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Abstract

We investigate techniques for analysis and retrieval of
object trajectories in a two or three dimensional space.
Such kind of data usually contain a great amount of noise,
that makes all previously used metrics fail. Therefore, here
we formalize non-metric similarity functions based on the
Longest Common Subsequence (LCSS), which are very ro-
bust to noise and furthermore provide an intuitive notion of
similarity between trajectories by giving more weight to the
similar portions of the sequences. Stretching of sequences
in time is allowed, as well as global translating of the se-
quences in space. Efficient approximate algorithms that
compute these similarity measures are also provided. We
compare these new methods to the widely used Euclidean
and Time Warping distance functions (for real and synthetic
data) and show the superiority of our approach, especially
under the strong presence of noise. We prove a weaker ver-
sion of the triangle inequality and employ it in an indexing
structure to answer nearest neighbor queries. Finally, we
present experimental results that validate the accuracy and
efficiency of our approach.

1 Introduction

In this paper we investigate the problem of discovering
similar trajectories of moving objects. The trajectory of a
moving object is typically modeled as a sequence of con-
secutive locations in a multidimensional (generally two or
three dimensional) Euclidean space. Such data types arise
in many applications where the location of a given object is
measured repeatedly over time. Examples include features
extracted from video clips, animal mobility experiments,
sign language recognition, mobile phone usage, multiple at-
tribute response curves in drug therapy, and so on.

Moreover, the recent advances in mobile computing,
sensor and GPS technology have made it possible to collect
large amounts of spatiotemporal data and there is increas-
ing interest to perform data analysis tasks over this data
[4]. For example, in mobile computing, users equipped with
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mobile devices move in space and register their location at
different time instants via wireless links to spatiotemporal
databases. In environmental information systems, tracking
animals and weather conditions is very common and large
datasets can be created by storing locations of observed ob-
jects over time. Data analysis in such data include deter-
mining and finding objects that moved in a similar way or
followed a certain motion pattern. An appropriate and ef-
ficient model for defining the similarity for trajectory data
will be very important for the quality of the data analysis
tasks.

1.1 Robust distance metrics for trajectories

In general these trajectories will be obtained during a
tracking procedure, with the aid of various sensors. Here
also lies the main obstacle of such data; they may contain
a significant amount of outliers or in other words incorrect
data measurements (unlike for example, stock data which
contain no errors whatsoever).
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Figure 1. Examples of 2D trajectories. Two in-
stances of video-tracked time-series data representing
the word “athens’. Start & ending contain many out-
liers.
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Figure 2. Hierarchical clustering of 2D series (displayed as 1D for clariry). Left: The presence of many outliers in the
beginning and the end of the sequences leads to incorrect clustering. DTW is not robust under noisy conditions. Right:
The LCSS focusing on the common parts achieves the correct clustering.

Our objective is the automatic classification of trajec-
tories using Nearest Neighbor Classification. It has been
shown that the one nearest neighbor rule has asymptotic er-
ror rate that is at most twice the Bayes error rate[12]. So, the
problemis: given a database D of trajectories and a query Q
(not already in the database), we want to find the trajectory
T that is closest to Q. We need to define the following:

1. A realistic distance function,
2. An efficient indexing scheme.

Previous approaches to model the similarity between
time-series include the use of the Euclidean and the Dy-
namic Time Warping (DTW) distance, which however are
relatively sensitive to noise. Distance functions that are ro-
bust to extremely noisy data will typically violate the trian-
gular inequality. These functions achieve this by not consid-
ering the most dissimilar parts of the objects. However, they
are useful, because they represent an accurate model of the
human perception, since when comparing any kind of data
(images, trajectories etc), we mostly focus on the portions
that are similar and we are willing to pay less attention to
regions of great dissimilarity.

For this kind of data we need distance functions that can
address the following issues:

e Different Sampling Rates or different speeds. The
time-series that we obtain, are not guaranteed to be
the outcome of sampling at fixed time intervals. The
sensors collecting the data may fail for some period of
time, leading to inconsistent sampling rates. Moreover,
two time series moving at exactly the similar way, but
one moving at twice the speed of the other will result
(most probably) to a very large Euclidean distance.

e Similar motions in different space regions. Objects

can move similarly, but differ in the space they move.
This can easily be observed in sign language recogni-
tion, if the camera is centered at different positions. If
we work in Euclidean space, usually subtracting the
average value of the time-series, will move the similar
series closer.

e Outliers. Might be introduced due to anomaly in the
sensor collecting the data or can be attributed to hu-
man ’failure’ (e.g. jerky movement during a track-
ing process). In this case the Euclidean distance will
completely fail and result to very large distance, even
though this difference may be found in only a few
points.

e Different lengths. Euclidean distance deals with time-
series of equal length. In the case of different lengths
we have to decide whether to truncate the longer series,
or pad with zeros the shorter etc. In general its use gets
complicated and the distance notion more vague.

e Efficiency. It has to be adequately expressive but suf-
ficiently simple, so as to allow efficient computation of
the similarity.

To cope with these challenges we use the Longest Com-
mon Subsequence (LCSS) model. The LCSS is a varia-
tion of the edit distance. The basic idea is to match two
sequences by allowing them to stretch, without rearranging
the sequence of the elements but allowing some elements
to be unmatched. The advantages of the LCSS method are
twofold:

1) Some elements may be unmatched, where in Eu-
clidean and DTW all elements must be matched, even the
outliers.



2) The LCSS model allows a more efficient approximate
computation, as will be shown later (whereas in DTW you
need to compute some costly L, Norm).

In figure 2 we can see the clustering produced by the
DTW distance. The sequences represent data collected
through a video tracking process. Originally they represent
2d series, but only one dimension is depicted here for clar-
ity. The DT'W fails to distinguish the two classes of words,
due to the great amount of outliers, especially in the begin-
ning and in the end of the trajectories. Using the Euclidean
distance we obtain even worse results. The LC'S'S produces
the most intuitive clustering as shown in the same figure.
Generally, the Euclidean distance is very sensitive to small
variations in the time axis, while the major drawback of the
DTW is that it has to pair all elements of the sequences.

