
On Effective Conceptual Indexing and Similarity Search in Text Data

Charu C. Aggarwal
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
charu@us.ibm.com

Philip S. Yu
IBM T. J. Watson Research Center

Yorktown Heights, NY 10598
psyu@us.ibm.com

Abstract

Similarity search in text has proven to be an interesting
problem from the qualitative perspective because of inher-
ent redundancies and ambiguities in textual descriptions.
The methods used in search engines in order to retrieve doc-
uments most similar to user-defined sets of keywords are
not applicable to targets which are medium to large size
documents, because of even greater noise effects stemming
from the presence of a large number of words unrelated to
the overall topic in the document. The inverted represen-
tation is the dominant method for indexing text, but it is
not as suitable for document-to-document similarity search,
as for short user-queries. One way of improving the qual-
ity of similarity search is Latent Semantic Indexing (LSI),
which maps the documents from the original set of words
to a concept space. Unfortunately, LSI maps the data into
a domain in which it is not possible to provide effective in-
dexing techniques. In this paper, we investigate new ways
of providing conceptual search among documents by cre-
ating a representation in terms of conceptual word-chains.
This technique also allows effective indexing techniques so
that similarity queries can be performed on large collec-
tions of documents by accessing a small amount of data.
We demonstrate that our scheme outperforms standard tex-
tual similarity search on the inverted representation both in
terms of quality and search efficiency.

1. Introduction

In recent years, the large amounts of data available on the
web has made effective similarity search and retrieval an
important problem. Similarity indexing has uses in many
web applications such as search engines or in providing
close matches for user queries. A related problem is that
of document-to-document similarity queries, in which the
target is an entire document, as opposed to a small number
of words for a specific user query. Such a system has con-
siderable use inrecommender systemsin library or web ap-

plications, in which it is desirable to find the closest matches
to a document which is currently being browsed. Other ex-
amples include personalized systems which can performin-
formation filtering: a process which studies the long term
access pattern by the user, and fetches the pages which are
most consistent with his profile.

Similarity search is often used for short user queries
in search engines such asY ahoo!, Lycos, Google and
AltaV ista [13] in which closest sets of matches are found
to sets of keywords specified by the user. For such appli-
cations, the documents are represented in the form of an
inverted index[11]. Other access methods [7] such as sig-
nature files exist, though the inverted representation seems
to have become the method of choice in the information re-
trieval domain. The inverted representation consists of lists
of Document Identifiers, one for each word in the lexicon.
For each wordw, its list contains all the document identi-
fiers, such that the corresponding documents contain it. In
addition, meta-information on word-frequency, position, or
document length may be stored along with each identifier.
For each user query, it suffices to examine the Document
IDs in the inverted lists corresponding to the words in the
query (ortarget). Details on how the similarity function is
actually calculated for the relevant documents may be found
in [11].

Similarity search has proven to be an interesting problem
in the text domain because of the unusually large dimen-
sionality of the problem as compared to the size of the doc-
uments. For example, a typical document collection on the
world-wide web may have hundreds of thousands of words.
This is significantly more than the average size of a doc-
ument on the world-wide web. Considerable correlations
between words exist because of synonymity and different
descriptions of the same underlying latent concepts. Thus,
two documents containing very different vocabulary could
be similar in subject material. Similarly, two documents
sharing considerable vocabulary could be topically very dif-
ferent. While applying the method to search engines (which
is a special application of similarity search, in which the
target document contains very few words), this problem is



observed in the form of retrieval incompleteness and inac-
curacy. For example, while querying oncatsone may miss
documents containing a description on thefeline species,
which do not explicitly contain the wordcat. In many cases,
the target may contain a multitude of concepts and subjects,
which can be inferred only from the aggregate distribution
of words in the document. Another well known problem
is that ofpolysemy, in which the same word could refer to
multiple concepts in the description (The wordvirus could
refer to a computer virus, or to a biological virus.) Clearly,
the ambiguity of the term can be resolved only by viewing it
in the context of other terms in the document. In general, it
is a challenging problem to design similarity functions for
high dimensional applications [8] because of the fact that
the aggregate behavior of high dimensional feature vectors
contains a lot of information which cannot be inferred from
individual attributes.

