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Abstract

This paper describes a novel data mining approach that
employs evolutionary programming to discover knowledge
represented in Bayesian networks. There are two different
approaches to the network learning problem. The first one
uses dependency analysis, while the second one searches
good network structures according to a metric. Unfortu-
nately, both approaches have their own drawbacks. Thus,
we propose a novel hybrid algorithm of the two approaches,
which consists of two phases, namely, the Conditional Inde-
pendence (CI) test and the search phases. A new opera-
tor is introduced to further enhance the search efficiency.
We conduct a number of experiments and compare the hy-
brid algorithm with our previous algorithm, MDLEP [18],
which uses EP for network learning. The empirical results
illustrate that the new approach has better performance.
We apply the approach to a data sets of direct marketing
and compare the performance of the evolved Bayesian net-
works obtained by the new algorithm with the models gen-
erated by other methods. In the comparison, the induced
Bayesian networks produced by the new algorithm outper-
form the other models.

1 Introduction

Conventional business research is a process in which
data are analyzed manually to explore the relationships
among various factors defined by the researcher. Even with
powerful computers and versatile statistical software, many
hidden and potentially useful relationships may not be rec-
ognized by the analyst. Nowadays, such problems are more
acute as many businesses are capable of generating and col-
lecting a huge amount of data in a relatively short period.
The explosive growth of data requires a more efficient way

to extract useful knowledge. Thus, business research is a
major area for applying data mining that aims at discovering
novel, interesting, and useful knowledge from databases [4].
Through data mining, researchers can discover complex re-
lationships among various factors and extract meaningful
knowledge to improve the efficiency and quality of manage-
rial decision making. In this paper, we propose a novel data
mining approach that employs Evolutionary Programming
(EP) to discover knowledge represented in Bayesian net-
works and apply the approach to handle the business prob-
lem of finding response models from direct marketing data.

A Bayesian network is a graphical representation that
depicts conditional independence among random variables
in the domain and encodes the joint probability distribu-
tion [13]. With a network at hand, probabilistic inference
can be performed to predict the outcome of some variables
based on the observations of others. Therefore, Bayesian
networks are often used in diagnostic systems [8].

Typically, a Bayesian network is constructed by elicit-
ing knowledge from domain experts. To reduce impreci-
sion due to subjective judgments, researchers start to be in-
terested in constructing a Bayesian network from collected
data or past observations in the domain. In the literature,
there are two main approaches to this network learning
problem [3]. The first one is the dependency analysis ap-
proach [3, 17]. Since a Bayesian network describes con-
ditional independence, we could make use of dependency
test results to construct a Bayesian network that conforms to
our findings. The second one, called the score-and-search
approach [7, 6, 10], uses a metric to evaluate a candidate
network structure. With the metric, a search algorithm is
employed to find a network structure which has the best
score. Thus, the learning problem becomes a search prob-
lem. Unfortunately, the two approaches both have their own
drawbacks. For the former approach, an exponential num-
ber of dependency tests have to be performed. Moreover,



some test results may be inaccurate [17]. For the latter ap-
proach, since the search space is huge, some Bayesian net-
work learning algorithms [7] adopt greedy search heuristics
which may easily make the algorithms get stuck in a local
optimum [6].

In this work, a hybrid approach is developed for the net-
work learning problem. Simply put, dependency analysis
results are used to reduce the search space of the score-
and-search process. With such reduction, the search pro-
cess would take less time for finding the optimal solution.
Together with the introduction of a new operator and some
modifications of our previous work, MDLEP [18], we call
our new approach HEP (hybrid EP). HEP is found to have
the best results in a real-life application of direct marketing
amongst similar state-of-the-art approaches.

This paper is organized as follows. In section 2, we
present the backgrounds of Bayesian networks, the MDL
metric, and MDLEP. In section 3, we describe our algo-
rithm in detail. In sections 4 and 5, we report our experi-
mental findings. We conclude the paper in section 6.

