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This paper deals with the application of fuzzy logic in a relational database environment with the 
objective of capturing more meaning of the data. It is shown that with suitable interpretations for 
the fuzzy membership functions, a fuzzy relational data model can be used to represent ambiguities 
in data values as well as impreciseness in the association among them. Relational operators for fuzzy 
relations have been studied, and applicability of fuzzy logic in capturing integrity constraints has 
been investigated. By introducing a fuzzy resemblance measure EQUAL for comparing domain values, 
the definition of classical functional dependency has been generalized to fuzzy functional dependency 
(ffd). The implication problem of ffds has been examined and a set of sound and complete inference 
axioms has been proposed. Next, the problem of lossless join decomposition of fuzzy relations for a 
given set of fuzzy functional dependencies is investigated. It is proved that with a suitable restriction 
on EQUAL, the design theory of a classical relational database with functional dependencies can be 
extended to fuzzy relations satisfying fuzzy functional dependencies. 
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1. INTRODUCTION 
Since Codd [16, 171 proposed the relational data model, relational database 
systems have been extensively studied and several commercial relational database 
systems are currently available [19, 29, 45, 461. This data model usually takes 
care of only well-defined and unambiguous data. However, in real world 
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applications data are often partially known (incomplete) or imprecise. For ex- 
ample, instead of specifying that the height of John is 192 cm, one may say that 
the height of John is around 190 cm, or simply that John is tall. Such statements 
contain information about the height of John and may be useful in answering 
queries or making inferences based on age. 

In order to capture more meaning of the data, several extensions of the classical 
relational model have been proposed [7, 8, 18, 27, 28, 291. In some of these 
extensions, a variety of “null values” have been introduced to model unknown or 
not-applicable data values. Attempts have also been made to generalize operators 
of relational algebra to manipulate such extended data models [7, 18, 291. As an 
alternative approach, Rieter [39] has suggested the usage of first order predicate 
calculus where Skolem functions are used to represent “null values.” In the quest 
for capturing more meaning of the data, it would be natural to extend the classical 
relational model where partially known (as well as imprecise/fuzzy) data values, 
such as “salary of John is around $60,000” or “John has a high salary,” are 
permitted. The fuzzy set theory and fuzzy logic proposed by Zadeh [50-563 
provide a requisite mathematical framework for dealing with such extended data 
values. Recently, some authors [2, 3, 9-15, 25, 33-36, 42, 47, 48, 57, 581 have 
studied relational databases in the light of fuzzy set theory with an objective to 
accommodate a wider range of real-world requirements and to provide closer 
man-machine interactions. In some of these proposals, the classical relational 
algebra operations such as join, projection, etc., have been appropriately extended 
and the problems related to query language design and query evaluation have 
been examined. 

As we extend the classical relational data model to deal with fuzzy information, 
it would be necessary to consider integrity constraints that may involve fuzzy 
concepts. In fact, fuzzy integrity constraints, such as “salaries of almost equally 
qualified employees should be more or less equal,” will arise naturally in fuzzy 
databases. In classical relational database literature, integrity constraints and 
associated inference rules constitute a major area of research. Different types of 
integrity constraints, such as functional dependency, multivalued dependency, 
join dependency, etc., have been identified and sets of sound and complete 
inference rules for such dependencies have been proposed [4-6,19,21,22,24,29, 
30,43,46]. Several algorithms have been suggested to design normalized database 
schemes from a given set of data dependencies [4, 19, 21, 22, 29, 461. It can also 
be ensured that the selected database scheme enjoys the lossless join property 
[l, 29,30,46]. 

To deal with fuzzy data constraints, Zadeh [53,54] has introduced the concept 
of particularization (restriction) of a fuzzy relation due to a fuzzy proposition. 
Just as well-formed formulas of first order calculus can be used to represent 
integrity constraints in a classical relational database [29,39,46], fuzzy integrity 
constraints can be represented by suitable fuzzy propositions. Moreover, the 
particularization of a fuzzy relational database due to a set of fuzzy integrity 
constraints can be computed by combining the fuzzy propositions associated with 
these integrity constraints according to the rules of fuzzy calculus. In this paper 
we examine different types of fuzzy relations and particularizations of such 
relations due to fuzzy integrity constraints. Our primary objective is to extend 
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the design theory of relational databases to the fuzzy domain by suitably defining 
the fuzzy functional dependency (ffd). A set of sound and complete inference 
rules for fuzzy functional dependencies is proposed and the lossless join problem 
of fuzzy relations is examined. In view of this, the paper is organized as follows. 
Section 2 of the paper deals with some of the basic definitions and concepts of 
classical relational database theory. In Sections 3 and 4 we introduce a few basic 
definitions from fuzzy set theory and discuss fuzzy relations and fuzzy integrity 
constraints. In Section 5, fuzzy functional dependency and associated inference 
rules are examined. Section 6 is concerned with the lossless join of fuzzy relations 
in the presence of fuzzy functional dependencies. 

2. THE CLASSICAL RELATIONAL MODEL 

In this section some basic definitions and concepts related to the classical 
relational data model [19, 29, 461 are given. 

Attributes are symbols taken from a finite set U = (Ai, Az, . . . , A,). Each 
attribute Ai has associated with it a domain denoted by dom(Ai), which is the set 
of possible values for that attribute. Elements of dam(A), dam(B), and dam(C) 
are usually denoted by a, b, c, respectively, with possible suffixes. For a set of 
attributes X, an X-value is an assignment of values to the attributes of X from 
their domain. We will use the letters A, B, . . . for single attributes and the letters 
x, Y, . . . for sets of attributes. The union of two sets X and Y is written as XY. 
Also no distinction is made between a single attribute and the set (Al. 

A relation r with attributes (Al, AZ, . . . , A,) is a subset of the Cartesian 
product of dom(Al) x . . - X dom(A,). A relation scheme on (Al, . . . , A,) will be 
denoted by R(A1 . . . A,) or R. A relation r is considered to be an instance of a 
relation scheme R. The elements of the relation are called tuples or rows. A tuple 
is usually represented as a string of values associated with the attributes; for 
example, ac is a tuple of a relation r on R(AC). If t is a tuple in a relation r of 
R(U), and A is an attribute in U, then t[A] is the A-component of t. Similarly 
for the set of attributes X G U, we use the notation t[X] to denote the restriction 
of t to X; for example if t = abc, then t[AC] = ac. 

There are two operations on relations that are of interest to us: projection and 
natural join. The projection of a relation r of R(XYZ) over the set of attributes 
X is obtained by taking the restriction of the tuples of r to the attributes in X 
and eliminating duplicate tuples in what remains. This operation is usually 
denoted by 

&i(r) = (t[Xl It E r} (2.1) 

Since in the fuzzy set literature the symbol II is used to denote the possibility 
distribution, in this paper we will use the notation Px(r) for the projection of r 
on X. 

Let rl and r2 be two relations of R(XY) and R(XZ), respectively. The natural 
join rl w r2 is a relation over R(XYZ) defined by 

r = rl w r2 = (t ] t[XY] E rl and t[YZ] E r2] (2.2) 

Among the different types of data dependencies that have been identified so 
far, the functional dependency requires special mention. In fact, the importance 
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of the functional dependency in the design of relational database systems has 
been realized since Codd [ 16,171 introduced the relational data model. Formally, 
a functional dependency (fd) is a statement, X + Y where X and Y are sets of 
attributes. A relation r satisfies this fd if for all t1 and tz in r, tIIX] = t2[X] 
implies tl[Y] = tz[Y]. 

The design theory of relational databases is also concerned with the problem 
of finding a set of relation schemes that have lossless join. In order to define 
lossless join, let p = (RI, RP, . . . , RkJ be a set of relation schemes with 
R(AlAz . . . A,) = R1R2 . . . Rk. The project-join mapping defined by p, written as 
mp, is a function of relations r over R defined by 

m,(r) = PR,(r) W P%(r) W . . . W Px,(r) (2.3) 

The lossless join condition with respect to a set of dependencies D can be 
expressed as: 

for all r satisfying D, r = m,(r) (2.4) 

Aho et al. [l] have proposed an algorithm to test lossless join decomposition 
in the presence of functional and multivalued dependencies. For this purpose a 
tableau T is constructed [l, 29, 30, 461, which is a set of rows, best pictured as a 
matrix with one column for each attribute in the set of attributes R and row i 
corresponds to the relation scheme Ri. The element of T on row i and column j 
is a distinguished variable aj if Aj is in Ri, otherwise the symbol bij is used. A set 
of transformation rules has been defined for different types of data dependencies 
that are used for changing a tableau T to a tableau T*. Such rules are essentially 
a means to incorporate information about the set of admissible instances into 
the tableau. 

In the algorithm proposed by Aho et al. [l] (to be referred to as the ABU 
algorithm), initially the tableau To associated with the given decomposition is 
constructed. The transformation rules corresponding to the data dependencies 
d E D are then repeatedly applied to TO to generate a sequence of tableaus To, 
T I, . . . , T, such that T. = T,,, and no transformation rule can be applied 
further. This process is called chase process and T, is denoted by CHASED. 
The join is lossless if CHASED(To) contains a row with all distinguished 
variables. The chase process has been applied to infer data dependencies. In fact, 
testing lossless join decomposition by this algorithm is equivalent to inferring 
the join dependency IN (RI, Rz, . . . , Rk) from D [29,30,46]. 

3. FUZZY RELATIONAL DATA MODEL 

In this section we first introduce a few definitions and concepts from the fuzzy 
set theory literature. We then examine how fuzzy relations can be used to 
represent imprecise data. For a detailed discussion of fuzzy set theory and fuzzy 
calculus the reader is referred to [20, 26, 50-561. 

3.1 Fuzzy Set 

Let U be a classical set of objects, called the universe of discourse. An element 
of U is denoted by u. 
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Definition 3.1. A fuzzy set F in a universe of discourse U is characterized by a 
membership function 

PF: u + [o, 11 (3.1) 

where &u) for each u E U denotes the grade of membership of u in the fuzzy 
set F. 

Following the notations used in fuzzy set theory, we write 

I? = Mud/u~, ~(uz)/ua . . . , dun)/unl (3.2) 

where ui E U, 1 5 i I n. Note that a classical subset A of U can be viewed as a 
fuzzy subset with membership function ,.&A taking binary values, i.e., 

hA(u) = 1 if uEA 
= 0 if uBA 

The usual set theory operations (such as union, intersection and complimenta- 
tion, etc.) have been extended to deal with fuzzy sets. Let A and B be two fuzzy 
subsets in a universe of discourse with membership functions PA and PLg, respec- 
tively. Then membership functions of A U B, A n B and A (complement of A) 
are as given below. 

PAUB(~ = madPA( PB(U)) (3.3) 

PAnBhd = midPA( PB(u)) (3.4) 

/&t(u) = 1 - PA(u) (3.5) 
Based on these definitions, most of the properties that hold for classical set 
operations, such as DeMorgan’s Laws, have been shown to hold for fuzzy sets. 
The only law of ordinary set theory that is no longer true is the law of the 
excluded middle, i.e., 

AnA#Q and AUA#U (3.6) 

where 0 is the null set, i.e., EL&U) = 0 for all u E U. 
Given two fuzzy subsets A and B in U, B is a fuzzy subset of A, denoted 

by B _C A, if 

pB(u) = PA(u) for all u E U. (3.7) 

Two fuzzy sets A and B are said to be equal if A 1 B and A c B. 
In order to define Cartesian product of fuzzy sets, let U = U1 x UZ x . , . x U, 

be the Cartesian product of n universes and AI, AZ, . . . , A,, be fuzzy sets 
in U1, UZ, . . . , U,, respectively. The Cartesian product A1 X A2 X . . . A, is 
defined to be a fuzzy subset of U1 X Up x . . . X U, where 

~A,x...xA,h . . . un) = min(PA1bd9 . . . . PA,h)) (3.3) 

where ui E Ui, i = 1, . . . , n. Finally, given a fuzzy set, it is often necessary to 
construct a classical set with elements having membership value greater than 
(Y E [0, 11. Thus, given a fuzzy set A in U, the cr-cut of A is given by 

A, = (u 1 u E U and PA(u) L a) (3.9) 
ACM Transactions on Database Systems, Vol. 13, No. 2, June 1988. 
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The definition of fuzzy set in (3.1) has also been extended to define a category of 
fuzzy sets [20]. For instance, type-2 fuzzy sets are defined to be fuzzy sets whose 
grades of membership are themselves fuzzy, i.e., fiF in (3.1) is a mapping from U 
to the sets of fuzzy sets over [0, 11. 

