
XML Query Optimisation: Specify your Selectivity

Sven Hartmann, Sebastian Link
Information Science Research Centre

Massey University, New Zealand
EMail: [s.hartmann,s.link]@massey.ac.nz

Abstract

The problem of efficiently evaluating XPath and XQuery
queries has become increasingly significant since more and
more XML data is stored in its native form.
We propose a novel optimisation technique for XML queries
that is based on the semantic properties exhibited by XML
data. In sharp contrast to previous studies on selectivity es-
timation we propose to specify bounds on the number of ele-
ment nodes in an XML tree that form the root of isomorphic
subtrees. It turns out that efficient reasoning about these
constraints provides effective means to predict the number
of XPath and XQuery query answers, to predict the number
of updates using the XQuery update facility, to predict the
number of en(de)cryptions using XML encryption, and to
optimise XML queries.

Keywords: XML, Query, Optimisation, Selectivity,
Constraints

1 Introduction

The eXtensible Markup Language (XML) has evolved to
the de-facto standard for data exchange on the World Wide
Web. This development has also resulted in a rapid increase
of XML data that has to be stored in its native format. It
is therefore a big challenge for the database community to
design query languages and storage methods in order to re-
trieve data from vast amounts of XML data efficiently. In
this context, many query languages for XML such as Lorel,
Quilt, XQL, XML-QL, XPath and XQuery have been pro-
posed. The two most popular among these query languages
are XPath and its superset, XQuery.
The XQuery language is still a young standard, and many
optimisation techniques remain unexplored. Since more
and more XML documents are stored and exchanged, the
efforts of evaluating XPath and XQuery queries efficiently
increase as well. In the following we will briefly discuss
some previous work on XQuery optimisation in order to
pinpoint the differences to our optimisation strategies.

Related Work. The literature on XML query optimisa-
tion is very vast. An early article on this subject is [10], and
a recent survey that includes many more references is [7].
Schemata force XML documents to conform to a specific
structure, and can therefore be viewed as constraints. A
few papers deal with query optimisation in the presence of
schemata [3, 12]. A general approach towards query rewrit-
ing under constraints is the chase and backchase [4], but the
emphasis of this technique is on data integration. There is
also a large amount of literature on selectivity estimation,
and we only mention [1, 11, 13]. While this line of research
estimates the number of nodes selected by a query, we pro-
pose to utilise XML constraints to infer such bounds. Our
novel class of constraints subsume XML keys [2, 6], and
have therefore a greater potential for query optimisation.
In fact, the exploration of XML keys for XML query op-
timisation is proposed as future work in [2], and has been
started in [5]. Our constraints also generalise cardinality
constraints from Entity-Relationship models [8, 9].

Contributions. We introduce a novel method for query
optimisation that is based on the specification of constraints
and takes therefore advantage of semantic properties ex-
hibited by XML data. Efficient reasoning about these
constraints can help to determine the selectivity of XML
queries effectively. This is in sharp contrast to research on
selectivity estimation since our optimisation techniques re-
sult always in a better performance, if they are applicable.

Organisation. We summarise the underlying XML tree
model, the notion of value equality and relevant path lan-
guages in Section 2. Then we introduce numerical con-
straints in Section 3 and illustrate their relevance by nu-
merous examples. We will describe how efficient reason-
ing about numerical constraints results in effective means
to determine bounds on the number of query answers, up-
dates and XML en(de)cryptions in Section 4. Moreover, we
will illustrate in Section 5 how XPath and XQuery queries
can be optimised in the presence of numerical constraints.
Finally, we use Section 6 to list several results on the in-
tractability and tractability of various subclasses of numeri-
cal constraints. We conclude in Section 7.

18th International Workshop on Database and Expert Systems Applications

1529-4188/07 $25.00 © 2007 IEEE
DOI 10.1109/DEXA.2007.19

30

2 The XML tree model

XML documents can be modelled as node-labelled trees.
We assume that there is a countably infinite set E denoting
element tags, a countably infinite set A denoting attribute
names, and a singleton ��� denoting text (PCDATA). We
further assume that these sets are pairwise disjoint, and put
� � E � A � ���. We refer to the elements of � as labels.
An XML data tree is a 6-tuple � � ��� ���� ���� ���� 	���
�
where � denotes a set of nodes, and lab is a mapping � �
� assigning a label to every node in � . A node 	 � �

is called an element node if ����	� � E, an attribute node
if ����	� � A, and a text node if ����	� � �. Moreover,
ele and att are partial mappings defining the edge relation
of � : for any node 	 � � , if 	 is an element node, then
����	� is a list of element and text nodes in � and ����	�
is a set of attribute nodes in � . If 	 is an attribute or text
node then ����	� and ����	� are undefined. val is a partial
mapping assigning a string to each attribute and text node:
for each node 	 � � , 	���	� is a string if 	 is an attribute
or text node, while 	���	� is undefined otherwise. Finally,

 is the unique and distinguished root node. For example,
Figure 1 illustrates an XML data tree in which data about a
company’s projects is stored.
An important notion is value equality for pairs of nodes in
an XML tree. Informally, two nodes � and 	 of an XML
tree � are value equal if they have the same label and, in
addition, either they have the same string value if they are
text or attribute nodes, or their children are pairwise value
equal if they are element nodes. For instance, in Figure 1
nodes 	�� and 	�� are value equal while nodes 	� and 	��
are not value equal.
In order to define our constraints we need a path language
that is expressive enough to be practical, yet sufficiently
simple to be reasoned about efficiently. This is the case for
the path languages �
� and �
 [2].

Path Language Syntax
�
� � ��� � � ���
�
 � ��� � � � � ��� � �

Table 1. The path languages �
� and �
.

A path expression is a (possibly empty) finite list of sym-
bols. In this paper, a simple path expression is a path ex-
pression that consists of labels from �. We use the lan-
guages �
� and �
 to describe path expressions. Both
languages are fragments of regular expressions. �
� ex-
pressions and �
 expressions are defined by the grammars
in Table 1. Herein, � denotes the empty path expression,
“.” denotes the concatenation of two path expressions, and
� denotes any element of �. The language �
 is a general-

isation of �
� that allows the distinguished symbol “ �” to
occur. We call � the don’t care symbol. It serves as a com-
bination of the wildcard “ ” and the Kleene star “�”. Note
that every �
� expression is a �
 expression, too.
When replacing all � in a �
 expression� by simple path
expressions, we obtain a simple path expression� and write
� � �. Thus, a �
 expression � gives rise to a regular
language of simple path expressions � � �. We use path
expressions to describe sets of paths in an XML tree � . Re-
call that each attribute or text node is a leaf in � . Therefore,
a path expression is said to be valid if it does not contain a
label � � A or � � � in a position other than the last one. In
the sequel, we use a valid �
 expression to represent only
valid simple path expressions.
A path � is a sequence of pairwise distinct nodes 	�� � � � � 	�
where �	���� 	�� is an edge for � � �� � � � ��. We call � a
path from 	� to 	�, and say that 	� is reachable from 	�
following the path �. The path � gives rise to a valid simple
path expression ����	��� � � � �����	��, which we denote by
������. Let � be a simple path expression, and � a �

expression. A path � is called a � -path if ������ � � , and
a �-path if ������ � �. If � is a path from 	 to �, then
� is said to be reachable from 	 following a � -path or �-
path, respectively. For instance, in Figure 1 the node 	�� is
reachable from the node 	�� by following a ��mng-path.
For a node 	 of an XML tree � , let 	����� denote the set of
nodes in � that are reachable from 	 by following the �

expression�. We shall use ����� as an abbreviation for
�����
where
 is the root of � .
For nodes 	 and 	� of � , the value intersection of 	�����
and 	������ is given by 	����� �� 	������ � ������� �
� � 	������ �� � 	������� � �� ��� [2]. That
is, 	����� �� 	������ consists of all those node pairs in
� that are value equal and are reachable from 	 and
	�, respectively, by following �-paths. For example,
in Figure 1 we have 	���

��mem�� � �	�� 	��� 	���,
	����

��mem�� � �	��� 	��� 	��� and 	���
��mem�� ��

	����
��mem�� � ��	�� 	���� �	��� 	���� �	��� 	����.

3 Numerical constraints

XML data typically conforms to various kinds of con-
straints which can be specified by the data administrator
in order to avoid inconsistencies in and processing diffi-
culties with the database. If the data is known to satisfy
the constraints that have been specified, then the knowledge
about the constraints can be explored in various ways, for
instance to optimise queries. For instance, the data shown
in Figure 1 conforms to the following business rule: In ev-
ery month, every employee can manage at most 2 differ-
ent projects. However, the data violates the business rule
that in every month every manager must manage exactly 2
different projects (e.g. Taz only manages the project with