2 Learning BAYESIAN networks from data

2.1 Bayesian networks

A Bayesian network,G, has a directed acyclic graph
(DAG) structure. Each node in the graph corresponds to a
discrete random variable in the domain. An edge,X ← Y ,
on the graph, describes a parent and child relation in which
X is the child andY is the parent. All parents ofX consti-
tute the parent set ofX which is denoted byΠX . In addition
to the graph, each node has a conditional probability tables
(CPT) specifying the probability of each possible state of
the node given each possible combination of states of its
parent. If a node contains no parent, the table gives the
marginal probabilities of the node [13].

Since Bayesian networks are founded on the idea of con-
ditional independence, it is necessary to give a brief descrip-
tion here. LetU be the set of variables in the domain and
let P be the joint probability distribution ofU . Following
Pearl’s notation, a conditional independence (CI) relation
is denoted byI(X, Z, Y ) whereX, Y , andZ are disjoint
subsets of variables inU . Such notation says thatX andY
are conditionally independent given theconditioning set, Z.
Formally, a CI relation is defined with:

P (x, y | z) = P (x | z) whenever P (y, z) > 0 (1)

wherex, y,andz are any value assignments to the set of
variablesX, Y , andZ respectively. A CI relation is charac-
terized by itsorder, which is the number of variables in the
conditioning setZ.

As mentioned before, researchers treat the network
learning problem in two very different ways. The first

approach tries to construct a Bayesian network using de-
pendency information obtained from the data. By assum-
ing that P is faithful to a Bayesian networkG [17], we
could add or remove edges fromG according to the dis-
covered conditional independence relations. Given the sets
of variables,X, Y , andZ, we could check the validity of
I(X, Z, Y ) by performing statistical test, called CI test. The
major problem of this approach is that it is difficult to know
if two nodes are conditionally independent [17]. Further-
more, when a high-order CI relation is tested in a small
data set, the test result may be unreliable [17]. The sec-
ond approach makes use of a metric which evaluates the
quality of a Bayesian network with respect to the given
data. Such metric may be derived from information theory,
Bayesian statistics, or Minimum Description Length princi-
ple (MDL). With the metric, the network learning problem
becomes a search problem. Unfortunately, since the search
space is huge, the search problem is difficult [6].

2.2 The MDL metric

The MDL metric [10] is derived from information theory
and incorporates the Minimum Description Length princi-
ple. With the composition of the description length for net-
work structure and the description length for data, the MDL
metric tries to balance between model accuracy and model
complexity. Hence, the best network needs to be both accu-
rate and simple. Using the metric, a better network would
have a smaller score. Similar to other metrics, the MDL
score for a Bayesian network,G, is decomposable[6] and
could be written as in equation 2. LetU = {N1, . . . , Nn}
be the set of nodes and letΠNi denotes the parent set of
nodeNi. The MDL score of the network is simply the sum-
mation of the MDL score ofΠNi of every nodeNi in the
network.

MDL(G) =
∑

Ni∈U

MDL(Ni, ΠNi) (2)

2.3 MDLEP

Our previous work [18], called MDLEP, belongs to the
score-and-search approach in which we use the MDL metric
together with evolutionary programming (EP) for search-
ing a good network structure. An individual in the search
population is a candidate network structure. MDLEP uses
simple, reversion, move, and knowledge-guided mutations
to generate new individuals. When comparing MDLEP
against another approach using GA [12], it is found that
MDLEP generally outperforms its opponent.



3 Hybrid EP (HEP)

Although MDLEP outperforms its GA opponent, its
efficiency can be enhanced by employing a number of
strategies. First, a hybrid approach is introduced so that
the knowledge from dependency tests is exploited dur-
ing searching. Second, previous search results are reused
through a new merge operator. Third, in contrast to MDLEP
where repairing is needed, the formation of cycle is avoided
altogether when producing new individuals.

Since a hybrid approach is adopted in Bayesian network
learning, this approach is called HEP (hybrid EP). In the
following subsections, the ideas will be discussed in detail.

