
Efficient Frequent Pattern Mining over Data Streams
Syed Khairuzzaman Tanbeer, Chowdhury Farhan Ahmed, Byeong-Soo Jeong, Young-Koo Lee

Department of Computer Engineering, Kyung Hee University
1 Seochun-dong, Kihung-gu, Youngin-si, Kyunggi-do, 446-701 Republic of Korea

{tanbeer, farhan, jeong, yklee}@khu.ac.kr

ABSTRACT

This paper proposes a prefix-tree structure, called CPS-tree

(Compact Pattern Stream tree) that efficiently discovers the exact

set of recent frequent patterns from high-speed data stream. The

CPS-tree introduces the concept of dynamic tree restructuring

technique in handling stream data that allows it to achieve highly

compact frequency-descending tree structure at runtime and

facilitates an efficient FP-growth-based [1] mining technique.

Categories and Subject Descriptors: H.2.8

[Database Management]: Database Applications – data mining.

General Terms: Algorithms, Performance.

Keywords: Data mining, frequent patterns, data stream.

1. INTRODUCTION
Recently, finding frequent patterns from data streams has become

one of the important and challenging problems, since capturing

the stream content memory efficiently with a single-pass and

efficient mining have been major issues. The FP-growth mining

technique [1] is one of the efficient algorithms where the achieved

performance gain is mainly based on the highly compact

frequency-descending FP-tree structure that ensures the tree to

maintain as much prefix sharing as possible. However, the two

database scans and prior threshold knowledge requirements of the

FP-tree restrict its use in data stream. DSTree [3] uses the FP-

growth mining technique to mine exact set of recent frequent

patterns from stream data with a single-pass. However, it provides

poor compactness in tree structure and inefficient mining phase,

since it uses frequency-independent canonical order tree structure.

Therefore, in this paper, we propose a novel tree structure, called

CPS-tree (Compact Pattern Stream tree), that constructs an FP-

tree like compact prefix-tree structure with a single-pass over

stream data and provide the same mining performance as the FP-

growth technique through the efficient tree restructuring process.

2. CONSTRUCTION and MINING of the

CPS-TREE
To capture the recent stream contents CPS-tree uses the sliding

window mechanism. To facilitate the window sliding and tree

updating, each window W is decomposed into a number of equal-

sized non-overlapping batches of transaction, called pane P. Let

the window slides pane-by-pane.

The CPS-tree follows the FP-tree construction mechanism to

insert transactions into tree. At first, the transactions are inserted

(Insertion phase) according to a predefined item order (e.g.,

lexicographic item order). The item order of CPS-tree is

maintained by a list, called I, with respective frequency count of

each item. After inserting a part of transactions, if the item order

of I deviates from the current frequency-descending item order to

a degree, CPS-tree is dynamically restructured (Restructuring

phase) by the current frequency-descending item order Isort.

During the next Insertion phase transactions are inserted in Isort

order. The pane-wise information is separately maintained into the

tree in a list, called pane-counter in the last node, called tail-node

of each transaction. The step-by-step CPS-tree construction and

restructuring phases are shown in Figures 1(b) to 1(c) for the

database of Figure 1(a) with W = 2 panes and P = 2 transactions.

Consider the tree restructuring is performed after each pane.

We refresh the CPS-tree at each window slide in order to provide

a ready-to-mine platform with the exact content of the current

window. Upon sliding of window the first value in the pane-

counter in each tail-node and same value from the count value of

each node up to the root in the path are removed, and the other

remaining values in the list are shifted left by one slot to reflect

the expiration of oldest pane. The CPS-tree after deleting the

expired pane and inserting a new pane (i.e., at window 2) is

shown in Figure 1(f). The DSTree for windows 1 and 2 requires

Copyright is held by the author/owner(s).

CIKM’08, October 26–30, 2008, Napa Valley, California, USA.

ACM 978-1-59593-991-3/08/10. Figure 2. DSTrees on the stream data of Figure 1(a)

Figure 1. The CPS-tree construction

1447

comparatively higher nodes (as in Figures 2). Moreover, the tree

at window 2 is overburdened with some ‘garbage’ nodes that are

generated since DSTree does not update the tree at each window.

In order to restructure the CPS-tree, we use our proposed efficient

tree restructuring mechanism, called Branch sorting method

(BSM) [4], and the Path adjusting method proposed in [2]. We

refer interested readers to [4] and [2] for getting detail about the

BSM and Path adjusting method respectively. Once the CPS-tree

is constructed on current window, we use the bottom-up FP-

growth mining technique to generate the exact set of recent

frequent patterns. The mining operation is highly efficient due to

the frequency-descending tree structure.

3. EXPERIMENTAL ANALYSIS
We compare different performance issues of our CPS-tree with

those of the DSTree, since it has been reported in [3] that DSTree

outperforms other related algorithms to find recent frequent

patterns from data stream. All programs are written in Microsoft

Visual C++ 6.0 and run with Windows XP on a 2.66 GHz CPU

and 1 GB memory. Runtime includes tree construction, tree

restructuring (for CPS-tree only) and mining time. Several real

and synthetic datasets are used. In the experiments, the size of

window is indicated by the two parameters W and P.