A well known method for improving the quality of sim-
ilarity search in text is calledLatent Semantic Indexing[6],
in which the data is transformed into a newconcept space.
This concept space depends upon the document collection
in question, since different collections would have different
sets of concepts. Latent semantic indexing is a technique
which tries to capture this hidden structure using techniques
from linear algebra. The idea in LSI is to project the data
into a small subspace of the original data such that the noise
effects of synonymy and polysemy are removed. The ad-
vantageous effects of the conceptual representation extend
to problems well beyond the text domain [2, 3]. A detailed
description of the effects of conceptual representation may
be found in [2, 6, 9].

LSI transforms the data from the sparse indexable rep-
resentation (with the inverted index) in a very high overall
dimensionality to a representation in the real space which is
no longer sparse. Even though the new representation is of
much lower overall dimensionality (typically about 200 or
so dimensions are needed to represent the concept space),
it is beyond the capacity of spatial indexing structures to
handle effectively. Thus, we are presented with a difficult
choice: if the data is represented in original format using the
inverted index, it is less effective for performing document-
to-document similarity search; on the other hand, when the
data is transformed using latent semantic indexing, we have
a data set which cannot be indexed effectively. Therefore,
if we have a very large collection of documents, we would
either be reduced to using a sequential scan in order to per-
form conceptual similarity search, or have to do with lower
quality search results using the original representation and
ignore the problems of synonymy and polysemy.

Another difficulty in performing document-to-document
queries effectively is that a large fraction of the words in
the target document are unrelated to the general subjects
in it. Such words increase the noise effects, and reduce

the likelihood of good search results. This is a problem
that even latent semantic indexing cannot resolve very ef-
fectively. In addition to these issues, it is clear that the
performance of the inverted representation of documents
worsens with increasing number of words in the target doc-
ument. In the search engine application it may be typical
for a well-formulated query to contain words which are
specialized enough, so that each of the relevant inverted
lists contain only a small number of Document Identifiers.
This is certainly not the case in a typical target document,
where it is inevitable that some words may have substan-
tially large inverted lists; yet cannot be ignored. Access-
ing these lists may significantly worsen the performance of
an inverted representation when applied to a document-to-
document query.

In this paper, we will discuss a technique which rep-
resents documents in terms ofconceptual word-chains, a
method which admits both high quality similarity search
and indexing techniques. We will compare our technique
to standard similarity search on the inverted index in terms
of quality, storage, and search efficiency. We will show that
the scheme achieves good qualitative performance at a low
indexing cost. We note that our system is similar in spirit
to the independently developed concept indexing technique
[10]; which focusses on the dimensionality reduction prob-
lem; here we focus mainly on the efficiency and efffective-
ness of the similarity indexing process.

This paper is organized as follows. The remainder of this
section is devoted to related work, a formal description of
the contributions of this paper, and some preliminary defini-
tions and notations. In section 2, we show how to represent
the documents in the concept space. In section 3, we discuss
the indexing search technique used for the purpose of this
paper. Section 4 discusses how the word-chains defining the
concept space are created. The empirical results are illus-
trated in section 5, while section 6 contains the conclusions
and summary.

1.1. Contributions of this paper

In this paper, we discuss a new method for conceptual
similarity search for text using word-chaining which admits
more efficient document-to-documentsimilarity search than
the standard inverted index, while preserving better quality
of results. The technique also results in much lower storage
requirements because it uses a compressed representation of
each document. This low storage requirement in turn trans-
lates to higher search efficiency. Thus, we demonstrate that
our scheme outperforms the standard similarity methods on
text on all three measures: quality, storage, and search effi-
ciency. This is also the first piece of work which treats the
performance and quality issues of textual similarity search
in one unified framework.

2



1.2. Preliminaries

In order to represent documents, we used the vector
space representation in which each document is represented
as a vector of words together with normalized term fre-
quencies. Specifically, each document can be represented
as a term vector of the forma = (a1; a2; : : : an). Each
of the termsai has a weightwi associated with it, where
wi denotes the normalized frequency of the word. We
used the standardtf -idf normalization, in which less fre-
quently occuring words in the aggregate collection are given
higher weight. Details of the normalization process may be
found in [11]. Theconcatenationof two documents is de-
fined by appending one document with the other. Thus, if
a = (a1; : : : an) be the weights in the vector space rep-
resentation of documentA, and b = (b1; : : : bn) be the
weights in the vector space representation of documentB,
then the concatenation of documentsA andB is given by
(a1 + b1; : : : an + bn).