Therefore, we use the LC'S'S model to define similarity
measures for trajectories. Nevertheless, a simple extension
of this model into 2 or more dimensions is not sufficient,
because (for example) this model cannot deal with paral-
lel movements. Therefore, we extend it in order to address
similar problems. So, in our similarity model we consider
a set of translations in 2 or more dimensions and we find
the translation that yields the optimal solution to the LC'SS
problem.

The rest of the paper is organized as follows. In section 2
we formalize the new similarity functions by extending the
LCSS model. Section 3 demonstrates efficient algorithms
to compute these functions and section 4 elaborates on the
indexing structure. Section 5 provides the experimental
validation of the accuracy and efficiency of the proposed
approach and section 6 presents the related work. Finally,
section 7 concludes the paper.

2 Similarity Measures

In this section we define similarity models that match the
user perception of similar trajectories. First we give some
useful definitions and then we proceed by presenting the
similarity functions based on the appropriate models. We
assume that objects are points that move on the (z, y)-plane
and time is discrete.

Let A and B be two trajectories of moving objects with

size n and m respectively, where A = ((az,1,0y,1),-- -,

(zn,0yn)) and B = ((by,1,by,1);- -5 (bz,m,by,m)). FOr
a trajectory A, let Head(A) be the sequence Head(A4) =

((az,1,ay,1),-- -5 (Azn—1,ayn-1))

Definition 1 Given an integer § and a real number 0 < € <
1, we define the LC'S S5 (A, B) as follows:

0 if A or B is empty,
1+ LCSSs.(Head(A), Head(B)),

if |az,n —ba,m| < eand|ayn —bym| <eand|n—m| <4
max(LCSSs.(Head(A),B),LCSSs,.(A, Head(B))),
otherwise

The constant & controls how far in time we can go in order to
match a given point from one trajectory to a point in another
trajectory. The constant e is the matching threshold (see
figure 3).

The first similarity function is based on the LC'S'S and
the idea is to allow time stretching. Then, objects that are
close in space at different time instants can be matched if
the time instants are also close.

Definition 2 We define the similarity function S1 between
two trajectories A and B, given § and ¢, as follows:

S1(8,¢, A, B) = LCSSs.c(4, B)
min(n,m)

We use this function to define another similarity measure
that is more suitable for trajectories. First, we consider the
set of translations. A translation simply shifts a trajectory in
space by a different constant in each dimension. Let F be
the family of translations. Then a function f. 4 belongs to F
if fe,a(4) = ((az1+¢c,ay1+4d),...,(azn+c ayn+d)).
Next, we define a second notion of the similarity based on
the above family of functions.

1000

L L L L L ,
200 400 600 800 1000 1200

Figure 3. The notion of the LC'S'S matching within a
region of § & e for a trajectory. The points of the 2
trajectories within the gray region can be matched by
the extended LC'S S function.



Definition 3 Given 4, e and the family F of translations, we
define the similarity function S2 between two trajectories A
and B, as follows:

S52(d,¢,A,B) = fir)tlae)g__SI((S, €A, fe,a(B))

So the similarity functions S1 and S2 range from 0 to 1.
Therefore we can define the distance function between two
trajectories as follows:

Definition 4 Given 6, € and two trajectories A and B we
define the following distance functions:

D1(d,e,A,B) =1—-51(d,¢, A, B)

and
D2(d,e,A,B) =1—52(d,¢, A, B)

Note that D1 and D2 are symmetric. LC'SS;(A, B) is
equalto LC'SS;,(B, A) and the transformation that we use
in D2 is translation which preserves the symmetric prop-
erty.

By allowing translations, we can detect similarities be-
tween movements that are parallel in space, but not iden-
tical. In addition, the LC'SS model allows stretching and
displacement in time, so we can detect similarities in move-
ments that happen with different speeds, or at different
times. In figure 4 we show an example where a trajectory B
matches another trajectory A after a translation is applied.
Note that the value of parameters c and d are also important
since they give the distance of the trajectories in space. This
can be useful information when we analyze trajectory data.
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Figure 4. Translation of trajectory B.

The similarity function Sz is a significant improvement
over the Sy, because: i) now we can detect parallel move-
ments, ii) the use of normalization does not guarantee that
we will get the best match between two trajectories. Usu-
ally, because of the significant amount of noise, the average
value and/or the standard deviation of the time-series, that
are being used in the normalization process, can be distorted
leading to improper translations.

3 Efficient Algorithms to Compute the Simi-
larity

3.1 Computing the similarity function S1

To compute the similarity functions S1 we have to run
a LCSS computation for the two sequences. The LCSS
can be computed by a dynamic programming algorithm in
O(n?) time. However we only allow matchings when the
difference in the indices is at most 4, and this allows the use
of a faster algorithm. The following lemma has been shown
in [5], [11].

Lemma 1 Given two trajectories A and B, with |[A| = n
and | B| = m, we can find the LC'SS; (A, B) in O(6(n +
m)) time.

If § is small, the dynamic programming algorithm is very
efficient. However, for some applications § may need to be
large. For that case, we can speed-up the above computa-
tion using random sampling. Given two trajectories A and
B, we compute two subsets RA and RB by sampling each
trajectory. Then we use the dynamic programming algo-
rithm to compute the LC'SS on RA and RB. We can show
that, with high probability, the result of the algorithm over
the samples, is a good approximation of the actual value.
We describe this technique in detail in [35].

3.2 Computing the similarity function S2

We now consider the more complex similarity function
S2. Here, given two sequences A, B, and constants 4, e,
we have to find the translation f. 4 that maximizes the
length of the longest common subsequence of A, f. 4(B)
(LCSS5,(A, fe,a(B)) over all possible translations.