3.2 Possibility Distribution and Fuzzy Sets 

Instead of treating ,.&F(u) to be the grade of membership of u in F, one may 
interpret it as a measure of the possibility that a variable X has a value u, where 
X takes values in U. As for example, consider the fuzzy set HIGH-SALARY 
given below. 

HIGH-SALARY = (0.1/20,000, 0.3/30,000, 0.5/40,000, 
0.7/50,000, 0.9/70,000, 0.95/80,000, 1.0/90,000) (3.10) 

Suppose it is known that John has a “high salary.” Then, according to the 
possibilistic interpretation, one concludes that the possibility of John having 
salary = 30,000, is 0.3. Zadeh [53, 541 has suggested that a fuzzy proposition 
X is F, where F is a fuzzy subset of U and X is a variable which takes values 
from U, induces a possibility distribution II, that is equal to F, i.e., 

II, = F (3.11) 

The possibility assignment equation (3.11) is interpreted as 

Poss(X = u) = PE for all u E U (3.12) 

Thus the possibility distribution of X is a fuzzy set, which serves to define the 
possibility that X could have any specified value u in U. One may also define a 
function ?T~: U + [0, l] that is equal to PF and associates with each u E U the 
possibility that X could take u as its value, i.e., 

?rx(u) = Poss(X = u) for u E U (3.13) 

The function 7rx is called the possibility distribution function of X. The 
possibility distribution IIx may also be used to define a fuzzy measure ll on U, 
where for any A C U, 

II(A) = Poss(X E A) = sup II,(u) (3.14) 
IAEA 

For further details on possibility distribution and on the difference between 
possibility and probability measures, the reader is referred to [20, 53, 541. In 
Section 4, we discuss the rules of fuzzy calculus that can be used to compute the 
possibility distribution of a compound fuzzy proposition from the possibility 
distributions of its constituent atomic fuzzy propositions. 

3.3 Fuzzy Relations 

Mathematically, an n-ary fuzzy relation r is a fuzzy subset of the Cartesian 
product of some universes. Thus, given U1, Uz, . . . , U, of n universes, a fuzzy 
relation r is a fuzzy subset of U1 x Up X . - . x U, and is characterized by the 
n-variate membership function [20,26, 541 

pr: u1 x uz x * - - x u, * [O, l] 
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While applying this definition to relational databases, it is necessary to provide 
appropriate interpretation for the elements of Ui, i = 1, . . . , n and pr. For this 
purpose, we note that in a relational data model that can support imprecise 
information, it is necessary to accommodate two types of impreciseness-namely, 
the impreciseness in data values and impreciseness in the association among 
data values. As an example of impreciseness in data values, consider the 
Employee(Name, Salary) database, where Salary of an employee, say John, may 
be known to the extent that it lies in the range $60,000-80,000, or may be known 
as John has a “high salary.” Similarly, as an example of impreciseness in the 
association among data values, let Likes(Student, Course) represent how much 
a student likes a particular course. Here the data values may be precisely known, 
but the degree to which a student, say John, likes DBMS is imprecise. It is also 
not difficult to envisage examples where both ambiguity in data values as well as 
impreciseness in the association among them are present. 

In recent years, there have been some attempts to use fuzzy set theory and 
related concepts for providing a suitable interpretation of different types of 
impreciseness in relational databases. Buckles and Petry [9-131 have suggested 
that attribute values be replaced by sets of values. A fuzzy similarity measure 
has also been used to identify similar tuples. Ruspini [42] has used a lattice 
organization for domains, where domain values correspond to one or more lattice 
points determined by a possibility distribution. Umano [47, 481 and Prade and 
Testemale [34] have proposed models based explicitly on possibility distributions 
where domain values are taken from sets of possibility distributions and associ- 
ations among entities are also measured by possibility distributions. Prade [33] 
and Prade and Testemale [34] have shown that such an extended data model can 
accommodate different types of “null values” used in classical relational database 
literature. Baldwin [3] has used a mixed approach, where domain values are 
allowed to be fuzzy sets and association among entities is represented as a truth 
value in [0, 11. Zemankova-Leech and Kandel [57] have provided a good exposi- 
tion of the fuzzy relational data model and have advocated the use of linguistic 
quantifiers. 

In the present treatment of the fuzzy relational data model, we will try to 
adhere to the notations used in classical relational database theory as far as 
possible. Thus a relation scheme R is a finite set of attribute names (Al, AP, . . . , 
A,) and will be denoted by R(AIAz . . . A,) or simply by R. Corresponding to 
each attribute name Ai, 1 5 i I n, is a set dom(Ai), called the domain of Ai. 
However, unlike classical relations, in the fuzzy relational model, dom(Ai) may 
be a fuzzy set or even a set of fuzzy sets. Hence, along with each attribute Ai, we 
associate a set Ui, called the universe of discourse for the domain values of Ai. 

Definition 3.2. A fuzzy relation r on a relation scheme R(AIAz . . . A,) is a 
fuzzy subset of dom(Ai) x dom(Az) X . . - X dom(A,). 

Depending on the complexity of dom(Ai), i = 1, . . . , n, we classify fuzzy 
relations into two categories. In type-l, fuzzy relations, dom(Ai) can only be a 
fuzzy set (or a classical set). A type-l fuzzy relation may be considered as a first- 
level extension of classical relations, where we will be able to capture the 
impreciseness in the association among entities. The type-2 fuzzy relations 
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provide further generalization by allowing dom(Ai) to be even a set of fuzzy sets 
(or possibility distributions). By enlarging dom(Ai), type-2 relations enable us to 
represent a wider type of impreciseness in data values. Such relations can be 
considered as a second-level generalization of classical relations. 

Finally, like classical relations, a fuzzy relation r will be represented as a table 
with an additional column for p,(t) denoting the membership value of the tuple 
t in r. Moreover, this table will contain only those tuples for which pr(t) > 0, i.e., 
for any tuple not present in the table we assume pr(t) = 0. This observation can 
be considered as a fuzzy version of the closed world assumption [38]. Since the 
law of excluded middle (3.6) does not hold for fuzzy sets, if pi(t) > 0, where ? is 
the complement of r, we cannot conclude p*(t) = 0. Only when pi(t) = 1, i.e., t is 
definitely in r, do we have rr(t) = 0. 

Type-l Fuzzy Relational Data Model. As mentioned above, in type-l fuzzy 
relations, dom(Ai) may be a classical subset or a fuzzy subset of Ui. Let the 
membership function of dom(Ai) be denoted by p.&, for i = 1, . . . , n. Then 
from the definition of the Cartesian product of fuzzy sets in (3.8), dom(Al) x 
dom(Az) x . . . X dom(A,) is a fuzzy subset of U = U1 x UZ x . . . X U,. Hence 
a type-l fuzzy relation r is also a fuzzy subset of U with membership function CL,. 
Also from (3.7) and (3.8), for all (u1u2 . . . u,) E V, pL, must satisfy 

clrhk? . . . un) 5 min(PA,(uI), CLAII(~ . . . , k&,(&)) (3.16) 

According to possibilistic interpretation of fuzzy sets, pLr can be treated as a 
possibility distribution function in U. Thus pCLr(u1u2 . . . u,) determines the 
possibility that a tuple t E U has t[Ai] = ui, for i = 1, . . . , n. In other words, 
llr(u1u2 * - * u,) is a fuzzy measure of association among a set of domain values 
(Ul, UP, - - - , &I). 

Example 3.1. Consider a relation scheme LIKES(Student, Course), where 
dom(Student) and dom(Course) are ordinary sets, i.e., domain values are crisp. 
In the fuzzy relation r shown in Table I, pCL,(t) can be interpreted as a possibility 
measure of a student liking a particular course. Thus the possibility of John 
liking DBMS is 0.90. So I.C, is a fuzzy measure of the association between Student 
and Course. 

It is also possible to provide an alternative interpretation of pcL, as a fuzzy truth 
value belonging to [0, 11. According to this interpretation, for a tuple t, pr(t) is 
the truth value of a fuzzy predicate associated with r when the variables in the 
predicate are replaced by t[Ai], i = 1, . . . , n. 

Example 3.2. Consider a relation scheme R (N, H, X, S) of highly experienced 
and highly salaried employees, where N = Employee’s name, J = Job, X = 
Experience, and S = Salary. Here, dam(N) and dam(J) are ordinary sets. But 
dam(X) and dam(S) are the fuzzy sets High-Experience and High-Salary in 
appropriate universes. Suppose that the universe of discourse Ux for the Expe- 
rience is the set of positive integers in the range O-30. Similarly, Us, the universe 
of discourse for Salary, is the set of integer numbers in the range lO,OOO-100,000. 
ACM Transactions on Database Systems, Vol. 13, No. 2, June 1988. 
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Table I. An Instance r of LIKES 
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Student Course l.l 

John DBMS 0.90 
Mary DBMS 0.70 
John AI 0.80 
Ashok AI 0.95 

Table II. An Instance r of Highly Experienced and Highly Salaried Employees 

Name 

John 
Ashok 
Mary 
James 
Robin 

Job Experience Salary P 
Engineer 8 60,000 0.67 
Manager 9 70,000 0.80 
Secretary 8 40,000 0.50 
Engineer 12 80,000 1.00 
Engineer 9 60,000 0.80 

The membership function ,.&HX and Pns of the fuzzy sets High-Experience and 
High-Salary are as given below. 

,&X(x) = (1 + 1 x - 10 1/4)-l for x 5 10 
1 

/.t~s(s) 1 (1 + ] s - 60,000 ] /20,000)-1 
for x > 10 

(3.17) 

for s 5 60,000 
= 1 for s > 60,000 

(3.18) 

Note that the membership function associated with the fuzzy set descriptor high 
is domain dependent. A typical instance r of R is shown in Table II. 

In this example, p*(t) can be interpreted as the truth value of the fuzzy 
proposition “Y has high experience and high salary” for the tuple t. Thus the 
truth value of the fuzzy proposition “John has high experience and high salary” 
is 0.67. 

In many applications, it may be necessary to combine both these interpreta- 
tions of the membership function. For instance, in an entity relationship (E-R) 
model [ 19, 461, one may interpret CL~ as the possibility of association among the 
entities and follow truth value interpretation for membership of a tuple in the 
entity sets. In this connection, a recent paper by Zvieli and Chen [58] may be 
referred to, where fuzzy set theory has been applied to extend the E-R model and 
basic operations of fuzzy E-R algebra have been examined. An alternative 
interpretation of the membership function is also useful in supporting views of 
the data from several perspectives. 

Type-2 fuzzy relational data model. Although type-l relations enable us to 
represent impreciseness in the association among data values, its role in capturing 
uncertainty in data values is rather limited. For example, in a type-l relational 
model for Employee(Name, Salary), one is not permitted to specify salary of 
John to be in the range $40,000-$50,000 and that of Mary to be a fuzzy set “low.” 
With a view to accommodating a wider class of data ambiguities, we next consider 
a further generalization of the fuzzy relational data model where for any attribute 
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Ai, dom(Ai) may be a set of fuzzy sets in Us. AS a consequence of this generali- 
zation, a tuple t = (ala2 . . . a,) in D = dom(A1) X dom(Az) X . -. X dom(A,) 
becomes a fuzzy subset of U = U1 X UB X . . . X U, with 

PLt(U1U2 . . . u,) = min[k,h), k,(u2), . . . , ccanhAl (3.19) 

where ui E Ui, for i = 1, . . . , n. Since (3.19) holds for all Ui E Ui, i = 1, . . . , n, 
and according to Definition 3.2, a type-2 fuzzy relation r is a fuzzy subset of D, 
from (3.7), the membership function 

or: D + LO, 11 (3.20) 

must satisfy the following condition: 

P,(t) = max binlk,(s), k.b2(u2), . . . , ~~,b.~))l (3.21) 
(u,u,. . .u,EU 

where t = (ala2 . . . a,,) E D. 
As in the case of type-l relations, II, may be interpreted either as a possibility 

measure of association among the data values or as a truth value of a fuzzy 
predicate associated with r. Regarding the interpretation of a fuzzy data value 
ai E dom(Ai), we can treat ai as a possibility distribution on Ui. In other words, 
for a tuple t = (ala2 . . . a,) E D, the possibility of t[Ai] = ui is equal to pai( 
For example, suppose that an instance of the relation Employee(Name, Salary) 
contains a tuple (John, S), where S = {0.3/10,000, 0.6/20,000, 0.8/30,000). Here 
S represents the possibility distribution for the salary of John, i.e., Poss(Salary 
of John = 20,000) = 0.6. 

