I DEAGROUPPUBLISHING

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ2507

A Systematic Approach to
Flexible Specification,
Composition, and Restructuring
of Workflow Activities

Ling Liu and Calton Pu, Georgia Institute of Technology, USA
Duncan Dubugras Ruiz*, Pontifical Catholic University of RS, Brazil

ABSTRACT

We introduce the ActivityFlow specification language for flexible specification, composition,
and coordination of workflow activities. The most interesting features of the ActivityFlow
specification languageinclude: (1) a collection of specification mechanisms, allowing wor kfl ow
designersto use a uniform wor kfl ow specification interface to describe different types (i.e., ad-
hoc, administrative, or production) of workflows involved in their organizational processes—
this feature helps to increase the flexibility of workflow processes in accommodating various
types of changes; (2) a set of activity modeling facilities, enabling workflow designers to
describe the flow of work declaratively and incrementally, allowing to reason about correct-
ness and security of complex workflow activities independently from their underlying imple-
mentation mechanisms; (3) an open architecture that supports user interaction as well as
collaboration of workflow systems of different organizations, and a set of workflow activity
restructuring operators to respond to dynamic changes of workflow activities. e end the
paper with a series of simulation-based experiments that demonstrate the effectiveness of these
restructuring operators and the implementation architecture of the ActivityFlow system.
Keywords:  business process; complex workflow activities; workflow evolution; extended
transactions; information system engineering; workflow management.

INTRODUCTION

Thefocus of office computing today
has shifted from automating individual work
activities to supporting the automation of
organizational business processes. Ex-
amples of such business processesinclude
handling bank loan applications, process-
ing insurance claims, and providing tele-
phone services. Such requirement shift,

pushed by the technology trends, has pro-
moted the emergence of a new computing
infrastructure, workflow management sys-
tems (WFMSs), which provides a model
of business processes, and afoundation on
which to build solutions supporting the co-
ordination, execution, and management of
business processes (Hsu and Kleissner,
1996). One of the main challenges in
today’sWFMSsisto provide tools to sup-
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port organizations to coordinate and auto-
mate the flow of work activities between
people and groups within an organization,
and to streamline and manage business pro-
cesses that depend on both information
systems and human resources.

Workflow systems have gonethrough
three stages over the last decade
(McCarthy and Bluestein, 1991; Gawlick,
Hsu and Obermarck, 1994). First, home-
grown workflow systemswere monalithic
inthe sense that all control flows and data
flows were hard-coded into applications,
thus they are difficult to maintain and
evolve. The second generation of workflow
systems was driven by imaging/document
management systems or desktop object
managements. The workflow components
of these productsareusually tightly coupled
with the production systems. Typical ex-
amples are smart form systems (e.g., ex-
pensereport handling), and casefolder sys-
tems(e.g., insurance claimshandling). The
third generation workflow systemshavean
open infrastructure, a generic workflow
engine, a database or repository for shar-
ing information, and use middleware tech-
nology for distributed object management.
Several research projects are contributing
towards building the third generation
workflow systems (Sheth, 1995; Sheth et
al., 1996; Mohan, 1994). Examplesinclude
Exotica (Mohan, Alonso, Gunthor and
Kamath, 1995) from IBM, InConcert from
Xerox, ObjectFlow from DEC (Hsu and
Kleissner, 1996), and WorkManager from
HP. For an extensive survey of the
workflow automation software products
and prototypes, see Georgakopoulos,
Hornick and Sheth (1995).

Although there are more and more
successes in the workflow research and
development, it is widely recognized
(Mohan, 1994; Sheth et d., 1996) that there
are still technical problems, ranging from

inflexibleand rigid process specification and
execution mechanisms, and insufficient
possibilitiesto handle exceptions, tothe need
for uniform interface support for various
types of workflows (i.e., ad-hoc, adminis-
trative, or production workflows), for dy-
namic restructuring of business processes,
process status monitoring, automatic en-
forcement of consistency and concurrency
control, and recovery from failure, and for
improved interoperability between differ-
ent workflow servers. As pointed out
by Sheth et al. (1996), many existing
workflow management systems use apetri-
net based tool for process specification. The
availabledesigntoolstypically support defi-
nition of control flows and data flows be-
tween activities by connecting the activity
icons with specialized arrows, specifying
theactivity precedence order and their data
dependencies. In addition to graphical speci-
fication languages, many workflow systems
provide rule-based specification languages
(Dayal et al., 1990; Georgakopouloset al .,
1995). Although these existing workflow
specification languages are powerful in
expressiveness, one of the common prob-
lems (even those based on graphical “ node
and arc” programming models) isthat they
arenot “well-structured”. Concretely, when
used for modeling complex workflow pro-
cesses without discipline, these languages
may result in schemaswith intertwined pre-
cedence relationships. This makes debug-
ging, modifying, and reasoning of complex
workflow processes difficult (Liu and
Meersman, 1996).

In this paper, we concentrate our dis-
cussion on the problem of flexibility and
extensibility of process specification and
execution mechanisms. We introduce the
ActivityFlow specification language for
structured specification and flexible coor-
dination of workflow activities. The most
interesting features of the ActivityFlow
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specification languageinclude:

» A collection of specification mecha-
nisms, which allows the workflow de-
signer to use auniform workflow speci-
fication interface to describe different
types(i.e., ad-hoc, adminigtrative, or pro-
duction) of workflowsinvolved in their
organizational processes, and helps to
increasetheflexibility of workflow pro-
cesses in accommodating changes,

» A setof activity modding facilities, which
enabletheworkflow designer to describe
the flow of work declaratively and in-
crementally, allowing reasoning about
correctness and security of complex
workflow activitiesindependently from
their underlying implementation mecha-
nisms; and

* An open architecture, which supports
user interaction aswell as collaboration
of workflow systems of different orga-
nizations.

The rest of this paper proceeds as
follows. In the next section we describethe
basic concepts of ActivityFlow and high-
light some of theimportant features. Then
we present our ActivityFlow specification
language and illustrate the main features
of the language using the telephone ser-
vice provisioning workflow application as
the running example. We describe a set of
workflow activity restructuring operators
and how they can be used in response to
dynamic change of ActivityFlow models,
including a series of simulation-based ex-
perimentsto demonstrate the effectiveness
of these restructuring operators. We dis-
cuss the implementation architecture of
ActivityFlow and implementation-rel ated
issues, and conclude the paper with adis-
cussion on related works and a summary.

BASIC CONCEPTS OF
ACTIVITYFLOW

Business Process vs
Wor kflow Process

Business processes are collection of
activitiesthat support critical organizational
and businessfunctions. Theactivitieswithin
a business process have a common busi-
ness or organizational objective, and are
often tied together by a set of precedence
dependency relationships. One of the im-
portant problemsin managing businesspro-
cesses (by organization or human) is how
to effectively capture the dependencies
among activitiesand utilize the dependen-
ciesfor scheduling, distributing, and coor-
dinating work activitiesamong human and
information system resources efficiently.

A workflow process is an abstrac-
tion of a business process, and it consists
of activities, which correspond toindividual
process steps, and actors, which execute
these activities. An actor may be a human
(e.g., acustomer representative), aninfor-
mation system, or any combinations of the
two. A notable difference between busi-
ness process and workflow process is that
aworkflow processis an automated busi-
ness process, namely the coordination, con-
trol and communication of activitiesareau-
tomated, although the activitiesthemselves
can be either automated or performed by
people (Sheth et al., 1996).

A workflow management system is
a software system which offers a set of
workflow enactment servicesto carry out
a workflow process through automated
coordination, control and communication of
work activities performed by both human
and computers. An execution of a
workflow processiscalled aworkflow case
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(Hollingsworth and WfMC, 1995; WfMC,
2003). Users communicate with workflow
enactment services by means of workflow
clients, programsthat provide an integrated
user interface to all processes and tools
supported by the system.

Reference Architecture

Figure 1 showsthe WFM Sreference
architecture provided by the Workflow
Management Coalition (WfMC)
(Hollingsworth and WiMC, 1995). A
WFMS consists of an engine, a process
definitiontool, workflow application clients,
invoked applications, and administration and
monitoring tools. The processdefinition tool
isavisual editor used to define the specifi-
cation of aworkflow process, and we call
it workflow process schema in
ActivityFlow. The same schema can be
used later for creating multiple instances
of the same business process (i.e., each
execution of the schema produces an in-
stance of the same business process). The

workflow engine and the surrounding tools
communicate with the workflow database
to store, access, and update workflow pro-
cesscontrol data (used by the WFM Sonly),
and workflow process-specific data (used
by both application and WFMS). Examples
of such data are workflow activity
schemas, statistical information, and con-
trol information required to execute and
monitor the active process instances. Ex-
isting WFM Ssmaintain audit logsthat keep
track of information about the status of the
various system components, changesto the
status of workflow processes, and various
statistics about past process executions.
Thisinformation can beusedto providerea-
time status reports about the state of the
system and the state of the active workflow
process instances, as well as various sta-
tistical measurements, such as the aver-
age execution time of an activity belonging
to aparticular process schema, and thetim-
ing characteristics of the active workflow
process instances.

ActivityFlow discussed in this paper

Figure 1: Reference Architecture of Workflow Management Coalition
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can be seen as a concrete instance of the
WIMC reference architecture in the sense
that in ActivityFlow, concrete solutionsare
introduced for process definitions,
workflow activity enactment services, and
interoperability with external workflow
management systems. Our focusis on the
ActivityFlow process definition facilities,
including the ActivityFlow meta-model , the
ActivityFlow workflow specification lan-
guage and graphical notation for
ActivityFlow process definition based on
UML Activity diagrams.

ActivityFlow Meta M odel

The ActivityFlow meta-model de-
scribes the basic elements that are used to
define aworkflow process schema, which
describes the pattern of a workflow pro-
cess and its coordination agreements. In
ActivityFlow, aworkflow process schema
specifies activities that constitute the
workflow process and dependencies be-
tween these constituent activities. Activi-
ties represent steps required to complete a
business process. A step is a unit of pro-
cessing and can be simple (primitive) or
complex (nested). Activity dependencies
determine the execution order of activities
and the data flow between these activities.
Activities can be executed sequentially or
in parallel. Parallel executions may be un-
conditional, i.e., all activitiesare executed,
or conditional, i.e., only activitiesthat sat-

isfy the given condition are executed. In
addition, activitiesmay be executed repesat-
edly, and the number of iterations may be
determined at run-time.

A workflow process schema can be
executed many times. Each execution is
called a workflow process instance (or a
workflow process for short), which is a
partial order of activities and connectors.
The set of activity-precedence-dependency
relationships defines a partial order over
the given set of activities. The connectors
represent the pointswhere the control flow
changes. For instance, the point where con-
trol splitsinto multiple parallel activitiesis
referred to as split point and is specified
using a split connector. The point where
control mergesinto one activity isreferred
to as join point, and is specified using a
split connector. A join pointiscalled AND-
joinif theactivity immediately following this
point starts execution only when all the
activitiespreceding thejoin point finish ex-
ecution. A join pointiscaled OR-joinwhen
theactivity immediately following thispoint
starts execution as soon as one of the ac-
tivities preceding thejoin point finishesex-
ecution. A split point that can be statically
determined (before execution) inwhich al
branches are taken is called AND-split. A
split point which can be statically deter-
mined inwhich exactly one of the branches
will be taken is called OR-split. Figure 2
liststhetypical graphical representation of
AND-split, OR-split, AND-join, and OR-

Figure 2: UML Graphical representation of AND-split, OR-split, AND-join, and OR-join
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join by the use of UML activity diagram
constructs (Rumbaugh, Jacobson and
Booch, 1999; Fowler and Scott, 2000).