31

E month

A

E month

E

S

A

E

S

E

S

A

E project

E

S

mem
E

S

mem
E

S

E project

E

S

E

E

year

company

A

A

E month

0v

1v

2v

3
v

4v

5v

6v

7v

8v

9v

10v

11v

12v

13v

14v

15v

16v

17v

18v

19v

20v

21v

22v

23v

24v

25v

26v

27v

28v

29v

30v

31v

32v

33v

34v

35v

36v

37v

38v

39v

40v

41v

42v

43v

44v

45v

46v

47v

48v

49v

50v

51v

52v

53v

54v

55v

56v

57v

58v

E

AA

E project

E

S

mem
E

S

mem
E

S

A

E project

E

S

mem
E

S

mem
E

S

A

E project

E

S

A

E project

E

S

E

S

E

S

A
A

E month

"07003"

@name

"07014"
mng

@no

mem
mng

@no

mng
mem

@calendar

"2007"

@name

Pepe Wiley Taz

"07001"

project @no

"07001"

@no

mng

"07003"

SylvesterPepe Pepe Wiley Sylvester Bugs Daffy

"07001"

@no

mng

"07003"

@no

mem

@no

mem
mng mng

TazPepe Taz Wiley Sylvester Pepe Taz

@name
@name

"June""May""April"
"March"

Figure 1. An XML data tree fragment

project number 07001 in the month of June). We will now
formalise these constaints.
Let � denote the positive integers, let �� denote the pos-
itive integers together with 	 and let �� denote the car-
dinality of a finite set �, i.e., the number of its ele-
ments. A numerical constraint � for XML is an expres-
sion card��� ���� ���� � � � � ����� � ��	
����� where
����� ��� � � � � �� are PL expressions such that ���� is a
valid path expression if � �
, and ������� are valid path
expressions for all � � �� � � � � � if � �
, where � is a
non-negative integer, and where �	
 � � and ��� � ��
with �	

 ���. Herein, � is called the context path, ��

is called the target path, ��� � � � � �� are called key paths,
�	
 is called the lower bound, and ��� the upper bound
of �. If � � �, we call � absolute; otherwise � is called
relative. We use � to denote the class of all numerical con-
straints. An XML tree � satisfies �, denoted by � �� �,
if and only if for all � � �����, for all �� � ������� such that
for all ��� � � � � �� with �� � �������� for � � �� � � � � �, the
following holds:

�	

 ����� � ������� � ���� � � � � �� such that
�� � ��������� and �� �� �� for � � �� � � � � ��
 ��� �

Notice that our constraints subsume the class of XML keys
[2]. In fact, the key ��� ���� ���� � � � � ����� is satisfied
by an XML tree � precisely if � satisfies the numerical
constraint card��� ���� ���� � � � � ����� � ��� ��. In the
following we will briefly illustrate numerical constraints by
various examples.
The first constraint says that year-nodes can be iden-
tified in the entire XML tree by the values on their
calendar-child: card��� �year� �calendar��� � ��� ��.
The constraint card�year� �month�
�� � ��� ��� tells
us that years for which projects are stored may store
projects for every month of the year. In fact, in ev-
ery subtree rooted at some year-node every month-node
can be identified by the value on their name-child:

card�year� �month� �name��� � ��� ��. Moreover, in every
month every project can be identified by its project num-
ber no, i.e., card� ��month� �project� �no��� � ��� ��. In
addition the company implements the following business
rules for project managers and members. Every project
has precisely one manager: card� ��project� �mng�
�� �
��� ��, and every project has between 2 and 5 addi-
tional members (note that this constraint is violated by the
data fragment in Figure 1): card� ��project� �mem�
�� �
��� ��. Projects have a duration of up to 6 months:
card��� � ��month� �project.no��� � ��� ��. In every month
every employee can manage at most 2 different projects,
i.e., card� ��month� �project� �mng��� � ��� ��, and ev-
ery employee can participate in up to 3 different projects:
card� ��month� �project� �mem�� � ��� ��.

Having specified some constraints an XML data tree is con-
sidered legal if it satisfies all of these constraints. However,
constraints are not always satisfied independently from each
other. In fact, there are some constraints which are implied
by others. In order to fully explore the properties of XML
data that conform to a set of constraints we must have effi-
cient means to decide the implication of these constraints.
Let ����� be a finite set of constraints in� . We say that �
(finitely) implies �, denoted by � ����	 �, if and only if ev-
ery (finite) XML tree � that satisfies � also satisfies �. The
(finite) implication problem for � is to decide, given any
finite set of constraints � � ��� in � , whether � ����	 �.