Based on the possibilistic interpretation, for a tuple t of r, we obtain 

Poss(t[Al] = ul, t[Az] = u2, . . . , t[A,,] = u,) 
= mid&), P&U~ . . . u,)l 

(3.22) 

where ui E Ui, i = 1, . . . , n and pt is given by (3.19). It is also possible to extend 
(3.22) to find the possibility that for a tuple t = (ala2 . . . a,), t[Ai] = bi, where bi 
is a fuzzy subset of Ui. Evaluation of such a condition is, however, related to the 
concept of compatibility of two fuzzy propositions [20,53-561. 

Exumpk 3.3. Let us consider the relation EMPLOYEE(N, D, J, X, S, I), where 
N = Name of the Employee, D = Department, J = Job, X = Experience, S = 
Salary, and I = Income tax. The dam(N), dam(D), and dam(J) are ordinary sets. 
But dam(X), dam(S), and dam(1) are sets of fuzzy sets in universes Ux, Us, and 
Ui, respectively. As in Example 3.2, Ux, Us, and Ui are assumed to be sets of 
positive integers in the range O-30, lO,OOO-100,000, and O-10,000, respectively. 
A typical instance r of Employee is shown in Table III, where fuzzy set descriptors 
High, Low, Moderate, etc., have been used to represent fuzzy data values over 
respective domains. Since all the elements of a classical subset have a member- 
ship value of 1.0, for notational convenience, elements of classical subsets are 
represented without their membership values, such as (10, 14, 19) instead 
of (l.O/lO, 1.0/14, 1.0/19}. Also, a classical set of consecutive integers such as 
(10, 11, 12) is denoted by 10-12. The membership functions of the fuzzy set 
descriptors High, Low, etc., are domain dependent and are as given below. 
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Table III. An Instance r of EMPLOYEE Relation 

Name Department Job Experience Salary Income tax fi 

Murty Mechanical Engineer 10 50,000 5,000 0.70 
ROY Electrical Manager 15-20 High High 0.90 
Kumar Accounts Accountant Little Low Low 0.60 
John Sales Manager Moderate 40,000-60,000 4,000-7,000 0.60 

ForxEUx, 

~~oderath) = (1 + I x - 8 I )-’ for x > 1 
= 0 otherwise, 

and 
PLittletX) = (1 + 12X)-’ for x > 0 

= 0 otherwise. 
Similarly, 

PHighb) = (1 + a I Y - c I )-’ for y 5 c 
= 1 for y > c, 

where, a = l/20,000, c = 60,000 for y E Us, and a = l/1000, c = 5000 for y E Ui. 
Also, PLOW(Y) = 1 - pHigh(y) 

Applying (3.22) to the second tuple in r, we can conclude that the possibility 
of Roy having Experience = 18, Salary = 50,000, and Income tax = 5,000 is 0.67. 
The possibility value thus obtained would be useful during query evaluation for 
identifying the tuples that have nonzero (or greater than a given threshold) 
possibility of satisfying the query predicate. 

The type-2 relational model described here has some similarities with the fuzzy 
relational models considered by Buckles and Petry [12], Baldwin [3], Prade and 
Testemale [34], and Umano [47,48]. The heterogeneous data model proposed in 
[12] allows domain values to be fuzzy sets, but no membership value is attached 
to a tuple. The fuzzy relational model suggested in [34, 47, 481 primarily uses a 
possibilistic interpretation. Even the membership value p=(t) of a tuple is treated 
as a possibility distribution in [0, l] (see [48]). The implementation of fuzzy 
relational databases-especially the design of a query language that can support 
fuzzy constructs and the evaluation of such queries-have been examined in [3, 
11, 12, 14, 15, 25, 34, 48, 49, 54, 57, 581. In a subsequent paper [37], we will 
discuss the implementation of a fuzzy relational database system using the 
concept of abstract data type. Incidentally, the idea of using abstract data types 
to enhance the semantic knowledge in a relational database system has been 
suggested by Stonebraker [44]. 

3.4 Fuzzy Relational Operations 

The relational algebra introduced by Codd [16, 171 consists of traditional set 
operations such as union, intersection, cross product, etc., and some special 
relational operations such as projection, join, etc. Since a fuzzy relation is, by 
definition, a fuzzy subset of the Cartesian product of its attribute domains, the 
definitions of union, intersection, and cross-product of fuzzy sets discussed in 
Section 3.1 can also be applied to fuzzy relations [9, 20, 34, 47, 48, 53, 571. 
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Table IV. Projection of an Instance of 
Highly Experienced and Highly Salaried 

Employees 

Job Salary P 

Engineer 60,000 0.8 
Engineer 80,000 1.0 
Manager 70,000 0.8 
Secretarv 40.000 0.5 

Extension of specialized relational algebra operations to deal with fuzzy relations 
have been considered by Zadeh and others [12, 34, 47, 48, 53, 54, 571. Here, we 
discuss projection and join of fuzzy relations as these operations are of primary 
importance in the study of the lossless join problem. 

Let the fuzzy relation r be an instance of a relation scheme R(A1A2 . . . A,). 
Consider a subset Ri(Ai, . . . Ai,) of R. AS in Section 2, for a tuple t of r (i.e., 
p*(t) > 0), t[Ri] denotes the restriction of t on the attributes of Ri. Thus 
for t = (a1a2. . . a,), t[Ri] = (ai, . . . ai,). 

According to Zadeh [53,54], the projection ri = P%(r) is a k-ary fuzzy relation 
in dom(Ai,) X . . . x dom(Ai,). Also the membership function pri is given by 

us = my Mt3 I tr[Rl = tl (3.23) 

where t, is a tuple of r and t E dom(Ai,) X . . . X dom(Ai,). Thus the tuples of rj 
are the restrictions of the tuples of r, as in the case of classical relations. The 
max operator in (3.23) ensures that if more than one tuple in r, say S, G r, has 
the same restriction t on Rip then the projection ri contains only one tuple and 
its membership value is the maximum of the grades of the tuples in S,. In the 
case of classical relations, since grades have binary values, (3.23) will only lead 
to duplicate removal. Umano [47, 481 has suggested an extension of (3.23) when 
p,(t) is treated as a possibility distribution in [0, 11. 

Example 3.4. The projection of the fuzzy relation r in Table II over RJs = 
{Job, Salary) is shown in Table IV. 

In the fuzzy set literature, projection is also called marginal fuzzy restriction 
[20, 531. As a converse operation, Zadeh [53, 541 has defined the cylindrical 
extension of a fuzzy relation. 

Let the fuzzy relation ri be an instance of a relation scheme R(Ai, . . . Ai,). 
Also consider a relation scheme R(AIAP . . . A,) where Ri C R. The cylindrical 
extension of ri on R is denoted by CR(ri). According to Zadeh [53, 541, the 
cylindrical extension ii = CR(ri), is an n-ary fuzzy relation in D = dom(Al) x 
dom(Az) x . . . x dom(A,). The membership function psi of ii is given by 

psi(t) = pq(t[Ri]) for t E D (3.24) 

From the definitions of projection and cylindrical extension, it follows that for 
any instance r of a relation scheme R and Ri G R, 

/q(t) 2 k(t) 
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Table V. An Instance r, of TEACHING 

l 141 

Teacher Course 11 

Rao 
lb0 
Johnson 
Johnson 

DBMS 0.80 
AI 0.60 
DBMS 0.60 
AI 0.90 

where Fi = C,(Pn,(r)) and t E D. In other words, 

r c CR(pRi(r)) (3.26) 

Referring to Examples 3.1 and 3.4, for the tuple t = (John Engineer 8 60,000), 
pr(t) = 0.67, whereas in the cylindrical extension ~JS of Pq,, p;,,(t) = 0.80. In 
fact, we may arrive at situations where pr(t) = 0, i.e., the tuple definitely does 
not belong to r, yet pci(t) # 0, for some ii = CR(P&(r)). For instance, according 
to Example 3.1, ~~(John Engineer 10 80,000) = 0. But this tuple definitely belongs 
to &JS, i.e., cc,, (John Engineer 10 80,000) = 1.0. As will be seen later, this 
observation will play an important role in the lossless join of fuzzy relations. 

It can also be established that for any instance ri of R and R 2 Ri, 

ri = Rq(G(ri)) (3.27) 

We are now in a position to define the join(natura1) of fuzzy relations. Let p = 
(RI, Rz, . . . , RJ be a set of relation schemes and R(A1A2 . . . A,) = R1R2 . . . R,. 
Consider a set of fuzzy relations (rl, r2, . . . , rs), where ri is an instance of R, 
i=l,..., s. The natural join of these fuzzy relations written as 

r = rl W rz W . . . W r. (3.28) 

(or simply as Wf=‘=, ri) is a fuzzy relation of the relation scheme R. 
The membership function of r is given by [34, 47, 53, 541. 

Aala2 . . . a,) = min[w,(alaz . . . a,), 
b4,(ala2 . . . a,), . . . da1a2 . . . ad1 (3.29) 

where ai E dom(Ai) and ?j is the cylindrical extension of rj on R, for i = 1, . . . , n 
andj=l,...,s. 

Example 3.5. Let us consider the join of the instance r of the relation LIKES 
in Table I with an instance rl of TEACHING(Teacher, Course) shown in 
Table V. The membership function ps is interpreted as a measure of the 
teacher’s ability to teach a course. 

The relation r obtained by taking the natural join of these two relations is 
shown in Table VI. The grade values p=(t) of tuples in r can be interpreted as a 
measure of association among students and teachers based on student’s liking 
for a course and teacher’s ability to teach that course. 

When the fuzzy relations ri, i = 1, . . . , s are obtained by taking the projections 
of a fuzzy relation r on Ri, i = 1, . . . , s, from (3.26) and (3.29) we have 

r c PRI(r) w PR2(r) w “’ w PR,(r) (3.30) 
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Table VI. Natural Join of Fuzzy Relations in Table I 
and Table V 

Student Teacher Course P 
John 
John 
John 
John 
M=Y 
Mary 
Ashok 
Ashok 

Ft.&IO 

Johnson 
RaO 

Johnson 
Fill0 

Johnson 
RaO 

Johnson 

DBMS 0.80 
DBMS 0.60 
AI 0.60 
AI 0.80 
DBMS 0.70 
DBMS 0.60 
AI 0.60 
AI 0.90 

that is, 

r C m,(r) (3.31) 

where the project join mapping m,(r) = Px,(r) W Px,(r) W . . . w P&(r). 
The condition (3.30) holds for classical relations [29, 461 and leads to the 

lossless join problem. 

4. FUZZY INTEGRITY CONSTRAINTS 

The integrity constraints in relational database systems can be broadly classified 
into two groups [19,29,46]: 

(1) Domain dependency-which restricts admissible domain values of the attri- 
butes, e.g., “age of an employee is less than 65 years,” or “no one is 10 feet 
tall.” 

(2) Data dependency-which requires that if some tuples in the database fulfill 
certain equalities, then either some other tuples must also exist in the 
database, or some values of the given tuples must be equal. 

Among these two types of dependencies, data dependencies have received wider 
attention as they have greater impact on the design of the database systems. 
Several types of data dependencies, such as functional dependency, multivalued 
dependency, join dependency, etc., have been identified and the associated 
implication problem has been examined [l, 4-6, 19, 21, 22, 24, 29, 30, 43, 461. 
The implication problem of data dependencies is the problem of deciding whether 
a given set of dependencies logically implies another dependency and has impor- 
tant bearing on the automated synthesis of database schemes. 