The workflow process schema aso
specifies which actors can execute each
workflow activity. Such specification is
normally done by associating roles with
activities. A role serves as a“ description”
or a“place holder” for a person, a group,
an information system, or any of the com-
binations required for the enactment of an
activity. Formally, aroleisaset of actors.
Each activity has an associated role that
determines which actors can execute this
activity. Each actor has an activity queue
associated with it. Activities submitted for
execution are inserted into the activity
gueue when the actor is busy. The actor
follows its own local policy for selecting
fromitsqueuefor next activity to execute.
The most common scheduling policiesare
priority-based and FIFO. The notion of a
role facilitates load balancing among ac-
torsand can flexibly accommodate changes
in the workforce and in the computing in-
frastructure of an organization, by chang-
ing the set of actors associated with roles.

Figure 3 shows a sketch of the
ActivityFlow meta-model using the UML
classdiagram constructs (Rumbaugh et al.,
1999; Fowler and Scott, 2000). Thefollow-
ing concepts are the basics of the activity-
based process model:

» A workflow process consists of a set
of activities and roles, and a collection
of information objects to be accessed
from different information resources.

* An activity is either an elementary ac-
tivity or a composite activity. The ex-
ecution of an activity consists of a se-
guence of interactions (called events)
between the performer and the
workflow management system, and a
sequence of actionsthat changethe state

of the system.

An elementary activity representsaunit
of work that anindividual, amachine, or
agroup can performin an uninterrupted
span of time. In other words, it is not
decomposed any further in the given
domain context.

A composite activity consists of sev-
eral other activities, either elementary
or composite. The nesting of activities
provideshigher levelsof abstraction that
help to capture the various structures of
organizational units involved in a
workflow process.

Arole is a place holder or description
for a set of actors, who are the autho-
rized performers that can execute the
activity. The concept of associating roles
with activities not only allows usto es-
tablish the rules for association of ac-
tivitiesor processeswith organizational
responsibilities, but also providesaflex-
ible and elegant way to grant the privi-
lege of execution of an activity to indi-
viduals or systems that are authorized
to assume the associated role.

An actor can be a person, a group of
people, or aninformation system, that is
granted membershipsinto rolesand that
interacts with other actors while per-
forming activities in a particular
workflow process instance.
Information objects are the data re-
sources accessed by a workflow pro-
cess. These objects can be structured
(e.g., relational databases), semi-struc-
tured (e.g., HTML forms), or unstruc-
tured (e.g., text documents). Structured
or semi-structured data can be accessed
and interpreted automatically by thesys-
tem, while unstructured data cannot and
thus often requires human involvement
through manual activities.

Important to note isthat activitiesin
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Figure 3: ActivityFlow meta-model
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ActivityFlow can be (1) manual activities,
performed by users without further sup-
port from the system; (2) automatic activi-
ties, carried out by the system without hu-
man intervention, or (3) semi-automatic
activities, using specific interactive pro-
gramsfor performing an activity.

The Running Example

To illustrate the ActivityFlow meta-
model, we use a telephone service provi-
sioning process in a telecommunication
company. A synopsis of the example is
described below.

Consider a business process
TeleConnect that performs telephone-ser-
vice-provision task by installing and billing
telephone connections between the
telecomm company and itsclients (Ansari,
Ness, Rusinkiewicz and Sheth, 1992,
Georgakopouloset al., 1995). Supposethe
workflow process A:TELECONNECT
consists of five activities
A :CLIENTREGISTER, A,.CREDIT
CHECK, A_CHECKRESOURCE,
A [INSTALLNEWCIRCUIT and

B:ALLOCATECIRCUIT (see Figure 4,
(A)). A: TELECONNECT is executed
when an enterprise’s client requests tele-
phone service installation. Activity
A,:CLIENTREGISTER registers the cli-
ent information and activity
A,:CREDITCHECK evauates the credit
history of the client by accessing financial
data repositories. Activity A;:CHECK
RESOURCE consultsthefacility database
to determinewhether existing facilitiescan
be used, and B: ALLOCATECIRCUIT
attempts to provide a connection by alo-
cating existing resources, such asalocating
lines (C: ALLOCATELINES), alocating
dotsin switches (AB:A LLOCATESWITCH,
ASALLOCATESWITCH), and preparing a
bill to establish the connection
(A,-PREPAREBILL) (see Figure4, (B)).
The activity of allocating lines
(C:ALLOCATELINES) inturn hasanum-
ber of subtasks such as selecting nearest
central offices (A,;SELECTCENTRAL
OFFICES), and relocating existing lines
(A.:ALLOCATELINE,
A,;ALLOCATELINE) and spans (trunk
connection) between two alocated lines
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(A:ALLOCATESPAN) (see Figure 4,
(C)). If A,,CHECKRESOURCE succeeds,
the costs of connection are minimal. The
activity A :[INSTALLNEWCIRCUIT is
designed to perform an alternative task that
involves physical installation of new facili-
ties in the event of failure of activity
A,.CHECKRESOURCE. The roles in-
volved with these activities are the
CreditCheck-GW, the Telecommunication
Company, and the Telecomm Contractor.
In addition, the Telecommunication Com-
pany isdetailed into threeroles. Telecomm-
HQ, T-central 1 and T-central 2. We use
the swimlanefeatureon UML activity dia-
grams to depict such different roles of ac-
torsasinvolved on performing activity in-
stances.

Advanced Concepts

ActivityFlow provides a number of
facilitiesto support advanced conceptssuch
asavariety of possihilitiesfor handling er-
rors and exceptions. For example, at the
activity specification stage, we alow the
workflow designers to specify valid pro-

cesses and the compensation activities. At
run-time additional possihilitiesare offered
to support recovery from errors or crashes
by triggering alternative executions defined
in terms of user-defined compensation ac-
tivities or system-supplied recovery rou-
tines.

Timedimensionisvery important for
thedeadline control of workflow processes.
In ActivityFlow, we provide aconstruct to
allow theworkflow designer to specify the
maximum allowable execution durations
for both the activities (i.e., subactivities or
component activities) and the process (i.e.,
top activity). Thistimeinformation can be
used to compute deadlinesfor all activities
in order to meet an overall deadline of the
whole workflow process. When an activ-
ity missesitsdeadline, special actions may
betriggered. Furthermore, thistimeinfor-
mation plays an essential rolein decisions
about priorities, and in monitoring deadlines
and generating time errorsin the case that
deadlines are missed. It also provides the
possibility to delay some activities for a
certain amount of time or to aspecific date.

Thethird additional featureisthe con-

Figure 4: Telephone Service Provisioning Workflow
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cept of workflow administrator (WFA).
Modern business organizations build the
whole enterprise around their key business
processes. It isvery important for the suc-
cess of process-centered organi zationsthat
each process has a WFA who is respon-
sible for monitoring the workflow process
according to deadlines, handling exceptions
and failures that cannot be resolved auto-
matically. More specifically, he/sheisable
to analyzethe current status of aworkflow
process, make decisions about priorities,
stop and resume aworkflow process, abort
aworkflow process, dynamically restruc-
ture a workflow process, or change a
workflow specification, etc. A special
workflow client interface is needed which
offers functionality to enable a workflow
process administrator to achieve al these
goals.

ACTIVITYFLOW PROCESS
DEFINITION LANGUAGE

Design Principles

M ost workflow management systems
provide graphical specification of workflow
processes. The available design tool stypi-
cally support iconic representation of ac-
tivities. Definition of control flowsand data
flows between activities is accomplished
by connecting the activity icons with spe-
cialized arrows specifying the activity pre-
cedence order and their data dependencies.
In addition to graphical specification lan-
guages, many WFM Ss provide rule-based
specification languages (Dayal, Hsu and
Ladin, 1990). One of the problems with
existing workflow specification languages
(even those based on graphical “node and
arc” programming models) isthat they are
not well-structured languages, in the sense
that, when used without adiscipline, these
languages may result in schemas with a

“spaghetti” of intertwined precedence re-
lationships, which makes debugging, modi-
fying, and reasoning of complex workflow
processes difficult (Liu and Meersman,
1996). Asrecognized by Shethet al. (1996),
there is a need for finding a more struc-
tured way of defining the wide spectrum
of activity dependencies.

Thus, the first and most important
design principle in ActivityFlow is to de-
velop awell-structured approach to speci-
fication of workflow processes, by provid-
ing asmall set of constructs and a collec-
tion of mechanismsto allow workflow de-
signersto specify the nested process struc-
ture and the variety of activity dependen-
ciesdeclaratively and incrementally.

The second design principleisto sup-
port the specification of basic requirements
that are not only critical in most of the
workflow applications (Sheth et a ., 1996)
but also essential for correct coordination
among activities in accomplishing a
workflow process. These basic require-
mentsinclude:

e activity structure (control flow) and in-
formation exchange between actors
(data flows) in aworkflow process.

 exception handling, specifying what ac-
tionsare necessary if an activity failsor
aworkflow cannot be compl eted.

* activity duration, specifying theestimated
or designated maximum allowable ex-
ecution timefor both the workflow pro-
cess (top activity) and its constituent
activities. Thistimeinformationiscriti-
cal for monitoring deadlinesof activities
and for providing priority attributes,
specifying priorities for activity sched-
uling.
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Main Components of a
Wor kflow Specification

In ActivityFlow, aworkflow process
is described in terms of a set of activities
and the dependencies between them. For
presentation convenience, in the rest of
paper we refer to a workflow process as
top activity and workflow component ac-
tivities as subactivities. We use activities
to refer to both the process and its compo-
nent activitieswhen no distinction needsto
be made.

Activities are specified by activity
templates or so called parameterized ac-
tivity patterns. An activity pattern de-
scribes concrete activities occurring in a
particular organization, which havesimilar
communication behavior. An execution of
theactivity patterniscalled aninstantiation
(or an activity instance) of the activity pat-
tern. Informally, an activity pattern consists
of objects, messages, message exchange
constraints, preconditions, postconditions,
and triggering conditions (Liu and
Meersman, 1996).

Activities can be composed of other
activities. The tree organization of an ac-
tivity pattern a is called the activity hier-
archy of a. The set of activity dependen-
cies specified in the pattern a can be seen
as the cooperation agreements among ac-
tivitiesthat collaboratein accomplishing a
complex task. The activity at the root of
the treeis called root activity or workflow
process; the others are subactivities. An
activity’s predecessor in the tree is called
a parent; a subactivity at the next lower
level is called a child. Activities at |eaf
nodes are elementary activitiesin the con-
text of the workflow application domain.
Nonleaf node activities are composite ac-
tivities. In ActivityFlow weallow arbitrary
nesting of activitiessinceitisgeneraly not
possibleto determineapriori the maximum

nesting an application task may need.
A typical workflow specification con-
sistsof thefollowing five units:

» Header: The header of an activity speci-
fication describes the signature of the
activity, which consists of aname, aset
of input and output parameters, and the
access type (i.e.,, Read or Write). Pa-
rameters can be objects of any kind, in-
cluding forms. We use keyword In to
describe parameters that are inputs to
the activity and Out to describe param-
eters that are outputs of the activity.
Parameters that are used for both input
and output are specified using keyword
InOut.

 Activity Declaration: The activity dec-
laration unit captures the general infor-
mation about the activity such as the
synopsis (description) of the task, the
maximum allowable execution time, the
administrator of theactivity (i.e., the user
identifier (UID) of the responsible per-
son), and the set of compensation ac-
tivitiesthat are used for handling errors
and exceptionsand their triggering con-
ditions.

* RoleAssociation: Thisunit specifiesthe
set of roles associated with the activity.
Each role is defined by arole name, a
role type, and a set of actors that are
granted membership into the role based
ontheir responsbility inthebusinesspro-
cess or in the organization. Each actor
is described by actor ID and role name.
We distinguish two types of rolesin the
first prototype implementation of
ActivityFlow: user and system, denoted
as USER and SY S respectively.

