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Abstract

We focus on the problem of predicting functional prop-
erties of the proteins corresponding to genes in the yeast
genome. Our goal is to study the effectiveness of ap-
proaches that utilize all data sources that are available
in this problem setting, including unlabeled and relational
data, and abstracts of research papers. We study transduc-
tion and co-training for using unlabeled data. We investi-
gate a propositionalization approach which uses relational
gene interaction data. We study the benefit of information
extraction for utilizing a collection of scientific abstracts.
The studied tasks are KDD Cup tasks of 2001 and 2002.
The solutions which we describe achieved the highest score
for task 2 in 2001, the fourth rank for task 3 in 2001, the
highest score for one of the two subtasks and the third place
for the overall task 2 in 2002.

1 Introduction

A principle challenge of bioinformatics is to generate
models which describe the relation between genetic infor-
mation and corresponding cellular processes. Such models
have to explain – and can be derived from – available ex-
perimental data. We focus on a set of related problems of
functional genomics. We aim at predicting the high-level
function and the localization of the protein corresponding to
a given yeast gene, and at predicting whether a given gene
is involved in the regulation of the aryl hydrocarbon recep-
tor (AhR) signaling pathway (for the available data, this has
been determined in a gene deletion experiment).

The data which we use have been provided for the KDD
Cups 2001 [3] and 2002 [4]. Besides attributes such as func-
tion, localization, and protein class for each gene, the data
include relational gene interaction information and abstracts
of relevant research papers in MEDLINE. Focusing on the

goal of building as accurate a model of the biological sys-
tem as possible, we explore the effectiveness of several ap-
proaches that allow us to utilize these available sources of
unlabeled, multi-relational, and textual data.

Approaches to utilizing relational data (in our case, gene
interactions) in machine learning algorithms include induc-
tive logic programming andpropositionalization (originat-
ing from ILP) – i.e., casting of a controlled amount of re-
lational information into attributes (e.g., [7, 9]). Because
of scalability issues, we follow the latter approach. For the
focused problem, unlabeled data is inexpensive and readily
available. Approaches to semi-supervised learning include
transduction [6] and the co-training algorithm [1]. Abstracts
of scientific papers in the MEDLINE collection contain in-
formation that can be helpful for model building. Algo-
rithms have been studied that extract information from lit-
erature [10, 5], based on dictionary-based extractors (e.g.,
[5]), rule learners, or hidden Markov models [10].

This paper is organized as follows. We discuss the appli-
cation and experimental setting in Section 2, and our propo-
sitionalization approach in Section 3. Section 4 focuses on
our studies on text mining, while Section 5 presents results
on semi-supervised learning. A discussion of our competi-
tion results and lessons learned is sketched in Section 6.

2 Problem Description

Our task is to predict properties of the proteins corre-
sponding to a given yeast gene. These properties are (1)
one (or several) of 15 categories of protein functions, (2)
the localization (one of 15 different parts of the cell), and
(3) the involvement in the regulation of the AhR signaling
pathway. The AhR is a basic helix-loop-helix transcription
factor with the ability to bind both synthetic chemicals such
as dioxins and naturally-occurring phytochemicals, sterols
and heme breakdown products. This receptor plays an im-
portant developmental and physiological role. Problems (1)



and (2) have been addressed in KDD Cup 2001 whereas
problem (3) is one of the tasks of KDD Cup 2002.

The available training data for problem (1) and (2) con-
tains 862 training and 381 test instances [3]. Besides at-
tributes that characterize the individual gene, a relation
specifies which genes interact with one another. We have
to limit our comparative studies to the three most frequent
classes as the minority classes contain too few instances to
obtain performance estimates.

The data for problem (3) has been obtained in experi-
ments with yeast strains using a gene deletion array [4].
Each instance in the data set represents a trial in which a sin-
gle gene is knocked out and the activity of a target system
(AhR signaling) is measured. We distinguish genes whose
deletion affects the target system (class “change”), affects
the entire cell (“control”), or does not have an effect (“no
change”). We learn two discriminators:change vs. con-
trol andno change (“narrow positive class” problem) and
change andcontrol vs. no change (“broad positive class”).

The data contains 3,018 training and 1,489 test exam-
ples. 2,934 fall into the classno change, 38 into change
and 45 intocontrol. The attributes (with many missing val-
ues) describe function, localization and protein class of each
gene (hierarchical attributes with four to five levels). Again,
a relation describes gene interactions. A table relates genes
to 15,235 relevant abstracts in the MEDLINE repository.

We use the area under theReceiver Operating Charac-
teristic (ROC) curve to assess hypotheses. [2] This area (the
AUC performance) is equal to the probability that, when we
draw one positive and one negative example at random, the
decision function assigns a higher value to the positive than
to the negative example. We estimate the standard deviation
of the AUC performance, using the Wilcoxon statistics [2].