3.1 A hybrid approach

In dependency analysis approach, CI test is typically
used to check the validity of a conditional independence as-
sertionI(X, Z, Y ) of any given two nodesX, Y and a con-
ditioning setZ. Assume that theχ2 test is employed, the
assertion is modeled as the null hypothesis. Aχ2 test gen-
erates ap-value, ranges between 0 and 1, which shows the
least level of significance for which the given data leads to
the rejection of the null hypothesis. In effect, if thep-value
is less than a predefined cutoff value,α, the hypothesis
I(X,Z, Y ) is rejected. Otherwise, if thep-value is greater
than or equal toα, the hypothesis could not be rejected and
I(X,Z, Y ) is assumed to be valid. Consequently, this im-
plies that the two nodes,X and Y , cannot have a direct
edge between them. In other words, the edgesX ← Y and
X → Y cannot exist in the resultant network.

With such observation, a hybrid framework for learn-
ing Bayesian networks is formulated which consists of two
phases. In the first phase, low-order CI tests are conducted
so that some edges could be removed. Only low-order CI
tests are performed because their results are more reliable
than higher order tests and the time complexity is bounded.
In the second phase, a score-and-search approach is used
together with the knowledge obtained previously. In partic-
ular, the search space is limited by excluding networks that
contain the edgesX ← Y or Y → X for whichI(X,Z, Y )
is assumed to be valid. Since the search space is reduced,
the learning problem becomes easier and less time will be
needed for finding the best network.

This idea could be applied readily in MDLEP. After ob-
taining the test results, all candidate networks having invalid
edges are prevented from being generated.

Although such formulation can work fine, it must be em-
phasized that the choice ofα has a critical impact. If im-
properα is used, in the worst case, either all edges are
pruned away or all edges are retained. Hence, although it
is possible to impose the restrictions from CI tests asglobal
constraints, there is the risk of assuming our choice ofα is

appropriate.
As an alternative, a novel realization of the hybrid frame-

work is developed in which a differentα is used for each
individual in the population. Thus, each individual has, be-
sides the network structure, a cutoff valueα which is also
subjected to be evolved. As the evolutionary search pro-
ceeds, individual having an improper value ofα will even-
tually be eliminated. In general, small value ofα implies
more constraints (less likely to reject an hypothesis) and re-
sults in a more restricted search space. Hence, if the value
of α of an individual is too small which excludes someim-
portant edges, the individual will have a greater chance of
being eliminated. On the other hand, if the value ofα of
an individual is too large, it is less likely to find theright
edge (because there are manywrongalternatives) for its off-
spring. Consequently, the individual will also have a higher
chance of being eliminated.

This idea is implemented in the first phase by storing
the largestp-value returned by the CI tests for every possi-
ble conditioning set,Z (restricted to order-0 and all order-1
tests) in a matrix,Pv. In the second phase, for a given indi-
vidualGi in the population with associated cutoff valueαi,
an edgeX ← Y cannot be added ifPvXY is greater than
αi (i.e. I(X,Z, Y ) is assumed to be valid). The value of
eachαi is randomly initialized in the beginning. In subse-
quent generations, an offspring will inherit the cutoff value
from its parent with a possible increment or decrement by
∆α.

3.2 The merge operator

In addition to the four mutation operators, a new operator
called merge is introduced. Taking a parent networkGa and
another networkGb as input, the merge operator attempts to
produce a better network structure (in terms of MDL score)
by modifyingGa with Gb. If no modification can be done,
Ga is returned.

Let Mx
i denotes the MDL score of the parent setΠx

Ni
of

nodeNi ∈ U in the networkGx. Recalling that the MDL
score is decomposable and a network is an agglomeration
of ΠNi (for i = 1, . . . , n). Thus, given two input networks
Ga andGb, a better network,Gc, could be generated by
selectingΠc

Ni
from Πa

Ni
or Πb

Ni
so that (1) there is no cycle

in Gc and (2) the sum
∑

Ni∈U M c
i is less than

∑
Ni∈U Ma

i .
With such observation, the merge operator is devised and is
the heuristics for finding a subset of nodes,W ⊂ U , with
whichΠa

Nj
are replaced withΠb

Nj
in Ga for everyNj ∈ W .

Meanwhile, the replacement would not create cycles and
has a MDL score smaller than that ofGa. The pseudo-code
for the merge operator is presented in Table 1.