» Data Declaration: The data declara-
tion unit consists of the declaration of
the classes to which the parameters of
the activity belong and the set of mes-
sages (or methods) needed to manipu-
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late the actual arguments. Constraints
between these messages are al so speci-
fied in this unit (Liu and Meersman,
1996).

» Procedure: The procedure unit is de-
fined within abegin and end bracket. It
describes the composition of the activ-
ity, the control flow and dataflow of the
activity, and the pre- and post-condition
of the activity. The main component of
the control flow includes activity-execu-
tion-dependency specification, describ-
ing the execution precedence dependen-
cies between children activities of the
specified activity and the interleaving
dependencies between a child activity
and children of its siblings or between
children activities of two different sib-
ling activities. The main component of
the data flow specification is defined
through the activity state-transition de-
pendencies.

Dynamic Assignments of Actors

The assignment of actors (humans or
information systems) to activities accord-
ing to therole specification isafundamen-
tal concept in WFMSs. At run time, flex-
ible and dynamic assignment resolution
techniques are necessary to react ad-
equately to the resource allocation needs
and organizational changes. ActivityFlow
usesthefollowing techniquesto fulfill this
requirement:

* When the set of actorsisempty, the as-
signment of actors can be any users or
systems that belong to the roles associ-
ated with the specified activity. When
the set of actorsisnot empty, only those
actors listed in the associated actor set
can have the privilege to execute the
activity.

* The assignment of actors can aso be

done dynamically at run time. The ac-
tivity-enactment serviceenginewill grant
the assignment if the run time assign-
ment meets the role specification.

* The assignment of actors can be the
administrator of the workflow process
to which the activity belongs, as the
workflow administrator isadefault role
for all itsconstituent activities.

The role-based assignment of actors
providesgreat flexibility and breadth of ap-
plication. By statically and dynamically es-
tablishing and defining rolesand assigning
actors to activities in terms of roles,
workflow administrators can control access
at alevel of abstraction that is natural to
the way that enterprises typically conduct
business.

Control Flow Specification: Activity
Dependencies

In ActivityFlow a number of facili-
tiesare provided to promote the use of de-
clarative and incremental approach to
specification of activities and their depen-
dencies. For example, to make the specifi-
cation of activity execution dependencies
easier and more user friendly for the activ-
ity model designers, weclassify activity de-
pendencies into three categories: activity
execution dependencies, activity interleav-
ing dependencies, and activity statetransi-
tion dependencies. We also regulate the
specification scope of the set of activity
dependencies associated with each activ-
ity pattern to encourageincremental speci-
fications of hierarchically complex activi-
ties. For instance, to define an activity pat-
tern T, we require the workflow designer
to specify only the activity execution de-
pendenciesbetween activitiesthat are chil-
drenof aT activity, and restrict the activity
interleaving dependencies specifiedin T to
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be only the interaction dependencies be-
tween (immediate) subactivities of differ-
ent child activities of T, or betweenaT's
child activity and (immediate) subactivities
of its siblings. As a result, the workflow
designers may specify the workflow pro-
cess and the activities declaratively and
incrementally, allowing reasoning about
correctness and security of complex
workflow activitiesindependently fromtheir
underlying implementation mechanisms.

In addition, we providefour constructs
to model various dependencies between
activities. They are precede, enable, dis-
able, and compatible. The semantics of
each construct are formally described in
Figure 5. The construct precede is de-
signed to capture the temporary prece-
dence dependencies and the existence de-
pendencies between two activities. For
example, “A precede B” specifies a be-
gin-on-commit execution dependency be-
tween the two activities: ~"B cannot begin
before Acommits’. The constructsenable
and disable are utilized to specify the en-
abling and disabling dependencies between
activities. One of the critical differences
between the construct enable or disable
and the construct precede is that enable
or disable specifiesatriggering condition
and an action being triggered, whereas pr e-
cede only specifies an execution prece-
dence dependency as a precondition that
needs to be verified before an action can
be activated, and it is not an enabling con-

, Jan-Mar 2004

dition that, once satisfied, triggers the ac-
tion. The construct compatible declares
the compatibility of activitiesA and A,. It
isprovided solely for specification conve-
nience since two activities are compatible
when there is no execution precedence
dependency between them.

Recall the telephone service provi-
sioning workflow example given earlier.
After having entered the service request
in the client and service order databases,
the activity A;,CHECKRESOURCE tries
to determine which facilities can be used
when establishing the service. If
A,.CHECKRESOURCE commits, it
means that the client’s request can be met.
In case of failing on the allocation of the
service with existing lines and spans, but
being viable the installation of such new
circuit elements, ahuman field engineer is
selected to execute the activity
A, :INSTALLNEWCIRCUIT, which may
involve manual changes to some switch
and theinstallation of anew telephoneline.
We have adopted the Eder and Liebhart
(1995) approach and model in ActivityFlow
diagrams to represent only expected ex-
ceptions. Such cooperation dependencies
among A,:CHECKRESOURCE,
B:ALLOCATECIRCUIT and
A,:INSTALLNEWCIRCUIT can be speci-
fied asfollows:

1. A, O - circuitAllocated precede A, ..
(“circuitAllocated =false” is a precon-

Figure 5: Constructs for activity dependency specification

Construct | Usage Synopsis
precede A, precedeA; A, canbeginif A; commits

condition(A;) precede A, A, canbeginif condition(A1) ="'t r ue' holds.

condition(A;) precede condition(Az) If condition(A1) ="t r ue' then condition(A) canbe't r ue'
enable condition(A; ) enable A, condition(A;) ='t r ue' — begin(A,)

condition(A; ) enable condition(A,) If condition(A1) ='t r ue' then condition(A,) will be't r ue’
disable condition(A; ) disable A, condition(A;) ="t r ue' — abort(Ay)

condition(A; ) disable condition(A;) If condition(A1) ="t r ue' then condition(A,) cannot be't r ue'
compatible | compatible(A;, Ay) 't rue'if Ajand A, can be executed in paralld,

'f al se'if theorder of A; and A, isimportant
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dition for a human engineer to execute
A, after A, commits.)

2. (A, O circuitAllocated ) O A, enable
B. (if A, commits and returns the true
value in its circuitAllocated output pa-
rameter, or ahuman field engineer suc-
ceedsoninstalling the line/span needed,
then B istriggered).

The first dependency states that the
commit of A;; CHECKRESOURCE and
thefalse value of the circuitAllocated out-
put parameter are preconditions for A
INSTALLNEWCIRCUIT. The second
dependency amounts to saying that if A,
CHECKRESOURCE is successful on de-
fining existing facilitiesthat satisfy there-
quest, (circuitAllocated = true) or A :
INSTALLNEWCIRCUIT have installed
the needed new facility, then B:
ALLOCATECIRCUIT is triggered. The
reason that we use the construct precede,
rather than enable, for specifying the first
dependency is  because A :
INSTALLNEWCIRCUIT involves some
manual work and thus must be executed

by a human field engineer. ActivityFlow
also allowsthe usersto specify conditional
execution dependencies to support activi-
ties triggered by external events (e.g.,
Occurs(E,)) enable A).

Activity Specification: An Example

To illustrate the use of ActivityFlow
workflow specification languagein describ-
ing activities of a nested structure, we re-
cast the telephone-service-provisioning
workflow, given previoudy. Figure 4 shows
the hierarchical organization of the
workflow process TELECONNECT. The
top activity TELECONNECT (see Figure
4, (A)) is defined as a composite activity,
consisting of the following five activities:
A CLIENTREGISTER, A
CREDITCHECK, A, CHECK RE-
SOURCE, B:ALLOCATECIRCUIT, and
A, INSTALLNEWCIRCUIT. The activ-
ity B: ALLOCATECIRCUIT (see Figure
4, (B)) isagain acomposite activity, com-
posed of four subactivities:

Figure 6: Example specification of the top activity TELECONNECT

Access Type: Write
Synopsis: Telephone service provisioning
Max Allowable Time: 2 weeks
Administrator: UID: 0.0.0.337123545
Exception Handler : none
Role Association:
Role name: Telecommunication Company
Roletype: System
Data Declaration:
import class CLIENT,
import class POINT,
import class CIRCUIT;

Execution Dependencies:
ExeRy: A; precede {A,, As}
ExeR,: Az 0= circuitAllocated precede Ay
ExeRs: (Az OcircuitAllocated) OA;, enable B
I nter leaving Dependencies:
ILRy: A, O creditStatus precede Ay
State Transition Dependencies:
STR;: abort(B) enable abort(self)
end Activity

Activity TELECONNECT(In: Clientld:CLIENT, Start:POINT, End:POINT, Out: Circuitld:CIRCUIT)

begin Behavioral Aggregation of component Activities:
Aj: CLIENTREGISTER ( In: Clientld:CLIENT, Start:POINT, End:POINT)
A,: CREDITCHECK (In: Clientld:CLIENT, Start:POINT, End:POINT, Out: creditStatus:Boolean)
Az CHECKRESOURCE ( In: Clientld:CLIENT, Start:POINT, End:POINT, Out: circuitAllocated:Boolean)
A1y INSTALLNEWCIRCUIT( In: Clientld:CLIENT, Start:POINT, End:POINT, Out: Circuitld:CIRCUIT)
B: ALLOCATECIRCUIT (In: Clientld:CLIENT, Start:POINT, End:POINT, Out: Circuitld:CIRCUIT)
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C.ALLOCATELINES, A;: ALLOCATE
SWITCH, A,: ALLOCATESWITCH and
A, PREPAREBILL. The activity
C:ALLOCATELINES (see Figure 4, (C))
is also a composite activity, with four
subactivities: A,: SELECTCENTRAL
OFFICES, A.: ALLOCATELINE, A;:
ALLOCATELINE, and A: ALLOCATE
SPAN. Based on the structure of a
workflow process definition discussed pre-
viously, we provide an example specifica-
tion for thetel ephone service provisioning
workflow (top activity) in Figure 6, thecom-
posite activities B: ALLOCATECIRCUIT
in Figure 7 and C: ALLOCATELINES in
Figure 8, and the elementary activity A :
INSTALLNEWCIRCUIT in Figure9.

A Formal Model for
Flow Procedure Definition

In this section, we provide a graph-
based model to formally describe the pro-

cedure unit of aworkflow specificationin
ActivityFlow. This graph-based flow pro-
cedure model provides a forma founda-
tionfor ActivityFlow graphical user inter-
face, which allows the end-users to model
office procedures in a workflow process
using iconic representation.