Let the length of trajectories A and B be n and m re-
spectively. Let us also assume that the translation f., 4,
is the translation that, when applied to B, gives a longest
common subsequence LCSSs.c(A, fey,4,(B)) = a, and
it is also the translation that maximizes the length of the
longest common subsequence LCSS5.(A, fe,,4.(B)) =
mazx.,qerLCSSs,e(A, fe,a(B)).

The key observation is that, although there is an infinite
number of translations that we can apply to B, each transla-
tion f. q results to a longest common subsequence between
A and f, 4(B), and there is a finite set of possible longest
common subsequences. In this section we show that we
can efficiently enumerate a finite set of translations, such
that this set provably includes a translation that maximizes
the length of the longest common subsequence of A and
fe(B).

To give a bound on the number of transformations that
we have to consider, we look at the projections of the two
trajectories on the two axes separately.



We define the z projection of a trajectory B =
((z1,91),--- (Tm,ym)) to be the sequence of the values
on the z-coordinate: B, = (bzy1,...,bz,m). A one di-
mensional translation f. is a function that adds a con-
stant to all the elements of a 1-dimensional sequence:
fel@y, .o xm) = (x1 + ¢, T + ).

Take the x projections of A and B, A, and B, respec-
tively. We can show the following lemma:

Lemma 2

Given trajectories A, B, if LCSS;.(A, fe,.4,(B)) = a,
then the length of the longest common subsequence of the
one dimensional sequences A, and f.,(B;) = (bz1 +
Cly.vybgm+ci) isatleasta: LCSSs (A, fer (Bz)) >
a. Also, LCSS5.¢(Ay, fa,(By)) > a.

Now, consider A, and B,. A translation by ¢', applied
to B, can be thought of as a linear transformation of the
form f(bs,;) = bz,; + ¢’. Such a transformation will allow
bs,; to be matched to all a, ; for which |i — j| < ¢, and
Qg j — € < f(ba:,z) < Qg5 t+ €.

It is instructive to view this as a stabbing problem: Con-
sider the O(d(n + m)) vertical line segments ((by i, az,; —
€), (bg,i, az,; + €)), Where |i — j| < & (Figure 5).

Ax axis fel(x) = x + cl

fc2(x) =x +c2

AX,i+2
AX,i+1
Ax,i
f ; Bx,i+4
Bxy{y,wz ) Bx axis
Bxi+l Bx,i+3 Bx.i+5

Figure 5. An example of two translations .

These line segments are on a two dimensional plane,
where on the z axis we put elements of B, and on the y
axis we put elements of A,. For every pair of elements
bz,i,az,; i Ay and B, that are within ¢ positions from each
other (and therefore can be matched by the LCSSS algo-
rithm if their values are within €), we create a vertical line
segment that is centered at the point (b, ;, a,,;) and extends
€ above and below this point. Since each elementin A, can
be matched with at most 2§ + 1 elements in b,, the total
number of such line segments is O(dn).

A translation f. in one dimension is a function of the
form for(bs,i) = bs, + ¢'. Therefore, in the plane we de-
scribed above, fe(b;,;) is aline of slope 1. After translating
B, by f., an element b, ; of B, can be matched to an el-
ement a, ; of A, if and only if the line fo(z) = z + ¢
intersects the line segment ((by,i, az,j —€), (ba,i, @z, +€)).

Therefore each line of slope 1 defines a set of possi-
ble matchings between the elements of sequences A, and
B,. The number of intersected line segments is actually
an upper bound on the length of the longest common sub-
sequence because the ordering of the elements is ignored.
However, two different translations can result to different
longest common subsequences only if the respective lines
intersect a different set of line segments. For example, the
translations f.1(z) = z+cland fe2(x) = z+c2infigure5
intersect different sets of line segments and result to longest
common subsequences of different length.

The following lemma gives a bound on the number of
possible different longest common subsequences by bound-
ing the number of possible different sets of line segments
that are intersected by lines of slope 1.

Lemma 3 Given two one dimensional sequences A,, By,
there are O(6(n+m)) lines of slope 1 that intersect different
sets of line segments.

Proof: Let f.(z) = = + ¢ be a line of slope 1. If we
move this line slightly to the left or to the right, it still in-
tersects the same number of line segments, unless we cross
an endpoint of a line segment. In this case, the set of inter-
sected line segments increases or decreases by one. There
are O(d(n+m)) endpoints. A line of slope 1 that sweeps all
the endpoints will therefore intersect at most O(d(n + m))
different sets of line segments during the sweep. O

In addition, we can enumerate the O(6(n + m)) trans-
lations that produce different sets of potential matchings by
finding the lines of slope 1 that pass through the endpoints.
Each such translation corresponds to a line f(z) = z +¢'.
This set of O(6(n + m)) translations gives all possible
matchings for a longest common subsequence of A4,, B,.
By applying the same process on A,,, B, we can also find a
set of O(6(n + m)) translations that give all matchings of
Ay, By. To find the longest common subsequence of the se-
quences A, B we have to consider only the O(6%(n + m)?)
two dimensional translations that are created by taking the
Cartesian product of the translations on z and the trans-
lations on y. Since running the LCSS algorithm takes
O(6(n + m)) we have shown the following theorem:

Theorem 1 Given two trajectories A and B, with |A| = n
and |B| = m, we can compute the S2(d, €, A, B) in O((n+
m)35%) time.

3.3 An Efficient Approximate Algorithm

Theorem 1 gives an exact algorithm for computing S2,
but this algorithm runs in cubic time. In this section we
present a much more efficient approximate algorithm. The
key in our technique is that we can bound the difference be-
tween the sets of line segments that different lines of slope
1 intersect, based on how far apart the lines are.



Consider again the one dimensional projections A, B, .
Lets us consider the O(d(n +m)) translations that result to
different sets of intersected line segments. Each translation
is a line of the form f. (z) = a +¢'. Letus sort these trans-
lations by ¢’. For a given translation f., let Ly, be the set
of line segments it intersects. The following lemma shows
that neighbor translations in this order intersect similar sets
of line segments.