We selected the Support Vector Machine SVMlight as
core machine learning algorithm. In order to study the ben-
efit of some attributex generated by one of the discussed ap-
proaches, we compare the performance of the attribute con-
figuration with highest cross validation performance with
and without the focused attribute.

3 Propositionalization

The gene interaction data contains pairs of gene names.
In order to integrate this data into our solutions, we have
to generate attributes from this relation. We use the RE-
LAGGS algorithm that extends the usual framework of
propositionalization [7] by first computing user specified
joins, and then aggregating the result into a table with a sin-
gle line per instance [9].

The following example illustrates this process. We have
a tabletrain-class with attributesgene-id andclass, a table
interaction with gene-id1 and gene-id2 and, slightly sim-
plified, a tablelocalization with attributegene-id and an

Table 1. Function and localization prediction
with and without relational information.

Class without with
function growth 0:872 � 0:01 0:882 � 0:014

function transcription 0:886 � 0:005 0:899 � 0:011

function transport 0:893 � 0:01 0:918 � 0:013

localization cytoplasm 0:861 � 0:008 0:865 � 0:014

localization mitochondria 0:909 � 0:013 0:948 � 0:01

localization nucleus 0:941 � 0:005 0:944 � 0:011

Table 2. AhR prediction with and without re-
lational information.

class without first level second level third level
narrow 0:62� 0:06 0:71� 0:05 0:69 � 0:05 0:65� 0:06

broad 0:60� 0:04 0:60� 0:05 0:63 � 0:04 0:60� 0:04

additional attribute for each possible value, includingmi-
tochondria andcytoplasm (this easily allows us to handle
set-valued attributes). Gene “1” interacts with genes “2”
and “3”, where “2” has value 1 for attributemitochondria
and 0 forcytoplasm, and “3” has value 1 both formitochon-
dria andcytoplasm. After joining the three tables, we obtain
two lines for gene “1”; the first has value 1 formitochondria
and 0 forcytoplasm, the second has value 1 for both.

We now collapse these two lines into one by applying
aggregation functions such asmin, max, avg, or sum; in this
case,sum is appropriate. This leads to one line with values
2 and 1 for attributesmitochondria andcytoplasm, respec-
tively, indicating that gene “1” interacts with two genes lo-
calizing in the mitochondria and one in the cytoplasm. The
RELAGGS outputs consisted for all problems of single ta-
bles with about 1,000 columns each. This high number is
caused by the number of different values for functions, lo-
calizations, and protein classes.

For problems (1) and (2), we compare the decision func-
tions with and without the interaction attributes, generated
by the RELAGGS algorithm in Table 1 (using 10-fold cross
validation). The observed AUC performance obtained when
using the interaction is in every single case higher; the im-
provement exceeds two standard deviations in two cases and
one standard deviation in two more cases. These data rule
out the null hypothesis that the interaction information does
not influence recognition performance. For problem (3), we
compare the performance without and with attributes that
reflect first, second, and third level interactions in Table 2.
We see that first level interactions perform best for the nar-
row, and second level interactions are best for the broad
positive class. A significant improvement (p � 0:05) is
achieved for the narrow class, we see a smaller, insignifi-
cant improvement for the broad class.
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Table 3. Additional information from informa-
tion extraction.

without with IE only
narrow 0:590 � 0:061 0:685 � 0:052 0:654 � 0:055

broad 0:597 � 0:040 0:630 � 0:039 0:510 � 0:044

4 Information Extraction

The attributes of the original data set contain very many
missing values. We therefore want to study whether an in-
formation extraction algorithm can effectively be used to
find missing values in the 15,000 MEDLINE abstracts. We
follow a dictionary-based approach [5]. From the hierarchi-
cal text files that contain possible values for the attributes
function, localization, and protein class, we manually define
a thesaurus that lists, for each of the possible values of these
attributes, a number of plausible terms that can be used to
refer to this value. Terms are constructed by adding syn-
onyms, paraphrased variants, and plural forms, and splitting
compound phrases (see [8] for more details).

Table 3 shows that the extractor yields a substantial per-
formance improvement for problem (3). Surprisingly, the
problem can even be solved to some degree usingonly the
information extracted from the abstracts (“IE only”). Ap-
plying the information extractor to problems (1) and (2)
raises an interesting problem. The extractor identifies both,
function and localization of genes in the scientific abstracts.
Hence, it solves the functional genomics problem. How-
ever, this solution would not be practically useful because it
could not possibly predict function and localization values
that have not previously published.