As we generalize relational database systems to deal with fuzzy or incomplete 
information, it will be necessary to consider integrity constraints that involve 
fuzzy constructs. Thus in a relation PLAYERS(Name, Age, Height, Sport, 
Income), an integrity constraint may be stated as, “Most basketball players are 
tall,” or “Many tennis players have high income.” These integrity constraints 
impose restrictions on the admissible values of height or income of the basketball 
or tennis players, respectively. Similarly, as an example of a fuzzy data depend- 
ency, consider the relation scheme EMPLOYEE(Name, Department, Job, 
Experience, Salary), where an integrity constraint may be stated as “in any 
department employees having similar jobs and experience must have almost equal 
salary.” 
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Table VII. An Instance of Young and Intelligent Students 

Name Ape Height Course Marks P 

Aehok 25 175 DBMS 75 0.75 
Ashok 25 175 AI 90 0.80 
John 23 170 DBMS 92 0.90 
John 23 170 AI 85 0.85 
Sheila 20 160 DBMS 70 0.70 

Zadeh [53,54] has introduced the concept of particularization to deal with data 
constraints. The particularization of a fuzzy relation r of a relation scheme 
R(AlA2.. . A,,) is the effect of specification of the possibility distribution of one 
or more attributes Y C R. The resulting relation r is therefore a restriction of 
the original relation. Even the select operator in relational algebra can be treated 
as a special case of particularization of relations. 

According to Zadeh [53, 541, particularization may be viewed as the result of 
forming the conjunction of a fuzzy proposition X is F with the particularizing 
proposition Y is G where X = AlAz . . . A,, Y = Ai, . . . Ai, c X, F is a fuzzy 
subset of dom(A1) x dom(Az) x - - - x dom(A,), and G is a fuzzy subset of 
dom(Ai,) X *a* X dom(Ai,). The conjunction of these two fuzzy propositions 
is expressed in terms of the possibility distributions induced by them. As in 
Section 3.2, we associate possibility distributions IIx = F and Ily = G with the 
fuzzy propositions X is F and Y is G, respectively. The particularization of Rx 
by IIY (or equivalently F by G) is denoted by IIx[IIv = G] and is defined to be 
the intersection of F and G, i.e., 

I-Ix[IIy = G] = F n G (4.1) 

where 6 is the cylindrical extension of G in dom(Al) x dom(Az) x - -. x 

dom(A,). 
Thus the particularization of a fuzzy relation r of R(AIAz . . . A,) due to a 

fuzzy proposition Y is G, where Y = Ai, . . . Aik, produces the relation r with 
membership function as given below. 

h&la2 . . . a,) = minMa1a2 . . . aA b2(a1a2 . . . a,)] (4.2) 

where a, E dom(Ai) and G is the cylindrical extension of G. The fuzzy proposition 
Y, is G may either represent an integrity constraint, as in Example 4.1 given 
below, or may be the predicate of a select operation on the database. 

Example 4.1. In Table VII, an instance of young and intelligent students with 
relation scheme R(Name, Age, Height, Course, Marks) is shown. 
Now suppose that this relation must satisfy the fuzzy domain dependency 
“Students are Tall,” where the fuzzy set tall is as given below. 

Tall = (0.40/150, 0.50/160, 0.65/165, 0.80/170, 0.90/175, 1.00/180) 

The particularization of the fuzzy relation in Table VII due to this fuzzy 
proposition produces an instance of the fuzzy relation young, intelligent, and tall 
students shown in Table VIII, where the membership values are computed using 
Table VII. 
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Table VIII. Particularization of the Fuzzy Relation in Table VII 

Name Age Height Course Marks P 

Ashok 25 175 DBMS 75 0.75 
Ashok 25 175 AI 90 0.80 
John 23 170 DBMS 92 0.80 
John 23 170 AI 85 0.80 
Sheila 20 160 DBMS 70 0.50 

4.1 Translation Rules of Fuzzy Calculus 

In order to evaluate the particularization of a fuzzy relation due to a compound 
fuzzy proposition, it is necessary to examine how the possibility distribution of a 
compound fuzzy proposition can be obtained from the possibility distributions of 
its constituent atomic propositions. For this purpose, the following rules, called 
translation rules, of fuzzy calculus developed by Zadeh [53-M] may be used. 

Suppose F and G are fuzzy subsets of the universes U and V, respectively. As 
in Section 3.2, with atomic propositions X is F and Y is G we associate possibility 
distributions IIx and IIY, respectively, where IIx = F, and IIy = G. 

Tl. Modifier Rule. Consider the modified proposition X is uF, where g is a 
modifier, such as “not,” “very,” or “more or less.” Each modifier is related to a 
function fc: [0, l] + [0, 11. The possibility distribution II; of the modified 
proposition X is aF is given by 

II; = F* (4.3) 

Here, F* is a fuzzy subset of U with membership function 

cLF*(u) = f&F(d) for u E U (4.4) 

Thus the effect of the modifier is to generate a new possibility distribution on U 
that is uniquely determined by the modification function fO associated with the 
modifier and the possibility distribution function &? of the atomic proposition. 
Following modification functions are recommended in the fuzzy set literature for 
some commonly used modifiers [20, 53-551. 

u = not, f<(x) = l- x (4.51 

u = very, fb(x) = x2 (4.61 

u = more or less, fn(x) = Jx (4.7) 

T2. Composition Rules. These rules can be used to find the possibility distri- 
bution associated with a compound proposition of the type X is F 0 Y is G, 
where the composition operator 0 may correspond to “and,” “or,” etc. The 
possibility distribution II(X 0 Y) associated with such a compound proposition 
is given by 

II(X 0 Y) = F 0 G (4.8) 
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where F 0 G is a fuzzy subset of U X V. Depending on the composition operator, 
the fuzzy subset F 0 G is as given below. 

0 = and, FoG=l?nG’ (4.9) 

a = or, FOG=$‘uG (4.10) 

where 6’ and 6 are cylindrical extensions of F and G in U X V, respectively, and 
union and intersection of fuzzy sets have been defined in Section 3.1. 

For a conditional fuzzy proposition If X is F then Y is G, Zadeh [53] has 
used a translation rule called the compositional rule of inference. This rule is 
based on the definition of implication in Lukasiewicz’s multivalued logic [40]. 
However, Fukami et al. [23] have pointed out that the consequences inferred by 
the compositional rule of inference often do not fit our intuition and do not even 
satisfy quite natural criteria such as modus ponens, modus tollens, or syllogism. 
In fuzzy logic, alternative translation rules for conditional fuzzy propositions 
have been proposed [20,31]. These translation rules are usually based on different 
implication rules of multivalued logic [40]. Mizumoto and Zimmerman [32] have 
compared the translation rules for conditional fuzzy proposition and have shown 
that the translation rule based on the implication in standard sequence logic 
(called R,), or the Godelian implication rule (called R,) satisfy modus ponens, 
modus tollens, and syllogism. But even these translation rules may fail to satisfy 
some generalizations of modus ponens or modus tollens. 

In this paper, we will use the translation rule R8 defined below to determine 
the possibility distribution associated with a conditional fuzzy proposition. 

Definition 4.1. Let F and G be fuzzy subsets of U and V, respectively. The 
possibility distribution I’I(X + Y) associated with the conditional fuzzy propo- 
sition If X is F then Y is G is given by 

Il(X+Y) = R, (4.11) 

where R. is a fuzzy subset of U X V with membership function 

pR,(u, V) = 1 if PF(u) 5 PC(V) 

= 0 otherwise 
(4.12) 

Note PR, defines a hard partition of U X V, i.e., R, is an ordinary subset of 
u x v. 

Besides the translation rules discussed above, Zadeh [53-551 has also proposed 
translation rules for quantified fuzzy propositions, such as QX is F, where the 
quantifier Q may represent “most,” “many,” “some,” “few,” etc. Similarly, the 
translation rules to determine the possibility distribution of a qualified fuzzy 
proposition X is F is T have also been suggested. The qualifier 7 may involve 
truth qualification, such as “true” or “very true,” or a possibility/probability 
qualification. 

In a relational database system, if the integrity constraints involve compound 
fuzzy propositions, the translation rules discussed above can be applied to 
determine the possibility distribution induced by such integrity constraints. We 
may then apply (4.2) to accommodate the effects of these restrictions on any 
fuzzy relation. 
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5. FUZZY FUNCTIONAL DEPENDENCY AND INFERENCE RULES 

Our next objective is to extend the design theory of relational database systems 
to the fuzzy domain. In this quest, it is necessary to study fuzzy data dependencies 
and their associated implication problem. In this paper, we concentrate on the 
extension of functional dependencies as they constitute the most important class 
among the different data dependencies that have been identified so far and it is 
easier to identify such dependencies from design specifications. 

As mentioned in Section 2, an instance r of a relation scheme R(A1A2 . . . A,) 
satisfies a functional dependency f: X + Y if, for each pair of tuples t1 and tz of 
r such that tl[X] = tz[X], we have tl[Y] = t2[Y]. In the fuzzy domain, equality 
of domain values defines a fuzzy proposition and may even be specified as 
“approximately equal, ” “more or less equal,” etc. For instance, a fuzzy data 
dependency in the relation EMPLOYEE(Name, Job, Experience, Salary) can be 
stated as “Job and Experience more or less determines Salary.” 

5.1 Equality as a Fuzzy Relation 

The fuzzy relation EQUAL(EQ) defined below can be used as a fuzzy measure to 
compare elements of a given domain. 

Definition 5.1 A fuzzy relation EQUAL (EQ) over a universe of discourse U is 
defined to be a fuzzy subset of U X U, where PEQ satisfies the following conditions. 
For all a, b E U, 

PEQ(~, a) = 1 (reflexivity) 
pEQ(a, b) = p&b, a) (symmetry) 

(5.1) 

That is, EQUAL is a fuzzy resemblance relation over U [20, 261. In terms of 
possibility theory, ~EQ(U, b) can be interpreted as the possibility of treating a and 
b as “equal.” The membership function ~EQ should be appropriately selected 
during database creation to capture the meaning of equality/approximate equality 
of domain values as perceived by the database designer. 

Remark. It may be noted that unlike the classical equality, EQUAL is not 
assumed to be transitive, i.e., EQUAL need not be a similarity relation [20, 261. 
This has been done with the objective of capturing integrity constraints arising 
out of approximate equality of domain values. In fact, with most distance/ 
proximity measures [20,26] used for compairing domain values, transitivity does 
not hold. 

We can extend the definition of EQUAL over composite domains as follows. 
Let D = dom(Al) x dom(Az) x . . . x dom(A,), and tl, tz be two tuples in D. 
Suppose that in each dom(Ai), a fuzzy resemblance relation EQUAL with mem- 
bership function piQ has already been defined to compare the elements of the 
domain. Then the fuzzy relation EQUAL, extended over D, defines a fuzzy subset 
of D X D, with the membership function as given below 

~EQ(tl, tz) = ~~h&Q(~~[&l, tz.M), 
&c&[&], h[&l), . . . , &&~[%l, tzLW1 (5.2) 
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In type-l fuzzy relations, dom(Ai) may be a fuzzy subset of the universe Ui. 
We can define resemblance of the elements of dom(Ai) by 

&e(a, W = midda, b), dPAibh hi(b))) (5.3) 

where a, b E Ui, pn and pe are the membership functions of resemblance relations 
over Ui and [0, 11, respectively. It can be readily seen that /.QQ defined by (5.3) is 
reflexive and symmetric. Similarly, in a type-2 relation, we may define EQUAL 
over dom(Ai) by 

Cc&(&, ai2.j = I$$ G(Pql(Ui)s Pq2(Ui)) (5.4) 

where ail, 8i2 E dom(Ai) are fuzzy subsets of Ui and 9 is a resemblance relation 
over [0, 11. In the fuzzy set literature, several resemblance relations have been 
examined [20, 261. For example, 0(x1, xz) may be selected as 1 - ] x1 - x2 1, or as 
l/O + I x1 - x2 ] ). It should also be mentioned that the definitions (5.3) and (5.4) 
are not unique ways of defining EQUAL over the domains of type-l or type-2 
relations (for instance, see Example 5.1 given below). 