Lemma4 Let fi(z) = v +cf,..., fn(x) = =+ c)y be
the different translations for sequences A, and B,, where
c_’1 <...< ci- Then the symmetric difference Ly, ALy, =
li — jl.

We can now prove our main theorem:

Theorem 2 Given two trajectories A and B, with [A| = n
and |B| = m, andaconstant0 < 8 < 1, we can find an ap-
proximation AS2; s(A, B) of the similarity S2(d,¢, A, B)
such that S2(d, €, A, B) — AS253(A,B) < Bin O((m +
n)d®/3%) time.

Proof: Leta = S2(d,¢, A, B). We consider the projections
of A and B into the z and y axes. There exists a translation
fi on z only such that L, is a superset of the matches in
the optimal LC'SS of A and B. In addition, by the previous
lemma, there are 2b translations (f;_s,. .., fit+s) that have
at most b different matchings from the optimal.

Therefore, if we use the translations f;;, for i =
1,..., (w] in the ordering described above, we are
within b different matchings from the optimal matching
of A and B. We can find these translations in O(é6(n +
m) log(n +m)) time if we find and sort all the translations.

Alternatively, we can find these translations in
O3 5 (0 m)) time if we run [ 222701 quantile op-
erations. The same is true for A, and B,,.

So we get a total of (W)2 pairs of translations in
the (x,y) plane. Since there is one that is b away from the
optimal in each dimension, there is one that is 2b away from
the optimal in 2 dimensions. Setting b = w completes
the proof. O

Given trajectories A, B with lengths n,m respectively,
and constants d, 3, ¢, the approximation algorithm works as
follows:

1. Using the projections of A, B on the two axes, find the
sets of all different translations on the z and y axis.

2. Find the iw—th quantiles for each set, 1 < i <
45
F.

3. Run the LCSSs . algorithm on A and B, for each of
the (‘,13—5)2 pairs of translations.

4. Return the highest result.

4 Indexing Trajectories for Similarity Re-
trieval

In this section we show how to use the hierarchical tree
of a clustering algorithm in order to efficiently answer near-
est neighbor queries in a dataset of trajectories.

The distance function D2 is not a metric because it does
not obey the triangle inequality. Indeed, it is easy to con-
struct examples where we have trajectories A, B and C,
where D2(d,¢, A,C) > D2(d,¢, A, B) + D2(d,¢, B, C).
This makes the use of traditional indexing techniques diffi-
cult.

We can however prove a weaker version of the triangle
inequality, which can help us avoid examining a large por-
tion of the database objects. First we define:

LCSS;s.c,7(A, B) = maxy, ,erLCSSs,(A, fe,a(B))

Clearly, D2(d,¢, A, B) = 1— %W (as before, F
is the set of translations). Now we can show the following

lemma:

Lemmab5 Given trajectories A, B, C,

LCSSs.2.7(A,C) > LCSSs. 7(A, B)+LCSSs,..7(B,C) —
|B]

where | B| is the length of sequence B.

Proof: Clearly, if an element of A can match an ele-
ment of B within ¢, and the same element of B matches
an element of C within ¢, then the element of A can also
match the element of C within 2¢. Since there are at least
|B|~(|B|~LCSSs.c. 7(4, B)~(|B|~LCSSs ... 7(B, C))
elements of B that match with elements of A and with el-
ements of C, it follows that LC'SSs 2., 7(A,C) > |B| —
(|B] = LCSSs,c,7(A, B)) = (IB| = LCSS;,,#(B,C)) =
LCSSs,e,7(A,B) + LCSS;,,7(B,C)— |B| O

4.1 Indexing Structure

We first partition all the trajectories into sets according
to length, so that the longest trajectory in each set is at most
a times the shortest (typically we use a = 2.) We apply
a hierarchical clustering algorithm on each set, and we use
the tree that the algorithm produced as follows:

For every node C of the tree we store the medoid
(M¢g) of each cluster.  The medoid is the trajec-
tory that has the minimum distance (or maximum
LCSS) from every other trajectory in the cluster:
MaTy; ccMing;ecLCSSs ¢, 7(vi, vj,e). So given the tree
and a query sequence (), we want to examine whether to
follow the subtree that is rooted at C. However, from the
previous lemma we know that for any sequence B in C':



LCSS&,E,]:(BJQ) <
LCSSs.e (M, B)

or in terms of distance:
D2(6,€,B,Q) = ]_ — M >

|B| + LCSSJ,ZE,]:(MCaQ) -

min(|B,|Ql)
_ ‘Bl _ LCSS(;,ge,]:(Mc,Q) + LCSSs,e,J:(Mc,B)
min([B[,|Q) min(|B[,|QI) min(|B[,|Q])

In order to provide a lower bound we have to maximize the
expression |B| — LC'SSs.¢, 7(A, B). Therefore, for every
node of the tree along with the medoid we have to keep the
trajectory r. that maximizes this expression. If the length
of the query is smaller than the shortest length of the trajec-
tories we are currently considering we use that, otherwise
we use the minimum and maximum lengths to obtain an
approximate result.

4.2 Searching the Index tree for Nearest Trajec-
tories

We assume that we search an index tree that contains tra-
jectories with minimum length minl and maximum length
mazl. For simplicity we discuss the algorithm for the 1-
Nearest Neighbor query, where given a query trajectory @
we try to find the trajectory in the set that is the most sim-
ilar to Q. The search procedure takes as input a node N
in the tree, the query @ and the distance to the closest tra-
jectory found so far. For each of the children C, we check
if the child is a trajectory or a cluster. In case that it is
a trajectory, we just compare its distance to @ with the
current nearest trajectory. If it is a cluster, we check the
length of the query and we choose the appropriate value for
min(|B|,|Q]). Then we compute a lower bound L to the
distance of the query with any trajectory in the cluster and
we compare the result with the distance of the current near-
est neighbor mindist. We need to examine this cluster only
if L is smaller than mindist.