In ActivityFlow, we describe an ac-
tivity procedure in terms of (1) a set of
nodes, representing individual activitiesor
connectors between these activities (e.g.,
split and join connectors), and (2) a set of
edges, representing signals among the
nodes. Each nodein the activity flow pro-
cedure is annotated with atrigger. A trig-
ger defines the condition required to fire
the node upon receiving signalsfrom other
nodes. Thetrigger condition isdefined us-
ing the four constructs described earlier.
Each flow procedure has exactly one be-
gin node and one end node. When the be-
gin nodeisfired, an activity flow instance
iscreated. When the end nodeistriggered,

Figure 7: Example specification of the composite activity ALLOCATECIRCUIT

Access Type: Write
Synopsis: Circuit allocation
Max Allowable Time: 3 days
Administrator: UID: 0.0.0.337123545
Exception Handler: none
Role Association:
Role name: Telecommunication Company
Roletype: System
Data Declar ation:
import class CLIENT,
import class POINT,
import class CIRCUIT,
import class LINE,
import class SPAN;
begin Behavioral Aggregation of component Activities:

Execution Dependencies:

ExeR,: COAgOAg precede A
Interleaving Dependencies:

ILR,: As OA; precede Ag

ILRz: Ag A, precede Ag
State Transition Dependencies:

end Activity

Activity ALLocaTECIRcUIT(In: Clientld:CLIENT, Start:POINT, End:POINT, Out: Circuitld: CIRCUIT)

C: ALLOCATELINES( In: Start:POINT, End:POINT, Out: Circuitld: CIRCUIT)

Ag: ALLOCATESWITCH ( In: Linel:LINE, Out: Span:SPAN)

Ag: ALLOCATESWITCH ( In: Line2:LINE, Out: Span:SPAN)

A1o: PREPAREBILL( In: Clientld:CLIENT, Linel:LINE, Line2:LINE, Span:SPAN, Out: Circuitld:CIRCUIT)

STR,: abort(C) O abort(Ag) O abort(Ag) enable abort(self)
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Figure 8: Example specification of composite activity ALLOCATELINES

Access Type: Write
Synopsis: Lineallocation
Max Allowable Time: 1 days
Administrator: UID: 0.0.0.337123545
Exception Handler: none
Role Association:
Role name: Tdecommunication Company
Roletype: System
Data Declar ation:
import class POINT,
import class LINE,
import class SPAN,
import class Central Off;
begin Behavioral Aggregation of component Activities:

Execution Dependencies:
ExeRs: A, precede {As, Ag, A7}
State Transition Dependencies:

end Activity

Activity ALLocATELINES(In: Start:POINT, End:POINT, Out: Circuitld: CIRCUIT)

A, SELECTCENTRALOFFICES( In: Start:POINT, End:POINT, Out: Off1:Central Off, Off 2: Central Off)
As: ALLOCATELINE (In: Start:POINT, Off1:Central Off, Out: Linel:LINE)

Ag: ALLOCATELINE (In: End:POINT, Off2:Central Off, Out: Line2:LINE)

A7 ALLOCATESPAN( In: Off1:Central Off, Off2:Central Off, Out: Span:SPAN)

STRs: abort(A4) O abort(As) Oabort(Ag) Uabort(A7) enable abort(self)

Figure 9: Example specification of elementary activity INSTALLNEWCIRCUIT

Access Type: Write
Synopsis: New line/span instalation
Max Allowable Time: 1 week
Administrator: UID: 0.0.0.337123545
Exception Handler: none
Role Association:
Role name: Telecomm Contractor
Roletype: User
end Activity

Activity INSTALLNEWCIRcUIT(IN: Clientld:CLIENT, Start:POINT, End:POINT, Out: Circuitld: CIRCUIT)

the activity flow instance terminates.

Definition 1 (activity flow graph)

An activity flow graph is described by a
binary tuple< N, E >, where N isafinite
set of activity nodes and connector nodes.
N = AN O CN O {bn, en}, where AN =
{nd,, nd,,...,nd } isaset of activity nodes,
CN={cn,cn,,..., cn} isaset of connec-
tor nodes, bn denotes the begin node and
en denotes the end node. Each node n, [
N (i=1,.., n)isdescribed by aquadruple
(NN, TC, NS, NT), where NN denotes the
node name. TC is the trigger condition of
the node. NSis one of the two states of the

node: fired or not fired. NT is the node
type.
«If n OAN - NT = {simple, com-
pound, iteration}
* If n OCN - NT ={AND-split, OR-
Split, AND-join, OR-join}
E={e,e,.., e} isaset of edges. Each
edge is of the form ndi - ndj. An edge
e nd - ndj is described by a quadruple
(EN, DPnd, Avnd, ES), where EN is the
edge name, DPnd is the departure node,
AVnd isthe arrival node, and ESis one of
the two states of the node: signaled and
not signaled. We call g an outgoing edge
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of node nd, and incoming edge of node
nd.O

For each node nd, there is a path
from the begin node bn to nd.. We say that
anode nd, is reachable from another node
nd if there is a path from nd, to nd.

Definition 2 (reachability)

Let G=< N, E> beanactivity flow graph.
For any two nodes nd, nd [J N, nd is
reachable from nd, denoted by nd, ~ -
ndj, if and only if one of thefollowing con-
ditionsisverified:

() nd = ndj.

(2 nd - ndJ.D E.

(3) Und, N, nd_#nd and nd, #
nd such that nd * - nd,_and nd, "~ nd.
ad

A node ndj issaidto bedirectly reach-
ablefrom anode nd, if the condition (2) in
Definition 2 issatisfied.

To guarantee that the graph G = <N,
E >isacyclic, thefollowing restrictionsare
placed:

1) O nd, ndj [OON,if nd - ndj [J E then
nd - nd OE.

2) 0 nd, ndj [ON, if nd " - ndj then ndj
"~ nd, does not hold.

To illustrate the definition, let us re-
cast the telephone service provisioning
workflow procedure depicted inthe Figure
4, (A) diagram, and described in Figure 6
intermsof the above definition asfollows:
N = {(Begin, NeedService, notfired,
simple), (A,, NeedService, notfired,
simple), (A,, commit(A ), notfired,
simple), (OS, commit(A), notfired, OR-
Split), (A,, creditSatus = true, notfired,
simple), (OS,, commit(A,), notfired, OR-
Split), (A, circuitAllocated = false,
notfired, simple), (OJ,, circuitAllocated
= true U commit(A,,), notfired, OR-Join),
(B, terminate(OJ,), notfired, compound),
(OJ,, creditSatus = false 0 commit(B),
notfired, OR-Join), (End, terminate(OJ,),

notfired, simple)}

E={Begin - A, A - A,A - OS,
0s - A,0S -~ 0J,A - CS, CS,
- 03,08 - A,A, -0J,0J - B,

117

B - 0J, OJ, - End}

Note that NeedService is a Boolean
variable from the ActivityFlow runtime
environment. When a new telephone ser-
vice request arrives, NeedService is true.
Figure 4 (A) shows the use of the UML-
based ActivityFlow graphical notationsto
specify thisactivity flow procedure. When
anodeisclicked, the nodeinformation will
bedisplayed inaquadruplet, including node
type, name, itstrigger, and its current state.
When an edge is clicked, the edge infor-
mation, such as the edge name, its depar-
tureand arrival nodes, and its current state,
will be displayed. From Figure 4 (A), itis
obvious that activity node B is reachable
fromnodes A, A,, A,and A ,.

An activity flow graph G is instanti-
ated by an instantiation request issued by
an actor. Theinstantiation request provides
theinitial values of the data items (actual
arguments) required by the parameter list
of theflow. Anactivity flow instantiationis
valid if the actor who issued the firing sat-
isfiesthe defined role specification.

Definition 3 (valid flow instantiation)
Let G= < N, E> betheactivity flow and
u = (actor_oid, role_name) be an actor
reguesting the activity flow instantiation T
of G. The flow instantiation T is valid if
and only if [p [J Role(G) such that
role_ name (u) = p. O

When the actor who initiates a flow
instantiation request is not authorized, the
instantiation request isrejected, and theflow
instantiation isnot created.

When aflow instantiation request is
valid, aflow instantiation, say T, iscreated
by firing the begin node of T.
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Definition 4 (activity flow instantiation)
Let G= < N, E > bethe activity flow and
T denote avalid flow instantiation of G. T
iscreated by assigning aflow instanceiden-
tifier and carrying out the following steps
to fire the begin node bn(T): set the state
of node bn(T) to befired; set all the outgo-
ing edges of bn(T) to be signaled; per-
form anodeinstantiation for each node that
is directly reachable from the begin node
bn(T).

A node can be instantiated or trig-
gered when all the incoming edges of the
node are signaled, its trigger condition is
evaluated to be true. When anodeistrig-
gered, aunique activity instance identifier
is assigned, and the node state is set to
fired. In ActivityFlow, all thenodesareini-
tialized to not_fired and all the edges are
initialized to not_signaled.

Definition 5 (node instantiation)

Let G= < N, E > bethe activity flow and

T denoteavalid flow instantiation of G. A

node nd, 7N can be instantiated if [ind

[JN such that nd. # nd, and nd, isdirectly

reachable from nd, we have nd, is in the

state fired, the instance identifier of T is
identified, the trigger of nd, can be evalu-
ated.

A node nd, isinstantiated if the fol-
lowing steps are performed:

e updates to data items are applied in al
the nodes nd, from which nd, is directly
reachable.

» all the incoming edges of nd, are set to
besignaled.

* nd, isfired if (1) itstrigger condition is
evaluated to betrueand (2) itiscurrently
not fired or it isan iteration activity node
and itsiteration condition isevaluated to
be true. O

In ActivityFlow, we usetheterm con-
ditional rollback to refer to the situations
that requirerevisiting the nodes previously

terminated or not fired. Conditiona roll-
backs are adesirablefunctionality and en-
countered frequently in some business pro-
cesses. We provide the UML activity
iterator symbol (“*” into a compound ac-
tivity-node construct) for therealization of
conditional rollbacks. The use of iterating
activities has a number of interesting fea-
tures. First, by defining an activity with the
iterator symbol, being such activity acom-
posite activity, we identify the nodes that
can be or allowed to be revisited by the
subsequent activities in the same subflow
instance. Second, when using iteration
rather than explicitly backward edges, the
conditional rollback may be considered as
a continuation of the workflow instance
execution. We believe that the use of it-
eration provides a much cleaner graphical
notation to model cyclic activity workflows.

To reduce the complexity and facili-
tate the management of conditional roll-
backs, the only restriction we place on the
conditional rollback isthefollowing: A call
torollback to an activity node nd, can only
be accepted if it comes from subactivity
nodes or sibling activity nodes of nd,.

Figure 10 shows an example which
recasts the composite activity
C:ALLOCATELINESdiscussed earlier by
allowing aconditional rollback of someal-
location line activities (A, ALLOCATE
LINE, A_ALLOCATELINE and
A ALLOCATESPAN). It permits the ex-
ecution of a set of C:ALLOCATELINES
and evaluateswhich instanceismore prof-
itable. Theothersarerollbacked. We model
this requirement using iteration (see Fig-
ure 10).

By clicking theiteration-typeactivity
node, theinformation about its subflow will
bedisplayed. Therollback conditionisalso
displayed. In this case, it says that if
C:ALLOCATELINES is successful then
the AND-Split type connection node fol-
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lowing C:ALLOCATELINES is fired.
Then, activities A ALLOCATESWITCH
and A,;ALLOCATESWITCH are fired.
Otherwise, a new C:ALLOCATELINES
instanceisfired until theprofit level required
may be reached.

Definition 6 (termination property)
An activity flow instance terminates if its
end node is triggered. A flow instance is
said to satisfy the termination property if
the end node will eventually befired. O
Thetermination property guarantees
that the flow procedure instantiation will
not “hang’”.

Definition 7 (precedence preserving)

Let G= < N, E > betheactivity flow. An
activity flow instance of G issaid to satisfy
precedence preserving property if the node
firing sequenceis compatiblewith the par-
tial order defined by the activity precedence

Figure 10: An example using iterator
connectors

Teleczmmaunicel b n Coepey

AN AL

L ] A dinrp wimnc b

A Poppaeptd

dependenciesin G. O

In ActivityFlow, thesetwo latter prop-
erties are considered as correctness prop-
erties, among others, for concurrent execu-
tionsof activities. For adetailed discussion
on preservation of the correctness proper-
ties of workflow activities, see Liu and Pu
(19984).

