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ABSTRACT 

This paper proposes a prefix-tree structure, called CPS-tree 

(Compact Pattern Stream tree) that efficiently discovers the exact 

set of recent frequent patterns from high-speed data stream. The 

CPS-tree introduces the concept of dynamic tree restructuring 

technique in handling stream data that allows it to achieve highly 

compact frequency-descending tree structure at runtime and 

facilitates an efficient FP-growth-based [1] mining technique.  

Categories and Subject Descriptors: H.2.8 

[Database Management]: Database Applications – data mining. 

General Terms: Algorithms, Performance. 

Keywords: Data mining, frequent patterns, data stream. 

1. INTRODUCTION 
Recently, finding frequent patterns from data streams has become 

one of the important and challenging problems, since capturing 

the stream content memory efficiently with a single-pass and 

efficient mining have been major issues. The FP-growth mining 

technique [1] is one of the efficient algorithms where the achieved 

performance gain is mainly based on the highly compact 

frequency-descending FP-tree structure that ensures the tree to 

maintain as much prefix sharing as possible. However, the two 

database scans and prior threshold knowledge requirements of the 

FP-tree restrict its use in data stream. DSTree [3] uses the FP-

growth mining technique to mine exact set of recent frequent 

patterns from stream data with a single-pass. However, it provides 

poor compactness in tree structure and inefficient mining phase, 

since it uses frequency-independent canonical order tree structure. 

Therefore, in this paper, we propose a novel tree structure, called 

CPS-tree (Compact Pattern Stream tree), that constructs an FP-

tree like compact prefix-tree structure with a single-pass over 

stream data and provide the same mining performance as the FP-

growth technique through the efficient tree restructuring process. 

2. CONSTRUCTION and MINING of the 

CPS-TREE 
To capture the recent stream contents CPS-tree uses the sliding 

window mechanism. To facilitate the window sliding and tree 

updating, each window W is decomposed into a number of equal-

sized non-overlapping batches of transaction, called pane P. Let 

the window slides pane-by-pane. 

The CPS-tree follows the FP-tree construction mechanism to 

insert transactions into tree. At first, the transactions are inserted 

(Insertion phase) according to a predefined item order (e.g., 

lexicographic item order). The item order of CPS-tree is 

maintained by a list, called I, with respective frequency count of 

each item. After inserting a part of transactions, if the item order 

of I deviates from the current frequency-descending item order to 

a degree, CPS-tree is dynamically restructured (Restructuring 

phase) by the current frequency-descending item order Isort. 

During the next Insertion phase transactions are inserted in Isort 

order. The pane-wise information is separately maintained into the 

tree in a list, called pane-counter in the last node, called tail-node 

of each transaction. The step-by-step CPS-tree construction and 

restructuring phases are shown in Figures 1(b) to 1(c) for the 

database of Figure 1(a) with W = 2 panes and P = 2 transactions. 

Consider the tree restructuring is performed after each pane.  

We refresh the CPS-tree at each window slide in order to provide 

a ready-to-mine platform with the exact content of the current 

window. Upon sliding of window the first value in the pane-

counter in each tail-node and same value from the count value of 

each node up to the root in the path are removed, and the other 

remaining values in the list are shifted left by one slot to reflect 

the expiration of oldest pane. The CPS-tree after deleting the 

expired pane and inserting a new pane (i.e., at window 2) is 

shown in Figure 1(f). The DSTree for windows 1 and 2 requires 
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Figure 1. The CPS-tree construction 
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comparatively higher nodes (as in Figures 2). Moreover, the tree 

at window 2 is overburdened with some ‘garbage’ nodes that are 

generated since DSTree does not update the tree at each window. 

In order to restructure the CPS-tree, we use our proposed efficient 

tree restructuring mechanism, called Branch sorting method 

(BSM) [4], and the Path adjusting method proposed in [2]. We 

refer interested readers to [4] and [2] for getting detail about the 

BSM and Path adjusting method respectively. Once the CPS-tree 

is constructed on current window, we use the bottom-up FP-

growth mining technique to generate the exact set of recent 

frequent patterns. The mining operation is highly efficient due to 

the frequency-descending tree structure. 

