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Abstract

High-throughput mass-spectrometry screening has the
potential of superior results in detecting early stage cancer
than traditional biomarkers. Proteomic data poses novel
challenges for data mining, especially concerning the curse
of dimensionality. In this paper, we present a 3-step fea-
ture selection framework combining the advantages of ef-
ficient filter and effective wrapper techniques. We demon-
strate the performance of our framework on two SELDI-
TOF-MS data sets for identifying biomarker candidates in
ovarian and prostate cancer.

1. Introduction

The identification of putative proteomic marker candi-

dates is a big challenge in the biomarker discovery process.

Pathologic states within cancer tissue may be expressed by

abnormal changes in the protein and peptide abundance.

By the availability of modern high throughput techniques

such as SELDI-TOF (surface-enhanced laser desorption

and ionization time-of-flight) MS a large amount of high

dimensional mass spectrometric data is produced from a

single blood sample. Each spectrum is composed of peak

amplitude measurements at approximately 15,200 features

represented by a corresponding m/z value. Proteomic spec-

tra potentially contain more information on the abnormal

protein signaling and networking than traditional single

biomarkers. The widely used cancer antigen 125 (CA125)

for instance can only detect 50%-60% of patients with

stage I ovarian cancer [8].

The curse of dimensionality severely affects the per-

formance of classification algorithms in terms of efficiency

and effectiveness on proteomic spectra. Feature transfor-

mation techniques can be applied before classification,

e.g. as in [13]. To identify previously not discovered

marker candidates, however, the transformed features are

not useful. Feature selection methods, which try to find

the subset of features with the highest discriminatory

power, can be applied. Nevertheless, as aforementioned,

the use of traditional methods is limited due to the high

dimensionality of the data.

In this paper, we propose a novel 3-step feature selec-

tion framework which combines elements of existing

feature selection methods and is accustomed to the special

characteristics of high-throughput MS data. We present

the results on two published SELDI-TOF-MS data sets on

ovarian and prostate cancer. Our method identifies feature

subsets with a classification accuracy between 97% and

100%.

The paper is organized as follows: In Section 2 we

briefly survey related work on feature selection methods and

on the data sets used and we summarize our contributions.

In Section 3 we elaborate in detail our framework for a 3-

step feature selection. In Section 4 we discuss the results

on ovarian and prostate data and Section 5 concludes the

paper.

2. Survey

Feature Selection for Classification. Numerous feature

selection strategies for classification have been proposed,

for a comprehensive survey see e.g. [5]. Filter approaches
use an evaluation criterium to judge the discriminating

power of the features. Rankers, e.g. information gain

[12] and reliefF [7] evaluate each feature independently

regarding its usefulness for classification. Rankers are

very efficient, but interactions and correlations between the

features are neglected. Feature subset evaluation methods,

e.g. [4, 9] therefore judge the usefulness of subsets of

the features. The search space of possible feature subsets

expands to the size of O(2d), which also holds for the

wrapper approach. The wrapper feature selection strategy
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uses a classifier to evaluate attribute subsets. Adapted

to the special characteristics of the classifier, in most

cases wrapper approaches identify feature subsets with a

higher classification accuracy than filter approaches, cf. [5].

Data Sets. Both SELDI-TOF-MS data sets are avail-

able at the website of the US National Cancer Institute:

(http://home.ccr.cancer.gov/ncifdaproteomics/ppatterns.asp).

Each spectrum is composed of d = 15, 154 features.

Ovarian Data Set. The ovarian data set 8-7-02 contains

162 instances of ovarian cancer and 91 instances of

a healthy control group. The data set is an improved

version of the data set published in [10], using a WCX2

protein chip and robotic automation. Trajanowski et al.

[13] recently proposed an approach for ovarian cancer

identification based on dimensionality reduction. They

use a multi-step feature transformation technique based on

wavelet transformation and present the results on this data

set and on a high resolution data set on ovarian cancer.

With 2-fold cross validation, an accuracy of 91.12% is

reported for SVM on the wavelet reduced 8-7-02 data set.

Alexe et al. [2] analyzed this data set using a combinatorics

and optimization-based methodology . With a system of 41

rules they achieved a sensitivity and specificity of 100% on

this data set.