The similarity between two documents may be measured
by using thecosinemeasure. The cosine similarity between
two documents with weight vectorsU = (u1; : : : un), and
V = (v1; : : : vn) is given by:

cosine(U; V ) =

Pn
i=1 f(ui) � f(vi)pPn

i=1 f(ui)
2 �
pPn

i=1 f(vi)
2

(1)

Heref(�) is a damping function such as the square-root or
logarithm.

A word-chainis a set of closely related words along with
a weight for each of the words. For example, a word-chain
(along with corresponding weights) for military-related vo-
cabulary could be:
army (75), troops (35), regiment (13), barracks (5),....
Typically, we expect the word-chain to contain a small
number1 of words which are semantically related to a
given topic. This is somewhat similar to an automatically-
generated thesaraus. For the purpose of our paper, we will
treat a word-chain as a meta-document, and therefore all of
the above notations and definitions for document represen-
tation and similarity are also applicable to a word-chain.

2. Defining the Conceptual Representation

There are a large number of objective functions such as
the dice coefficient, jaccard coefficient, and cosine coeffi-
cient which are used to measure similarity between text doc-
uments [11]. There is not much consensus on the relative
quality of the different ways of calculating similarity. The
cosine function used in this paper is one of the more well

1As we will see in the empirical section, the typical size of a word-chain
is about 50 words.

known ones. However, what is common to all these tech-
niques is that they are all susceptible to the redundancies,
ambiguities and noise effects in textual descriptions.

In our paper, we change the representation of the doc-
ument at the attribute levelby defining new sets of at-
tributes corresponding to concepts which have semantic sig-
nificance. Each of these concepts is defined by a word-
chain, which in turn is generated using the aggregate be-
havior of the document collection being indexed. For the
time-being we will skim over the issue of how these word-
chains are actually generated, and assume that each of them
is a meta-document containing closely related words with
weights representing relative frequency of occurance. More
about word-chain generation will be discussed in a later sec-
tion. Thus, a one-to-one correspondence exists between the
new set of attributes defined and the word-chains. Let us
assume that the number of such attributes isk�. The larger
the document collection available, the easier it is to gener-
ate sets of word-chains which reflect the different seman-
tic concepts in the document collection. This is a useful
property, since indexing is more critical for larger applica-
tions. Let us assume that the vector space representation
of the set of ofk� word-chains are denoted byv1 : : : vk� .
Note that some of the word-chains may have overlapping
vocabulary, corresponding to the fact that there may often
be some relationship between the concepts in the collec-
tion. Let us also assume thatu is the vector space repre-
sentation of a given document. Then, in the conceptual co-
ordinate system, the coordinate along the axisvi is given
by maxf0; cosine(u; vi) � tg. Heret 2 (0; 1) is a suit-
ably defined constant which we shall define as theactiva-
tion threshold. We will have more to say about this value
later. The coordinate value thus calculated is theconcep-
tual strength.

In order to intuitively understand the concept space, let
us try to get a feel for what the coordinates corresponding to
a given document refer to. Since each word-chain contains
a set of semantically related words (or topical vocabulary),
the conceptual strength of document with respect to a word-
chain defines how closely the document matches this vocab-
ulary. Thus, if a document contains a multitude of subjects
which have sufficient presence, then this is reflected by non-
zero conceptual strengths for each of the corresponding at-
tributes. For example, a document X on a military hospital
may share vocabulary from two of the word-chains out of
the many attributes. These two attributes may correspond
to the fact that it is a military related document, and that
it is a document related to the medical profession. This
description is more amenable to topical similarity search
than a text description, since another document on military
hospitals may not share a significant amount of text with
X, and a document sharing a considerable amount of text
with X unrelated to military hospitals may be a very poor

3



Algorithm Search(Target ConceptsC = fc1; : : : crg,
Strength:ft1; : : : trg)

begin
Initialize hash table as empty;
for eachi 2 fc1; : : : crg do

begin
for each documentj indexed by concepti

in the inverted representationdo begin
if entry for documentj does not exist in the hash table

then create entry forj in hash table and initialize entry value to 0;

add
ti�qijp
Lj �

p
Lt

to the entry for documentj in the hash table;

end;
end;