5 Semi-Supervised Learning

The transductive SVM [6] maximizes the margin be-
tween hyper-plane and both, labeled and unlabeled data;
but only for the labeled data, it is required that they lie
on a specific side. For problems (1) and (2), Table 4 com-
pares 10-fold cross validation results of the “vanilla SVM”
to the TSVM. In both cases, transductionsignificantly de-
creases performance although it has additional information
(the unlabeled hold-out instances) available. Given our pre-
vious positive experience with TSVM, we hypothesized that
transduction is only beneficial if only few labeled data are
available. We averaged 10 iterations in which we drew only
5 labeled positive examples (and 12 and 20 negatives, re-
spectively) and used all remaining instances as unlabeled
data. Table 4 shows that transduction still dramatically de-
creases classifier performance, refuting our hypothesis.

For problem (3), the transductive SVM decreased the
AUC for the broad class from 0.63 (�0:04) to 0.60 (�0:04)

Table 4. Transduction results for (1) and (2).
Class SVM TSVM
function growth, 150 positives0:84� 0:006 0:82 � 0:008

location cytoplasm, all data 0:83� 0:010 0:71pm0:016

function growth, 5 positives 0:67 � 0:005 0:55 � 0:007

location cytoplasm, 5 positives0:62� 0:007 0:55 � 0:011

and increased AUC for the narrow class from0:685 (�0:05)
to 0:695 (�0:05). Both differences are well below the stan-
dard deviations. The transductive SVM dramatically in-
creases computation time.

Blum and Mitchell [1] have proposed the co-training
algorithm which splits the available attributes into dis-
joint subsets; a labeled example(x; a) is then viewed as
(x1; x2; a). The co-training algorithm learns two classifiers
f1(x1) andf2(x2) which bootstrap each other by providing
labels for the unlabeled data. When the views arecompat-
ible – i.e., 9f1; f2 such thatf1(x1) = f2(x2) = f(x) –
andindependent given the class labels –P (x1jf(x); x2) =

P (x1jf(x)) – then the co-training algorithm labels unla-
beled examples in a way that is essentially equivalent to
drawing labeled data at random [1].

For problems (1) and (2), we split the available at-
tributes randomly. In each experiment, we averaged ten co-
training curves for distinct attribute splits. Figure 1 shows
that the performance of the decision functions remains un-
changed when we use all available labeled examples, (top-
most curve), or 150 labeled examples (second curve, plot
for “function”) whereas performancedecreases over the co-
training iterations when we use only 5 positive examples.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 20 40 60 80 100 120 140 160

ar
ea

 u
nd

er
 R

O
C

 c
ur

ve

co-training iteration

function growth

5+12 labeled data
150+335 labeled examples

all data
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0 10 20 30 40 50 60 70 80 90 100

ar
ea

 u
nd

er
 R

O
C

 c
ur

ve

co-training iteration

location cytoplasm

5+20 labeled data
all data

Figure 1. Co-training results for (1) and (2).

For problem (3) we tried to minimize dependency be-
tween the two attribute sets by splitting into attributes ex-
tracted from the abstracts together with the relational at-
tributes, and all other attributes (the “natural” split). As
control strategy, we randomly partition the attributes.

Figure 2 (left) shows the AUC over 200 iterations of co-
training using the “natural” split. The performance does not
improve; the standard deviations are around0:05. The com-
bined decision function (the average of two decision func-
tions) is significantly worse than one single decision func-
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Figure 2. Co-training results for (3).

tion. For random attribute partitioning (Figure 2, center and
right), the average AUC decreases significantly over the co-
training iterations (p < 0:05) for the broad and seems to
decrease for the narrow class.

6 Competition Results and Lessons Learned

For KDD Cup 2001, tasks 2 and 3, (here, problems 1
and 2) Krogel [3] submitted a solution that used the inter-
action attributes. Since the gene names were anonymized,
we could not use text mining results; we did not use trans-
duction or co-training either. The submission achieved the
highest score for function prediction, and the fourth highest
score for localization prediction [3]. Our solution for KDD
Cup 2002, task 2 (here, problem 3) used second-level in-
teractions, and entries won by information extraction. We
did not include transduction or co-training. We achieved
the third highest result (the highest for the narrow posi-
tive class); retrospectively, we can now obtain better per-
formances than any team could within the tight competition
time frame.

From our experience in the KDD Cup and retrospective
studies, we draw a number of lessons learned. (i) In func-
tional genomics, the interactions between genes play a cru-
cial role. Effective utilization of the interaction information
was the key success factor for both competitions. Using
RELAGGS to propositionalize the data proved to be effec-
tive and scalable. (ii) Semi-supervised learning techniques
such as the transductive SVM and co-training are less gen-
erally applicable than – at least we – expected. Our expec-
tation was that taking unlabeled data into account should
not decrease performance, and should at least be beneficial
when only few labeled examples are available. For func-
tional gene classification, neither of these assumptions is
true. (iii) MEDLINE abstracts contain important knowl-
edge that can help to build better models and thus to perform
better on classification tasks. Our data shows that even sim-
ple, dictionary-based extractors can generate attributes that
substantially improve classification performance.
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