Example 5.1. Consider the relation scheme EMPLOYEE(N, D, J, X, S, I) and 
its instance r discussed in Example 3.3. In this case, some of the domain values 
are crisp, whereas dam(X), dam(S), and dam(1) are sets of fuzzy subsets. We 
select the following membership functions as measures of equality over different 
domains. 

(1) p~Q(u, b) = 0 for a # b, a, b E dam(A), A E (N, D, J]. In other words, names 
of the employees, departments, or jobs must exactly match to qualify for 
equality. 

(2) For a, b E dam(A), A E {X, S, 11, the following situations may arise. 
(i) The domain values a, b are both crisp (i.e., single element fuzzy set with 

binary membership value). In that case, 

PEQ(% b) = (l/(1 + Pla - b I), 
where /3 = 1 for a, b E dam(X), 

= l/2000 for a, b E dam(S), 
= l/500 for a, b E dam(1). 

(ii) If a is crisp and b is a fuzzy subset, than p~Q(u, b) = pb(a). Similarly, if 
b is crisp and a is a fuzzy subset, then p~Q(u, b) = p.(b). (Note, an 
ordinary subset such as 15-20 can be considered as a fuzzy subset with 
binary membership value.) 

(iii) If both a and b are fuzzy subsets, then 
pEQ(u, b) = max{c/curd(u), c/curd(b)], 

where curd denotes cardinality of a fuzzy set [20, 26, 551, and c = 
curd(u n b). 

It can be readily checked that the membership functions defined above are 
reflexive and symmetric, as demanded by (5.1). Also, over dam(A), A E (X, S, I), 
the fuzzy resemblance relation EQUAL can be used to provide interpretation of 
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approximate equality of the domain values. In Example 5.2, we will see how these 
fuzzy resemblance relations can be used to represent a fuzzy data dependency 
“for any job, experience determines salary.” 

Once the meaning of equality of domain values is finalized, the modifier rule 
of fuzzy calculus can be applied to provide interpretation for fuzzy relations 
“more or less equal” or “very much equal.” For instance, the membership function 
of the fuzzy relation “more or less equal” would be given by 

PMLEQ(% b) = JPEQ(%~) (5.5) 

In general, the membership function associated with a modified relation uEQUAL 
in a dam(A) is given by 

KTEQ(U, b) = ~&EQ(U, b)) (5.6) 

where fc is the modifier function associated with c and a, b E dam(A). In order 
that aEQUAL be reflexive, we require f&) = 1. The symmetry of aEQUAL 
follows from that of EQUAL. This modified membership function can now be 
applied to determine the possibility of, say, two salaries to be more or less equal. 

Finally, it may be mentioned that although the idea of treating equality as a 
fuzzy relation is motivated by our attempt to generalize integrity constraints, a 
similar approach can be followed in query processing. For example, a database 
query may be specified as “Get the name of employees who have more or less 
equal salary as their manager.” In this case, “equal” should be treated as a fuzzy 
resemblance relation, and “more or less” as a modifier of “equal.” Also, the fuzzy 
relation “equal” during query processing may be described by a different mem- 
bership function than the one used for cornpairing domain values in fuzzy data 
dependencies. The evaluation of this query will retrieve the names of employees 
who have nonzero (or above a certain threshold value) possibility of having salary 
“more or less equal” to the salary of their manager. The possibility value of the 
tuple to be selected will be determined by the membership function of the fuzzy 
relation “more or less equal.” In a subsequent paper [37], we will deal with the 
extension of QUEL[45] and associated query evaluation procedures to support 
this type of query on a fuzzy relational database. 

5.2 Fuzzy Functional Dependency 

Let X = Ai, Ai, . . . Ai, and Y = Aj, Aj, . . . AjP be subsets of a relation scheme 
R(AlAz . . . A,). Based on our interpretation of “equality,” a fuzzy proposition 
X is equal defines a fuzzy subset of dom(Ai,) X dom(Ai,) X . . . dom(Ai,) with 
the membership function determined by (5.2). A generalization of an fd: X + Y 
in R, called ffd: X - Y, can now be defined as a particularization of a fuzzy 
relation on R due to a fuzzy conditional proposition If X is equal then Y is 
equal. The particularization imposed by an ffd is, therefore, linked with the 
translation rule used for conditional fuzzy propositions. In the following devel- 
opment we use the translation rule given in Definition 4.1. 

With a fuzzy proposition If X is equal then Y is equal, the possibility 
distribution determined by (4.12) produces a hard partition of dom(A1) X dom(AP) 
X . -. x dom(A,). Combining this observation with the concept of particulari- 
zation, we arrive at the following definition of a fuzzy functional dependency. 
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Definition 5.2. A fuzzy functional dependency (ffd) X * Y with X, Y C R, 
holds in a fuzzy relation r on R, if for all tuples tl and tP of r (i.e., pr(ti) > 0, 
for i = 1, 2), we have 

/-‘EQ(tl[Xl, h[Xl) 5 pEQ(tl[Y], k’[Y]) (5.7) . 

Remark. An fd in a classical relational database can be viewed as a special 
case of an ffd. To prove this, consider the ffd: X +, Y and suppose that the 
resemblance relation EQUAL over dam(A), A E XY, satisfies the additional 
property that pEQ(a, b) = 0 for a # b, a, b E dam(A). Since for a classical 
relational database r, pL,(t) = 1 for t E r, Definition 5.2 implies that no two tuples 
of r can agree in X-values, yet disagree in their Y values. 

Example 5.2. Let us again consider the relation scheme EMPLOYEE(N, D, J, 
X, S, I) and the resemblance relations discussed in Example 5.1. It can be verified 
that with these choices for pso, the fuzzy relation r in Table III satisfies the 
following fuzzy functional dependencies. 

ND * J: Name and Department determines Job. 
JX * S: For any job, employees having “equal” experience should have “equal” 

salary. 
S * I: For “equal” salaries, income taxes are “equal.” 

Here the ffd: ND cvc* J is in fact, a classical fd due to the special nature of the 
EQUAL relation over the domains of these attributes. Note that the ffd: JX IVY 
S does not permit the tuple t = (W-1 1 son Electrical Engineer 11 55,000 5700) to 
be inserted in the database because r already contains the tuple t1 = (Murty 
Mechanical Engineer 10 50,000 5,000) and 

CLE&[JX], tl [JXI) > PEQ(t[S], tl [sl) 
However, insertion of this tuple would not violate a classical fd: JX + S. Thus 

the integrity constraint “for any job, experience determines salary” is not 
adequately represented by a classical fd when interpretation of this integrity 
constraint requires that “for any job, employees having approximately equal 
experience must have approximately equal salary.” By suitably selecting 
pEQ, the ffd: JX w S provides a more acceptable model for such integrity 
constraints. 

The proposed approach to generalization of functional dependencies also 
enables us to capture integrity constraints involving suitable fuzzy modifiers to 
“equal.” Given a fuzzy modifier CJ with fO(l) = 1, we have seen that the modified 
relation aEQUAL is also reflexive and symmetric. With such modifiers, an 
integrity constraint defined by a fuzzy proposition If X is o1 equal then Y is c2 
equal can be regarded as an ffd, where the modified membership functions of 
EQUAL should be used in (5.7), i.e., as 

(5.8) 

Thus with the integrity constraint “X more or less determines Y,” we associate 
a modified equality relation MLEQ over the domains of the attributes in Y, 

ACM Transactions on Database Systems, Vol. 13, No. 2, June 1988. 



150 l K. V. S. V. N. Raju and A. K. Majumdar 

Table IX. An Instance of SUPPLY 

Item # Item Order-Date Delivery-Date 

100 nut 15. 10. 86 18. 10. 86 
102 bolt 12. 10. 86 18. 10. 86 
100 nut 20. 10. 86 24. 10. 86 
104 nail 15. 10. 86 18. 10. 86 

where the membership function of MLEQ is computed using (5.5). Observe that 
the modified relation MLEQ is also reflexive and symmetric as required in 
Definition 5.1. It can now be said that the ffd: “X more or less determines Y” 
holds in a fuzzy relation r, if for any two tuples tl, t2 of r, 

~EQ(tl[Xl, k?[x]) 5 hEQ(tdY], t2[Yl) (5.9) 

Example 5.3. Suppose that a relation SUPPLY(Item#, Item, Order-Date, 
Delivery-Date) satisfies an integrity constraint “for any item, Order-Date more 
or less determines Delivery-Date.” In order to represent this integrity constraint 
we consider the following resemblance relations over the domains of Item, 
Order-Date, and Delivery-Date. 

(i) /QQ(U, b) = 0 for a # b, a, b E dom(Item). 
(ii) PEQ(% b) = Ml + I a - b ] ) for a, b E dom(Order-Date), or dom(Delivery- 

Date), 

where ] u - b ] represents the difference in number of days between two dates a 
and b. 

Then, from (5.5), “more or less equal delivery date” defines a fuzzy resemblance 
relation over dom(Delivery-Date) with membership function Jl/(l + ] a - b I). 
The ffd representing the given integrity constraint requires that in any instance 
of SUPPLY, any two tuples t1 and t2 with tl [Item] = t2 [Item] must satisfy 

l/(1 + ] tl [Order-Date] - t2 [Order-Date] ] ) 
I d/(1/(1 + ] t,[Delivery-Date] - t2[Delivery-Date] ] ) (5.10) 

The classical relation shown in Table IX is a typical instance of SUPPLY that 
satisfies (5.8). This ffd does not permit a tuple (102 bolt 14. 10. 86 29. 10. 86) to 
be inserted in the database because, along with the tuple (102 bolt 12. 10.86 18. 
10. 86), already present in the database, such insertion will violate (5.10). The 
insertion of this tuple, however, does not violate a classical fd: Item Order-Date 
+ Delivery-Date thereby implying that the fd has failed to capture the meaning 
of the given integrity constraint. 

Finally, we would like to mention that the Definition 5.2 of a fuzzy functional 
dependency is not a unique way of generalizing classical fd in a fuzzy database. 
For instance, with an alternative translation rule for conditional fuzzy proposi- 
tions, such as the one based on the Godeliun implication rule [20, 32, 401, a 
different set of conditions is obtained. Secondly, Definition 5.2 requires that the 
validity of an ffd in a fuzzy relation have binary truth values. Thus a relation 
may either satisfy the ffd X - Y, or will contain tuples for which the condition 
(5.7) is violated. However, within the framework of fuzzy calculus it is possible 
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to treat truth value of a fuzzy proposition to be a fuzzy subset of [0, l] [20, 53, 
541. Hence, one can define a generalization of fds where the possibility of a fuzzy 
relation satisfying the given integrity constraint is even truth qualified. Some 
alternative generalizations of functional dependencies in a fuzzy database may 
be found in [ 13,341. Different formulations of fuzzy functional dependencies will 
be examined in a subsequent paper. 

5.3 Inference Axioms for Fuzzy Functional Dependency 

Given a set of data dependencies that hold on a database, it is often possible to 
derive other data dependencies that also hold on the same database [5,6, 19,29, 
461. In order to derive such new data dependencies from the given set of 
dependencies, a set of inference axioms is generally used. In the relational 
database literature, sound and complete sets of inference axioms for different 
types of data dependencies have been reported 119, 29, 461. We next present 
a set of sound and complete inference axioms for ffds, which is similar to 
Armstrong’s Axioms for classical fds [29, 461. 

Let us consider a relation scheme R(A1, Aa, . . . , A,) and a set of ffds F. An 
instance r of R is called a legal instance if r satisfies all ffds in F. As mentioned 
in the previous section, the validity of an ffd in a fuzzy relation r will be assumed 
to have binary truth value. In the following axioms, X, Y, and Z are subsets of 
the relation scheme R. 

Inference Axioms : 
FFl. Reflexivity: If Y E X, then X - Y. 
FF2. Augmentation: If X - Y holds, then XZ - YZ also holds. 
FF3. Tran.sitiuity: If X - Y and Y - Z hold, then X - Z holds. 