DYNAMIC WORKFLOW
RESTRUCTURING OF
ACTIVITYFLOW MODELS

To maintain the competitivenessin a
business-oriented world, enterprises must
offer high-quality productsand services. A
key factor in successful quality control is
to ensure the quality of all corporate busi-
ness processes, which include clearly de-
fined routing among activities, association
among business functions (e.g. programs)
and automated activities, execution depen-
dency constraints and deadline control, at
both activity level and wholeworkflow pro-
cess level. Besides the workflow charac-
teristics, most workflow applications are
expected to have 100% uptime (24 hours
per day and 7 days per week). Production
workflow (Leymann and Roller, 2000) isa
class of workflow that presents such char-
acteristicsand theworkflow processeshave
ahigh businessvaluefor the organizations.

The enterprise commitment with a
deadline for each of its workflow process
execution becomes one of the design and
operation objectivesfor workflow manage-
ment systems. However, deadline control
of workflow instances have led to a grow-
ing problem that conventional workflow
management systems do not address,
namely how to reorganize existing workflow
activitiesin order to meet deadlinesin the
presence of unexpected delays. Besides,
having long-lived business-process in-
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stances, workflow designs must deal with
schemaevolution with the proper handling
of ongoing instances. These problems are
known astheworkflow-restructuring prob-
lem.

This section describes the notation
and issues of workflow restructuring, and
discusses how a set of workflow activity
restructuring operators can be employed
to tackle the workflow-restructuring prob-
lemon ActivityFlow modeling. Werestrict
our discussion in the context of how to
handle unexpected delays. A deeper study
on such context can befound in Ruiz, Liu
and Pu (2002).

Basic Notions

Activity restructuring operators are
used to reorganize the hierarchical struc-
ture of activity patterns with their activity
dependencies remaining valid. Two types
of activity restructuring operators are pro-
posed by Liuand Pu (1998): Activity-Split
and Activity-Join. Activity-Split operators
allow releasing committed resources that
were updated earlier, enabling adaptivere-
covery and added concurrency (Liu and
Pu, 1998a). Activity-Join operators, the
inverse of activity-split, combine results
from sub-activities together and release
them atomically. The restructuring opera-
torscan be applied to both simple and com-
posite activity patterns and can be com-
bined in any formation. Zhou, Pu and Liu
(1998) present apractical method toimple-
ment these restructuring operators in the
context of the Transaction Activity Model
(TAM) (Liu and Pu, 1998a).

In TAM, activities are specified in
terms of activity patterns. An activity
pattern describes the communication pro-
tocol of agroup of cooperating objectsin
accomplishing atask (Liu and Meersman,
1996). We distinguish two types of activi-

ties: simple activity pattern or composite
activity pattern. A simple activity pat-
tern is a program that issues a stream of
messages to access the underlying data-
base (Liu and Pu, 1998a). A composite
activity pattern consists of atree of com-
posite or simple activity patterns and a set
of user-defined activity dependencies: (a)
activity execution and interleaving depen-
dencies, and (b) activity state-transition
dependencies. The activity at the root of
the tree is called root activity; the others
are called sub-activities. An activity’spre-
decessor inthetreeiscalled parent; asub-
activity at the next lower level iscaled a
child. Activity hierarchy is the hierarchi-
cal organization of activities (see Figure 4
for an example).

A TAM activity has a set of observ-
able states S and a set of possible state
transitions ¢:S - S, where S = {begin,
commit, abort, done, compensate} (Liu
and Pu, 1998) (see Figure 11). When an
activity T isactivated, it entersin the state
begin and becomes active. The state of T
changes from begin to commit if T com-
mits, and to abort if T or its parent aborts.
If T'sroot activity commits, then its state
becomes done. When T is a composite
activity, T entersthe commit state if all its
component activitieslegally terminate, i.e.,
commit or abort. If an activity aborts, then
al its children that are in begin state are
aborted and its committed children, how-
ever, are compensated for. We call this
property termination-sensitive depen-
dency (Liu and Pu, 1998a) between an
activity A_ and its parent activity A, de-
noted by A, ~>A_. Thistermination-sensi-
tive dependency, inherent in an activity hi-
erarchy, prohibits a child activity instance
from having more than one parent, ensur-
ing the hierarchically nested structure of
active activities. When the abort of al ac-
tive sub-activities of an activity is com-
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pleted, the compensation for committed sub-
activities is performed by executing the
corresponding compensations in an order
that isthe reverse of the original order.

Definition 8 (TAM activity)

Let a denote an activity pattern and S
denote a set of activity patterns. Let
AD(a) denote a set of activity dependen-
cies specified in a, children(a) denote
the set of child activity patterns of a,
and Pattern(T) denote the activity pat-
tern of activity T. An activity T is said to
be a TAM activity if and only if it satis-
fies the following conditions:

e (o [ , Pattern(T) =a.
* [JP UAD(a), P(T) = true.
» S [Ochildren(T), T ~> Sand Sis a
TAM activity. O

Another property of an activity hi-
erarchyisthevisibility of objectsbetween
activities. The visibility of an activity re-
fersto itsability to see the results of other
activitieswhileit isexecuting. A child ac-
tivity A has access to all objects that its
parent activity A, can access, i.e., it can
read objectsthat A, has modified (Liu and
Pu, 1998a). TAM uses the multiple ob-
ject version schemes (Nodine and Zdonik,
1990) to support the notion of visibility in
the presence of concurrent execution of
activities. The Root activity at the top of
the activity hierarchy contains the most
stable version of each object, and guaran-
teesthe possibility to recover its copies of

objectsin the event of a system failure.
Workflow Restructuring Operators

Therearethreetypesof activity-split
operators: serial activity-split (s-Split),
parallel activity-split (p-Split), and
unnesting activity-split (u-Split).

» Thes-Split operator splitsan activity into
two or more activities that can be per-
formed and committed sequentialy. It
establishes a linear execution depen-
dency among the resulting activities
which is captured by using the precede
construct.

* Thep-Split splitsan activity into two or
moreactivitiesthat can be submitted and
committed independently of each other.
The only dependency established be-
tween them is the compatibility anong
all split activitiesand can berepresented
by compatible construct.

» Theu-Split splitsC activity by unnesting
the activity hierarchy anchored at C. U-
Split operators are effective only on
composite activity patterns.

A series of specializations are intro-
duced for activity split, including s-Split -
serial activity-split, (sa-plit - serial-alter-
native activity-split), and p-Split - parallel
activity-split, (pa-Split - parallel-aternative
activity-split, cc-Split - commit-on-commit
activity-split, and ca-Split - commit-on-
abort activity-split). These specializations

Figure 11: TAM activity state transition graph
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tackle situations where it is necessary to
synchronize concurrent split activitiesand
when certain activities can be performed
only if another aborts.

An activity-split operation is said to
bevalid if and only if the resulting activi-
ties: (1) satisfy the implicit dependencies
implied in the activity composition hierar-
chy such as the termination-sensitive de-
pendency, i.e., TAM activities; (2) all ex-
isting activity dependencies are semanti-
cally preserved after the split; and (3) do
not introduce any conflicting activity de-
pendencies (Liu and Pu, 1998).

Similarly, activity-Join has two spe-
cialized versions. join-by-group (g-Join)
and join-by-merge (m-Join).

e Theg-Join operator groupstwo or more
activities by creating a new activity as
their parent activity, while preserving the
activity composition hierarchy of each
input activity. A g-Join is considered
legal if theinput activitiesareall sibling
activities or independently ongoing ac-
tivities, i.e., they do not have common
parent activity.

e Them-Join operator physically merges
two or more activities into a single ac-
tivity. Anm-Join is considered legal, if
for each pair of input activities (C1, C2),
C1 and C2 are sibling activities, or one
is a parent activity of another, or they
areindependently ongoing activities.

Restructuring Possibilities on
TeleConnect Workflow

Most workflow designstakeinto ac-
count the organizational structure, the com-
putational infrastructure, the collection of
applications provided by the corporate en-
terprises, and the cost involved. Such de-
signsare based on the assumptionsthat the
organizational structureisan efficient way

to organize busi ness processes (workflows)
and the computational infrastructure hasthe
optimal configuration withintheenterprise.
However, such assumptions may not hold
when unexpected delays happen and when
such delays severely hinder the progress
of ongoing workflow executions.

Typical delays in execution of busi-
ness workflows are due to various types
of failuresor disturbancesin computational
infrastructure, including instabilitiesin net-
work bandwidth, and replacement of low
power computing infrastructure in coping
with server failures. Such disturbances can
be transient or perennial, unexpected or
intentional, and can affect an expressive
number of processes.

Figure 12 showsthetypica implemen-
tation architecture of the Telecomm com-
putational infrastructure, which isused in
our experimental study. Each telecommu-
nications central T-central has a computer
server to support its activities and to man-
ageitscontrolled linesand switches. Inthe
Telecomm Headquarters, Telecomm-HQ,
a computer server supports all the man-
agement activities and controls the infor-
mation with respect to communication
among its branches (spans), centralizesthe
billing, etc. The credit check gateway
CeditCheck-GW executes the dialog be-
tween Telecomm and credit operators and
banks to check the current financial situa-
tion of the clients. Figure 12 describes a
typical computational capacity of comput-
ing systems as well as the network con-
nection speeds assumed in the experiments
reported earlier. We have adopted TPC-
W (T.-W. Subcommittee, 2001) to show
the power of computing systems because
we have assumed all Telecomm informa-
tion systems are web-based e-commerce
applications.

Recall the telephone-service-provi-
sionintroduced earlier, and assumethat this
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workflow process was designed to match
the organizational structurewith respect to
itsadministrative structure and correspond-
ing responsibilities. From the activity hier-
archy shown in Figure 4, the activity
ATELECONNECT consists of two com-
positeactivities: B:ALLOCATECIRCUIT
and C:ALLOCATELINES. Theexecution
dependencies of these compound activities
(A,BandC) aregivenin Figures 6, 7 and 8.
We can conclude that A:CREDITCHECK
must be completed before B:ALLOCATE
CIRCUIT because A :PREPAREBILL
depends on A,:CREDITCHECK and
A ;PREPARE BILL is a sub-activity of
B:ALLOCATE CIRCUIT. By combiningthe
hierarchical structure of those composite ac-
tivitiesand their corresponding execution de-
pendencies, we present the workflow de-
sign, without compound activities, in Fig-
ure 13.

In the presence of delays, restructur-
ing operators can be applied to rearrange
the activity hierarchy anchored by
A TELECONNECT. The godl is to add
concurrency during execution of their in-
stances. Such added concurrency means
the earlier release of committed resources
to allow access by other concurrent activi-
ties (Liu and Pu, 1998). The TAM opera-
tors that permit increase of concurrency
among TAM activities are p-Split and u-
Solit. For simplicity, we discuss only the

use of the u-Split operator because it does
not demand previous knowledge of thein-
ternal structure and behavior of the target
activity.

By applying u-Split on
A TELECONNECT, it ispossibleto unnest
its  compound activities B:
ALLOCATECIRCUIT or C: ALLOCATE
LINES. Then, two different restructured
workflows with added concurrency are
obtained: unnesting C: ALLOCATELINES
(Figure 14) and unnesting B: ALLOCATE
CIRCUIT (Figure 15). When compared
with theinitial workflow designsshownin
Figure4, unnesting C: ALLOCATELINES
permits the start of activity A
ALLOCATESWITCH or A;: ALLOCATE
SWITCH in case of delay in execution of
A ALLOCATELINE or A ALLOCATE
LINE respectively. Similarly, unnesting B:
ALLOCATECIRCUIT allows the start of
composite activity C: ALLOCATELINES
before the credit check activity A,
CREDITCHECK commits. We have cho-
sen to control instances of activity A,
CREDITCHECK to decide if B:
ALLOCATECIRCUIT needs restructur-
ing. In addition, A;: ALLOCATELINE is
the chosen activity to be controlled when
examining the need for C:
ALLOCATELINES estructuring because
both A, and A, show the same behavior in
theworkflow model. Theresultsonrestruc-

Figure 12: A typical computing environment for the Telecomm Company
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turing C by controlling A, are similar to
those obtained by controlling A,.