Return the document with largest hash table entry;
end

Figure 1. Searching for the Closest Concep-
tual Neighbor

match. In the conceptual vector-space representation, the
length of each vector isk�, and the corresponding weights
represent the conceptual strength. LetA = (a1; : : : ak�)
andB = (b1; : : : bk�) be the coordinates of two points in
the concept space. Then the conceptual cosine C-cosine be-
tween the two documents is defined in a similar way as the
cosine function without the application of damping. There-
fore, we have:

C-cosine(A;B) =
k�X
i=1

ai � bi=
0
@
vuut k�X

i=1

a2i �
vuut k�X

i=1

b2i

1
A :

(2)

3. Indexing and Searching the Conceptual
Representation

In the conceptual representation, when the word-chains
are reasonably well-separated, a given document is likely
to share substantial vocabulary with only a few of the word-
chains. In terms of the coordinate representation, this means
that only a few of the components are likely to be strongly
positive, while most components are zero.

The definition of the conceptual strength introduced in
the previous section ensures that when the similarity of a
document to a word chain is less than a certain amount
called theactivation threshold(denoted byt), the corre-
sponding conceptual strength for that coordinate is zero.
The aim is to create a conceptual representation which sum-
marizes the information in the document in terms of a small
number of concepts which are specific to the particular col-
lection in question. The use of an activation threshold en-
sures that even though a document may share a tiny amount
of vocabulary from many word-chains, these correspond to
the noise-effects stemming from words which are not gen-
erally related to the dominant topics in it. Furthermore,

even though the document may share only a small amount
of noisy vocabulary from each such word-chain, the sum
of the noise effects over all the different word chains could
be considerable. In effect, only a nicely filtered fraction
of the vocabulary (corresponding to the dominant subjects)
may be used in order to create the non-zero components in
the conceptual representation. Such words are thetopical
wordsof that document.

One way of viewing conceptual representation is as a
compressed representation of the documents which reduces
the inherent noise effects of ambiguity, redundancy and un-
related vocabulary in a document. Latent semantic indexing
achieves the noise reduction by picking a small subspace of
the original data which shows the maximum variation in the
distribution of the features. However, it does not achieve
the compression effects since the documents are mapped to
arbitrary numbers in the real domain. This also makes the
data impossible to index because of the nature of the high
dimensional representation.

Once the conceptual coordinates of each document have
been determined, an inverted index of the new represen-
tation may be created. In this case, we have an inverted
list for each of thek� concepts corresponding to the word-
chains. The document identifiers on a list are those doc-
uments which have a non-zero conceptual strength for the
corresponding concept. The small number of positive com-
ponents in the conceptual representation makes the data in-
dexable, since the inverted representation is dependant upon
the sparsity of the data. Along with each document IDj
pointed to by each concepti, we also store the following
information: (1) Theconceptual strengthqij for concept
i in documentj. (2) Theconceptual lengthof document
j, which is denoted byLj =

P
(i: concepti 2 documentj) q

2

ij ,
and is one of the terms in the denominator of the conceptual
cosine function.

Let fc1; : : : crg be the set of concepts in the target doc-
ument, andft1; : : : trg be the strength of the corresponding
concepts. Our similarity search algorithm uses the meta-
information in the inverted index [11]. LetLt be the length
of the target document. We say that a document istouched
by the target, if it has at least one concept, which is in the
target (In other words, its ID occurs on at least one of the in-
verted lists corresponding to that concept.). Then the algo-
rithm builds a hash table of all documents which are touched
by the target by examining the inverted lists one by one, and
inserting document IDs in the hash table. When the docu-
mentj from the inverted list for conceptcp (1 � p � r) is
being examined, it keeps updating a similarity count entry
for each document in the hash table by adding

tp�qcpjp
Lj�

p
Lt

to

the corresponding hash table entry. At the end of the scan,
for each documentj which has been touched by the target,
the value of the corresponding entry in the hash table will

4



Algorithm ConceptualWordChains(Documents: D, NumberOfChains:k�,
Integer: ActivationThreshold)

f W = set of word chains;Ci = set of documents
related to words chainWi 2 W g

f D = set of all documentsg
begin
W = A randomly chosen set ofn0 documents;
ChainLength = StartChainLength;
while (n0 > k�)
do begin
(D;C1; : : :Cn0 ) =MatchDocuments(W;D; ActivationThreshold);
W =FindWordChains(C1 ; : : :Cn0 ; ChainLength);
W =RemoveChains(W; C1 : : : Cn0 );
W =ConsolidateChains(W; maxfn0 � ; k�g);
n0 = maxfn0 � ; k�g;
ChainLength = maxfFinalChainLength;ChainLength � �g;
f � < 1 indicates the rate at which the number of words