Prostate Data Set. This data set consists of four classes,

representing a healthy control group (c1), patients with be-

nign conditions and elevated PSA value (c2) and two stages

of prostate cancer (c3 and c4). In [11] this data set has been

analyzed with with ProteinQuest, a tool combining genetic

algorithms and cluster analysis. This method achieves to

identify prostate cancer with 94.74% accuracy (accuracy

on the class corresponding to c3 ∪ c4) and 77.73% percent

of the instances were correctly identified to have benign

conditions (accuracy on c1 ∪ c2). However, especially for

class c2, the reported specificity is with 71 % quite low.

Contributions. The main advantages of our method

can be summarized as follows:

• We propose a generic framework for feature selection

using a classifier C, a search strategy S and a ranker

R.

• Our method is efficient and applicable on very high

dimensional proteomic data sets.

• The classification results on the selected features con-

firm and outperform the results reported in literature

on the ovarian and the prostate data set.

3. Feature Selection

An optimal feature subset for biomarker identification

and diagnosis is a subset consisting of as few features as

possible and achieving highest classification accuracy. We

use C, R, S and special properties of proteomic data for an

effective and efficient exploration of the huge search space

of 2d feature subsets to find a close to optimal solution. The

classifier, the evaluation criterium and the search strategy

can be arbitrarily chosen, also depending on time and

memory resources.

In the following we discuss the single steps in detail.

In this Section we focus on the use of linear SVM as

classifier and information gain as ranker, and simulated

annealing, and a novel heuristic called modified binary

search as search strategies. For the classifiers we use the

implementations of the WEKA machine learning package

[1]. Parameterizations are c = 1.0 and γ = 0.01 SVM and

we use 10-fold cross validation to estimate the accuracy.

Some notations which are frequently used: We denote the

resulting data set of step i by resi with the classification

accuracy acci and the dimensionality dimi. We denote

the rank of a feature fi by rank(fi) and its quality by

quality(fi). We further denote by index(fi) the index, i.e.

the position of the m/z value of fi in the original data set.

3.1 Step 1: Removing Irrelevant Features

In the first step, we want to identify and discard the ir-

relevant features using the ranker R and the classifier C.

To get a baseline for the classification accuracy, we first

determine the accuracy on the full feature space using C.

For ovarian data 99.60% is achieved with linear SVM, for

prostate data 90.37%. We then use the evaluation criterium

to remove all irrelevant features. For information gain this

means we remove all features with information gain 0 and

determine the accuracy again. For the ovarian data set

dim1 = 6, 238 attributes remain and the accuracy stays the

same, i.e. acc1 = 99.60. For prostate data, the reduction to

dim1 = 9, 566 attributes improves the classification accu-

racy to acc1 = 93.16%.

3.2 Step 2: Selecting the Best Ranked Features

In this step, we want to further reduce the dimen-

sionality without affecting the accuracy, i. e. our aim

is to identify a feature subset res2 with acc2 >= acc1

and dim2 <= dim1. Since dim1 is still in the order of

magnitude of several thousands of features, we restrict

the search space to the ranked list generated by R in this

step. This means, we reduce the search space to the size

of O(d) for now. Note that the features discarded now

may be re-included in the following step. We use an

arbitrary search strategy S and the classifier C to find a

smaller attribute subset while keeping the accuracy at least

constant. We discuss three different options for S: ranked
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search, simulated annealing and a novel heuristic called

modified binary search.

Ranked Search. Starting with res1, ranked search

removes in each step the feature with the lowest rank and

evaluates the classification accuracy using C. Figure 1

shows the accuracy for SVM on both data sets for the

6,000 top ranked features. For the ovarian data set, 100%

accuracy is achieved using the 38 top ranked attributes. For

the prostate data the global maximum of 94.72% is reached

using the 2,722 top ranked attributes. Ranked search is very

inefficient because only one feature is removed in each step.