Simulation Environment

To study the effectiveness of activity
restructuring operators, we built asimula-
tor using CSIM 18 (Mesquite Software, Inc.,
1994) that performs workflow models.
These models consist of simple and com-
posite workflow activities such as TAM
(Zhou et al., 1998). Thetypical computing
environment depicted in Figure 12 isused

to quantify the disturbance effects and to
tune the simulator. We discussed further
experimentswith arange of parameter set-
tings that expand and support the results
outlined here. Here we briefly describethe
simulator, focusing on the aspectsthat are
pertinent to our experiments.

To simulate the TELECONNECT
workflow activity, we assume 60 seconds
being the upper averagelimit for theel apsed
time of one workflow instance execution.
In other words, a TeleConnect workflow

Figure 13: Plane graphical representation of the flow procedure of activity TELECONNECT
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instance carriesout by 60-second upper limit
when theinstallation of new facilities (ex-
ecution of activity A ;: INSTALLNEW
CIRCUIT) is not required. We represent
the elapsed time of activity instancesusing
the uniform statistical distribution, since
these activities involve a combination of
computer and human activities of unpre-
dictable duration within aknown range of
reasonable values. Figure 16 shows the
type of computer system where each ac-
tivity executesthe corresponding activities
in the ssimulation, and the minimum and
maximum elapsed time values taken.

For the sake of simplicity, we assume
only three different time intervals for the
elapsed time of activity instances. For each
time interval corresponds to one comput-
ing system type. Activity instances execut-
ing at Telecomm-HQ (A, A, A,, A, and
A,,) show elapsed time between 3.2 sec-
onds and 5.2 seconds. 6.4 seconds - 10.4

Figure 14: TELECONNECT workflow design
after u-Split of C

seconds is the elapsed time interval for
activity instances executed on any T-cen-
tral systems (A,, A, A;and A)) and A, in-
stances present elapsed time between 2.0
seconds and 22.0 seconds when execut-
ing on CreditCheck-GW system. We adopt
these time intervals because:
(1) Telecomm-HQ is the most powerful
system in the computing environment and
hosts the workflow management system
(WEMS); (2) as regards Telecomm-HQ,
the elapsed time of each activity instance
(executed at T-central, or at CreditCheck-
GW) considers also the time to flow data
and commands into network connections;
(3) CreditCheck-GW representsacomput-
ing system beyond the responsibilities of
the Telecomm Company technical staff and
with a quite variable response time.

We adopted the 90% percentile prin-
ciple from TPC-C (T.-C. subcommittee,
2001) to define the 60-second limit. TPC-

Figure 15: TELECONNECT workflow design
after u-Split of B
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Figure 16: Parameter values for the uniform statistical function

Activity(ies) Computer Sysem | Min. Max.
Ay Az Ay Ag, Ay Telecomm-HQ 3.2 sec. 5.2 Sec
As Ag Ag Ag T-central 6.4sec.| 10.4 sec,
A, CreditCheck-GW 2.0sec.| 22.0sec.

C defines 90% percentile asthe upper limit
for response time on benchmarking com-
plex OLTP application environments. Thus,
90% percent of the activity instances ex-
ecuted in Telecomm-HQ must show an
elapsed time not greater than 5.0 seconds.
Analogously, 10.0 seconds and 20.0 sec-
onds correspond to T-central and
CreditCheck-GW activity instances, re-
spectively. The exponential statistical dis-
tribution, describing jobs that arrive inde-
pendently, has been used to definethetime
interval between the start of each workflow
instance. These values considered, the
simulation environment has been calibrated
to execute 165 workflow instancesin par-
alel. Such fine-tuning has been obtained
by using 0.2 second as the input for the
exponential statistic function.

We assess the effectiveness of
workflow restructuring by comparing the
execution of TELECONNECT workflow
with and without restructuring of its com-
posite activities B: ALLOCATECIRCUIT
and C: ALLOCATELINES. As defined
earlier, the sub-activities A,
CREDITCHECK and A;: ALLOCATE
LINE are the chosen activities to be con-
trolled, namely, thelatency of these activi-
ties will be increased in the presence of
disturbance. The population of the set of
workflow instances (cases executed in
paralel) varies from 1 to 300. Then, the
same popul ated set of workflow instances
is executed for each variation of
TELECONNECT workflow. Figure 17
showsthe activitiesbeing controlled at the
simulation, the type of disturbances con-

sidered and the amount of delaysoccurred.
To simulate a controlled activity instance
facing a disturbance, the elapsed time ob-
tained from the uniform statistical function
isincreased by the value stated in Figure
17. For example, if uniform function re-
turns 7.0 seconds for an A, instance, and
CreditCheck-GW faces very low spare
gateway computer disturbance, the simu-
lator increases this elapsed time by 100%.
Hence, such A, instance is simulated con-
sidering 14.0 seconds as its elapsed time.
There are two types of disturbances
stated in Figure 17. The first type is the
disturbance caused by acomputing system
withlower computational power. Threedif-
ferent computational powers are chosen:
dightly low spare computer, low spare com-
puter and very low spare computer. We
consider that a slightly low computer
causes atypical delay of 20% on the aver-
age elapsed time of the controlled activity
and represents a computing system with a
similar performance to the original one.
Analogously, low computers and very low
computers causetypical delaysof 50% and
100%, respectively. Thelast two represent
sgnificantly dower computing systems. We
adopt these three computing system dis-
turbances for both controlled activities as
being typical of real situations. Different
elapsed time increases could be assumed
to perform the s mulation experiments. Such
assumptions are reasonable because the
typical elapsed time of an activity execu-
tion is the sum of its CPU-time, |/O-time
and network-transfer-time. Hence, a loss
in performance is expected when replac-
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Figure 17: Effects of disturbances on the elapsed time of controlled activities A, and A,

Activity

Type of disturbance

Elapsed timeincrease

Ag Sightly low spare computer

20%

As Low spare computer

50%

Ag Very low spare computer

100%

As Low 1Mbits/sec network connection

10%

As Low 256kbits/sec network connection

40%

Ay Sightly low spare computer

20%

A, Low spare computer

50%

Ay Very low spare computer

100%

A, Low 256kbits/sec network connection

36%

A, Low 56kbits/sec network connection

80%

ing a computer system by one of lower
power. However, such loss hardly matches
the samereducing degree of computational
power. At least, the network connection
remains with the same transfer speed.

The second type is the disturbance
caused by a network delay. In this case,
the disturbances stated in Figure 17 are
peculiar to each controlled activity because
the network connection speeds are rather
different (10M bits/sec among Telecomm-
HQ and T-centrals, and 1Mbits/sec be-
tween Telecomm-HQ and CreditCheck-
GW). However, the network speeds
adopted depict just typical transfer rates
found in thereal world. Different network
speeds could be assumed to perform the
simulation experiments. For the controlled
activity A, weassumeaslight delay of 10%
caused by network speed falling to 1Mbit/
sec and an average delay of 40% by
256kbits/sec network speed. In the same
way for the controlled activity A, we as-
sume an average delay of 36% caused by
alow 256kbits/sec network connection and
ahigh delay of 80% dueto anetwork con-
nection with 56kbits/sec. As a result, we
have used a wide range of delays to test
workflow restructuring in different situa-
tions.

Inthissection, the CSIM-based ssmu-
lator is used primarily to demonstrate the
properties of the restructuring operation
rather than carry out a detailed analysis of

the algorithm for execution restructuring
operators. To study the behavior of there-
structuring operators in the experiments,
various delays were generated by simply
applying a uniform probabilistic function
provided in CSIM, rather than stochasti-
cally generating delays. Consider the val-
uesin Figure 16 asan example. Theelapsed
time for each activity instance can be esti-
mated using the average of the Min and
Max values, or more realistically, the
elapsed time of activity instances should
be measured as random values within a
timeinterval because two instances of the
same activity can perform adifferent num-
ber of 1/0 operations, demand a different
amount of datatransfer acrossthe network
and execute different sets of CPU opera-
tions. Taking into account all typical elapsed
time for activity instances, the expected
elapsed time for a TeleConnect workflow
instance is 45.6 seconds (without A :
INSTALLNEWCIRCUIT execution). By
applying u-Split of B: ALLOCATE CIR-
CUIT, such elapsed time becomes 33.6
seconds. When an activity instance of A,
CREDITCHECK suffersthe effects of one
disturbancelistedin Figure 17, the elapsed
time of a TELECONNECT workflow in-
stance grows linearly while the elapsed
time of the restructured version remains
the same up to a110% delay amount. Only
when the delay amount exceeds 110% of
the elapsed time of a restructured
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TELECONNECT workflow, does the
elapsed time also start to grow linearly.
However, these results take into consider-
ation none of the effectsof the disturbances
inthe other computational components. As
demonstrated before, such disturbances
overload the environment and deteriorate
the performance of its components, and the
average elapsed time of TELECONNECT
workflow instances presents different be-
havior.

Experimental Results

Thegoal of our experimental study is
to show the benefits and costs of dynamic
activity restructuring. Concretely, the ex-
periments are set to maximize parallel ex-
ecution of ongoing workflow instances
(WI) by reorganizing the hierarchical struc-
ture of the root activity. Our experiments
examine and compare the workflow ex-
ecution with and without restructuring in
the following two situations: (1) atempo-
rarily non-optimal runtimeenvironment, and
(2) an unexpected malfunctionin somein-
frastructure component. The types of dis-
turbances considered are listed in Figure
17.

To properly evaluate the effective-
ness on restructuring workflow instances,
a simulation for TeleConnect workflows
without restructuring is performed in an
environment without disturbances. Thegoa
of thissimulation isto determine the popu-
lation of ongoing WI executed in parallel
that presents the highest average elapsed
time satisfying the 60-second company
goa. Theresulting population becomesthe
reference to understand the effectiveness
of workflow restructuring in aruntime en-
vironment with disturbances. To authenti-
cate this population, sets of TeleConnect
WI with different populations (from 1 to
300 casesin parallel) are executed consid-

ering theenvironment specified earlier. Fig-
ure 18 plotsthe simulation resultsfor each
set of WI.

In Figure 18, the x-axis shows the
population of each set of WI. In other
words, it shows how many WI are ex-
ecuted in parallel and concurrently have
used the limited resources of the comput-
ing environment. The y-axis presents the
corresponding average elapsed time of a
set of WI. The line shows the results for
the TeleConnect workflow. As expected,
ahigher number of WI executed in parallel
raisestheir average elapsed time. The spe-
cial point marked in Figure 18, (165, 59.8),
shows the desired population: 165 is the
number of workflow instances, executing
in parallel, that presents the highest aver-
age elapsed time and satisfies the 60-sec-
ond upper limit.

We adopted only one type of graph
to present the experimental resultsalready
discussed. All graphs plot the average
elapsed time of 165 WI executed in an en-
vironment where instances of a controlled
activity (A2 or A6) facethe delaysdefined
in Figure 17. The dashed line depicts re-
sults for WI without restructuring and the
continuous line plots result, considering a
restructuring criterion. The x-axis shows
the percent values of delaysthe controlled
activity faces and the y-axis showsthe av-
erage elapsed time of WI. Each asterisk in
the continuous line corresponds to one of
the percent values listed in the column
elapsed time increase of Figure 17. In
the graphsrelated to controlled activity A2
(Figures 19 and 21), the asterisks corre-
spond to average WI elapsed timefor 20%,
36%, 50%, 80% and 100% of percent de-
lays. Similarly, the asterisks in the graphs
related to controlled activity A6 (Figures
20 and 22) correspond to 10%, 20%, 40%,
50% and 100% of percent delays. The uni-
formity of thisgraph permitsusto directly
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compare simulation results for different
restructuring criteria (at start and check-
point 25%) and the control of different ac-
tivities (A2 and A6).