in each chain reduces in an iterationg
end;

end

Figure 2. Word-chain Creation

be given by
P

(p: conceptcp 2 documentj)
tp�qcpjp
Lj�

p
Lt

. This is

the conceptual cosine (C-cosine) between the target and the
documentj. The search method is illustrated in the Fig-
ure 1. This method for calculating similarity directly from
the meta-information in the inverted index can be adapted
to textual similarity search on the original document for
certain objective functions; though many IR systems use
the inverted representation to identify the documents which
should be accessed from the database, and then separately
access the vector space representation in order to calculate
similarity.

4. Generating the Conceptual Space

It is important to understand that the success of this
method depends upon the finding of well separated word-
chains which contain sets of closely correlated words. The
concept of using word clustering for specific problem of text
classification has been discussed by Baker and McCallum
[5]. However, the applicability of that technique is restricted
to the classification problems where the documents are al-
ready labelled. In our technique we concentrate on finding
word-chains in an unsupervised way by iteratively creating
word clusters and collections of documents associated with
these clusters.

A good number of algorithms are known in the litera-
ture for performing text clustering [4, 1], though the focus
of our technique is slightly different in terms of being able
to find clusters on thewordsas opposed to the documents.
Furthermore, there may be overlaps on the words in the dif-
ferent concepts. The method takes as input the activation
threshold which is the user-defined limit on when a con-

cept can be considered to be present in a document. This is
the same value which is used during the process of build-
ing the inverted index and performing the similarity search.
This activation threshold is useful in finding semantic rela-
tionships between the documents in the collection and the
intermediate word-chains generated by the algorithm.

Our overall algorithm is an iterative one in which word-
chains are used as representatives for grouping semantically
related documents. In each iteration, the vocabulary in the
word-chains is refined so that the resulting meta-document
contains more and more tightly related sets of words. In
the first iteration, each word-chainWi is simply the set of
words in an arbitrary document from the collection. The
number of such chains isn0. The exact value ofn0 is de-
termined by the running time considerations, which will be
discussed in a later section. At this point, closely related
documents to each word-chain are found and collected in a
set. Specifically, for word-chainWi the set of semantically
related documents to it is denoted byCi. A document may
belong to multiple sets infC1 : : : Cn0g. These in turn are
used in order to re-create each word-chainWi by retaining
the dominant vocabulary ofCi. The number of words re-
tained in each iteration is denoted byChainLength. The
algorithm starts with a larger value ofChainLength, and
gradually reduces it in each iteration as the word-chains get
more refined, and a smaller number of words are required
in order to isolate the subject in a word-chain. This tech-
nique of finding closely related documents by iteratively re-
fining both word-chains and document assignments to such
chains is an effective technique for the creation of closely
related groups of words. In each iteration, we keep consoli-
dating chains which are close enough to belong to the same
topic, so that we do not have concepts which are too simi-
lar in their vocabulary. At the same time we keep removing
the chains which do not have enough matching documents,
which corresponds to the fact that such concepts are not
well represented in the aggregate behavior of the collection.

The overall algorithm for generation of word-chains is il-
lustrated in Figure 2. We assume that the set of word-chains
available to the algorithm at any stage is denoted byW and
the documents which are being used in order to create the
word-chains are denoted byD. In each iteration, we assign
a random sampleR of the documents to their most seman-
tically related word-chains inW . The reason for picking
a random sampleR is that the assignment procedure re-
quiresn0 � jRj similarity functions calculations, wheren0 is
the number of word-chains. This may dominate the running
times. Therefore, picking a random sample size which is in-
versely proportional to the current number of word-chains
n0 balances the running time in each iteration. Furthermore,
larger sample sizes are chosen in later iterations, when it is
more critical to calculate word-chains in a more accurate
and refined way. The particular value of the random sam-

5



ple used for our algorithm wask� � jDj=n0. This value of
the random sample size chosen ensures that in the last it-
eration, whenn0 = k�, the entire document collection is
used. A document is assigned to all the word-chains inW ,
to which the similarity of the document is larger than the
activation threshold. Thus, a document could get assigned
to multiple chains, corresponding to the different subjects
in it. At the end of this procedure, the sets of documents
(C1; : : :Cn0) are returned, which corresponds to the differ-
ent word-chains.