In our scheme we use an approximate algorithm to

compute the LCSSs5 7. Consequently, the value of
%W that we compute can be up to S times
higher than the exact value. Therefore, since we use the
approximate algorithm of section 3.2 for indexing trajecto-
ries, we have to subtract % from the bound
we compute for D2(d, ¢, B, @). Note that we don’t need to
worry about the other terms since they have a negative sign
and the approximation algorithm always underestimates the

LCSS.

5 Experimental Evaluation

We implemented the proposed approximation and index-
ing techniques as they are described in the previous sec-
tions and here we present experimental results evaluating

our techniques. We describe the datasets and then we con-
tinue by presenting the results. The purpose of our experi-
ments is twofold: first, to evaluate the efficiency and accu-
racy of the approximation algorithm presented in section 3
and second to evaluate the indexing technique that we dis-
cussed in the previous section. Our experiments were run
on a PC AMD Athlon at 1 GHz with 1 GB RAM and 60
GB hard disk.

5.1 Time and Accuracy Experiments

Here we present the results of some experiments using
the approximation algorithm to compute the similarity func-
tion S2. Our dataset here comes from marine mammals’
satellite tracking data.! It consists of sequences of geo-
graphic locations of various marine animals (dolphins, sea
lions, whales, etc) tracked over different periods of time,
that range from one to three months (SEALS dataset). The
length of the trajectories is close to 100. Examples have
been shown in figure 1.

In table 1 we show the computed similarity between a
pair of sequences in the SEALS dataset. We run the exact
and the approximate algorithm for different values of § and
€ and we report here some indicative results. K is the num-
ber of times the approximate algorithm invokes the LC'SS
procedure (that is, the number of translations (c, d) that we
try). As we can see, for K = 25 and 49 we get very good
results. We got similar results for synthetic datasets. Also,
in table 1 we report the running times to compute the simi-
larity measure between two trajectories of the same dataset.
The approximation algorithm uses again from 4 to 49 differ-
ent runs. The running time of the approximation algorithm
is much faster even for K = 49.

As can be observed from the experimental results, the
running times of the approximation algorithm is not pro-
portional to the number of runs (K). This is achieved by
reusing the results of previous translations and terminat-
ing early the execution of the current translation, if it is
not going to yield a better result. The main conclusion of
the above experiments is that the approximation algorithm
can provide a very tractable time vs accuracy trade-off for
computing the similarity between two trajectories, when the
similarity is defined using the LC'S'S model.

5.2 Classification using the Approximation Algo-
rithm

We compare the clustering performance of our method
to the widely used Euclidean and DTW distance functions.
Specifically:

1htt p: // whal e. wheel ock. edu/ whal enet -
stuff/stop_cover. html



Similarity Running Time (sec)
d | € Exact Approximate for K tries Exact Approximate for K tries
4 | 9 | 25 | 49 4 | 9 | 25 | 49

2025 | 0.316 || 0.1846 | 0.22 0.253 | 0.273 || 17.705 || 0.0012 | 0.0014 | 0.0017 | 0.0022
2|05 0.571 || 0.410 | 0.406 | 0.510 | 0.521 || 17.707 || 0.0012 | 0.0014 | 0.00169 | 0.0022
41025 || 0387 || 0.196 | 0.258 | 0.306 | 0.323 || 32.327 || 0.0016 | 0.0018 | 0.0022 | 0.00281
4105 0.612 || 0.488 | 0.467 | 0.563 | 0.567 || 32.323 || 0.0015 | 0.0018 | 0.0023 | 0.00280
6 | 0.25 || 0.408 || 0.250 | 0.313 | 0.357 | 0.367 || 90.229 || 0.0017 | 0.00191 | 0.00231 | 0.0031
6|05 0.653 || 0.440 | 0.4912 | 0.584 | 0.591 || 90.232 || 0.0017 | 0.00193 | 0.0023 | 0.0031

Table 1. Similarity values and running times between two sequences from our SEALS dataset.

1. The Euclidean distance is only defined for sequences
of the same length (and the length of our sequences
vary considerably). We tried to offer the best possible
comparison between every pair of sequences, by slid-
ing the shorter of the two trajectories across the longer
one and recording their minimum distance.

2. For DTW we modified the original algorithm in order
to match both x and y coordinates. In both DTW and
Euclidean we normalized the data before computing
the distances. Our method does not need any normal-
ization, since it computes the necessary translations.

3. For LCSS we used a randomized version with and
without sampling, and for various values of §. The
time and the correct clusterings represent the average
values of 15 runs of the experiment. This is necessary
due to the randomized nature of our approach.

5.2.1 Determining the values for § & e

The values we used for 6 and € are clearly dependent on
the application and the dataset. For most datasets we had
at our disposal we discovered that setting 6 to more than
20 — 30% of the trajectories length did not yield significant
improvement. Furthermore, after some point the similarity
stabilizes to a certain value. The determination of ¢ is appli-
cation dependent. In our experiments we used a value equal
to the smallest standard deviation between the two trajec-
tories that were examined at any time, which yielded good
and intuitive results. Nevertheless, when we use the index
the value of € has to be the same for all pairs of trajectories.

5.2.2 Experiment 1 - Video tracking data.

The 2D time series obtained represent the X and Y position
of a human tracking feature (e.g. tip of finger). In conjuc-
tion with a ’spelling program”” the user can write”” various
words [19]. We used 3 recordings of 5 different words. The
data correspond to the following words: ’athens’, *berlin’,
’london’, "boston’, *paris’. The average length of the series

is around 1100 points. The shortest one is 834 points and
the longest one 1719 points.

