A Niched Pareto Genetic Algorithm for Multiobjective
Optimization

Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg

PREPRINT

(camera-ready)

As accepted for publication in the Proceedings of the
First IEEE Conference on Fvolutionary Computation,
IEEE World Congress on Computational Intelligence, Volume 1, 199}
(ICEC °94)
Piscataway, NJ: IEEE Service Center, pp. 82-87

0-7803-1899-4/94 $4.00©1994 TEEE

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

A Niched Pareto Genetic Algorithm for
Multiobjective Optimization

Jeffrey Horn, Nicholas Nafpliotis, and David E. Goldberg

Abstract— Many, if not most, optimiza-
tion problems have multiple objectives. His-
torically, multiple objectives have been com-
bined ad hoc to form a scalar objective func-
tion, usually through a linear combination
(weighted sum) of the multiple attributes, or
by turning objectives into constraints. The
genetic algorithm (GA), however, is readily
modified to deal with multiple objectives by
incorporating the concept of Pareto domina-
tion in its selection operator, and applying
a niching pressure to spread its population
out along the Pareto optimal tradeoff sur-
face. We introduce the Niched Pareto GA as
an algorithm for finding the Pareto optimal
set. We demonstrate its ability to find and
maintain a diverse “Pareto optimal popula-
tion” on two artificial problems and an open
problem in hydrosystems.

I. INTRODUCTION

Genetic algorithms (GAs) have been applied almost
exclusively to single-attribute! problems. But a care-
ful look at many real-world GA applications reveals
that the objective functions are really multiattribute.
Typically, the GA user finds some ad-hoc function
of the multiple attributes to yield a scalar fitness
function. Often-seen tools for combining multiple
attributes are constraints, with associated thresh-
olds and penalty functions, and weights for linear
combinations of attribute values. But penalties and
weights have proven to be problematic. The fi-
nal GA solution is usually very sensitive to small
changes in the penalty function coefficients and
weighting factors [9].

The authors are with the Illinois Genetic Algorithms Labo-
ratory, University of Illinois at Urbana-Champaign, 117 Trans-
portation Building, 104 South Mathews Ave., Urbana, IL
61801. Internet: jeffhorn@uiuc.edu, nick-n@uiuc.edu, gold-
berg@vmd.cso.uiuc.edu. Phone: 217/333-2346, Fax: 217/244-
5705. The first author acknowledges support from NASA under
contract number NGT-50873, while the remaining authors ac-

knowledge support provided by the U.S. Army under Contract
DASG60-90-C-0153.

1We use the terms “attribute”, “objective”, and “criteria”
interchangeably to describe a scalar value to be maximized or
minimized. “Decision variable” refers to the parameters of the
problem encoded in the genome of the genetic algorithm.

A few studies have tried a different approach to
multicriteria optimization with GAs: using the GA
to find all possible tradeoffs among the multiple,
conflicting objectives. Such solutions are non-
dominated, in that there are no other solutions su-
perior in all attributes. In attribute space, the set of
non-dominated solutions lie on a surface known as
the Pareto optimal frontier’. The goal of a Pareto
G A is to find a representative sampling of solutions
all along the Pareto front.

II. PrREvVIOUS WORK

We assume the reader is familiar with the simple
GA [3]. Here we review previous approaches to mul-
tiobjective optimization with GAs.

In his 1984 dissertation [10], and later in [11],
Schaffer proposed his Vector Evaluated GA (VEGA)
for finding multiple solutions to multiobjective (vec-
tor valued) problems. He created VEGA to find
and maintain multiple classification rules in a set
covering problem. VEGA tried to achieve this goal
by selecting a fraction of the next generation us-
ing one of each of the attributes (e.g., cost, reli-
ability). Although Schaffer reported some success,
VEGA seems capable of finding only extreme points
on the Pareto front, where one attribute is maximal,
since 1t never selects according to tradeoffs among
attributes.

In his review of GA history, including Schaffer’s
VEGA, Goldberg [3] suggested the use of non-
domination ranking and selection to move a pop-
ulation toward the Pareto front in a multiobjective
problem. He also suggested using some kind of nich-
ing to keep the GA from converging to a single point
on the front. A niching mechanism, such as shar-
ing [5], would allow the GA to maintain individuals
all along the non-dominated frontier.