For the two input networksGa andGb, the merge proce-
dure produces a node ordering by sortingδi = Ma

i −M b
i in

descending order. Since positiveδi means thatΠb
Ni

is better



Procedure merge(Ga, Gb)

1. Find δi = Ma
i −Mb

i for every node Ni ∈ U .
2. Produce a node ordering L by sorting δi in descending

order.
3. Set W = φ.
4. While there are still nodes in L left unconsidered,

• Get the next node, Ni, from L which is unconsid-
ered.

• Set W ′ = φ.

• Invoke the procedure findSubset( Ni, W ′)
which returns W ′ on completion.

• Calculate the sum of δj for every node Nj ∈
(W ′ −W ).

• If the sum is greater than zero

– Mark every node Nj ∈ W ′ in L as consid-
ered.

– Replace Πa
Nj

with Πb
Nj

for every node Nj ∈
(W ′ −W ).

– Set W = W ∪W ′.

Table 1. Pseudo-code for the merge operator.

thanΠa
Ni

, the procedure follows the ordering in considering
the replacement ofΠa

Ni
with Πb

Ni
. Beginning with the first

node,Ni, in the ordering, the merge procedure invokes the
procedurefindSubset( Ni) to find a subset of nodesW ′

such that by replacingΠa
Nj

with Πb
Nj

for everyNj ∈ W ′ in
Ga, the resultant graph is still acyclic.

After obtainingW ′, the merge procedure calculates the
sum

∑
Nj∈(W ′−W ) δj . If the sum is greater than zero, it

replacesΠa
Nj

with Πb
Nj

in Ga for everyNj ∈ (W ′ −W ),
removesW ′ from the ordering and then insertsW ′ into W .
The procedure repeatedly examines the next node in the or-
dering until all nodes are considered.

Essentially, the merge operator increases the efficiency
in several ways. Since the score of the composite net-
work can be readily calculated, it is not necessary to in-
voke the procedure for MDL score evaluation which is time-
consuming. Thus, the merge operator offers an economi-
cal way to create new structures. Furthermore, the operator
improves the search efficiency by creating more good indi-
viduals in each generation. In our current implementation,
the operator merges networks at the current population with
dumped networks from the last generation. Thus, it reuses
the search results obtained in previous generations.

3.3 Prevention of cycle formation

Since MDLEP consumes much time in repairing net-
works that contain cycles, HEP prevents cycle formation in
all candidate networks to handle this problem. HEP main-

tains theconnectivity matrixcontaining the count of di-
rected paths between every pair of nodes. IfX → · · · → Y
exists in a network, HEP forbids adding the edgeX ← Y to
the network. The matrix is updated when an edge is added
or removed.

The algorithm of HEP is summarized in Table 2.

4 Comparing HEP with MDLEP

In our experiments, we compare HEP against MDLEP
on a number of data sets generated from the ALARM
Bayesian network, which appears in [18]. The data sets
have respectively 1,000, 2,000, 5,000, and 10,000 cases.
Since both algorithms are stochastic in nature, we have con-
ducted 40 trials for each experiment. The programs are ex-
ecuted on the same Sun Ultra-5 workstation. For HEP, we
set∆α to be 0.02. For both algorithms, the population size
is 50 and the tournament size (q) is 7. We use 5000 gen-
erations as the common termination criterion and the max-
imum size of parent set is set to be 5. We compare the
performance under five different aspects:

• average MDL score obtained, the smaller the better
(AFS),

• average score of the first generation solution (AIS),

• average running time in seconds (AET),

• average generation that the best-so-far is found (ANG),

• average number of edges added, omitted, or reversed
in compared to the original structure (ASD).

Table 3 provides a summary of the performance com-
parison between the two algorithms. The figures are av-
erage values of 40 trials. Numbers in parentheses are the
standard deviations. The structural differences between the
networks obtained by Bayesian Network Power Constructor
(BNPC) [3] and the original networks are also presented.
It can be observed that HEP performs better than BNPC,
because the ASD values of HEP are smaller than those of
BNPC in all data sets.