To determine the efficiency of each method we per-
formed hierarchical clustering after computing the N?2/2
pairwise distances for all three distance functions. We eval-
uate the total time required by each method, as well as the
quality of the clustering, based on our knowledge of which
word each trajectory actually represents. We take all possi-
ble pairs of words (in this case 5 x 4/2 = 10 pairs) and use
the clustering algorithm to partition them into two classes.
While at the lower levels of the dendrogram the clustering
is subjective, the top level should provide an accurate divi-
sion into two classes. We clustered using single, complete
and average linkage. Since the best results for every dis-
tance function are produced using the complete linkage, we
report only the results for this approach (table 2). The same
experiment is conducted with the rest of the datasets. Exper-
iments have been conducted for different sample sizes and
values of § (as a percentage of the original series length).

The results with the Euclidean distance have many clas-
sification errors and the DTW has some errors, too. For the
LCSS the only real variations in the clustering are for sam-
ple sizes s < 10%. Still the average incorrect clusterings
for these cases were constantly less than one (< 0.7). For
15% sampling or more, there were no errors.

5.2.3 Experiment 2 - Australian Sign Language
Dataset (ASL) 2.

The dataset consists of various parameters (such as the XY,
Z hand position, azimuth etc) tracked while different writ-
ers sign one the 95 words of the ASL. These series are rel-
atively short (50-100 points). We used only the X and Y
parameters and collected 5 recordings of the following 10
words: ’Norway’, ’cold’, ’crazy’, ’eat’, *forget’, "happy’,
’innocent’, ’later’, ’lose’, *spend’. This is the experiment
conducted also in [25] (but there only one dimension was
used). Examples of this dataset can be seen in figure 6.

2http://kdd.ics. uci.edu



Correct Clusterings
Distance Function Time (sec) (out of 10)
Complete Linkage
Euclidean 34.96 2
DTW 237.641 8
[LCss: I |
s =5%,0 =20% 2.733 9.800
s =10%,0 = 20% 8.041 9.933
s =15%,0 = 20% 16.173 10
s =20%,0 =20% 28.851 10
s =25%,0 =20% 45.065 10
$=30%,d0 =20% 65.203 10
s =40%,0 = 20% 113.583 10
s =60%,0 =20% 266.753 10
s =100%, 9 = 20% 728.277 10

Table 2. Results using the video tracking data for var-
ious sizes of sample s and 6.

Correct Correct
. Time Clusterings Clusterings
Distance
(sec) (out of 45) (out of 45)
ASL ASL with noise
Euclidean 2.271 15 5
DTW 9.112 20 7

Table 3. Results for ASL data and ASL with added
noise for the Euclidean and DTW distance functions.

The performance of the LCSS in this experiment is simi-
lar to the DTW (DT'W recognized correctly 20 clusters and
LC'SS recognized 21 clusters). This is expected since this
dataset does not contain excessive noise and furthermore the
data seem to be already normalized and rescaled within the
range [—1...1]. Therefore in this experiment we used also
the similarity function S1 (no translation), since the trans-
lations were not going to achieve any further improvement
(see figure 7). Sampling is only performed down to 75% of
the series length (these trajectories are already short). As a
consequence, even though we don’t gain much in accuracy,
our execution time is comparable to the Euclidean (without
performing any translations). This is easily explained, since
the computation of the L, Norm is more computationally
intensive, than the simple range comparison that is used in
our approach.

Figure 6. Four recordings of the word "norway’ in the
Australian Sign Language. The graph depicts the z &
y position of the writer’s hand.

5.2.4 Experiment 3 - ASL with added noise

We added noise at every sequence of the ASL at a ran-
dom starting point and for duration equal to the 15% of
the series length. The noise was added using the func-
tion: (Fnoise, Ynoise) = (T, 7)) + randn * rangeValues,
where randn produces a random number, chosen from a
normal distribution with mean zero and variance one, and
rangeV alues is the range of values on X or Y coordinates.
In this last experiment we wanted to see how the addition
of noise would affect the performance of the three distance
functions. Again, the running time is the same as with the
original ASL data.

The LCSS proves to be more robust than the Euclidean
and the DTW under noisy conditions (table 3, figure 7, 8).
The Euclidean again performed poorly, recognizing only 5
clusters, the DTW recognized 7 and the LCSS up to 14 clus-
ters (almost as many recognized by the Euclidean without
any noise!).

5.3 Evaluating the quality and efficiency of the
indexing technique

In this part of our experiments we evaluated the effi-
ciency and effectiveness of the proposed indexing scheme.
We performed tests over datasets of different sizes and
different number of clusters. To generate large realistic
datasets, we used real trajectories (from the SEALS and
ASL datasets) as “seeds” to create larger datasets that fol-
low the same patterns. To perform tests, we used queries
that do not have exact matches in the database, but on the
other hand are similar to some of the existing trajectories.
For each experiment we run 100 different queries and we
report the averaged results.

We have tested the index performance for different num-
ber of clusters in a dataset consisting of a total of 2000 tra-



Figure 7. ASL data: Time required to compute the
pairwise distances of the 45 combinations(same
for ASL and ASL with noise)
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Number of Nearest Neighbors

Figure 9. Performance for increasing number of Near-
est Neighbors.

jectories. We executed a set of K-Nearest Neighbor (K-
NN) queries for K 1, 5, 10, 15 and 20 and we plot the
fraction of the dataset that has to be examined in order to
guarantee that we have found the best match for the K-NN
query. Note that in this fraction we included the medoids
that we check during the search since they are also part of
the dataset.

In figure 9 we show some results for K -Nearest Neigh-
bor queries. We used datasets with 5, 8 and 10 clusters. As
we can see the results indicate that the algorithm has good
performance even for queries with large K. We also per-
formed similar experiments where we varied the number of
clusters in the datasets. As the number of clusters increased
the performance of the algorithm improved considerably.
This behavior is expected and it is similar to the behavior of
recent proposed index structures for high dimensional data
[9, 6, 21]. On the other hand if the dataset has no clusters,
the performance of the algorithm degrades, since the major-

@ &
8 &

e
15

Av. Correct Clusterings (out of 45)

Figure 8. Noisy ASL data: The correct clusterings
of the LCSS method using complete linkage.
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Figure 10. The pruning power increases along with the
database size.

ity of the trajectories have almost the same distance to the
query. This behavior follows again the same pattern of high
dimensional indexing methods [6, 36].