Fonseca and Fleming [2], and, independently, Horn
and Nafpliotis [7], implemented Goldberg’s two sug-
gestions, and successfully applied the resulting al-
gorithms to difficult, open problems. Fonseca and

2We assume familiarity with the concept of Pareto optimality,
but note here that the Pareto front often goes by the names
Pareto optimal set, non-dominated frontier, efficient points, and
admissible points.

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

Fleming found many good tradeoffs in a four at-
tribute gas turbine design problem. Horn and Naf-
pliotis concentrated on a series of two attribute prob-
lems, which we describe later in this paper.

III. THE NIcHED PARETO GA

The specifics of the Niched Pareto GA are local-
ized to implementation of selection for the genetic
algorithm. One of the most widely implemented
selection techniques for GAs is tournament selec-
tion. In tournament selection a set of individuals is
randomly chosen from the current population and
the best of this subset i1s placed in the next pop-
ulation. By adjusting the size of the tournament
we can exert some control over the amount of se-
lection pressure and hence convergence speed. Thus
the smallest tournament size of two (binary tourna-
ment) exhibits slower convergence than any larger
tournament size.

Tournament selection assumes that we want a sin-
gle answer to the problem. After a certain num-
ber of generations the population will converge to
a uniform one. To avoid convergence and maintain
multiple Pareto optimal solutions, we have altered
tournament selection in two ways. First we added
Pareto domination tournaments. Second, when we
have a non-dominant tournament (i.e., a tie), shar-
ing is implemented to determine the winner.

A. Pareto domination tournaments

The binary relation of domination leads naturally
to a binary tournament in which two randomly se-
lected individuals are compared. If one dominates
the other, it wins. Initially, we used such a small
local domanation criterion, but we soon found that
it produced insufficient domination pressure. There
were too many dominated individuals in later gener-
ations. It seemed that a sample size of two was too
small to estimate an individual’s true “domination
ranking” 3.

Because we wanted more domination pressure, and
more control of that pressure, we implemented a
sampling scheme as follows. Two candidates for se-
lection are picked at random from the population.
A comparison set of individuals is also picked ran-
domly from the population. Each of the candidates
are then compared against each individual in the
comparison set. If one candidate 1s dominated by
the comparison set, and the other 1s not, the latter
is selected for reproduction. If neither or both are
dominated by the comparison set, then we must use

3Note that any partial order determines a unique ranking, in
which mazimal individuals are ranked first, then removed. The
remaining individuals are reordered, and the maximal individuals
of this set are ranked second, and removed, etc. This is the
domination ranking scheme suggested by Goldberg [3].

sharing to choose a winner, as we explain later. The
sample size tg,m (size of comparison set) gives us
control over selection pressure, or what we call dom-
wmation pressure. The performance of the Niched
Pareto GA 1s somewhat sensitive to the amount of
domination versus sharing pressure applied [7].

A problem will arise if both candidates are on
the current non-dominated front since neither will
be dominated. Even off the front, a small ¢z,
could mean that neither appears dominated. And
of course both could be dominated. How is a winner
then chosen in such a “tie”? If we choose the winner
at random, genetic drift will cause the population to
converge to a single region of the Pareto front. To
prevent this we implement a form of sharing when
there 1s no preference between two individuals.

B. Sharing on the non-dominated frontier

Fitness sharing was introduced by Goldberg and
Richardson [5], analyzed in detail by Deb [1], and
applied successfully to a number of difficult and real
world problems. The goal of fitness sharing is to
distribute the population over a number of different
peaks in the search space, with each peak receiv-
ing a fraction of the population in proportion to the
height of that peak*.

To achieve this distribution, sharing calls for the
degradation of an individual’s objective fitness f; by
a niche count m; calculated for that individual. This
degradation is obtained by simply dividing the ob-
jective fitness by the niche count to find the shared
fitness: f;/m;. The niche count m; is an estimate
of how crowded is the neighborhood (niche) of indi-
vidual . It is calculated over all individuals in the
current population: m; = ZjEPop Sh[d[i, j]], where
d[i, j] is the distance between individuals i and j and
Sh[d] is the sharing function. Sh[d] is a decreasing
function of d[é, j], such that Sh[0] = 1 and Sh[d >
Oshare] = 0. Typically, the triangular sharing func-
tion is used, where Sh[d] = 1 — d/ospare for d <
Oshare and Sh[d] = 0 for d > ospare. Here ospqre is
the niche radius, fixed by the user at some estimate
of the minimal separation desired or expected be-
tween the goal solutions. Individuals within ospgpe
distance of each other degrade each other’s fitness,
since they are in the same niche. Thus convergence
occurs within a niche, but convergence of the full
population is avoided. As one niche “fills up”, its
niche count increases to the point that its shared
fitness 1s lower than that of other niches.