For example, the constraints that we have specified pre-
viously imply the following constraint: in every year
each employee can manage up to 24 different projects.
However, if the senior management of the company feels
that 24 projects are too many to manage for a single
employee, an additional constraint can be specified say
card�year� � ��project� �mng��� � ��� �
�.

32

4 Infering the number of Query Answers,
Updates and Encryptions

We will demonstrate in this section how reasoning about nu-
merical constraints enables the database management sys-
tems to infer lower and upper bounds on the number of
query answers without actually querying the database itself.
Such a tool does not only save potentially huge computa-
tion costs and resources but also allows the system to in-
form users about the costs that they will be charged for this
service in case they decide to use it. In sharp contrast to
previous work on estimating the number of query answers
our technique is not based on any heuristics but provides
bounds which will definitely hold. Consider for instance
the following XQuery query

for $p in
doc(“projects.xml”)/year[@calendar=”2007”]//project

where $p/mng=”Pepe”
return �project��$p/no��/project�

which returns the numbers of all those projects in 2007
which were managed by Pepe. In case the constraint
� � card�year� � ��project� �mng��� � ��� �
� has in-
deed been specified in addition to the other constraints
above, it is easy to see that there can be at most ten no-
nodes returned by this query. If � has not been specified,
then the system will be able to infer that the constraint
card�year� � ��project� �mng��� � ��� ��� is implied by the
other constraints above. Consequently, the upper bound on
the number of no-nodes returned by this query is 24.
In the same way one is able to make predictions for the
number of updates, using for instance the XQuery update
facility. For example, the XQuery query

for $m in doc(“projects.xml”)/year[@calendar=”2007”]/
month[@name=”May” or @name=”June”]//
mem[text()=”Sylvester”]

return do replace value of $m/text() with “Tweety”

will update the text content Sylvester of mem-nodes by
Tweety in all project memberships of this member in May
and June of 2007. Under the very reasonable assumption
that the same employee is not stored more than once within
each project-subtree the maximal number of updates this
query causes is 6.
When XML data is exchanged over the Web it is very com-
mon that sensitive information is encrypted, e.g. by XML
encryption. In order to evaluate queries on encrypted XML
data it may become necessary to decrypt certain data ele-
ment nodes in order to return the relevant information in
the answer. If we recall the example of the XQuery query
above and assume that project number attributes have been
encrypted, then a database management system capable of
inferring that card�year� � ��project� �mng��� � ��� ��� is

implied by the constraints specified can also predict that the
number of necessary decryptions to answer this query is at
most 24, and thus also predict the time necessary to deliver
the information requested.

5 Query Optimisation

A considerable amount of research has been directed to-
wards making XML query processing efficient. This in-
cludes many different query optimisation strategies, in par-
ticular on selectivity estimation.
In this section we propose to optimise XML queries util-
ising the semantic properties exhibited by the underlying
XML data. More precisely, we take advantage of the nu-
merical constraints specified by the data administrator to
rewrite or simplify queries.
In order to demonstrate the potential of this technique we
look at a few examples. The following query selects num-
bers of those projects from 2007 that feature the employee
Taz as a member and are managed by the employee Pepe.

for $p in
doc(“projects.xml”)/year[@calendar=”2007”]//project

where $p/mem/text()=”Taz” and $p/mng/text()=”Pepe”
return �project��$p/no��/project�

While the and operator is commutative with respect to the
query result the order of its inputs does have an impact on
the query processing time. Due to the numerical constraints
specified we can conclude that the selectivity of project-
nodes based on the mng-subnodes is smaller than the selec-
tivity based on the mem-subnodes. If queries are evaluated
from left to right, then the query above should be rewritten
into the following query

for $p in
doc(“projects.xml”)/year[@calendar=”2007”]//project

where $p/mng/text()=”Pepe” and $p/mem/text()=”Taz”
return �project��$p/no��/project�

which performs better due to the smaller selectivity of
project-nodes based on mng- rather than mem-subnodes.
The following XQuery query retrieves no-children of those
projects which only feature members that participated in at
most five different projects in April 2007.

for $p in
doc(“projects.xml”)/year[@calendar=”2007”]//project

where every $m in $p/mem satisfies
count(doc(“projects.xml”)/year[@calendar=”2007”]//

month[@name=”April”]/project[mem=$m])
 5
return �project��$p/no��/project�

Having specified the constraint that in every month every
employee can participate in at most three different projects
the complex condition is satisfied by the underlying XML

33

tree whenever it already satisfies this constraint. There-
fore, the query simply needs to retrieve the numbers of all
projects from April 2007.

for $p in
doc(“projects.xml”)/year[@calendar=”2007”]//project

return �project��$p/no��/project�

There is the opportunity of a hybrid approach to query op-
timisation: one may utilize numerical constraints, but once
their applicability has been exhausted we can use the de-
rived information to make more accurate estimates.