The last experiment evaluates the index performance,
over sets of trajectories with increasing cardinality. We in-
dexed from 1000 to 16000 trajectories. The pruning power
of the inequality is evident in figure 10. As the size of the
database increases, we can avoid examining a larger frac-
tion of the database.

6 Related Work

The simplest approach to define the similarity between
two sequences is to map each sequence into a vector and
then use a p-norm distance to define the similarity measure.
The p-norm distance between two n-dimensional vectors z

and g is defined as L,(z,3) = (31—, (i — y;)P)¥. For



p = 2 itis the well known Euclidean distance and for p =
1 the Manhattan distance. Various approaches have used,
extended and indexed this distance metric [2, 37, 18, 14,
10, 32, 10, 20, 24, 23].

Another approach is based on the time warping tech-
nique that first has been used to match signals in speech
recognition [33]. Berndt and Clifford [5] proposed to use
this technique to measure the similarity of time-series data
in data mining. Recent works have also used this similarity
measure [25, 28].

A similar technique is to find the longest common subse-
quence (LCSS) of two sequences and then define the dis-
tance using the length of this subsequence [3, 7, 11]. The
LCSS shows how well the two sequences can match one
another if we are allowed to stretch them but we cannot re-
arrange the sequence of values. Since the values are real
numbers, we typically allow approximate matching, rather
than exact matching. In [7, 11] fast probabilistic algorithms
to compute the LC'S'S of two time series are presented.

Other techniques to define time series similarity are
based on extracting certain features (Landmarks [29] or
signatures [13]) from each time-series and then use these
features to define the similarity. An interesting approach
to represent a time series using the direction of the se-
quence at regular time intervals is presented in [31]. Ge
and Smyth [17] present an interesting alternative approach
for sequence similarity that is based on probabilistic match-
ing. A domain independent framework for defining queries
in terms of similarity of objects is presented in [22].

Note that all the above work deals mainly with one di-
mensional time-series. The most related paper to our work
is the Bozkaya et al. [8]. They discuss how to define sim-
ilarity measures for sequences of multidimensional points
using a restricted version of the edit distance which is equiv-
alent to the LCCS. Also, they present two efficient meth-
ods to index the sequences for similarity retrieval. However,
they focus on sequences of feature vectors extracted from
images and not trajectories and they do not discuss transfor-
mations or approximate methods to compute the similarity.
In another recent work, Lee et al. [27] propose methods to
index sequences of multidimensional points. They extend
the ideas presented by Faloutsos et al. in [15] and the simi-
larity model is based on the Euclidean distance.

A recent work that proposes a method to cluster trajec-
tory data is due to Gaffney and Smyth [16]. They use a
variation of the EM (expectation maximization) algorithm
to cluster small sets of trajectories. However, their method
is a model based approach that usually has scalability prob-
lems. Also, it implicitly assumes that the data (trajectories)
follow some basic models which are not easy to find and
describe in real datasets.

Lately, there has been some work on indexing moving
objects to answer spatial proximity queries (range and near-

est neighbor queries) [26, 1, 34]. Also in [30], Pfoser et al.
present index methods to answer topological and naviga-
tional queries in a database that stores trajectories of mov-
ing objects. However these works do not consider a global
similarity model between trajectories but they concentrate
on finding objects that are close to query locations during
a time instant, or time period that is also specified by the

query.
7 Conclusion

In this paper we presented efficient techniques to accu-
rately compute the similarity between trajectories of mov-
ing objects. Our distance measure is based on the LCSS
model and performs very well for noisy signals. Since the
exact computation is inefficient, we presented approximate
algorithms with provable performance bounds. Moreover,
we presented an efficient index structure, which is based
on hierarchical clustering, for similarity (nearest neighbor)
queries. The distance that we use is not a metric and there-
fore the triangle inequality does not hold. However, we
prove that a similar inequality holds (although a weaker
one) that allows to prune parts of the datasets without any
false dismissals.

Our experimentals indicate that the approximation algo-
rithm can be used to get an accurate and fast estimation of
the distance between two trajectories even under noisy con-
ditions. Also, results from the index evaluation show that
we can achieve good speed-ups for searching similar trajec-
tories comparing with the brute force linear scan.

We plan to investigate biased sampling to improve the
running time of the approximation algorithms, especially
when full rigid transformations (eg. shifting, scaling and
rotation) are necessary. Another approach to index trajecto-
ries for similarity retrieval is to use embeddings and map the
set of trajectories to points in a low dimensional Euclidean
space[14]. The challenge of course is to find an embedding
that approximately preserves the original pairwise distances
and gives good approximate results to similarity queries.

References

[1] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving
points. In Proc. of the 19th ACM Symp. on Principles of

Database Systems (PODS), pages 175-186, 2000.
[2] R.Agrawal, C. Faloutsos, and A. Swami. Efficient Similarity

Search in Sequence Databases. In Proc. of the 4th FODO,

pages 69-84, Oct. 1993.
[3] R. Agrawal, K. Lin, H. S. Sawhney, and K. Shim. Fast Sim-

ilarity Search in the Presence of Noise, Scaling and Trans-
lation in Time-Series Databases. In Proc of VLDB, pages
490-501, Sept. 1995.



[4]
[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

D. Barbara. Mobile computing and databases - a survey.

IEEE TKDE, pages 108-117, Jan. 1999.
D. Berndt and J. Clifford. Using Dynamic Time Warping to

Find Patterns in Time Series. In Proc. of KDD Workshop,

1994,
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.