For all data sets, HEP could always find better or equally
good network structures in terms of both MDL score (AFS)
and structural difference (ASD). The difference is statisti-
cally significant at 0.05 level for all data sets. If we compare
the ANG statistics, it is found that HEP uses much less gen-
erations to obtain the final solution (statistically significant
at 0.05 level using a one-tailed t-test). Given that HEP and
MDLEP essentially use the same formulation in searching,
the experimental results readily suggest that HEP is more
efficient as it uses fewer generations to obtain similar, or
better, solutions. From the AET statistics, HEP uses much



CI Test Phase
1. For every pair of nodes(X, Y ),

• Perform order-0 and all order-1 CI tests.

• Store the highestp-value in the matrixPv.

Evolutionary Programming Search Phase
1. Sett, the generation count, to 0.

2. Initialize the value ofm, the population size.

3. For each individual in the population Pop(t),

• initialize theα value randomly.

• refine the search space by checking theα value against
thePv matrix.

• Inside the reduced search space, create a DAG ran-
domly.

4. Each DAG in the population is evaluated using the MDL
metric.

5. While t is less than the maximum number of generations,

• select m/2 individuals from Pop(t), the rest are
marked “NS” (not selected)

• For each of the selected ones,

– merge with a random pick from the dumped half
in Pop′(t− 1).

– If merge does not produce a new structure, mark
the individual with “NS”

– otherwise, regard the new structure as an off-
spring.

• For each individual marked “NS”,

– produce an offspring by cloning.
– alter theα value of the offspring by a possible

increment or decrement of∆α.
– refine the search space by checking theα value

against thePv matrix.
– change the structure by performing a number of

mutation operations. Note that cycle formation is
prohibited.

• The DAGs in Pop(t) and all new offspring are stored
in the intermediate population Pop′(t). The size of
Pop′(t) is 2*m.

• Conduct a number of pairwise competitions over all
DAGs in Pop′(t). For each DAGGi in the population,
q other individuals are selected. The fitness ofGi is
compared against theq individuals. The score ofGi

is the number of individuals (out ofq) that are worse
thanGi.

• Select them highest score individuals from Pop′(t)
with ties broken randomly. The individuals are stored
in Pop(t + 1).

• increment t by 1

6. Return the individual that has the lowest MDL metric in any
generation of a run as the output of the algorithm.

Table 2. Algorithm of HEP.

Size AFS AIS AET ANG ASD

1000

HEP
17,880.56 24,323.5 204.75 817.6 11.15

(31.9) (1,186.6) (3.9) (1,163.0) (2.3)

MDLEP
17,990.5 30,831.0 1,003.9 4,301.2 19.4
(73.1) (795.6) (70.8) (654.3) (4.2)

BNPC – – – – 20

2000

HEP
33,777.8 44,199.45 225.63 1,410.78 9.05
(62.9) (1,324.9) (10.0) (1,540.2) (1.4)

MDLEP
33,932.6 56,896.6 1,307.8 4,046.6 12.9
(215.8) (1,259.5) (125.1) (634.1) (4.9)

BNPC – – – – 15

5000

HEP
81,004 102,310.02 290.3 448.57 6.05
(0.0) (2,352.0) (11.9) (796.0) (0.5)

MDLEP
81,287.6 134,487.2 1,843.2 3,946.3 10.7
(419.9) (1,836.0) (359.0) (651.2) (4.9)

BNPC – – – – 10

10000

HEP
158,498.5 199,210.75 384.77 970.42 4.53
(298.5) (5,082.8) (27.5) (879.4) (2.8)

MDLEP
158,704.4 256,946.2 2,435.1 3,596.7 8.7
(513.1) (3,843.7) (350.1) (720.0) (5.1)

BNPC – – – – 10

Table 3. Performance comparison between
HEP and MDLEP

less time to finish than MDLEP under the same termination
criterion.

If we compare the AIS statistics, it is clear that HEP
could often have a better starting point than MDLEP. Ap-
parently, this is also the benefit of the hybrid approach as
we take CI test results into consideration rather than to ini-
tialize the population randomly.

5 Application in direct marketing

In this section, we investigate the feasibility of applying
Bayesian networks on a real world data mining problem.
The problem relates with direct marketing in which the ob-
jective is to predict buyers from a list of customers. Ad-
vertising campaign, which includes mailing of catalogs or
brochure, is then targeted on the most promising prospects.
Hence, if the prediction is accurate, it can help to enhance
the response rateof the advertising campaign and increase
the return of investment (ROI). The direct marketing prob-
lem requires ranking the customer list by the likelihood of
purchase [19, 1]. Given that Bayesian networks estimate the
posterior probability of an instance (a customer) belonging
to a particular class (active or inactive respondents), they
are particularly suitable for handling the direct marketing
problem.