After the assignment procedure, we create a word-chain
Wi out of each groupCi. To do so, we concatenate the
documents in each semantically related group which was
created in the assignment process, and we project out the
words with the least weight from the corresponding meta-
document. This ensures that only the terms which are fre-
quently occuring within that group of semantically related
documents are used in the word-chain. The number of terms
in the word-chains reduces by a geometric factor� in each
iteration. We shall refer to this value� as theprojection
factor. This is because in the first few iterations, when the
word-chains are not too refined, a larger number of dimen-
sions need to be retained in the projection in order to avoid
premature loss of information. In later iterations, the word-
chains become more refined and it is possible to project
down to a fewer number of words.

In each iteration, we reduce the number of word-chains
by thechain-consolidation factor by consolidating very
closely related chains. This reduces the likelihood of re-
dundancy in the semantic representation of the documents,
when expressed in terms of the final word chains (simi-
lar to the problem of synonymy). The merging process
is implemented using a simple single linkage clustering
method. Each word-chain is represented by a node in an
undirected graph, and the similarity between each pair of
word-chains is calculated. Edges are added to the graph in
decreasing order of similarity, until there aren0 �  con-
nected components. The new reduced set of word-chains
are then re-created by concatenating the chains correspond-
ing to each such component. Although the simple linkage
process is somewhat naive, it is very fast and effective for
values of the consolidation factor � 0:1. This is because
single-linkage methods are very effective for cases when
a small number of merges are performed before recalcu-
lation of nearest neighbors. The projection factor� was
picked in a way, so that the reduction of the initial chain
length to the final chain length occured in the same num-
ber of iterations as the reduction of the number of word-
chains fromn0 to k�. In order for this to happen, the
following relationship must be satisfied: log(n0=k

�) =
log�(FinalChainLength=StartChainLength).

Some of the word-chains may turn out to be meaningless
and consist of unrelated words. Such word-chains attract

very few documents from the original set during the match-
ing process. In order to find which word-chains should
be removed, we calculated the mean� and standard devi-
ation� of the distribution of documents in the groupsCi for
i 2 f1; : : : n0g. We discard all those word-chainsWi from
W such that the number of documents inCi is less than the
threshold value of��r ��. Herer is a parameter, which de-
fines the statistical level of significance at which one would
like to remove the poorly-defined chains.

5. Empirical Results

We used a scan of theY ahoo! taxonomy from Novem-
ber 1996. This taxonomy contained a total of 167193 doc-
uments, over a lexicon of approximately 700,000 words.
Each document in this taxonomy contained an average of
about 80 to 100 distinct words from the lexicon. The very
commonly occuring terms (or stop words) had already been
removed from this lexicon. In addition, we removed words
which rarely occured in the collection. Specifically, any
words which occured in the entire collection less than 6
times was removed. Most of these words turned out to be
misspellings or creative variations of ordinary words, which
had no significance in the similarity indexing process. The
resulting lexicon contained approximately 80,000 words.

Since the inverted representation is the primary data
structure which provides indexing capabilities for text, we
compared our scheme to it. Most of the results in this pa-
per compare the widely used cosine textual function and its
conceptual analogue (see Equations 1 and 2). For the textual
cosine, the square-root damping function2 was used and the
inverse-document-frequency (idf) normalization [11] was
used in order to weight the importance of the different
words. We evaluated the textual similarity function against
the conceptual method for both quality and efficiency.

5.1. Quality

This is difficult to measure because of its inherently non-
quantitative nature. Therefore, we will provide evidence
of the effectiveness of the conceptual technique in an in-
direct way. We will use the class labels on theY ahoo!
data set in order to check how well the retrieved results
matched the target. If it is assumed that the manually
definedY ahoo! class labels reflect topical behavior well,
then the relationship between the class labels of the tar-
get and search results can provide very good evidence of
search quality. We found that the conceptual technique was
able to match the documents well in terms of overall sub-
ject matching, whereas the textual representation was of-
ten mislead by the noise effects of individual words. Since

2The square-root damping function was slightly better than the loga-
rithmic damping function in our empirical tests.