Experiment 1. Temporarily Non-

Optimal Environment

Thegoal of thisexperimentisto com-
prehend the advantages and limitations of
workflow restructuring, when the runtime
environment presents one of the distur-
bances stated in Figure 17. The restructur-
ing of activitiestakes place before the start
of each WI. We compare cases of running
TeleConnect workflows with and without
restructuring for each disturbance listed.
Each case has 165 WI in the set. The is-
sue that must be answered by this experi-
ment is: which disturbancesin the comput-
ing environment can be properly managed
if workflow restructuring takes place at the
start of controlled activities? To answer this
guestion, it isnecessary to check the aver-
age WI elapsed time of the WI set for each
percent value of delay on executing con-

trolled activity instances. A particular dis-
turbance can be properly managed by
workflow restructuring if the resulting av-
erage WI elapsed time is less or equal to
60 seconds. Figure 19 show resultsfor the
controlled activity A2 and Figure 20 shows
resultsfor A6, the other controlled activity.

Thedashed linein Figure 19 plotsthe
average WI elapsed time of TeleConnect
workflow without restructuring for the dif-
ferent delay instances of A2 face. The
average WI elapsed timegrowslinearly as
A2 delays increase. For example, 50% of
average A2 delay increase corresponds to
74.9 seconds for the average WI elapsed
time. Similarly, 100% correspondsto 91.6
seconds. Taking into account 50% and
100% of average A2 delay means about
18 seconds and 24 seconds, respectively,
for the average elapsed time of A2 in-
stances; an increase of 6 seconds in the
A2 average elapsed time then implies an
increase of 16.7 seconds to the average
WI elapsed time. In other words, for each
additional second of delay for A2 instances,

Figure 18: Results on simulating TeleConnect W1 without delays and disturbances
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2.78 extra seconds for the average WI
elapsed timewill result, a2.78 growth fac-
tor. Thisresult shows the overload caused
by disturbances into the computing envi-
ronment. Thisdashed lineispresent alsoin
Figure 21 with exactly the sameresultsand
meaning. It is the reference to compare
results from different restructuring crite-
ria

Thecontinuouslinein Figure 19 plots
average WI elapsed times with B restruc-
turing at the start. Inthissimulation, all 165
WI arerestructured before the start of their
A2instances. Theaverage W! elapsed time
growsasA2 delaysincrease. But itsgrowth
factor also increases. For example, in the
segment 0% to 20% (average A2 elapsed
times 12 seconds and 14.4 seconds, respec-
tively) the average W1 elapsed time grows
from 49.5 seconds to 49.6 seconds. Hence,
the growth factor is 0.04 (average WI
elapsed time grows 0.04 seconds for each
second of delay intheaverage elapsed time
of A2 instances). But considering the seg-
ment 50% to 100% (18 seconds and 24
seconds, respectively), the average WI
elapsed time grows from 53.5 seconds to
67.4 seconds, and the growth factor is2.3.
The transition between the two segments
above presents 1.08 as the growth factor.
A growth factor of less than 1.0 means

Figure 19: B restructuring at start
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that the computing environment still pre-
sents availability to perform more WI. On
the other hand, growth factors greater than
1.0 show an overloaded environment.
Moreover, the point where the line shows
60 secondsfor average WI elapsed timeis
73%. Hence, disturbances that cause de-
lays on A2 instances up to 73% are prop-
erly managed if B workflow restructuring
takes place at start.

Similar to Figure 19, the dashed line
in Figure 20 plots the average W1 elapsed
time of TeleConnect WI without restruc-
turing for delaysin A6 instances. The av-
erage WI elapsed time grows as A6 de-
lays increase. For delays over 20%, the
growth factor isvirtually constant. In fact,
the delays 20%, 40%, 50% and 100% (av-
erage A6 elapsed times 10.1 seconds, 11.8
seconds, 12.6 seconds and 16.8 seconds,
respectively) correspond to 64.5 seconds,
71.1 seconds, 74.4 seconds and 91.3 sec-
onds, and the growth factor increasesfrom
3.9t04.0. For thetwo first segments, (0%,
59.8 seconds) - (10%, 61.4 seconds) and
(10%, 61.4 seconds) - (20%, 64.5 seconds),
the growth factorsare 1.9 and 3.7, respec-
tively. These results confirm the assump-
tion that delays on activity instances over-
load the computing environment, as ob-
served in the dashed line of the Figure 19.

Figure 20: C restructuring at start
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This dashed lineis also used as the refer-
ence to compare results from different re-
structuring criteriain Figure 22, with ex-
actly the same results and meaning.

Thecontinuouslinein Figure 20 plots
average WI elapsed times with C restruc-
turing at the start. All 165 WI are restruc-
tured beforethe start of A6 instances. This
line showsvirtually the same shape depicted
by the dashed line, with y-valuesabout 0.7
seconds shorter. For example, 63.9 seconds
correspondsto 20% of delay and 90.5 sec-
onds corresponds to delay of 100%. It
means avery narrow gain on C restructur-
ing and only delays not greater than 4%
are properly managed with C restructuring
at the start.

Experiment 2: Unexpected
Malfunction of Infrastructure
Component

The goal of this experiment isto ex-
amine the pros and cons of dynamic
workflow restructuring, when the runtime
environment presents some disturbance
and the restructuring of activities takes
place during the execution of WI. Thedis-
turbances are detected at 25% checkpoint.
We compare cases of running TeleConnect
workflows with and without restructuring
for each disturbance listed in Figure 17.
Each case has 165 WI in the set.

The choice of 25% as a checkpoint
to verify whether a particular WI should
berestructured representsthe ability of the
WfM S to monitor the computational envi-
ronment and to react early when it detects
disturbances. Considering the Minand Max
valuesdefined in Figure 16 for each activ-
ity, the expected elapsed time (E-ET) for
an A2 instance is 12 seconds and, for an
A6 instance, is 8.4 seconds. When an on-
goinginstance of A2 (or A6) isrunning, at
25% for its E-ET the simulator estimates
which will beits real elapsed time. If the

estimated elapsed time overcomes its E-
ET then the workflow restructuring takes
place. For asimulation controlling A2 in-
stances, the simulator estimatesthe el apsed
time of an ongoing A2 instance at 3 sec-
onds of its starting. If the estimated value
is greater than 12 seconds then the corre-
sponding WI is restructured by u-Split of
B. Similarly, if A6 instancesare being con-
trolled, the checkpoint occurs at 2.1 sec-
onds of an ongoing A6 instance execution
and the restructuring takes place if the es-
timated elapsed time value overcomes 8.4
seconds. Consequently, the simulator only
restructures an ongoing WI if it estimates
the elapsed time of the activity instance
being controlled are greater than its E-ET.
Moreover, each set of ssmulated WI prob-
ably has restructured and not restructured
instances. Hence, the issue that must be
answered by thisexperiment is: which dis-
turbances in the computing environment
can be properly managed if dynamic
workflow restructuring is checked at 25%
checkpoint on controlled activities? To an-
swer this question it is necessary to check
the average WI elapsed time of the WI
set, with and without restructuring, for each
delay value on executing controlled activ-
ity instances. A particular disturbance can
be properly managed if the resulted aver-
age WI elapsed time isless or equal to 60
seconds. Figure 21 shows results for the
controlled activity A2 and Figure 22 shows
resultsfor A6. As stated before the dashed
line in Figures 21 and 22 are exactly the
same as those depicted in Figures 19 and
20, respectively.

Thecontinuouslinein Figure 21 plots
average WI elapsed time where B restruc-
turing affectsonly W1 with delayed A2in-
stances. It showsadifferent behavior when
compared with a previous restructuring
criterion, restructuring at the start, depicted
in Figure 19. In fact, the growth factor of
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thisline starts near 0.0 and beginsto grow
after 20% of average delay for A2 in-
stances. In the graph, the asterisks plot the
following points: (0%, 56.6 seconds), (20%,
56.7 seconds), (36%, 57.5 seconds), (50%,
59.0 seconds), (80%, 64.8 seconds) and
(100%, 69.8 seconds). The percent values
for average delays of A2 instances corre-
spond, respectively, to 12.0 seconds, 14.4
seconds, 16.3 seconds, 18.0 seconds, 21.6
seconds and 24.0 seconds. Then, the
growth factorsfor each segment are: 0.04,
0.4, 0.9, 1.6 and 2.1. The growth factor
close to 0.0 in the first segment (between
0% and 20%) means that workflow re-
structuring can properly manage delayson
A2 instances up to 20% without increasing
the load over the computing environment
and, consequently, without perturbing other
running applications. On the other hand,
only the disturbances that cause delays of
up to 54% are properly managed by B
workflow restructuring with 25% check-
point. By comparing with the resultsfrom
earlier, B workflow restructuring at 25%
checkpoint supports lower delays on A2
instances considering the 60-second com-
pany goal.

Figure 22 plots average WI elapsed
time for different delays affecting A6 in-
stances. The continuousline showsresults
where C restructuring takes place on WI

Figure 21: B restructuring at 25%
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with delayed A6 instances. For delaysover
20% the behavior of thisline is the same
asthat presented in Figure 20 by the con-
tinuousline. The dlight differenceisat the
start of the line. At 0%, the average WI
elapsed timeis59.7 secondswhilethe same
point, in the dashed line, is 59.8 seconds.
Thesetimesat 10% are, respectively, 61.1
secondsand 61.4 seconds. It meansalower
gain on C restructuring than that depicted
in Figure 20 and only delays under 3% are
properly managed with C restructuring at
25% checkpoint.

Experimental Observations and
Discussion

The experiments presented in the last
section show the effectiveness of the u-
Solit operator on restructuring workflow
instancesfacing disturbancesin the opera-
tiona environment, under certain conditions.
Experiments 1 and 2 demonstrate B re-
structuring of workflow instances (W1)
before start or, at least, at 25% of expected
elapsed time of controlled activity, permit-
ting the achievement of the 60-second up-
per limit for three types of disturbance:
slightly low spare gateway computer, low
spare gateway computer and low
256kbits/sec network connection (Fig-
ure 17). However, workflow-restructuring

Figure 22: C restructuring at 25%
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instances of activity A6 achieve the 60-
second upper limit for none of the types of
disturbancesin Figure 17. Hence, only one
of the two restructuring possibilities pre-
sented earlier iseffective on satisfying the
company goa when delays happen, and
only part of the disturbances are properly
managed.

To better evaluate the effectiveness
of workflow restructuring in the experi-
ments presented earlier, the experimental
results are consolidated in Figures 23 and
24 for the controlled activitiesA2 and A6,
respectively. Theideaisto putinonegraph
the results of the workflow restructuring
experiments. All Figures consider 165 as
the population of simultaneous WI under
execution.

Figure 23 showsthe gainson restruc-
turing A2 instanceswhen occasionally fac-
ing delays. The x-axis depicts the percent
values of average delaysfor A2 instances
when facing disturbances. The y-axis de-
picts the gain on restructuring A2 by the
difference between the average elapsed
time of the set of workflow instanceswith-
out restructuring and the average elapsed
time of the same set with restructuring. The
continuous line plots result for B restruc-
turing is executed before the start of A2
instances. The dotted-dashed line plotsre-
sults for B restructuring is at the 25%
checkpoint . In a similar way, Figure 24

Figure 23: Gains on B restructuring

1}

H

)
b

&

AL iarm
Craackpind 15%

Cifasncs Ditassn Frasiigs W1 Syl s e |
=] -l

_\,
.1

il ] L1l 20
Asmrnge- ol of 55 [

shows the gains on restructuring A6 in-
stances. The x-axis depicts the percent
values of average delaysfor A6 instances
when facing disturbances, and the y-axis
depicts the same difference of Figure 23
y-axis.