Simulated Annealing. Simulated annealing (SA) [6]

has been successfully applied for solving complex global

optimization problems. On the ovarian data set 40 features

with an accuracy of 100% are selected with the parame-

trization T = 40, δ = 3, 000, δ ↓= 75, T ↓= 1 and

Sp = 2, 080. For the prostate data set, we applied T = 40,

δ = 3200, δ ↓= 80, T ↓= 1 and Sp = 3198, resulting in

2,800 features and an accuracy of 94.09 %.

Modified Binary Search. It is not required to find

the global maximum accuracy in the search space of the

ranked features. Restricting the search space to the ranked

features means rating single features only and neglecting

dependencies and interactions between the features. There-

fore, for complex data sets satisfactory results in terms

of accuracy can not be expected from the result of this

step. As a input for the next step it is sufficient to identify

the smallest set of features that establish a classification

accuracy which is close to the optimum.

A first idea would be to apply binary search (BS), which

is very efficient (O(log(d)). For the ovarian data set, this

strategy works well, since there are not many local maxima

of the accuracy, cf. Figure 1. For both data sets BS is much

faster than SA (cf. Table 1 showing the number of selected

attributes and the runtimes on a 2.99 GHz CPU, 0.99 GB
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Figure 1. Search Space for Step 2.

algorithm ModifiedBinarySearch
(dataSet res1, monotonic function f , parameter p, classifier C):
dataSet res2

currentAccuracy: = C.accuracy(currentDim);
while currentDim < dim1 and currentAccuracy < 1.0

nextDim = f(next);
nextAccuracy = C.accuracy(nextDim);
if nextAccuracy = 1.0

res2 = binarySeach(currentDim, nextDim);
return res2;

else
g := nextAccuracy−currentAccuracy

nextDim−currentDim

if g < 0
//check if plateau is reached

check = nextDim + (nextDim - currentDim);
checkAccuracy = C.accuracy(check)
g :=

checkAccuracy−nextAccuracy)
check−nextDim

if g < p
res2 = binarySearch(nextDim, check);
return res2;

Figure 2. Modified Binary Search

RAM). However, BS can get stuck at every arbitrary local

maximum. To avoid this, we guide the search towards fea-

ture sets which are as small as possible.

Starting with an empty attribute subset, the accuracy

shows a steep rise while the very best ranked features are

added, cf. Figure 1. The accuracy then reaches a level

at which it keeps at most constant while adding more and

more features according their ranked order. The goal of our

algorithm is to find the point where the accuracy reaches the

plateau.

Our algorithm divides the search space into intervals

of monotonically increasing size and determines points at

which the accuracy is evaluated. We decided to use inter-

vals of monotonically increasing size because of the steep

increase of the accuracy at the beginning which is flattening

later. We then determine the gradient between the accura-

cies of adjacent points. If the gradient is negative we are still

in the region of fast increasing accuracy. We then check if

we will reach the plateau soon by looking forward one step

of the current interval size. If we then can observe a flat-

tening of the accuracy, we know that we have found the de-

sired point in the interval between the current upper bound

and the upper bound of the look-ahead-interval. We then

perform binary search in this region and report the found

feature subset as result res2. The algorithm also terminates

searching if the maximum accuracy of 100% is reached for

the current point. In this case, the algorithm tries to reduce

the dimensionality by performing binary search in the inter-

val between the current and the last point.

Pseudocode for the algorithm is given in Figure 2. Be-

sides res1, the algorithm takes as input a monotonically

increasing function f to determine the size of the inter-
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Table 1. Comparison of Search Strategies.
DS SA BS MBS

ovarian 40 39 39

100.0% 100.0% 100.0%

6.6 min 2.6 min 0.4 min

prostate 2,800 2,539 1,331

94.09% 94.09% 94.41%

41.1 min 17.5 min 12.3 min

vals. In our experiments, we obtained good results using

f(x) = x3. The parameter p avoids that the algorithm can

not detect the plateau because of random fluctuations in ac-

curacy. It should be set as the maximal estimated contribu-

tion of the local maxima and minima to the overall accuracy.

We set p to 0.1 in all experiments. On both data sets modi-

fied binary search (MBS) is the best choice for S because it

determines the smallest features sets providing the highest

classification accuracy in the most efficient way (cf. Table

1).