6



Target Document Textual Neighbor Conceptual Neighbor

@Arts@Architecture@Architects @Arts@Architecture@Architects
(16%) (34%)

@Arts@Architecture@Architects @Arts@Architecture (24%) @Arts@Architecture (47%)
@Arts (36%) @Arts (58%)

@Arts@Art History@Artists (16%) @Arts@Art History@Artists (29%)
@Arts@Art History@Artists @Arts@Art History (29%) @Arts@Art History (44%)

@Arts (38%) @@Arts (49%)
@Arts@Dance @Arts@Dance (19%) @Arts@Dance (44%)

@Arts (28%) @Arts (55%)
@Government@Military@AirForce @Government@Military@AirForce

(18%) (33%)
@Government@Military@AirForce @Government@Military (29%) @Government@Military (48%)

@Government (36%) @Government (51%)
@Health@Nursing @Health@Nursing (19%) @Health@Nursing (31%)

@Health (29%) @Health (48%)
@Recreation@Sports@Tennis (17%) @Recreation@@Sports@Tennis (32%)

@Recreation@Sports@Tennis @Recreation@Sports (29%) @Recreation@Sports (45%)
@Recreation (30%) @Recreation (48%)

@Science@Biology@Botany (18%) @Science@Biology@Botany (32%)
@Science@Biology@Botany @Science@Biology (25%) @Science@Biology (42%)

@Science (31%) @Science (51%)
Overall Average Lowest level class (16%) Lowest level class (28%)

20 categories One level higher (28%) One level higher (47%)

Table 1. Matching of the subjects in target and nearest neighbors

the focus of this paper is in measuring the quality and co-
herence of the nearest neighbor obtained from conceptual
indexing, we need some hard criterion for quantification
of such qualitative measurements. To do so, we used the
Y ahoo! class labels associated with the documents. We
compared the class labels in the retrieved results to the class
labels of all levels of theY ahoo! hierarchy in the target.
Specifically, we computed thep = 20 closest neighbors
to the target, and calculated the percentage of neighbors
from the same or a hierarchically related class. The re-
sults are presented in Table 1. The first column indicates
the class label of the target document; whereas the second
and third columns indicate some statistics of the class distri-
butions of the search results for the textual and conceptual
neighbors respectively for all levels of theY ahoo! hierar-
chy which are related to the target. For example, for a tar-
get document in the @Arts@Architecture@Architects cat-
egory, we would try to find the percentage of neighbors be-
longing to each of the subtrees ofY ahoo! corresponding to
@Arts@Architecture@Architects, @Arts@Architecture,
and @Arts respectively. Clearly the percentage of matching
neighbors would always be higher while trying to make a
partial match with a hierarchically related node. The values
reported in each entry of Table 1 are determined by averag-
ing over all targets in the correspondingY ahoo! class. It is
also apparent that it is goodness for these accuracy numbers
to be as high as possible, if we assume thatY ahoo! class
labels reflect topical behavior well.

As illustrated in Table 1, an exact match between the
class labels of the target document and the nearest neighbors

was found a very small percentage of the time for the textual
nearest neighbor. We note that we are only using the match-
ing percentage of class labels of an unsupervised similar-
ity search procedure in order to demonstrate the qualitative
advantages of conceptual similarity. (Therefore the results
from supervised classifiers are a bound on the kind of accu-
racy one could hope to qualitatively achieve with a simple
unsupervised nearest neighbor technique.) The accuracy of
the textual neighbor ranged in the vicinity of14-19% over
the different categories. On the other hand, the accuracy for
the conceptual nearest neighbor ranged between30-40%.
The accuracy numbers varied considerably over the differ-
ent categories. In each case, the conceptual neighbor always
dominates the effectiveness of the textual neighbor. The test
results for the hierarchical relationship of the retrieved doc-
uments to the target were similar. In these cases the per-
centage accuracies for the textual nearest neighbor varied
between25-29%, whereas the numbers for the conceptual
nearest neighbor were in the range of45-50%. Furthermore,
the conceptual neighbor performed much better in each of
the individual cases.

5.2. Storage Requirements and Search Efficiency

On generating the conceptual space, we found that each
document contained about 5-10 concepts. On the other
hand, the average document contained about 100 words.
This is a dramatic reduction in the space required to store
and index documents. This results in savings both in terms
of storage efficiency and computational efficiency of disk

7



Method Result
Textual 426 676 (IDs Accessed)= 5.1 MB

Conceptual 9032 (IDs Accessed)= 108 KB

Table 2. Search Efficiency for the two methods

accesses. The original set of 167,000 documents required
a total of about 87.7 MB in the inverted representation,
whereas the conceptual representation required only 8.3
MB. This translates to more than an order of magnitude
improvement in the space required for storage. These im-
proved storage requirements also translate to greater effi-
ciency during query time in two ways:(1) In the textual
representation, some of the inverted lists are very long be-
cause of relatively commonly occuring words (which are
not stop words). These inverted lists contribute to a substan-
tial portion of the access time. This is never the case in the
conceptual representation.(2) Each of the target documents
contains a fewer number of concepts; so fewer number of
the inverted lists need to be accessed.