Fitness sharing was originally combined with fit-
ness proportionate (a.k.a., roulette wheel) selection.
When sharing is combined with the more popular

4The authors sometimes refer to this form of niching as fitness
proportionate sharing.

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

tournament selection, however, the niched GA ex-
hibits chaotic behaviour [8]. The wild fluctuations in
niche subpopulations induced by the “naive” com-
bination of sharing and tournament selection can
be avoided. Qei, Goldberg, and Chang [8] suggest
the use of tournament selection with continuously
updated sharing, in which niche counts are calcu-
lated not by using the current population, but rather
the partly filled next generation population. This
method was used successfully by Goldberg, Deb,
and Horn [4] on a “niching-difficult” problem. Also
in [4], it was found empirically that sampling the
population was sufficient to estimate the niche count
and so avoid the O(N?) comparisons needed to cal-
culate ezactly the m;. We incorporate both tech-
niques (continously updated sharing and niche count
sampling) in the Niched Pareto GA.

In any application of sharing, we can implement
genotypic sharing, since we always have a genotype
(the encoding). But Deb’s work [1] indicated that in
general, phenotypic sharing is superior to genotypic
sharing. Intuitively, we want to perform sharing in
a space we “care more about”, that is, some pheno-
typic space. Since we are interested in maintaining
diversity along the phenotypic Pareto optimal front,
which exists only in aftribute space, it makes sense
to perform our sharing in attribute space®.

When the candidates are either both dominated
or both non-dominated, 1t is likely that they are in
the same equivalance class (in the partial order in-
duced by the domination relation). Because we are
interested in maintaining diversity along the front,
and most of the individuals in these equivalence
classes can be labeled “equally” fit, we do not imple-
ment any form of fitness degradation according to
the niche count. Instead, the “best fit” candidate
is determined to be that candidate which has the
least number of individuals in its niche and thus the
smallest niche count. We call this type of sharing
equivalence class sharing®.

Figure 1 illustrates how this form of sharing should
work between two non-dominated individuals. Here
we are maximizing along the x-axis and minimizing
on the y-axis. In this case the two candidates for
selection are not dominated by the comparison set.
Thus the two candidates are in the Pareto optimal
subset (the dashed region) of the union of the com-
parison set and the candidates. From a Pareto point
of view, neither candidate is preferred. But if we

5To impose a meaningful metric on attribute space, the at-
tributes should be scaled to the same numerical range, (e.g., 0 to
1). This is possible if we have some idea of the extreme values
theoretically attainable by each attribute.

8 This technique might also be called flat fitness sharing, since
the same effect is produced in normal (single-attribute) fitness
sharing when two individuals have the exact same fitness.

Comparison Set Individuals] EqUIVdmceC|&R®IOn?/, D&‘,
Candidate Individuals O . /
o
o O S
/’): D /
o
. 75 Candidate 2
o 45 -
]] B
,;‘»l D
o go
O OD Lo Niches Determined by
oo - Sigma Share
T condicte

Figure 1: Equivalence class sharing.

want to maintain useful diversity (i.e., a representa-
tive sampling of the Pareto frontier), it is apparent
that it would be best to choose the candidate that
has the smaller niche count. In this case, that is
candidate 2.

IV. APPLICATION TO THREE PROBLEMS

A. Problem 1: A simple test function

We begin testing our new algorithm by constructing
a simple, artificial problem with an easily calculated
Pareto optimal front. We call problem 1 “unitation
versus pairs” for the two attributes of unitation and
complementary adjacent pairs. Unitation Unii[s]
is simply the number of ones in the fixed length
bit string s, thus Uné#[01110010] = 4. Pairs Prs[s]
is the number of pairs of adjacent complementary
bits, either 01 or 10. Thus Prs[01110010] = 4. The
problem is to maximize both attributes. Among
strings of a particular unitation, those strings with
the greatest “mixing” of ones and zeroes dominate
those who “clump” their ones (e.g., 01010 dominates
01100, though both have the same unitation).