5.1 The direct marketing problem

Direct marketing concerns communication with
prospects, so as to elicit response from them. In contrast to
the mass marketing approach, direct marketing is targeted
on a group of individuals that are potential buyers and are



likely to respond. In retrospect, direct marketing emerged
because of the prevalence of mail ordering in the nineteenth
century [14]. As technology advances, marketing is no
longer restricted to mailing but includes a variety of media.
Nevertheless, the most important issue in the business
remains to be the maximization of the profitability, or ROI,
of a marketing campaign.

In a typical scenario, we often have a huge list of cus-
tomers. This list could be records of existing customers
or data bought fromlist brokers. But among the huge list,
there are usually few real buyers which amount to a few per-
cents [2]. Since the budget of a campaign is limited, it is im-
portant to focus the effort on the most promising prospects
so that the response rate could be improved.

Before computers became widely used, direct marketers
often used simple heuristics to enhance the response rate.
One straightforward approach is to use common sense to
make the decision. In particular, we could match prospects
by examining the demographics of the customers in the list.
For example, in the life insurance industry, it is natural to
target the advertising at those who are rich and aging. An-
other common approach to enhance the response rate is to
conduct list testing by evaluating the response of samplings
from the list. If a certain group of customers gives a high re-
sponse rate, the actual campaign may be targeted on the cus-
tomers similar to this group. A more systematic approach,
which was developed in 1920s but is still being used to-
day, is to differentiate potential buyers from non-buyers us-
ing the recency-frequency-monetary model (RFM) [14]. In
essence, the profitability of a customer is estimated by three
factors including the recency of buying, the frequency of
buying, and the amount of money spent. Hence, only in-
dividuals that are profitable will be the targets of the cam-
paign.

With the advancement of computing and database tech-
nology, people seek for computational approaches to assist
in decision making. From the data set that contains de-
mographic details of customers, the objective is to develop
a response modeland use the model to predict promising
prospects. In certain sense, response models are similar to
classifiers in the classification problem. However, unlike
the classifier which makes a dichotomous decision (i.e. ac-
tive or inactive respondents), the response model needs to
score each customer in the data set with the likelihood of
purchase. The customers are then ranked according to the
score. A ranked list is desired because it allows decision
makers to select the portion of customer list to roll out [19].
For instance, out of the 200,000 customers on the list, we
might wish to send out catalogs or brochures to the most
promising 30% of customers so that the advertising cam-
paign is cost-effective (the 30% of the best customers to be
mailed is referred to as thedepth-of-file) [1]. Hence, one
way to evaluate the response model is to look at its perfor-

mance at different depth-of-file.

5.2 Experiment

Because Bayesian networks can estimate the probabil-
ity of an object belonging to certain class(es), they are
suitable to handle the direct marketing problem. By as-
suming the estimated probability to be equal to the likeli-
hood of purchase, a Bayesian network is readily applica-
ble to the direct marketing problem. Thus, it is interest-
ing to evaluate the empirical performance of Bayesian net-
work response models. Specifically, we compare the perfor-
mance of the evolved Bayesian network models obtained by
HEP and MDLEP, the logistic regression models, the naı̈ve
Bayesian classifier (NB) [5, 11], and the tree-augmented
näıve Bayesian network classifier (TAN) [5]. NB simpli-
fies the estimation of the joint probability distribution by
assuming that each attribute is conditionally independent of
others given the class variable. Although the assumption be-
hind the näıve Bayesian classifier seems unrealistic [5], the
classifier often exhibits surprisingly good and robust per-
formance in many real-life problems [11]. TAN contains
augmented edges which form a spanning tree. It is regarded
as the state-of-the-art Bayesian network classifier [9].

For both HEP and MDLEP, the population size is 50, the
maximum number of generations is 5000, and the tourna-
ment size (q) is 7. The maximum size of parent set is 5. For
HEP,∆α is set to 0.02.