The results on memory consumption on different datasets are

shown in the form of the number of nodes in Figure 3. It is clear

from the figure that the total number of nodes the CPS-tree

requires is significantly less compared to that the DSTree does in

each dataset. The reason is that CPS-tree’s dynamic tree

Restructuring phase enables it to obtain as much prefix sharing as

possible that remarkably reduces the number of nodes compared

to any frequency-independent tree. In addition, the CPS-tree is

free from the ‘curse’ of ‘garbage’ nodes. Moreover, it further

reduces the size by maintaining only a few tail-nodes compared to

ordinary nodes in the tree structure.

The runtime comparison between the CPS-tree and DSTree over

datasets of different types has been performed by varying the

threshold (min_sup, ∂) values and widow parameters. In Table 1

we report the runtime of both trees for two (one high and one low)

min_sup values over different datasets. The runtime distribution

for tree construction, tree restructuring (only for CPS-tree), tree

update (expired pane deletion time for CPS-tree and ‘garbage’

node deletion time for DSTree), mining time (for two min_sup

values) and total time are shown explicitly. The data in the table

clearly demonstrate that CPS-tree outperforms DSTree in overall

execution time by multiple orders of magnitudes on both high and

low min_sup values over all types of datasets used in the

experiment, which is due to the remarkable improvement CPS-

tree achieves in mining time on the dynamically-obtained

frequency-descending tree structure.

Therefore, from the above experiments we summarize that despite

additional tree restructuring cost, our CPS-tree consistently

outperforms state-of-the-art algorithms on both runtime and

memory consumption in mining exact set of recent frequent

patterns from data stream.

4. CONCLUSIONS
We propose the prefix-tree structure CPS-tree that introduces

dynamic tree restructuring mechanism in data stream and

efficiently finds recent frequent patterns from high-speed data

stream with a single-pass.

5. ACKNOWLEDGEMENT
This study was supported by a grant of the Korea Health 21 R&D

Project, Ministry For Health, Welfare and Family Affairs,

Republic of Korea (A020602).

6. REFERENCES
[1] Han, J., Pei, J., and Yin Y. 2000. Mining frequent patterns

without candidate generation. In Proc. of Int. Conf. on

Management of Data. 1-12.

[2] Koh, J.-L., and Shieh, S.-F. 2004. An efficient approach for

maintaining association rules based on adjusting FP-tree

structures. In Lee Y-J, Li J, Whang K-Y, Lee D (eds) Proc.

of DASFAA 2004. Springer-Verlag, Berlin Heidelberg New

York, 417–424.

[3] Leung, C. K.-S., and Khan, Q. I. 2006. DSTree: A tree

structure for the mining of frequent sets from data streams. In

Proc. of the 6th Int. Conf. on Data Mining (ICDM). 928-932.

[4] Tanbeer, S. K., Ahmed, C. F., Jeong, B.-S., and Lee, Y.-K.

2008. CP-tree: a tree structure for single-pass frequent

pattern mining. In Proc. of PAKDD, Lect Notes Artif Int,

1022-1027.

Table 1. Runtime distribution (Sec.)

Mining Time Total Time Dataset with Window Parameters

and min_sups

Tree

Structure

Tree

Construction

Tree

Restructuring

Tree

Update ∂1 ∂2 ∂1 ∂2

DSTree 25.27 - 3.41 108.43 528.24 137.11 556.92 BMS-POS (P=50K W=3)

∂1 = 6%, ∂2 = 3% CPS-tree 26.29 4.46 1.80 5.09 56.32 37.64 88.87

DSTree 16.96 - 1.82 195.93 1141.90 214.71 1160.68 Connect-4 (P=10K, W=2)

∂1 = 99%, ∂2 = 90% CPS-tree 12.50 10.06 1.46 0.03 132.22 24.04 156.24

DSTree 301.19 - 9.03 52.00 1619.98 362.22 1930.20 Kosarak (P=50K, W=4)

∂1 = 8%, ∂2 = 1% CPS-tree 300.46 16.63 4.69 0.06 88.56 321.84 410.34

DSTree 20.72 - 9.32 0.01 1834.55 30.05 1864.59 T40I10D100K (P=10K, W=4)

∂1 = 25%, ∂2 = 10% CPS-tree 16.85 6.90 3.34 0.01 630.44 27.10 657.53

Figure 3. Node count of DSTree and CPS-tree

0
0.5

1
1.5

2
2.5

DSTree CPS-

tree

DSTree CPS-

tree

DSTree CPS-

tree

DSTree CPS-

tree

BMS-POS

(P=50K,W=5)

Kosarak

(P=50K,W=4)

T40I10D100K

(P=10K,W=4)

Connect-4

(P=10K,W=2)

#
 o

f
N

o
d
e
s

(M

ill
io

n
s
)

Regular node
Garbage node
Ordinary node
Tail-node

1448