In Figure 2, we plot the feasible region of the two-
dimensional attribute space Unit versus Prs for a
12-bit problem. P indicates a point on the Pareto
front, while “-” indicates a feasible point that is
dominated by some member(s) of the Pareto set.

In Figure 3, we plot the initial population (genera-
tion 0) of 100 randomly generated 12-bit individuals”.
The numbers plotted in attribute space are the num-
bers of individuals with attribute values correspond-
ing to the coordinates in attribute space.

Figure 4 shows the population after 100 genera-
tions. We can see that the GA has succeeded in
finding all but one member of the Pareto set, and

"Tournament size tdom = 10, niche size ospare = 2.0, single-
point crossover probability p. = 0.9, and mutation rate p,, =
0.01.

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

Unitation

012 3 4 5 6 7 8 9 10 11 12

Figure 2: Problem 1’s discrete, two dimensional attribute
space, with feasible (-) and Pareto (P) points indicated.

Unitation Generation 0

12 — o

11 — o 2

10 — o 0 1 4

09 — o 0 1 2 1 2

08 — o 0 0 4 8 1 2 1

07 — o 0 1 2 5 3 6 1 0 0
06 — o 0o 2 2 6 3 5 6 0 0 0
05 — o o 6 2 2 2 1 6 0 0
04 — o 2 0 1 1 3 0 1

03 — o 0o 0 0 O 1

02 — o 1 0 0

01 — o 0

00 — o

o 1 2 3 4 5 6 7 8 9 10 11 12 Pairs

Distribution of the randomly generated initial

Figure 3:

population.

appears to be maintaining substantial subpopula-
tions at each such point. Moreover, there are few
(none here) dominated individuals in the current
population. Although not shown, we have plotted
population distributions over many generations, and
noticed that the GA does indeed maintain roughly
equal size subpopulations at each Pareto point over
many generations. Dominated solutions regularly
appear, due to crossover and mutation, but are not
maintained.

We have observed similar behaviour over many
runs of the GA on different initial population dis-
tributions (all random, but using different random
seeds). We have also successfully tried larger prob-
lems (I > 12), with correspondingly larger popula-
tion sizes N, such as 400 individuals on a 28 bit
problem [7].

Finally, we note that this problem is GA-easy (in

Unitation Generation 100

12 — 26

11 — 0 11

10 — 0o 0 0 14

09 — o 0 0 0 0 12

08 — 0O 0 0 0 0O 0 0 16

07 — 0O 0o 0o 0O 0O 0O 0O 0 0 21
06 — o o 0o 0O 0O 0O O O 0 0 O
05 — o 0o 0o 0O 0O 0O 0 O 0 O
04 — o 0o 0o 0O 0 0 0 O

03 — o 0 0 0 0 O

02 — o 0 0 O

01 — o 0

00 — o

o 1 2 3 4 5 6 7 8 9 10 11 12 Pairs

Figure 4: Stable subpopulations on the Pareto front.

f21

f22

6 4 -2 o 2 4 6

Figure 5: Schaffer’s function F2, P = {z | 0 < = < 2}

that it is easy to find points on the front), but not
necessarily easy for the Niched Pareto GA. Since
there are actually many more solutions at middle
points on the front, and only one or two at each end
point of the front, it should be harder to maintain
equal size subpopulations at the extreme points.

B. Problem 2: Schaffer’s F2

Next we compare our algorithm to Schaffer’s VEGA
by running it on one of the test functions from Schaf-
fer’s dissertation [10]. This is the simple function
F2, with a single decision variable, the real-valued
x, and two attributes, f21 and f22 to be minimized:

f21(x) = 2? [22(x) = (v — 2)?

The decision variable is mapped to a 14-bit string
as a binary-coded integer. Thus 00000000000000 =
Zmin = —6.00 and 11111111111111 = 24,4, = 6.00.
We plot f21 and f22 over this range of « in Figure 5.
It is clear that the Pareto front is where the tradeoff
exists between the two functions. That 1s, for 0 <
z < 2.00, one of the functions is decreasing to its
best while the other is increasing away from its best.

Like Schaffer, we use a small population size N =
30. Our niche size o4p4re = 0.1 and tournament
size tgom = 4. As Figure 6 illustrates, the Niched
Pareto GA 1s able to maintain a fairly even spread
of solutions along the Pareto front. There are a
few dominated individuals in the population (to the
right of # = 2.00), as in the VEGA run above, but
most individuals are on the front. Although our
population has several gaps in its distribution on
the front, it appears more evenly distributed than
generation 3 of the VEGA run®. Most importantly,
the Niched Pareto GA exhibits stability in this pop-
ulation distribution for many more generations than
were indicated for VEGA (200 > 3).