The following inference axioms follow from above axioms. 

FF4. Union: If X zh+ Y and X - Z hold, then X - YZ holds. 
FF5. Decomposition: If X - YZ holds, then X - Y and X - Z hold. 
FF6. Pseudotransitivity: If X - Y and YW - Z hold, then XW vy Z holds. 

To prove the soundness of these axioms, consider an instance r of R and 
let t1 and tz be two tuples of r. 

FFl. Reflexivity: Since Y is a subset of X, from (5.2) we have, 

~EQh[Xl, tz[xI) = ~EQ(tl[Yl, tz[Yl) 

So the ffd: X - Y trivially holds in r. 
FF2. Augmentation: Since X - Y holds in the fuzzy relation r, 

Hence, 

that is, XZ - YZ holds in r. 
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FF3. Transitivity: Suppose r satisfies the ffds X * Y and Y oh, Z, that is, 

~EQh[Xl, b[Xl) = /&Q(tl[Y], t2[Yl) 

and 

~EQ(tl[Y], t2[Y]) 5 /&Q(tl[Z], t2[Z]) 

These two conditions imply that 

~EQ(tl[Xl, t2[XI) 5 ~EQ(tl[Zl, t2[Zl) 

Thus X * Z also holds in r. 

The remaining axioms follow from these three axioms, as in the case of 
classical fds. 

The following definition, regarding the closure of a set of attributes with 
respect to a set of ffds, is similar to the corresponding definition used in the 
classical fd literature [29, 461. 

Definition 5.3. Suppose F is a set of ffds of a relation scheme R and let 
W G R. Then W+, the closure of W with respect to F, is the set of attributes 
A E R, such that W IVC* A can be obtained from F using ffd inference axioms 
(FFl-FFG). 

LEMMA 5.1. W IVY V follows from the inference axioms of ffds, iff V G W+. 

PROOF. Let V = (Ai, . . . , Ak) and suppose that W +++ V follows from the ffd 
inference axioms. Then for each i, W * Ai holds by the Decomposition axiom. 
so, v cl w+. 

Suppose, V G W+. By Definition 5.3, for each i, W e Ai is implied by the ffd 
axioms. Hence, according to the Union rule, W zc, V follows. Cl 

The following lemma will be useful in the study of the lossless join decompo- 
sition of fuzzy relations. 

LEMMA 5.2. Natural join of fuzzy relations preserves fuzzy functional depend- 
encies. 

PROOF. Let ri and r2 be two fuzzy relations and Fl and F2 be two sets of ffds 
satisfied by rl and r2, respectively. Let r = rl w r2. We show that r satisfies all 
the ffds in Fl U F2. 

Consider the ffd, f: X IC, Y in Fl U F2 and suppose that r does not satisfy f. 
Then r contains two tuples tl and t2 such that 

~EQ(tl[Xl, t2[Xl) > ~EQ(tl[Yl, t2[YI) (5.11) 

Suppose that tt is the projection of tk over the attributes of ri, where 
i, k = 1, 2. Since p,(tL) > 0, from (3.23) and (3.29), j+(tk) > 0 for i, k = 1, 2. 

Also, tL[XY] = tk[XY], if X and Y are attributes of ri. When f E Fj(j E (1, 2)), 
X and Y are attributes of rj. Then (5.11) leads to the contradiction that rj violates 
f E Fj, for j E (1, 2). Hence r satisfies Fl U F2. Cl 

It can be similarly shown that if ri satisfies Fi, for i = 1, . . . , s, then 
r = ~$1 ri satisfies Ufcl (Fi)‘. Here, F+ denotes the closure of a set of ffds F 
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with respect to the inference axioms, i.e., the set of all ffds that can be derived 
from F using the inference axioms. 

As a consequence of the similarity of the inference axioms for fds and ffds, 
the following lemma can be readily proved. This lemma suggests that we can 
apply the membership algorithms for fds (such as the one proposed by Beeri and 
Bernstein [4]) to determine if an ffd f can be inferred from a given set of ffds 
using FFl-FF6. 

LEMMA 5.3. Let F be a set of ffds and fi = (V + W ) V - W E F]. Suppose by 
applying Armstrong’s axioms to fi, the fd f: X + Y can be inferred. Then the ffd 
f: X zc* Y can be inferred from F by ffd axioms FFl-FF6. 

PROOF. The lemma is proved by induction on the number of steps in the 
inference off from 13. 

Basis. If p E @, then by definition of #, f E F. Also Beeri and Bernstein [4] 
have shown that in any derivation of p from p, the reflexivity axiom need not be 
used more than once. In fact, if Y G X, by reflexivity X + Y trivially follows 
from fi. But in this case, the reflexivity axiom of the ffd is also applicable 
and X +, Y would follow trivially from F. 

Induction. Suppose the claim is true for a derivation of p with k steps. That is 
if P logically implies f in k steps, then f can be inferred from F by ffd axioms. 
Consider an f: X + Y, which can be inferred from $’ using (k + 1) applications 
of Armstrong’s axioms. Following Beeri and Bernstein [4], the reflexivity axiom 
will not be used since otherwise X + Y would have a derivation of length one. 

Suppose iqthe (k + 1)th stepof the de+vation off, the augmentation axiom- 
is used with fi: V + Z. Hence, F derives fi in k steps. Also, the derivation of f 
from fi using augmentation rule requires that X = VW and Y = ZW. By our 
assumption, the ffd fi: V * Z can be derived from F using ffd axioms. Now, 
augmenting both sides off by W, the ffd augmentation axiom produces X zc* Y. 
Next, suppose that the t:ansitivity axiom is used in the (k + 1)th step of derivation 
off. Then, there exists fi: X + V and f2: V += Y, such that both fl and fi can be 
derived from @ in less than or equal to k steps and p follows from these two fds 
by transitivity. By our assumption, the ffds fi: X IVC* V and fi: V zlc, Y can be 
derived from F using ffd axioms. Also, the transitivity axiom can be applied to 
these two ffds to obtain X +-+ Y. Cl 

We next examine the completeness of the ffd axioms. A set of inference axioms 
is said to be complete for a family of constraints, if for each set F from the family, 
the constraints that are implied by F are exactly those that can be derived from 
it using these inference axioms [46]. The following example shows that unlike 
Armstrong’s axioms, the ffd inference axioms FFl-FF6 are not always complete. 

Example 5.4. Let us select resemblance relations over dom(Ai), i = 1,2,3, such 
that in addition to (5.1), the following condition holds: 

For all ali, alj E dom(Al) and for all ark, arp E dom(A,) 

r = 2, 3, if ark Z am, then mQ(ali, %j) > PEQbrk, a,) (5.12) 
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With this choice of EQUAL, consider the ffd AlAz - AB over R(A1A2A3). Let 
r be a legal instance of R. Since r satisfies A,A2 - AB, for any two tuples tl and 
kofr 

m&t&&l, tzL%&l) = PE&[&l, tzN31) 

where pEQ(tl[A1A2], t2[A1A2]) is evaluated using (5.2). 

(5.13) 

We now show that r also satisfies Az - AS. To prove this, we note that when 
the proposition \k = ((tl[A1] # tz[A1]) and (tl[A2] = tz[Az])) is true, from (5.1) 
and 6% pEQh[&&I, tz[&&l) = ,%Q(M&l, WLlh BY (5.12) and (5.13), we 
then have tl[A3] = t2[A3]. Hence by reflexivity of resemblance relations, r 
satisfies Az - As. 

Similarly, when \k is false (i.e., either t1 [A11 = tP [Al], or tl [A,] # tz [A,]), from 
(5.2) and (5.1% pE&[&&], t3b431) = mQh[&l, t2M). So from (5.13) 
and (5.7), r satisfies Az - A3. 

Therefore, for the present choice of EQUAL, the ffd A, A, - A3 implies 
A2 - A3 even though such an implication cannot be made using FFl-FF6. If 
we restrict EQUAL further by the condition that pso(ali, alj) = 1.0 for all ali, 
alj E dom(A,) (i.e., EQUAL does not distinguish the elements of dom(A1)), r will 
trivially satisfy the ffds AZ - A1 and A3 - A1. Again, none of these two ffds 
can be inferred from AlAP - A3 using FFl-FF6. 

Example 5.4 indicates that, depending upon the type of the resemblance 
relations used for defining the ffds, it is possible to imply new ffds that cannot 
be inferred using FFl-FF6. To infer such ffds, we have to consider additional 
inference axioms that depend on the resemblance relations used for comparing 
the domain values. Since the number of resemblance relations that can be defined 
over any domain is infinite (not even countably infinite), a complete set of 
inference axioms can be obtained only for suitable class of ffds where additional 
restrictions are imposed on EQUAL. In this connection, it will be useful to find 
a class of ffds for which the inference axioms FFl-FF6 constitute a complete 
set. The following theorem establishes completeness of these ffd axioms when 
each domain has at least two elements that do not resemble each other. 

THEOREM 5.1. The inference axioms FFl, FF2, and FF3 form a complete 
set of inference axioms for fuzzy functional dependencies of a relation scheme 
R(AlAz . . . A,) when the following condition holds: 

For each Ai E R, there exists at least one pair of elements 
ai, bi E dom(Ai) such that pEQ(ai, bi) = 0. 

(5.14) 

PROOF. Given a set F of ffds over R. Suppose that the ffd f: W - V, with W, 
V C R, cannot be inferred from Fusing the inference axioms. 

Let r be a fuzzy relation with two tuples t and tl shown below. t = (a,, az, . . . , 
a,,), and the tuple tl is defined by 

tl[Ai] = ai if Ai E W+ 
= bi otherwise 

where pxo(aj, bj) = 0, for aj, bj E dom(Aj), j = 1, . . . , n. From our assumption, 
such aj and bj exist in each attribute domain. 
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First we show that r satisfies all the ffds in F. Let X - Y be an ffd in F. 
If X $Z W+, then for Aj E (X - W’), PEQ(t[Ajt h[Ajl) = PEQ(aj, bj) = 0. SO 
from (5.2), pEQ(t[X], tl[X]) = 0. Hence, by (5.7) r trivially satisfies X * Y. 
When X C W+, by Lemma 5.1 W +-+ X and by transitivity W 19 Y. Applying 
Lemma 5.1 again, Y G W’. Since XY G W’, by construction pEQ(t[X], tl[X]) = 
pEQ(t[Y], tl [Y]) = 1.0. Therefore r satisfies the ffd X - Y. 

Since f cannot be inferred from F using the inference axioms, we now show 
that r does not satisfy f. From the definition of r, t[W] = tl [WI. In order that r 
satisfies f, we must have rxQ(t[V], tl[V]) = 1. But this requires V C W+, thereby 
implying that f follows from F by the inference axioms. Since this conclusion 
violates our original assumption, the fuzzy relation r cannot satisfy the ffd: 
W zh, V. Hence the inference rules are complete. Cl 

The condition (5.14) defines a class of ffds for which the inference axioms 
FFl-FF3 constitute a complete set. In view of the similarity of the inference 
axioms, we would be able to apply many of the algorithms reported in the 
functional dependency literature to this class of ffds. For example, Beeri and 
Bernstein’s algorithm [4] can be applied to find a minimal cover of a set of such 
ffds. Since in most real-world applications it is not difficult to select suitable 
resemblance relations that satisfy (5.14), the ffds belonging to this class can still 
represent fuzzy integrity constraints involving approximate equality of domain 
values. For instance, in Example 5.3, we may define the resemblance relations 
over dom(Order-Date) and dom(Delivery-Date) such that 

PEQ(& b) = l/(1 + I a - b I) for ] a - b ] I 30 
= 0 otherwise. 

The resulting ffd still captures the semantics of the integrity constraint “for 
any item, Order-Date more or less determines Delivery-Date” for any two orders 
placed within 30 days. 