Figure 23 showsthat the gainsresult-
ing from restructuring B increase indepen-
dent of the moment the restructuring takes
place. Moreover, restructuring is more ef-
fective if it takes place earlier. The same
result is possible to be observed in Figure
24 but the values are too small. Figure 23
also presents the difference between av-
erage WI elapsed time growing faster for
dynamic B restructuring at 25% checkpoint
and considering lower delays (until 40%).
Figure 25 showsthevaluesused to plot the
lines in Figure 23 and permits to observe
better the behavior of its graphs. Consid-
eringMax and Minvaluesin Figure 16, the
percent values presented in Figure 17 cor-
respond to 14.4 seconds (20%), 16.3 sec-
onds (36%0), 18.0 seconds (50%), 21.6 sec-
onds (80%) and 24.0 seconds (100%). For
0%, therelated average elapsed timeis12.0
seconds. For example, at 20% delay, the
y-valuein the dotted-dashed line (restruc-
turing at 25% checkpoint) is 11.2 seconds.
In the same curve, 4.4 seconds correspond
to 0% of A2 delay. Hence, for 2.4 seconds
of delay increase, B restructuring at 25%
checkpoint grows 6.8 seconds in y-value.

Figure 24: Gains on C restructuring
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Figure 25: Differences between average WI elapsed times for W1 with and without B

restructuring

Averagedelay | Restructuring | Restructuring at
of A, (%) at start 25% checkpoint

0% 10,3 32

20% 155 8,4

36% 19,4 129

50% 214 159

80% 235 20,1

100% 24,2 217

In other words, for each second of A2 de-
lay, B restructuring at 25% checkpoint in-
creases the difference between the aver-
age WI elapsed time without restructuring
and with restructuring by 2.8 seconds. Then,
2.8 isthe growth factor in this segment. In
fact, B restructuring at 25% presents the
higher growth factor in the interval 0% -
50%. Consequently, such restructuring cri-
terion isthe most effective to dynamically
manage delays during execution of WI be-
causeit permitsusto achieve the company
goal for expressive delays on controlled
activity A2, up to 54%, and it does not im-
ply asignificant increase of the load over
the computing environment (only affected
WI are restructured).

It isnot possible to predict the exact
amount of elapsed time saved after restruc-
turing a workflow instance. The delay
caused by a disturbance depends on the
configuration and current workload of the
computing infrastructure, and thesefactors
arechanging constantly. However, itispos-
sible to characterize scenarios where the
chances to save elapsed time are great.
Each scenario corresponds to a possible
workflow modeling based on the corre-
sponding hierarchy of activity patterns. For
the Telecomm Company, the
TELECONNECT workflow is the base
scenario (Figure4) and theworkflow model
variants obtained by restructuring compos-
ite activitiesarethe others (Figures 14 and
15). The analysis of the repercussions
caused by a disturbance on the base and

variant scenarios permit the evaluation of
the possible benefits on restructuring the
base workflow model. According to the
simulation experiments, it ispossibleto state
the restructuring of AllocateCircuit as be-
ing highly beneficial while the restructur-
ing of AllocateLinesisnot. Infact, there-
structuring of AllocateL ineswould not re-
sult in effective elapsed time saving of ac-
tivity instances. Consequently, the model-
ing of abusiness process by ahierarchy of
activity patterns must present restructur-
ing opportunities. Nevertheless, these re-
structuring opportunitiesmust enableacon-
siderable amount of saved elapsed time
when activities are running on adisturbed
environment. It isimportant that therestruc-
turing process take place only when the
restructured workflow instance saves a
considerable amount of time, because such
processrestructuring takestime when per-
formed.

For abusiness process, such scenario
analysis suggeststhat restructuring is ben-
eficial for workflow instancesfacing some
typesof delays. Moreover, it suggestsalso
that it isbeneficial evenin situationswith-
out facing delays. Although B workflow
restructuring at start is not the most effec-
tivecriterion on dynamically managing dis-
turbances, such criterion presentsthe high-
est difference between average W1 elapsed
times: 10.3 secondsfor A2 without delays
(0% in Figure 23). Hence, workflow re-
structuring can be a way to improve per-
formance of workflow instanceswhen their
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workflow models do not explore all pos-
sible concurrency among activities. When
considering theworkflow modelsto reflect
the organizational structure, among other
aspects, the restructuring approach pre-
sented in this paper enables the optimiza-
tion of a company business process with-
out necessarily the reengineering of the
enterprise.

IMPLEMENTATION ISSUES

The implementation architecture for
thefirst prototype of ActivityFlow isbased
on the World Wide Web (WWW) technol o-
gies. We use the HTML (HyperText
Markup Language) to represent informa-
tion objects required for workflow pro-
cessesandtointegrate different mediatypes
into a document. We access information
from multiple remote information sources
available on the Internet by using the uni-
form addressing of information via URLSs
(Uniform Resource Locators) and the
transmission of dataviaHTTP (Hypertext
Transfer Protocol), TheHTML fill-informs
are the main interaction media between
users and a server.

Figure 26 showsthe implementation
architecture of ActivityFlow. The HTTP
server tranglates the requests from the us-
ersintheHTML formsto calls of the cor-
responding procedures of the prototype
system of ActivityFlow using aCGl inter-
face or a Java interface. The prototype
implementation consists of threemain com-
ponents:

1. The workflow actor interface toolKkit:
It includes Web-based workflow pro-
cess definition tool, administration and
monitor tool, and workflow-application
client-interface program.

» Workflow process definition tool
We provide two interfaces for process

definition: oneis script-based language
and the other is graphical interface that
use the graph-based concepts such as
nodes and edges between nodes. When
a script language is used, the process
definition tool will compileand load the
workflow schema into the workflow
database. We also provide a facility to
map the script-based specification to
iconic representation that can be dis-
played using a Web-browser. When a
graphical interfaceis used to define the
workflow procedureunit, aformwill also
be provided to capture the information
required in the units such as header, ac-
tivity declaration, role association, and
data declaration. A script-based speci-
fication can also be generated upon re-
quest.

e Administration and monitoring tool
This module contains functionsfor cre-
ating, updating and assigning users, roles
and actors, for the inspection and modi-
fication of the running process accord-
ing to deadlinesand priorities, including
terminating undesired flow instances,
and re-structuring on-going activities.
Theinteractions with the users are sup-
ported primarily by creating and receiv-
ing HTML pages and forms.

» Workflow client interface
Thismodule provides anumber of con-
venient services for workflow clients,
such as viewing the process state infor-
mation, theworklist of an on-going pro-
cess, and linking to the other relevant
information, i.e., processdescription, pro-
cess history, process deadlines, etc.. It
interactswith theusersviaHTML pages
and forms.

We are currently exploring the possi-
bility of using or adapting production soft-
ware, such as Caprera from Tactica (see
URL http://www.tactica.com/) for manag-
ing and maintaining the activity dependency
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specifications.

2. The workflow activity engine: It pro-

vides basic workflow enactment ser-
vices, such as creating, accessing, and
updating workflow activity description,
providing the correctness guarantee for
concurrent execution of activitiesand ap-
plication-specific coordination control,
and using the deadlinesand prioritiesfor
scheduling and re-scheduling activity
flows. We have done someinitial study
on the correctness properties of concur-
rent activity executions, such as com-
patibility and mergeability, using user-
defined activity dependencies (Liu and
Pu, 1998a). We are exploring possibili-
tiesto build val ue-added adapters on top
of existing on-line transaction process-
ing (OLTP) monitors, for example, us-
ing some recent results in open imple-

mentation (Barga and Pu, 1995) of ex-
tended transaction model s (Elmagarmid,
1992) and the mi cro-protocols (Zhou, Pu
and Liu, 1996) built ontop of the Transarc
Encina.

3. Thedistributed object manager: It pro-
vides consistent access to information
objects from multiple and possibly re-
mote information sources. Themain ser-
vices include resource manager, trans-
action router, and run-time supervisor.
This component is built on top of the
DIOM prototype system, an adaptive
query mediation system for querying
heterogeneousinformation sources(L eg,
1996).

To adapt our implementation archi-
tecture to the open system environment,
we alow a flexible configuration of the
actor interface, the workflow engine base,
and the distributed object manager. For

Figure 26: Implementation Architecture of ActivityFlow
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example, one scenario is to let the actor
interface, the engine base and the distrib-
uted object manager all exist on different
servers. Another scenario is to let the ac-
tor interfacetoolkit exist on one server and
the activity engine basethe distributed ob-
ject manager exist on the same server but
different from the actor interface server.
We may also take the scenario that the
actor interface toolkit and the activity en-
gine base exist on the same server and the
distributed object manager existson adif-
ferent server.

RELATED WORK AND
CONCLUSION

In this paper, we have described the
ActivityFlow approach to workflow pro-
cess definition. Interesting features of
ActivityFlow are the following. First, we
use asmall set of constructs and a collec-
tion of mechanismsto allow workflow de-
signersto specify the nested process struc-
ture and the variety of activity dependen-
cies declaratively and incrementally. The
ActivityFlow framework is intuitive and
flexible. Additional business rules can be
added into the system simply through plug-
in actors. The associated graphical nota-
tions bring workflow design and automa-
tion closer to users. And the restructuring
operators can change an ActivityFlow dia-
gram preserving their business process
dependencies. Second, ActivityFlow sup-
portsauniform workflow specificationin-
terfaceto describe different types(i.e., ad-
hoc, administrative, or production) of
workflowsinvolved intheir organizational
processes, and to increase the flexibility of
workflow processes in accommodating
changes.

Severa recent efforts have shared
similar motivation as TAM. Eder and
Liebhart (1995) present the WAMO for-

malism to describe workflow activities as
a composition hierarchy and a set of ex-
ecution dependencies. The expected ex-
ceptions are specified with activity hierar-
chies. Although both TAM and WAMO
have their origins on extended transaction
modelsand organizing activity descriptions
as trees of activities, only TAM offers a
set of restructuring operators capable of
restructuring hierarchically organized ac-
tivities. Kumar and Zhao (1999) present a
similar approach of TAM (and WAMO) to
describe the dependencies among activi-
ties. The properties of a business process
are specified through sequence constraints
and workflow management rules. However,
the absence of a diagrammatic represen-
tation of amodeled business process makes
the communication among designers and
administratorsdifficult.

Our research and development for
ActivityFlow continueaong several dimen-
sions. On the theoretical side, we are in-
vestigating workflow correctness proper-
ties and the correctness assurance in the
concurrent execution of activities. On the
practical side, we are building value-added
adapterson top of existing transaction pro-
cessing systems (Barga and Pu, 1995) to
support extended transaction models and
ActivityFlow specifications. In addition, we
are exploring the enhancement of process
design tools to interoperate with various
application devel opment environments.

Inthispaper, we propose astructured
framework and a set of mechanisms for
workflow process specification, not anew
workflow model. The ActivityFlow frame-
work istargeted towards advanced collabo-
rative application domains, such as com-
puter-aided design, office automation, and
CASE toals, al of which require support
for complex activities that have sophisti-
cated activity interactionsin addition to the
hierarchically nested composition structure.
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Furthermore, likemost of themodeling con-
ceptsand specification languages, the pro-
posed framework is based on pragmatic
ground and hence no rigorous proof of its
completeness can be given. Rather, itsuse-
fulness is demonstrated by concrete ex-
amples of situations that could not be
handled adequately within other existing
formalismsfor organizing workflow activi-
ties.
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