F2 is an easy problem for the GA: the initial pop-
ulation contains many individuals on the front al-
ready. However, this front is much denser than that
of problem 1 above, challenging the Niched Pareto
GA to maintain N subpopulations of size 1 along
the front.

8Schaffer (1984) only gave results for generations 0, 1, and 3.

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

f22° 5 f21

3. . VEGA

f22 4 f21

Spo * Niched
* Pareto GA

-1

Figure 6: VEGA versus the Niched Pareto GA. Top: VEGA
on F2’s Pareto frontier, generation 3. Bottom: The Niched
Pareto GA’s distribution, generation 200.

C. Problem 3: Open problem in hydrosystems

To challenge the Niched Pareto GA’s ability to search
for diverse tradeoffs, we chose a larger, real-world
(i.e., unsolved) application for our third test prob-
lem: optimal well placement for groundwater con-
taminant monitoring”. The problem is to place a
set of k out of a possible w wells in order to max-
imize the number of detected leak plumes from a
landfill into the surrounding groundwater, and to
minimize the volume of cleanup involved. These two
objectives conflict. Simply optimizing for the mini-
mum volume of cleanup will give us an answer with
attributes {0,0}, where we detect no plumes and
therefore have no volume of contaminant to clean
up. If we maximize the number of detected plumes
our volume of cleanup increases dramatically.

It is important to note that this problem is in-
tractable. The search space is of size (¥). In our
specific example we have w = 396 and & = 20. The
whole search space is then (‘;’86) which i1s 2.269 x
1033, This makes it impossible to know the actual
Pareto optimal front from enumeration.

Monte-Carlo simulation was used to develop a set
of possible leak plumes, the set of wells that detect
each plume, and the volume leaked when each well
detected the contaminant plume. Using these data,
we constructed a vector-valued fitness function to
return the number of plumes and average volume
detected by any given set of wells.

In our first few runs, N = 2000, ospere = 40,
taom = 40, p. = 0.8, and no mutation. In Figure 7
one can see that the random initial population is
distributed throughout the search space. Figure 8
shows that after 230 generations the Niched Pareto

9This open problem was developed by Wayland Eheart and his
colleagues at the Civil Engineering Department at the University
of Illinois at Urbana-Champaign. We are grateful to Dr. Eheart
and his students S. Ranjithan, P. Stork, and S. Cieniawski for
helping us implement it.

Generation 0

Average Vol ume Det ect ed

0.05 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Nunber of Plumes Detected

Figure 7: Initial population distribution, problem 3.

Generation 230
T T T

T T
° gen 230 = ©

Average Vol ume Det ect ed

0.05 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Nunber of Plumes Detected

Figure 8: Final distribution, problem 3.

GA has found an apparent front that is indeed im-
proved over the initial population. It is promising
to see that even after a large number of generations
we are maintaining diversity over most of an appar-
ent front. There 1s definite improvement as to the
location of the front and the decrease in the number
of dominated individuals in the population.

We do not know yet whether this is the actual
Pareto optimal front or a sub-optimal front. But
our first few runs indicate that the equivalence-class
sharing and dominance tournaments are working to-
gether. We have shown that a tradeoff curve better
than a random sampling can be developed by the
Niched Pareto GA on an open problem.

V. DiscussioN

These preliminary results on the application of the
niched, Pareto technique are encouraging. Fonseca
and Fleming [2] have also reported initial success
with a similar algorithm. But we have found that
the performance of the Niched Pareto GA is sensi-
tive to the settings of several parameters. In partic-
ular, it is important to have a large enough popula-

(camera-ready preprint) ICEC '94 (91994 IEEE (pp. 82-87)

tion to search effectively and to sample the breadth
of the Pareto front. Both [7] and [2] discuss the set-
ting of osp4re and population size together to yield
effective sampling.