Since (5.14) is only a sufficient condition for the ffd axioms FFl-FF6 to be 
complete, it may, however, be worthwhile to find a restriction on EQUAL that is 
both necessary and sufficient for the completeness of these axioms, 

6. LOSSLESS JOIN OF FUZZY RELATIONS 

To answer user’s queries in a fuzzy relational database it would often be necessary 
to join two or more fuzzy relations. However, (3.30) suggests that the natural 
join may not recover the original fuzzy relation. The problem of lossless join of 
relation schemes is of central importance in the design theory of relational 
databases. In fact, the concept of adequate decomposition of relational databases 
requires that the synthesized relation scheme have the lossless join property 
[29, 461. In this section, we examine the lossless join decomposition of fuzzy 
relations in the presence of fuzzy functional dependencies. 

Definition 6.1. Let R be a scheme and p = {RI, Rz, . . . , R) be a decomposition 
of R with R = R1& . . . R. This decomposition is a lossless join with respect to 
a set of ffds F, if for every fuzzy relation r of R that satisfies these ffds, the 
following condition holds. 

r = m,(r) (6.1) 
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Table X. An Instance r of R(T,A,S,E) 

Name Aae Subiect ExDerience u 

Rao 30 DBMS 4 0.8 
RaO 30 AI 2 0.6 
Johnson 35 AI 5 0.9 
Sen 28 OS 3 0.7 

It was established in [36] that a decomposition p of R is lossless join for a 
given set of integrity constraints iff, for any (ala2 . . . a,,) E dom(A1) x dom(AP) 
X . . . X dom(A,), there exists at least one Fi = C,(P,(r)), i E (1, 2, . . . , s], 
such that 

witala . . . ad = dala2 . . . a,) (6.2) 

Note that the validity of the condition is required for any tuple t E D = 
dom(Ai) x dom(Az) x . . . X dom(A,), and not merely for those tuples that 
are already present in r, i.e., hr(t) > 0. The following example, with a classical 
relation (i.e., a fuzzy relation with binary membership values), illustrates 
that a tuple t may not be present in an instance r, yet in none of its projections 
pi(t) # 0, thereby leading to lossy join. 

Example 6.1. Consider a relation scheme R(ABC) with fds A + B and 
C --* B, and an instance r of R having two tuples tl = (albcl) and tZ = (a2bc2). 
Let p = (AB, BC] be a decomposition of R. It is well known that this decompo- 
sition does not have lossless join [29, 461. This conclusion can also be verified 
from (6.2) by observing that for a tuple t = (albcz), pr(t) = 0, yet both 
p;,(t) = 1 and p;,(t) = 1, where i, i = 1, 2, are the cylindrical extensions of the 
projections of r on AI3 and BC, respectively. 

In the next example, a lossless decomposition of a fuzzy relation based on 
classical fds is shown. 

Example 6.2. Let R(T, A, S, E) be a relation scheme of experienced teachers, 
where T is the name of the teacher, A is the age, S is the subject taught, and E 
is the experience in teaching a particular subject. Here, the membership values 
can be interpreted as the possibility of a teacher teaching a particular subject. 
Suppose that classical fds T -+ A and TS + E hold in R. A typical legal instance 
r of R is shown in Table X. Let p = (TA, TSEJ be a decomposition of R. The 
projections of r over p are shown in Table XI(a and b). It can be easily checked 
that r = PTA(r) w P&r). Also, (6.2) can be verified by showing 
that w,(t) = pr(t) for all tuples t E dam(T) X dam(A) X dam(S) X dam(E), 
where i$ is the cylindrical extension of the projection of r over the attributes T, 
S, and E [35]. 

Although (6.1) is a necessary and sufficient condition for lossless join decom- 
position of fuzzy relations, it cannot be applied, in practice, to test lossless join 
of a given decomposition as exhaustive testing with all possible combinations of 
domain values is required. However, it can be used to prove that a certain 
algorithm, such as the ABU algorithm for classical relations, can be applied to 
test the lossless join of relation schemes. In fact, using this condition Raju and 
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Table XI. Projection of r Over p = {TA, TSE} 

Name 

Rao 
Johnson 
Sen 

Age P 

30 0.8 
35 0.9 
28 0.7 

(a) 

Name 

Rao 
RaO 

Johnson 
Sen 

Subject Experience P 

DBMS 4 0.8 
AI 2 0.6 
AI 5 0.9 
OS 3 0.7 

(b) 

Majumdar [35] have shown that the ABU algorithm can indeed be applied to 
test the lossless join decomposition of fuzzy relations in the presence of classical 
fds. In this paper we will use this condition to prove some theorems concerning 
the lossless join decomposition of fuzzy relations in the presence of ffds. 

6.1 Fuzzy Functional Dependency and Lossless Join Decomposition 

In classical relational database theory, it is well known that if an fd: X + Y 
holds in a relational database R(XYZ), then the decomposition p = (XY, YZ) of 
R is lossless. This important property of fds forms the basis of Codd’s normali- 
zation procedures and can be shown to follow from the necessary and sufficient 
condition for lossless join of a two-component decomposition obtained by 
Rissanen [41]. It can also be proved by ABU algorithm using fd trans- 
formation rules [29,46]. We now show that unless the fuzzy resemblance relation 
EQUAL is appropriately restricted, a similar property does not hold for ffds. 

Example 6.3. Consider a relation scheme R(ABC) with an ffd A YY B. Also 
suppose that the membership functions of the fuzzy resemblance relation EQUAL 
used for defining this ffd do not distinguish the elements of the domains of the 
attributes A and B, i.e., p&a, al) = 1 and p&b, bl) = 1, for all a, al E dam(A) 
and b, bl E dam(B). Note, pso thus defined obviously satisfies (5.1). An instance 
r of R that satisfies this ffd is shown in Table XII. 

Let R1(AB) and Rz(AC) be the decompositions of R. The projections rl and r2 
over R1 and R2 are shown in Table XIII(a and b). 

Let i = rl w r2. Then it can be checked that p;(abc) = &ablcl) = 0.9, whereas 
pLr(abc) = 0.8 and p,(ablcl) = 0.6. In fact, i > r, implying thereby that the 
decomposition of R based on the ffd: A ++ B is not lossless. 

It can further be shown that whenever the resemblance relation EQUAL over 
dam(B) has hso(b, bl) = 1 for any b # bl, one can find an instance r of R that 
satisfies the ffd: A oh, B, yet the join of the projections of r over R1 and R2 is not 
equal to r. 

Even though the assumption that EQUAL is a resemblance relation is sufficient 
for generalization of fds and associated inference axioms, this example suggests 
that for lossless synthesis of fuzzy relations with ffds, EQUAL needs to be 
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Table XII. An Instance r of R(ABC) 

A B C P 

a b C 0.8 
a bl C 0.9 
a b Cl 0.9 
a bl Cl 0.6 

Table XIII. Projections of r Over 
RIW) and MAC) 

A B 11 

a 
a 

b 
bl 

(a) 

0.9 
0.9 

A C Y 

a 
a 

C 
Cl 

(W 

0.9 
0.9 

restricted further. In view of this, in the subsequent development the fuzzy 
resemblance relation EQUAL is restricted such that besides (5.1) it also satisfies 

@EQh b) < 1 for a # b, a, b E U (&la) 

Thus for X C R(A,A, . . . A,), (&la) and (5.2) would imply 

pEQ(tl[X], t2[X]) < 1, if ti[X] # t2[X] (5.2a) 

where ti, t2 E D = dom(Ai) x dom(Az) x . . . X dom(A,). 
Hereinafter, the class of ffds, where EQUAL is restricted by (5.la) will be 

referred to as restricted fuzzy functional dependency (rffd). 
Note that if a fuzzy relation r satisfies an rffd: A zly B, then r cannot have 

two tuples which agree on A but disagree on B, just as in the case of classical 
fds. However, unlike classical fds, this rffd does not permit r to have two tuples 
ti and tz with tl[A] # &[A], if 

Thus whenever an rffd f: X - Y holds in a fuzzy relation r, the fd 3: X --* Y 
also holds in the same relation, although the converse is not true. The restriction 
imposed by (5.la), therefore, makes an rffd a stronger integrity constraint than 
a classical fd. However, even with this additional restriction on EQUAL, the 
ffds are still useful in modeling integrity constraints arising out of approximate 
equality of domain values. For instance, the resemblance relations used for 
modeling the integrity constraint, “for any Item, Order-Date more or less deter- 
mines the Delivery-Date” in Example 5.3, satisfy (5.la). But some of the resem- 
blance relations in Examples (5.1) and (5.2) do not satisfy (5.la). For the relation 
R(N, D, J, X, S, I), in Example 5.2, to have lossless join decomposition p = (NDJ, 
JXS, SI), we should select new resemblance relations over dam(X), dam(S), and 
dam(I), that satisfy (5.la). 
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The following theorem shows that under this additional restriction, the rffd: 
X w Y will lead to lossless join decomposition of R(XYZ). 

THEOREM 6.1. Given a relation scheme R(A1A2 . . . A,) with an rffd: X - Y, 
where X, Y C R. The relation scheme R bus a lassless join decomposition into two 
components Ri(XY) and R2(XZ), where Z = R - XY. 

PROOF. Let r be a legal instance of R and rl and r2 be the projections of R 
over R1 and R2, respectively. We denote the cylindrical extension of ri(i = 1, 2) 
on R by i, and the natural join of rl and r2 by i. 

In order that the given decomposition of R has lossless join, the condition (6.2) 
requires that for any t E D = dom(A1) X dom(A2) X . . . x dom(A,), there exists 
at least one ri, i E (1, 21, such that pr(t) = pi(t). 

With a tuple t of r, i.e., pL,(t) > 0, by (3.25) we have 

P&(t) = rr@) 63) 

However, for p;,(t) > p,(t), r must have at least another tuple tl with p,(tl) > 
fir(t), such that t[XZ] = tl[XZ] and t[Y] # tl[Y]. Then by (5.2a), p&t[Y], 
tl [Y]) < 1, whereas from (5.1) and (5.2), p&t[X], tl [Xl) = 1. Hence the condition 
(5.7) for the rffd: X +-. Y is violated. Thus, for all tuples t of r, we have a(t) = 
fli,(t), i.e., h(t) = r&h 

We now show that for a tuple t E D, which is definitely not in r, i.e., p,(t) = 
0, either p,(t[XY]) = 0, or pLr2(t[XZ]) = 0, i.e., p;(t) = 0. We prove this result by 
contradiction. Suppose for a tuple t E D, pr(t) = 0, but both p,(t[XY]) # 0 and 
r,(t[XZl z 0. 

For pL,l(t[XY]) # 0, (3.23) requires that there must exist a tuple tl in r (i.e., 
pr(tl) > 0) with tl[XY] = t[XY] and tl[Z] # t[Z]. Similarly, for p,2(t[XZ]) # 0, 
we need a tuple t2 in r, such that t2[XZ] = t[XZ] and t2[Y] # t[Y]. In other 
words, the relation r must contain at least two tuples tl and t2 such that tl[X] = 
t2[X], yet tl[Y] # t2[Y]. But by (5.2a), this would violate the rffd: X - Y. We 
have, therefore, established that for any t E D, pr(t) = p;(t), i.e., the join is 
lossless. Cl 

With classical fds, Rissanen [41] has also established a converse of 
Theorem 6.1, according to which, if Ri(XY) and R2(XZ) is a lossless join 
decomposition of R(XYZ) with a set of fds F, then either X + Y, or X + Z, can 
be inferred from F using Armstrong’s axioms. However, the following example 
shows that a similar result does not always hold with rffds. 

Example 6.4. Consider a relation scheme R(ABC) with dam(A) = (al, a2 ), 
dam(B) = (bi, b2) and dam(C) = (cl, c2), Define resemblance relations over these 
domains such that, in addition to (5.1), 

CLEQh a2) = 0.8, PE&h, bz) = 0.6 and ~EQ(C~, ~2) = 0.7. 

Note that (5.la) is also satisfied. With this choice of EQUAL, let us consider 
the rffd AB * C and a decomposition R1(AB) and R2(BC) of R. Applying (6.2) 
to any legal instance r of R, it can be shown that this decomposition has lossless 
join. But neither B * A, nor B +, C, can be inferred from AB +++ C using 
FFl-FF6. 
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A closer examination reveals that as in Example 5.4, if an instance r of R 
satisfies AB ~0 C, then r also satisfies the rffd B * C. In other words, for the 
present choice of EQUAL the ffd axioms FFl-FF6 are not complete. 