Since the inverted representation is used by both the
schemes, it follows that the search efficiency may be de-
termined easily by calculating the number of document IDs
(including repetitions) which were accessed by each of the
methods. The number of ID accesses and corresponding
disk access requirements are illustrated in Table 2. The
numbers are averaged over 1000 queries for each case. As
we see from Table 2, each similarity search query in the
textual representation required an access of 426,676 docu-
ments IDs from the inverted index, which sums to a total
of about 5.1 MB. This is an exceptionally high access re-
quirement for asingle query. Note that the number of doc-
ument IDs accessed is more than the number of documents
in the collection, corresponding to the fact that the same ID
occured on multiple lists. The number of distinct IDs ac-
cessed for each query averaged at about10% of the total
documents. The reason for this exceptionally large number
of documents being accessed is that some words are more
frequent in the document collection than others (but are im-
portant enough to be not considered stop-words). The lists
for these words add significantly to the access cost. The
use of the inverted representation ensures that the search
efficiency requirements scale linearly with the size of the
document collection. Thus, an access requirement of 5.1
MB per query for a moderately sized collection of 167,000
documents does not bode well for the performance on much
larger collections. In contrast, the conceptual indexing tech-
nique requires the access of an average of 9032 document
IDs per query. This is about 108 KB per query and more
than an order of magnitude improvement over the textual

indexing technique.

6. Conclusions and Summary

In this paper, we discussed a new method for conceptual
indexing and similarity search of text. The techniques dis-
cussed in this paper can be used for dramatically improving
the search quality as well as search efficiency. Although
our technique is designed with a focus on document-to-
document similarity queries, the techniques are also appli-
cable to the short queries of search engines. This work pro-
vides an integrated view of qualitatively effective similarity
search and performance efficient indexing in text; an issue
which has not been addressed before in this domain.

References

[1] C. C. Aggarwal, S. C. Gates, P. S. Yu. On the Merits of Using
Supervised Clustering for building Categorization Systems.
ACM SIGKDD Conference, 1999.

[2] C. C. Aggarwal. On the Effects of Dimensionality Reduction
on High Dimensional Similarity Search.ACM PODS Confer-
ence, 2001.

[3] C. C. Aggarwal, S. Parthasarathy. Mining Massively Incom-
plete Data Sets by Conceptual Reconstruction.ACM KDD
Conference, 2001.

[4] P. Anick, and S. Vaithyanathan. Exploiting Clustering and
Phrases for Context-based Information Retrieval.ACM SIGIR
Conference, 1997.

[5] L. Douglas Baker, A. K. McCallum. Distributional Clustering
of words for Text Classification.ACM SIGIR Conference,
1998.

[6] Dumais S., Furnas G., Landauer T. Deerwester S., Using
Latent Semantic Indexing to improve information retrieval.
ACM SIGCHI Conference, 1988.

[7] C. Faloutsos Access Methods for Text.ACM Computing Sur-
veys17, 1, March 1995.

[8] A. Hinneburg, C. C. Aggarwal, D. A. Keim. What is the Near-
est Neighbor in High Dimensional Spaces?Proceedings of
the VLDB Conference, 2001.

[9] J. Kleinberg, A. Tomkins. Applications of Linear Algebra in
Information Retrieval and Hypertext Analysis.ACM PODS
Conference, 1999.

[10] G. Karypis, E.-I. Han. Concept Indexing: A Fast Dimension-
ality Reduction Technique with Applications to Document
Retrieval and Categorization.CIKM Conference, 2000.

[11] G. Salton, M. J. McGill. Introduction to Modern Information
Retrieval.Mc Graw Hill, New York, 1983.

[12] H. Schutze, C. Silverstein. Projections for efficient document
clustering.ACM SIGIR Conference, 1997.

[13] http://www.altavista.com, http://www.lycos.com,
http://www.yahoo.com http://www.google.com

8