3.3 Step 3: Selecting Region Representatives

Typical peaks in SELDI-TOF-MS data consist of contin-

uous ranges of features (cf. Figure 4, 5). The result set res2

contains features which have been highly ranked by R. If a

region, lets say a peak, of the spectrum differentiates well

among the classes, all the features of this region are highly

ranked and are thus all included in res2. However, as they

are highly correlated, most of them are redundant because

they represent the same information. On the other hand,

there may be under-represented regions, which consist of

not so highly ranked features which can contain valuable

different information. In this step, we first remove the

redundant features from res2 and than add features from

res1 for under-represented regions if this leads to a further

improvement in accuracy.

Removing Redundant Features. We use a forward

selection method that exploits the consistency of proteomic

spectra which is also assumed in binning. Spectra are

often binned using a function with a linear increasing bin

width. This means, in the in the area of lower m/z values

fewer features are represented as one bin and in the area of

high m/z values many features can be merged into one bin

[3]. This is due to the fact that many different fragments

of peptides with low molecular weight are causing many

narrow peaks in the region of low m/z values. In the region

of higher m/z values, whole peptides leading to broader

peaks can be identified. We use the following simple linear

increasing function b, which we call binning function to

find a first approximation of a reasonable region size.

algorithm RegionRepresentatives
(dataSet res1, dataSet res2, classifier C): dataSet res3

res3 = emptySet, currentAccuracy = 0.0;
accuracy2 = C.accuracy(res2);
while currentAccuracy < accuracy2

res3.add(representatives(res2);
if currentAccuracy ¡ 1.0

while improvement in accuracy
res3.add(representatives(res1);

return res3;

procedure representatives (dataSet DS):featureSet rep
for all features fi in DS do

rs: = 0.5 · b(fi);
if no feature fj exists in DS with

index(fi) − rs < index(fj) < index(fi) + rs
and quality(fj) > quality(fi)
rep.add(fi);
DS.remove(fi);

return rep;

Figure 3. Selecting Region Representatives

Definition 1 (Binning Function) Let s ∈ N. The binning
function b is defined as
b(fi) = max(1, index(fi)/100 · s)

In our experiments we obtained good results for s = 3.

For each region we now choose the best ranked feature

from res2 as representative and use C to evaluate the

accuracy. For the ovarian data set we obtain 9 features and

an accuracy of 100%, and we are done, since the maximum

accuracy has been achieved. For the prostate data set,

this results in 19 features and an accuracy of 93.48%.

Since the accuracy declined from originally 94.41% on

1,331 attributes, we subsequently add in each step for

each region the attribute which is best ranked among the

remaining attributes and evaluate the accuracy again. For

187 attributes the accuracy of 94.41% is reached again.

Adding Missing Region Representatives. Some of

the regions in our intermediate result set may be under-

represented or not represented at all, since res2 has already

been a drastically reduced attribute set containing only

high ranked features. Therefore, we now also use the

list of ranked features of res1. We determine for each

not represented region the best representatives using the

binning function and add them as long as an improvement

of the accuracy can be obtained.

The pseudocode for the whole algorithm is depicted

in Figure 3. The method representatives() selects for each

region the best representative which has not been selected

before. As a final step (left out in the pseudocode for

simplicity), we test if there are redundant features. More

precisely, we take the list of features sorted w.r.t. their
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Table 2. Linear SVM and Information Gain
DS full space step 1 step 2 step 3

ovarian 15,154 6,238 39 9

99.60% 99.60% 100.0% 100%

prostate 15,154 9,566 1,331 164

90.37% 93.16% 94.41% 97.83%

Table 3. 5-NN and ReliefF
DS full space step 1 step 2 step 3

ovarian 15,154 15,037 66 90

93.28% 93.20% 99.20% 99.40%

prostate 15,154 14,435 35 361

87.27% 87.27% 85.09% 92.50%

index. We then try to leave out for each pair of neighboring

features the feature which has been lower ranked by R and

evaluate the accuracy again.

For the prostate data set,c1 c2 c3 c4

c1 63 0 0 0

c2 0 189 1 0

c3 0 1 22 3

c4 0 1 1 41

we end up with 164 fea-

tures and a final accuracy

of 97.83%. The confu-

sion matrix (left) for lin-

ear SVM and 10-fold cross

validation shows only seven classification errors, whereas

four of them are due to confusing the two different stages of

prostate cancer. Our algorithm is efficient: For the prostate

data set, step 3 takes 5.30 minutes, whereas for the ovarian

data set we are done in 50 seconds.