6 Intractability and Tractability Results

Deciding implication for numerical constraints is not that
easy, in general. In fact, reasoning is likely to be com-
putationally intractable already for very restricted classes
of numerical constraints. We call a numerical con-
straint card��� � �� ���� � � � � ���� � ��	
����� simple if
�� � �� ��� � � � � �� are all simple path expressions in PL�.

Theorem 1 The finite implication problem for the class of
all simple absolute numerical constraints with a non-empty
set of key paths is �� � -hard.

The previous result suggests that computational intractabil-
ity may result from the specification of both lower and upper
bounds. The next result indicates that an empty set of key
paths may cause computational intractability.

Theorem 2 The finite implication problem for the class of
all simple absolute numerical constraints where the lower
bound is fixed to 1 is �� � -hard.

The next theorem suggests another source of computational
intractability: the permission to have arbitrary path expres-
sions in both target- and key paths.

Theorem 3 The finite implication problem for the class of
all absolute numerical constraints that have a non-empty
set of key paths and where the lower bound is fixed to 1 is
�� � -hard.

The previous results motivate the study of a large subclass
of numerical constraints that turns out to be computation-
ally tractable. A numerical key for XML is a numerical
constraint card��� ���� ���� � � � � ����� � ������� where
� is a positive integer and ��� � � � � �� are simple path ex-
pressions in PL�.

Theorem 4 The implication and finite implication prob-
lems for numerical keys coincide.

Our final result shows that numerical keys form a large
tractable subclass of numerical constraints.

Theorem 5 The implication problem for the class of all nu-
merical keys is finitely axiomatisable, and can be decided in
time quadratic in the size of the constraints given.

Efficient query optimisation is thus not limited to those nu-
merical keys explicitely specified by the data administrator
but subsumes also all those numerical keys that are implied.
This makes query optimisation much more effective.

7 Future Work

We conclude the article by listing some open problem that
warrant future research. First, we would like to devise a
tool that automatically optimises XML queries under the
presence of numerical constraints. The results of Section 6
direct our main focus on numerical keys. Furthermore, we
want to study the consistency problem of numerical con-
straints, i.e., devise algorithms that decide whether an XML
tree is consistent with respect to a set of numerical con-
straints, and investigate their computational behaviour.

References

[1] A. Aboulnaga, A. Alameldeen, and J. Naughton. Estimating
the selectivity of XML path expressions for internet scale
applications. In VLDB, pages 591–600, 2001.

[2] P. Buneman, S. Davidson, W. Fan, C. Hara, and W. Tan.
Keys for XML. Computer Networks, 39(5):473–487, 2002.

[3] D. Che, K. Aberer, and M. Tamer Özsu. Query optimiza-
tion in XML structured-document databases. VLDB Jour-
nal, 15(3):263–289, 2006.

[4] A. Deutsch, L. Popa, and V. Tannen. Query reformulation
with constraints. SIGMOD Record, 35(1):65–73, 2006.

[5] M. Essid, O. Boucelma, and S. Bressan. Answering queries
in the presence of XML keys. In DEXA Workshops, pages
476–481, 2006.

[6] S. Hartmann and S. Link. Unlocking keys for XML trees.
In ICDT, number 4353 in LNCS, pages 104–118. Springer,
2007.

[7] S. Haw and G. Radha Kishna Rao. Query optimization tech-
niques for XML databases. International Journal of Infor-
mation Technology, 2(2):97–104, 2005.

[8] M. Lenzerini and P. Nobili. On the satisfiability of depen-
dency constraints in entity-relationship schemata. Inf. Syst.,
15(4):453–461, 1990.

[9] S. Liddle, D. Embley, and S. Woodfield. Cardinality con-
straints in semantic data models. Data & Knowledge Engi-
neering, 11:235–270, 1993.

[10] J. McHugh and J. Widom. Query optimization for XML. In
VLDB, pages 315–326, 1999.

[11] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Selectivity
estimation for XML twigs. In ICDE, pages 264–275, 2004.

[12] H. Su, E. Rundensteiner, and M. Mani. Semantic query op-
timization for XQuery over XML streams. In VLDB, pages
277–288, 2005.

[13] Y. Wu, J. Patel, and H. Jagadish. Estimating answer sizes
for XML queries. In EDBT, pages 590–608, 2002.

34