5.2.1 Experimental methodology

The response models are evaluated on a real-life direct mar-
keting data set. It contains records of customers of a spe-
cialty catalog company, which mails catalogs to good cus-
tomers on a regular basis. There is a total of 106,284 cus-
tomers in the data set and each entry is described by 361
attributes. The response rate is 5.4%.

Typically in any data mining process, it is necessary to
reduce the dimension of the data set by selecting the at-
tributes that are considered relevant and necessary. Towards
this feature selection process, there are many possible op-
tions. For instance, we could use either awrapperor afilter
selection process [16]. In a wrapper selection process, dif-
ferent combinations are iteratively tried and evaluated by
building an actual model out of the selected attributes. In a
filter selection process, a certain evaluation function, which
is based on information theory or statistics, is defined to
score a particular combination of attributes. Then, the final
combination is obtained in a search process. In this exper-
iment, we use a manual selection procedure. We have se-
lected nine attributes, which are relevant to the prediction,
out of the 361 attributes.

To compare the performance of different response mod-
els, we use decile analysis which estimates the enhance-



ments of the response rates for marketing at different depth-
of-file. Essentially, the ranked list is equally divided into ten
deciles. Customers in the first decile are the top ranked cus-
tomers that are most likely to give response. On the other
hand, customers in the tenth decile are ranked lowest. Then,
a gains tableis constructed to describe the performance of
the response model. In a gains table, we collect various
statistics at each decile, including [15]:

Percentage of Active: It is the percentage of active respon-
dents in the decile.

Lift: It is calculated by dividing the percentage of active re-
spondents by the response rate of the file. Intuitively,
it estimates the enhancement by the response model in
discriminating active respondents over a random ap-
proach for the current decile.

Cumulative Lift: It is calculated by dividing the cumula-
tive percentage of active respondents by the response
rate of the file. Intuitively, this evaluates how good
the response model is for a given depth-of-file over a
random approach. The measure provides an important
estimate of the performance of the model.

5.2.2 Cross-validation results

To make a comparison concerning the robustness of the re-
sponse models, we adopt a cross-validation approach for
performance estimation. Specifically, we employ a 10-fold
cross-validation where the ten folds are partitioned ran-
domly. In Table 4, the experimental results for the Bayesian
networks evolved by HEP (HEP models) are shown. We
tabulate the statistics at each decile averaged over the ten
runs. Numbers after the “±” sign are the standard devia-
tions. Table 4 shows that the HEP models have cumula-
tive lifts of 392.40, 287.30, and 226.70 in the first three
deciles respectively, suggesting that by mailing to the top
three deciles alone, the HEP models generate over twice as
many respondents as a random mailing without a model.

To facilitate direct comparison, the cumulative lifts of
different models are summarized in Table 5. In this table,
the highest cumulative lift in each decile is highlighted in
bold. The superscript+ represents the cumulative life of
the HEP models is significant higher at 0.05 level than that
of the corresponding models. The superscript− represents
the cumulative life of the HEP models is significant lower
at 0.05 level than that of the corresponding models. Ta-
ble 5 indicates that the logistic regression models have cu-
mulative lifts of 342.27, 249.20, and 210.40 in the first three
deciles respectively. The cumulative lifts of the HEP mod-
els are significantly higher than those of the logistic regres-
sion models at 0.05 level (p-values are 0.00002, 0.0, and
0.00002 respectively).

Table 5 shows that the Bayesian networks generated by
MDLEP (MDLEP models) have cumulative lifts of 377.20,
287.40, and 220.40 in the first three deciles respectively.
The cumulative lifts of the HEP models in the first and
the third deciles are significantly higher than those of the
MDLEP models at 0.05 level (p-values are 0.01189 and
0.00377 respectively). The TAN classifiers have cumula-
tive lifts of 385.20, 278.00, and 220.00 in the first three
deciles respectively. The cumulative lifts of the HEP mod-
els in the second and the third deciles are significantly
higher than those of the TAN classifiers at 0.05 level (p-
values are 0.00063 and 0.00008 respectively). The NB clas-
sifiers have cumulative lifts of 378.10, 274.40, and 222.20
in the first three deciles respectively. The cumulative lifts
of the HEP models in the first three deciles are signifi-
cantly higher than those of the NB classifiers at 0.05 level
(p-values are 0.00301, 0.00089, and 0.02793 respectively).
Overall, the HEP models perform significantly better than
the other models in predicting consumer response to direct
mailing promotions.