3. EXPERIMENTAL ANALYSIS  
We compare different performance issues of our CPS-tree with 

those of the DSTree, since it has been reported in [3] that DSTree 

outperforms other related algorithms to find recent frequent 

patterns from data stream. All programs are written in Microsoft 

Visual C++ 6.0 and run with Windows XP on a 2.66 GHz CPU 

and 1 GB memory. Runtime includes tree construction, tree 

restructuring (for CPS-tree only) and mining time. Several real 

and synthetic datasets are used. In the experiments, the size of 

window is indicated by the two parameters W and P. 

The results on memory consumption on different datasets are 

shown in the form of the number of nodes in Figure 3. It is clear 

from the figure that the total number of nodes the CPS-tree 

requires is significantly less compared to that the DSTree does in 

each dataset. The reason is that CPS-tree’s dynamic tree 

Restructuring phase enables it to obtain as much prefix sharing as 

possible that remarkably reduces the number of nodes compared 

to any frequency-independent tree. In addition, the CPS-tree is 

free from the ‘curse’ of ‘garbage’ nodes. Moreover, it further 

reduces the size by maintaining only a few tail-nodes compared to 

ordinary nodes in the tree structure. 

The runtime comparison between the CPS-tree and DSTree over 

datasets of different types has been performed by varying the 

threshold (min_sup, ∂) values and widow parameters. In Table 1 

we report the runtime of both trees for two (one high and one low) 

min_sup values over different datasets. The runtime distribution 

for tree construction, tree restructuring (only for CPS-tree), tree 

update (expired pane deletion time for CPS-tree and ‘garbage’ 

node deletion time for DSTree), mining time (for two min_sup 

values) and total time are shown explicitly. The data in the table 

clearly demonstrate that CPS-tree outperforms DSTree in overall 

execution time by multiple orders of magnitudes on both high and 

low min_sup values over all types of datasets used in the 

experiment, which is due to the remarkable improvement CPS-

tree achieves in mining time on the dynamically-obtained 

frequency-descending tree structure. 

Therefore, from the above experiments we summarize that despite 

additional tree restructuring cost, our CPS-tree consistently 

outperforms state-of-the-art algorithms on both runtime and 

memory consumption in mining exact set of recent frequent 

patterns from data stream. 

4. CONCLUSIONS 
We propose the prefix-tree structure CPS-tree that introduces 

dynamic tree restructuring mechanism in data stream and 

efficiently finds recent frequent patterns from high-speed data 

stream with a single-pass. 
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Table 1. Runtime distribution (Sec.) 

Mining Time Total Time Dataset with Window Parameters 

and min_sups 

Tree 

Structure 

Tree 

Construction 

Tree 

Restructuring 

Tree 

Update  ∂1 ∂2 ∂1 ∂2 

DSTree 25.27 - 3.41 108.43 528.24 137.11 556.92 BMS-POS (P=50K W=3) 

∂1 = 6%, ∂2 = 3% CPS-tree 26.29 4.46 1.80 5.09 56.32 37.64 88.87 

DSTree 16.96 - 1.82 195.93 1141.90 214.71 1160.68 Connect-4 (P=10K, W=2) 

∂1 = 99%, ∂2 = 90% CPS-tree 12.50 10.06 1.46 0.03 132.22 24.04 156.24 

DSTree 301.19 - 9.03 52.00 1619.98 362.22 1930.20 Kosarak (P=50K, W=4)  

∂1 = 8%, ∂2 = 1% CPS-tree 300.46 16.63 4.69 0.06 88.56 321.84 410.34 

DSTree 20.72 - 9.32 0.01 1834.55 30.05 1864.59 T40I10D100K (P=10K, W=4) 

∂1 = 25%, ∂2 = 10% CPS-tree 16.85 6.90 3.34 0.01 630.44 27.10 657.53 

 

Figure 3. Node count of DSTree and CPS-tree 
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