When is "nearest neighbor” meaningful? In Proc of ICDT,

Jerusalem, pages 217-235, 1999.
B. Bollobas, G. Das, D. Gunopulos, and H. Mannila. Time-

Series Similarity Problems and Well-Separated Geometric

Sets. In Proc of the 13th SCG, Nice, France, 1997.
T. Bozkaya, N. Yazdani, and M. Ozsoyoglu. Matching and

Indexing Sequences of Different Lengths. In Proc.of the

CIKM, Las Vegas, 1997.
K. Chakrabarti and S. Mehrotra. Local dimensionality reduc-

tion: A new approach to indexing high dimensional spaces.

In Proc. of VLDB, pages 89-100, 2000.
K. Chu and M. Wong. Fast Time-Series Searching with

Scaling and Shifting. ACM Principles of Database Systems,

pages 237-248, June 1999.
G. Das, D. Gunopulos, and H. Mannila. Finding Similar

Time Series. In Proc. of the First PKDD Symp., pages 88—

100, 1997.
R. Duda and P. Hart. Pattern Classification and Scene Anal-

ysis. John Wiley and Sons, Inc., 1973.
C. Faloutsos, H. Jagadish, A. Mendelzon, and T. Milo.

Signature technique for similarity-based queries. In SE-

QUENCES 97, 1997.
C. Faloutsos and K.-I. Lin. FastMap: A fast algorithm for in-

dexing, data-mining and visualization of traditional and mul-
timedia datasets. In Proc. ACM SIGMOD, pages 163-174,

May 1995.
C. Faloutsos, M. Ranganathan, and I. Manolopoulos. Fast

Subsequence Matching in Time Series Databases. In Pro-

ceedings of ACM SIGMOD, pages 419-429, May 1994.
S. Gaffney and P. Smyth. Trajectory Clustering with Mix-

tures of Regression Models. In Proc. of the 5th ACM

SIGKDD, San Diego, CA, pages 63-72, Aug. 1999.
X. Ge and P. Smyth. Deformable markov model templates

for time-series pattern matching. In Proc ACM SIGKDD,

2000.
A. Gionis, P. Indyk, and R. Motwani. Similarity search in

high dimensions via hashing. In Proc. of 25th VLDB, pages

518-529, 1999.
J. Gips, M. Betke, and P. Fleming. The Camera Mouse: Pre-

liminary investigation of automated visual tracking for com-
puter access. In Proceedings of the Rehabilitation Engineer-
ing and Assistive Technology Society of North America 2000

Annual Conference, pages 98-100, Orlando, FL, July 2000.
D. Goldin and P. Kanellakis. On Similarity Queries for Time-

Series Data. In Proceedings of CP *95, Cassis, France, Sept.

1995.
J. Goldstein and R. Ramakrishnan. Contrast plots and p-

sphere trees: Space vs. time in nearest neighbour searches.
In Proc. of the VLDB, Cairo, pages 429-440, 2000.

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

H. V. Jagadish, A. O. Mendelzon, and T. Milo. Similarity-
based queries. In Proc. of the 14th ACM PODS, pages 3645,

May 1995.
T. Kahveci and A. K. Singh. Variable length queries for time

series data. In Proc. of IEEE ICDE, pages 273-282, 2001.
E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Pazzani. Lo-

cally adaptive dimensionality reduction for indexing large
time series databases. In Proc. of ACM SIGMOD, pages 151—

162, 2001.
E. Keogh and M. Pazzani. Scaling up Dynamic Time Warp-

ing for Datamining Applications. In Proc. 6th Int. Conf. on

Knowledge Discovery and Data Mining, Boston, MA, 2000.
G. Kollios, D. Gunopulos, and V. Tsotras. On Indexing Mo-

bile Objects. In Proc. of the 18th ACM Symp. on Principles

of Database Systems (PODS), pages 261-272, June 1999.
S.-L. Lee, S.-J. Chun, D.-H. Kim, J.-H. Lee, and C.-W.

Chung. Similarity Search for Multidimensional Data Se-

quences. In Proceedings of ICDE, pages 599-608, 2000.
S. Park, W. Chu, J. Yoon, and C. Hsu. Efficient Searches

for Similar Subsequences of Different Lengths in Sequence

Databases. In Proceedings of ICDE, pages 23-32, 2000.
S. Perng, H. Wang, S. Zhang, and D. S. Parker. Landmarks:

a New Model for Similarity-based Pattern Querying in Time
Series Databases. In Proceedings of ICDE, pages 33-42,

2000.
D. Pfoser, C. Jensen, and Y. Theodoridis. Novel Approaches

in Query Processing for Moving Objects. In Proceedings of

VLDB, Cairo Egypt, Sept. 2000.
Y. Qu, C. Wang, and X. Wang. Supporting Fast Search in

Time Series for Movement Patterns in Multiple Scales. In

Proc of the ACM CIKM, pages 251-258, 1998.
D. Rafiei and A. Mendelzon. Querying Time Series Data

Based on Similarity. IEEE Transactions on Knowledge and

Data Engineering, Vol. 12, No 5., pages 675-693, 2000.
H. Sakoe and S. Chiba. Dynamic programming algorithm

optimization for spoken word recognition. IEEE Trans.
Acoustics, Speech and Signal Processing, ASSP-26(1):43-

49, Feb. 1978.
S. Saltenis, C. Jensen, S. Leutenegger, and M. A. Lopez. In-

dexing the Positions of Continuously Moving Objects. In
Proceedings of the ACM SIGMOD, pages 331-342, May

2000.
M. Vlachos. Indexing similar trajectories. Technical report,

2001.
R. Weber, H.-J. Schek, and S. Blott. A Quantitative Anal-

ysis and Performance Study for Similarity Search Methods
in High-Dimensional Spaces. In Proc. of the VLDB, NYC,

pages 194-205, 1998.
B.-K. Yiand C. Faloutsos. Fast Time Sequence Indexing for

Avrbitrary Lp Norms. In Proceedings of VLDB, Cairo Egypt,
Sept. 2000.