Decile Percent Actives Lift Cum. Lift

1 21.21%± 1.34% 392.4± 19.36 392.4± 19.36
2 9.88%± 0.87% 182.3± 12.48 287.3± 6.18
3 5.69%± 0.64% 105.1± 12.60 226.7± 6.15
4 4.84%± 0.63% 89.3± 13.37 192.2± 3.94
5 3.47%± 0.78% 63.8± 13.80 166.6± 3.17
6 2.96%± 0.72% 54.1± 12.91 147.7± 1.34
7 2.07%± 0.51% 37.8± 8.69 132.2± 0.92
8 1.58%± 0.27% 28.6± 4.65 119.2± 1.03
9 1.38%± 0.36% 25.0± 7.06 108.8± 0.42
10 0.92%± 0.28% 16.6± 5.13 100.0± 0.00

Table 4. Results of the HEP models.

Decile HEP Logistic regression MDLEP TAN NB

0 392.4 342.7+ 377.2+ 385.2 378.1+

(19.36) (12.82) (20.04) (18.73) (14.18)
1 287.3 249.2+ 287.4 278.0+ 274.4+

(6.18) (7.96) (6.90) (8.89) (8.91)
2 226.7 210.4+ 220.4+ 220.0+ 222.2+

(6.15) (5.10) (2.84) (4.81) (4.37)
3 192.2 186.7+ 200.0− 187.4+ 187.6+

(3.94) (2.58) (4.57) (3.78) (3.53)
4 166.6 163.1+ 160.6+ 164.0+ 162.5+

(3.17) (1.45) (3.37) (2.91) (1.90)
5 147.7 144.9+ 150.1− 145.1+ 145.3+

(1.34) (1.52) (2.47) (2.02) (1.64)
6 132.2 130.7+ 128.7+ 130.9+ 130.5+

(0.92) (1.49) (2.11) (0.88) (1.18)
7 119.2 118.4 118.7 118.4+ 118.9

(1.03) (1.35) (0.95) (0.97) (1.10)
8 108.8 108.2+ 110.9− 108.1+ 108.1+

(0.42) (0.42) (0.32) (0.74) (0.57)
9 100.0 100.0 100.0 100.0 100.0

(0.00) (0.00) (0.00) (0.00) (0.00)

Table 5. Cumulative lifts of different models.

The average execution time and the corresponding stan-
dard deviations for different methods are summarized in



Table 6. Although HEP is slower than logistic regres-
sion, TAN, and NB, it is much faster than MDLEP. More-
over, HEP is able to learn Bayesian networks from a large
database in one minute. Thus, it can be used in real-life data
mining applications.

HEP Logistic regression MDLEP TAN NB

Average (sec.) 54.676 6.355 1999.04 20.101 19.598
Std. 3.838 0.5035 324.695 1.1503 0.9727

Table 6. The execution time for different meth-
ods.

Since an advertising campaign often involves huge in-
vestment, a response model which can categorize more
prospects into the target list is valuable as it will enhance
the response rate. From the experimental results, it seems
that the HEP models are more desirable than the other mod-
els.

6 Conclusion

In this paper, we have described a new algorithm, HEP,
for learning Bayesian networks efficiently. We have applied
HEP to a data set of direct marketing and compared the
Bayesian networks obtained by HEP and the models gen-
erated by other methods. From the experimental results, the
HEP models predict more accurately than the other mod-
els. This study shows that HEP can potentially become a
powerful and efficient data mining tool for direct marketing
problems.

In our current implementation, we change the cutoff
value of an offspring by arbitrarily increasing or decreas-
ing a fixed value of∆α from the parent’s value. However,
it is also possible to use an adaptive mutation strategy such
that the∆α will become smaller as time proceeds. In effect,
the search space is gradually stabilized which may lead to
a further speed up. In future, we will explore this and other
alternatives that are worth investigating.
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