUSION

In this paper, we have described the
ActivityFlow approach to workflow pro-
cess definition. Interesting features of
ActivityFlow are the following. First, we
use a small set of constructs and a collec-
tion of mechanisms to allow workflow de-
signers to specify the nested process struc-
ture and the variety of activity dependen-
cies declaratively and incrementally. The
ActivityFlow framework is intuitive and
flexible. Additional business rules can be
added into the system simply through plug-
in actors. The associated graphical nota-
tions bring workflow design and automa-
tion closer to users. And the restructuring
operators can change an ActivityFlow dia-
gram preserving their business process
dependencies. Second, ActivityFlow sup-
ports a uniform workflow specification in-
terface to describe different types (i.e., ad-
hoc, administrative, or production) of
workflows involved in their organizational
processes, and to increase the flexibility of
workflow processes in accommodating
changes.

Several recent efforts have shared
similar motivation as TAM. Eder and
Liebhart (1995) present the WAMO for-

malism to describe workflow activities as
a composition hierarchy and a set of ex-
ecution dependencies. The expected ex-
ceptions are specified with activity hierar-
chies. Although both TAM and WAMO
have their origins on extended transaction
models and organizing activity descriptions
as trees of activities, only TAM offers a
set of restructuring operators capable of
restructuring hierarchically organized ac-
tivities. Kumar and Zhao (1999) present a
similar approach of TAM (and WAMO) to
describe the dependencies among activi-
ties. The properties of a business process
are specified through sequence constraints
and workflow management rules. However,
the absence of a diagrammatic represen-
tation of a modeled business process makes
the communication among designers and
administrators difficult.

Our research and development for
ActivityFlow continue along several dimen-
sions. On the theoretical side, we are in-
vestigating workflow correctness proper-
ties and the correctness assurance in the
concurrent execution of activities. On the
practical side, we are building value-added
adapters on top of existing transaction pro-
cessing systems (Barga and Pu, 1995) to
support extended transaction models and
ActivityFlow specifications. In addition, we
are exploring the enhancement of process
design tools to interoperate with various
application development environments.

In this paper, we propose a structured
framework and a set of mechanisms for
workflow process specification, not a new
workflow model. The ActivityFlow frame-
work is targeted towards advanced collabo-
rative application domains, such as com-
puter-aided design, office automation, and
CASE tools, all of which require support
for complex activities that have sophisti-
cated activity interactions in addition to the
hierarchically nested composition structure.
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Furthermore, like most of the modeling con-
cepts and specification languages, the pro-
posed framework is based on pragmatic
ground and hence no rigorous proof of its
completeness can be given. Rather, its use-
fulness is demonstrated by concrete ex-
amples of situations that could not be
handled adequately within other existing
formalisms for organizing workflow activi-
ties.
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