4 Results

Table 2 summarizes the results using linear SVM as

classifier and the information gain as ranker. All three

single steps of our method reduce the dimensionality, and

at the same time improve the classification accuracy for this

combination of C and R. For comparison, in Table 3 the

results for 5-NN as C and reliefF as R are given. Also for

reliefF and 5-NN our method achieves a sound reduction

of features and improvement in classification accuracy.

However, we obtain better results with SVM and informa-

tion gain on both data sets. A standardized investigation

of the huge amount of possible combinations w.r.t. their

performance on proteomic data is part of our ongoing work.

Figure 4 depicts some selected regions that have been

identified by our feature selection framework on the

ovarian data set. A randomly selected spectrum of the

control group with highlighted reagions is depicted. Below

we show the highlighted regions in more detail comparing

the healthy instance to a randomly selected instance with

ovarian cancer. We can confirm that a majority of the
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Figure 5. Results on Prostate Data.

relevant features can be found in the region of low m/z

values, this has also been stated in [2]. The 9 features found

using SVM and information gain are the m/z values 2.76,

25.49, 222.42, 244.66, 261.58, 417.73, 435.07, 464.36 and

4,002.46. Besides the m/z value 2.78 all these features

have also been selected using reliefF and 5-NN. Among the

90 selected features with reliefF and 5-NN, 70% percent

represent m/z values below 3,000.

For the prostate data set, also in the area of higher m/z

values discriminating regions have been found. Figure

5 shows some selected regions. Out of the 164 selected

features using SVM and information gain, the most evident

changes between healthy and diseased instances can be

observed in the regions representing the m/z values of

approximately 500, 5,000 and 9,000. For clarity reasons,

one randomly selected spectrum of class c1 (healthy,

PSA < 1 ng/mL) is compared to one randomly selected

spectrum of class c4 (prostate cancer, PSA > 10 ng/mL)
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w.r.t. the three highlighted regions in Figure 5. Most of the

features selected by reliefF and 5-NN are also in these three

areas. Besides this, more features in the region of very low

m/z values have been selected using reliefF and 5-NN.

In Figure 6 we inspect the interesting regions from

m/z 4,500 to 5,500 and m/z 9,000 to 9,500 in more detail

w.r.t. all classes by depicting one randomly selected

spectrum of each class. In Figure 6(a) there are two

interesting regions which are highlighted: One is the peak

between approximately m/z 4,550 and 4,850. The amount

of the corresponding peptides is considerably lower for

the instances with prostate cancer (c3 and c4) than for

the instances with benign conditions (c1 and c2). The

other interesting region is a peak of smaller intensity at

approximately m/z of 5,250. Here the amount of the

corresponding peptides is increased for the instances of the

class c4 (prostate cancer, highly elevated PSA value) and

c2 (healthy, elevated PSA value) w.r.t. class c1. The same

region is also displayed in more detail in Figure 5.

In Figure 6(b) it can be seen that the abundance of the

peptides corresponding to the m/z values around 9,200 is

reduced for the instance of prostate cancer with a highly el-

evated PSA value (class c4) w.r.t. the class of the healthy

control group without elevation of the PSA value (class c1).

For both classes representing instances with marginally el-

evated PSA value (classes c2 and c3) the abundance of the

corresponding peptides is increased w.r.t. the instance of

class c1. These interesting findings have to be systemati-

cally verified and analyzed for interpretation.

5 Conclusions

In this paper, we presented a framework for feature selec-

tion on high-throughput mass spectrometry data. We evalu-

ated our method on two SELDI-TOF-MS data sets on can-

cer identification. On both data sets we found groups of

features providing a very high sensitivity and specificity for

cancer identification. This result can be used as an input

for further data mining steps. Currently we focus on mining

association rules on the selected features (after discretizing

the numerical features) and clustering to identify unknown

sub-classes. As cancer is a complex systemic disease with

different stages, different sub-classes can be expected.
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