This example suggests that the desired converse of Theorem 6.1 can hold only 
for a class of rffds where additional restrictions are imposed on EQUAL. In fact, 
when the resemblance relations of rffds are restricted further by (5.14), then by 
constructing a relation with two tuples (as in Theorem 5.1), it can be shown that 
a two-component decomposition has lossless join iff a condition similar to 
Rissanen [41] holds. 

We now examine whether the ABU algorithm can be applied to test lossless 
join decomposition of fuzzy relations with rffds. 

Consider a relation scheme R with a set F of rffds and let p = (RI, 
R 2, . . . , R,] be a decomposition of R. Construct a set of fds P = (X + Y 1 X - 
Y E F). As discussed before, whenever a relation r satisfies the set of 
rffds F, it also satisfies the fds in i? Thus, we may say, the set of ffds F 
logically implies l? 

We may now apply the ABU algorithm>0 the decomposition p and let T,* = 
CHASEp(T,) be the chase of T, under F, where T, is the tableau associated 
with p [I, 29, 461. If p has a lossless join with respect to F, then as discussed in 
Section 2, T,* has a row (say ith row) which contains all distinguished variables 
[l, 29, 461. It was shown in [35] that if the ith row of T,* consists of only 
distinguished variables, then the set of attribut:s Ri is a superkey of R(Ri + R). 
Thus the fd Ri + R can be inferred from F using Armstrong’s axioms. By 
Lemma 3, we can then conclude that the rffd: Ri zly R can be inferred from F 
using ffd axioms. This observation enables us to prove the following theorem. 

THEOREM~.~. Letp= (R1,Rz,.. . , R,] be a decomposition of a relation scheme 
R(AlAz . . . A,) and F be a set of rffds ouer R. If CHASEk(T,), where $’ = 
(X + Y 1 X zc, Y E F) is the set of fds implied by F and T, is the tableau associ- 
ated with p, has a row that contains only distinguished variables, then p has a 
lossless join. 

PROOF. Suppose that ith row of CHASE$(T,) contains only distinguished 
variables. Then, as noted above, the rffd f: Ri w R can be inferred from Fusing 
ffd axioms. Consequently, any legal instance r of R that satisfies F, will also 
satisfy f, 

Let rj = P%(r). The cylindrical extension of rj on R is denoted by ?j. 
Now consider a tuple t in r. By (3.23) and (3.25), pFi(t) Z p,(t) if and only if 
there exists another tuple tl in r such that pr(tl) > pL,(t) and t[Ri] = tl[Ri], 
t[R - Ri] # tl[R - Ri]. 

Since EQUAL relations used in defining rffds satisfy (5.la), with t and tl, 
pko(t[R - Ri], tl [R - Ri]) < 1, whereas pko(t[Ri], tl [Ri]) = 1. Hence, the presence 
of both t and tl in r would violate the ffd Ri zc, R. Thus, for all tuples t of r, 
Pi(t) = tir@). 

For a tuple t E D = dom(Al) x dom(An) x . . . x dom(A,), which is definitely 
not in r, i.e., p,.(t) = 0, we show that there exists a projection rj, j E (1, 2, . . . , s], 
of r such that GUI = 0. 
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To prove this result by contradiction, suppose ~;~(t) # 0 for all k E 
(L2, * * * , s). From (3.23) and (3.24), we may write 

Since pr(t) = 0, (6.4) implies that for &t) # 0, r must contain at least another 
tuple tl with t[Ri] = t,[Ri], and t[R - Ri] # tl[R - Ri]. But in that case, i = 
rl W r2 W - - . w rs will contain both the tuples t and t1 with nonzero membership 
values. Simultaneous presence of both t and tl in i would, however, violate the 
rffd: Ri +-+ R, contradicting the conclusion that natural join preserves ffds (see 
Lemma 5.2). Therefore, by (6.1), the decomposition p has a lossless join. 0 

Theorem 6.2 suggests that to test lossless join of a decomposition p with a set 
of rffds F, we can use the chase process where the tableau transformation rule 
due to an rffd is the same as that due to an fd. Thus, suppose that in a tableau 
T, the rows w1 and w2 have identical entries in the columns corresponding to the 
attributes in X, i.e., w1 [X] = w2[X]. Then the transformation rule due to the 
rffd X * A, will produce a new tableau T1 where the entries in w1 and w2 at the 
column corresponding to A also match. While making w1 [A] = w2 [A], if either 
of them was a distinguished variable in T, then the other one is renamed to the 
same distinguished variable. In case both were nondistinguished, the one with a 
larger subscript is replaced by the one with the smaller subscript [l, 29, 30, 461. 
Applying the rffd transformation rule we can now find T* = CHASE,(T,), and 
by Theorem 6.2, p has lossless join if T* has a row with only distinguished 
entries. 

Example 6.5. Consider the relation ORDER(S, I, Q, P, T), where S = Supplier, 
I = Item, Q = Quantity, P = Price, and T = Sales tax. Suppose the following 
resemblance relations are used to compare the domain values. 

(1) p&a, b) = 0 for a # b, when a, b E dam(S) or dam(I), i.e., supplier name or 
item name must exactly match to qualify for equality. 

(2) PEQh b) = l/U + P 1 a - b 1 ), 

where /3 = l/100 for a, b E dam(Q), 
= l/1000 for a, b E dam(P), 
= l/50 for a, b E dam(T). 

If required, the modified membership function of “more or less equal” (MLEQ) 
can be computed as in (5.5). It can be verified that /.lEo or /.LMLEQ defined as above 
satisfies (5.1) and (5.la). 

These resemblance relations are used in the following fuzzy functional depend- 
encies F to be satisfied by ORDER: 

SI - Q: Supplier and Item determines Quantity. 

IQ - P: For any Item, Quantity more or less determines Price. 
P YC, T: Price determines Sales tax. 

Since the resemblance relations satisfy (5.la), these ffds are actually restricted 
fuzzy functional dependencies. A typical instance of ORDER that satisfies these 
rffds is shown in Table XIV. 
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Table XIV. An Instance r of ORDER 

Supplier Item Quantity Price Sales-tax cc 

Adams Nut 300 2500 125 0.6 
John Nut 400 3000 150 0.8 
Smith Nut 300 2500 125 0.7 
Adams Bolt 200 1500 80 0.8 
John Bolt 200 1500 80 0.7 
Smith Bolt 400 2500 125 0.9 

Let p = (R1 @IQ), R2(IQP), Rs(PT)] be a decomposition of ORDER. To test 
whether this decomposition is lossless, we construct the tableau 

s I Q P T 
RI al a2 a3 b14 b15 

T, = R2 bl a2 a3 a4 b25 
R3 b31 b32 b33 a4 a5 

Applying rffd transformation rule to T,, we obtain 

s I Q PT 
R1 a1 a2 a3 a4 a5 

CHASEF(T,) = R2 b.1 a2 a3 a4 a5 
R3 b31 b32 b33 a4 a5 

Here the first row of CHASEF(T,) contains only distinguished variables. 
Therefore, by Theorem 6.2, the decomposition p is lossless join. The projections 
of F on p are shown in Table XV(a, b, and c). The join of these projections 
can easily be seen to be equal to F. In this case, the decomposition p also preserves 
the given dependencies, i.e., p can be considered as an information preserving 
decomposition [ 291. 

Lastly, we would like to point out that Theorem 6.2 provides only a sufficient 
condition for the lossless join decomposition of fuzzy relations with rffds. Since 
the ffd axioms FFl-FF6 are not complete for all rffds, as in Example 6.4, a 
decomposition p of a fuzzy relation with a set F of rffds may have a lossless join 
even though T* = CHASEF(T,) has no row with all distinguished variables. 
However, when EQUAL also satisfies (5.14), i.e., the ffd axioms are complete for 
F (by Theorem 5.1), the absence of any row with all distinguished variables in 
T* can be shown to imply that p does not have a lossless join. 

Based on these observations, it follows that all the results of the design theory 
of classical relations with functional dependencies can be directly applied to 
fuzzy relations with a class of fuzzy functional dependencies where EQUAL is 
restricted by (&la) and (5.14). Since it is not difficult to select a resemblance 
relation that satisfies these two conditions, the ffds belonging to this class can 
adequately capture the semantics of fuzzy integrity constraints in many real- 
world applications. In addition, one can now define normal forms of fuzzy 
relations, or lossless join decomposition of relation schemes which also preserves 
the given ffds, i.e., an information preserving decomposition [29]. 
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Table XV. Projections of an Instance of ORDER on Relation 
Schemes R1(SIQ), R&QP), and R,(PT) 

Supplier Item Quantity P 
Adams Nut 300 0.6 
John Nut 400 0.8 
Smith Nut 300 0.7 
Adams Bolt 200 0.8 
John Bolt 200 0.7 
Smith Bolt 400 0.9 

Item Quantity Price u 

Nut 300 2500 0.7 
Nut 400 3000 0.8 
Bolt 200 1500 0.8 
Bolt 400 2500 0.9 

b) 

Price Sales tax 11 

1500 80 0.8 
2500 125 0.9 
3000 150 0.8 

7. CONCLUSIONS 

This paper deals with fuzzy relational data models, with an objective to provide 
a generalized approach for treating precise, as well as imprecise, data. By selecting 
suitable interpretations for the membership values, a fuzzy relational model is 
capable of representing ambiguities in the data values as well as impreciseness 
in the association among the entities of the database. Since one of the major 
objectives of fuzzy logic is to represent approximate reasoning used in natural 
languages, it is expected that in a database environment, appropriate blending 
of a relational data model and fuzzy logic will enhance the capabilities of the 
existing database systems. A brief survey of some of the existing proposals for 
using fuzzy logic in a relational database environment has also been presented. 

For a successful blending of fuzzy set theory and relational databases, it is, 
however, essential to develop a suitable design technique for such systems. In 
fact, it will be ideal if we can extend some of the widely investigated results in 
the classical relational database literature. In this quest, we have examined the 
properties of relational operators, especially projection and join of fuzzy relations. 
While attempting to extend the data dependencies in classical relations, it was 
observed that for comparing domain values, a suitable fuzzy measure such as 
EQUAL becomes useful. Treating “equality” as a fuzzy resemblance relation, a 
simple and natural extension of classical functional dependency, called fuzzy 
functional dependency, has been proposed. It has been shown that a fuzzy 
functional dependency can successfully represent integrity constraints that arise 
out of approximate equality of domain values. In spite of this generalization, the 
inference axioms for ffds are similar to Armstrong’s axioms for classical fds. We 
have also been able to establish the completeness of these axioms for a class of 
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ffds by imposing a simple restriction on the resemblance relations. This apparent 
similarity of the inference axioms is especially useful because many well-known 
algorithms in the classical fd literature, such as Beeri and Bernstein’s algorithm 
[4], can be applied to the ffds to perform similar tasks. 

In order to obtain adequate decomposition of relation schemes, we next 
examined the lossless join problem of fuzzy relations in the presence of ffds. It 
is observed that to achieve lossless synthesis of relation schemes, the resemblance 
relation EQUAL needs to be restricted further. After introducing suitable restric- 
tions on EQUAL, it is shown that a class of ffds behaves exactly the same as 
functional dependencies in classical relations. In fact, the entire design theory of 
classical relations with functional dependencies becomes applicable to fuzzy 
relations with this class of fuzzy functional dependencies. Thus one can apply 
the ABU algorithm to test lossless join decomposition of relation schemes with 
such ffds and can define an information-preserving decomposition or normal 
forms of fuzzy relations. 

It should be mentioned that this work is not a complete nor a conclusive 
exposition of the capabilities of the fuzzy relations in capturing semantics of the 
data. However, within the proposed framework, it is not only possible to extend 
other types of data dependencies, such as multivalued dependency [21], template 
dependency [43], tuple or equality-generating dependency [6, 24, 291, etc., but 
one can also model a wider class of integrity constraints. In this paper, we have 
restricted ourselves to a subclass of fuzzy calculus where truth value of a fuzzy 
proposition takes binary values. Further generalization of fuzzy integrity con- 
straints can be achieved by using truth-qualified fuzzy propositions [20,53-M]. 
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