But the behaviour of the Niched Pareto GA seems
to be most affected by the degree of selection pres-
sure applied. Just as tournament size ;. 1s critical
to selection pressure and premature convergence in
a regular GA with tournament selection, so ¢44, di-
rectly effects the convergence of the Niched Pareto
GA. Horn and Nafpliotis [7] illustrate the effects of
too little and too much dominance pressure. Here,
we summarize their empirically-derived, order-of-
magnitude guidelines:

® tgom ~ 1% of N; results in too many dominated
solutions (a very fuzzy front).

o tgom &~ 10% of N; yields a tight and complete
distribution.

o tgom > 20% of N; causes the algorithm to pre-
maturely converge to a small portion of the
front. Alternative tradeoffs were never even
found.

We have not yet addressed the critical issue of
search, but we have some intuitions. Our intuition
in the case of Pareto optimization is that the diver-
sity along the currently non-dominated frontier ac-
tually helps the search for new and improved trade-
offs, thus extending the frontier. Individuals from
very different parts of the front might be crossed
to produce offspring that dominate a portion of the
front lying between their parents. That is, infor-
mation from very different types of tradeoffs could
be combined to yield other kinds of good tradeoffs.
Indeed, we see some evidence for this in problem
3. Because equivalence class sharing cannot be ex-
pected to maintain more than one copy of an indi-
vidual (i.e., niche counts are approximately 1 for all
niches at steady state), and because we used high
crossover rates (typically 0.7-0.9), the maintenance
of the front over hundreds of generations was largely
due to the constant generation and regeneration of
individuals on the front from the crossover of two
different parents. Therefore, most crosses of par-
ents on or near the front yielded offspring also on
or near the front. This behaviour is evidence that
Pareto diversity helps Pareto search.

Finally, we point out that the domination tour-
nament does not rely strictly on a domination re-
lation, but rather on an antisymmetric, transitive
relation. Similarly, equivalence class sharing is use-
ful not only on the Pareto optimal frontier, but in
any equivalence class in a partial order. Thus the
Niched Pareto GA can be used to search any par-
tially ordered space, not just those induced by the

Pareto approach to multiobjective problems.

REFERENCES

[1] Deb, K. (1989). Genetic algorithms in mul-
timodal function optimization. MS thesis,
TCGA Report No. 89002. University of Al-
abama.

[2] Fonseca, C. M., & Fleming, P. J. (1993). Ge-
netic algorithms for multiobjective optimiza-
tion: formulation, discussion and generaliza-
tion. Proceedings of the Fifth International
Conference on Genetic Algorithms. Morgan-
Kauffman, 416-423.

[3] Goldberg, D. E. (1989). Genetic Algorithms in
Search, Optimization, and Machine Learning.
Reading, MA: Addison-Wesley.

[4] Goldberg, D. E., Deb, K., & Horn, J. (1992).
Massive multimodality, deception, and genetic
algorithms. Parallel Problem Solving From Na-
ture, 2, North-Holland, 37-46.

[5] Goldberg, D. E., & Richardson, J. J. (1987).
Genetic algorithms with sharing for multi-
modal function optimization. Genetic Algo-
rithms and Their Applications: Proceedings of
the Second ICGA, Lawrence Erlbaum Asso-
ciates, Hillsdale, NJ, 41-49.

[6] Horn, J., (1993). Finite Markov chain analysis
of genetic algorithms with niching. Proceedings
of the Fifth International Conference on Ge-
netic Algorithms. Morgan-Kauffman, 110-117.

[7] Horn, J., & Nafpliotis, N. (1993). Multiobjec-
tive optimization using the niched Pareto ge-
netic algorithm. IlliGAL Report No. 93005. I1li-
nois Genetic Algorithms Laboratory. Univer-
sity of Illinois at Urbana-Champaign.

[8] Oei, C. K., Goldberg, D. E., & Chang, S. J.,
(1991). Tournament selection, niching, and the
preservation of diversity. IlliGAL Report No.
91011. Hlinois Genetic Algorithms Laboratory.
University of Illinois at Urbana-Champaign.

[9] Richardson, J. T., Palmer, M. R., Liepins,

G., & Hilliard, M. (1989). Some guidelines

for genetic algorithms with penalty func-

tions. Proceedings of the Third International

Conference on Genetic Algorithms. Morgan-

Kauffman, 191-197.

Schaffer, J. D., (1984). Some experiments in

machine learning using vector evaluated genetic

algorithms, Unpublished doctoral dissertation,

Vanderbilt University.

Schaffer, J. D., (1985). Multiple objective op-

timization with vector evaulated genetic algo-

rithms. In J. Grefenstette, ed., Proceedings of
an International Conference on Genetic Algo-

rithms and thewr Applications, 93-100.

