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1994 IEEE (pp. 82-87) 1A Niched Pareto Genetic Algorithm forMultiobjective OptimizationJe�rey Horn, Nicholas Nafpliotis, and David E. GoldbergAbstract| Many, if not most, optimiza-tion problems have multiple objectives. His-torically, multiple objectives have been com-bined ad hoc to form a scalar objective func-tion, usually through a linear combination(weighted sum) of the multiple attributes, orby turning objectives into constraints. Thegenetic algorithm (GA), however, is readilymodi�ed to deal with multiple objectives byincorporating the concept of Pareto domina-tion in its selection operator, and applyinga niching pressure to spread its populationout along the Pareto optimal tradeo� sur-face. We introduce the Niched Pareto GA asan algorithm for �nding the Pareto optimalset. We demonstrate its ability to �nd andmaintain a diverse \Pareto optimal popula-tion" on two arti�cial problems and an openproblem in hydrosystems.I. IntroductionGenetic algorithms (GAs) have been applied almostexclusively to single-attribute1 problems. But a care-ful look at many real-world GA applications revealsthat the objective functions are really multiattribute.Typically, the GA user �nds some ad-hoc functionof the multiple attributes to yield a scalar �tnessfunction. Often-seen tools for combining multipleattributes are constraints, with associated thresh-olds and penalty functions, and weights for linearcombinations of attribute values. But penalties andweights have proven to be problematic. The �-nal GA solution is usually very sensitive to smallchanges in the penalty function coe�cients andweighting factors [9].The authors are with the Illinois Genetic Algorithms Labo-ratory, University of Illinois at Urbana-Champaign, 117 Trans-portation Building, 104 South Mathews Ave., Urbana, IL61801. Internet: je�horn@uiuc.edu, nick-n@uiuc.edu, gold-berg@vmd.cso.uiuc.edu. Phone: 217/333-2346, Fax: 217/244-5705. The �rst author acknowledges support from NASA undercontract number NGT-50873, while the remaining authors ac-knowledge support provided by the U.S. Army under ContractDASG60-90-C-0153.1We use the terms \attribute", \objective", and \criteria"interchangeably to describe a scalar value to be maximized orminimized. \Decision variable" refers to the parameters of theproblem encoded in the genome of the genetic algorithm.

A few studies have tried a di�erent approach tomulticriteria optimization with GAs: using the GAto �nd all possible tradeo�s among the multiple,con
icting objectives. Such solutions are non-dominated, in that there are no other solutions su-perior in all attributes. In attribute space, the set ofnon-dominated solutions lie on a surface known asthe Pareto optimal frontier2. The goal of a ParetoGA is to �nd a representative sampling of solutionsall along the Pareto front.II. Previous WorkWe assume the reader is familiar with the simpleGA [3]. Here we review previous approaches to mul-tiobjective optimization with GAs.In his 1984 dissertation [10], and later in [11],Scha�er proposed his Vector Evaluated GA (VEGA)for �nding multiple solutions to multiobjective (vec-tor valued) problems. He created VEGA to �ndand maintain multiple classi�cation rules in a setcovering problem. VEGA tried to achieve this goalby selecting a fraction of the next generation us-ing one of each of the attributes (e.g., cost, reli-ability). Although Scha�er reported some success,VEGA seems capable of �nding only extreme pointson the Pareto front, where one attribute is maximal,since it never selects according to tradeo�s amongattributes.In his review of GA history, including Scha�er'sVEGA, Goldberg [3] suggested the use of non-domination ranking and selection to move a pop-ulation toward the Pareto front in a multiobjectiveproblem. He also suggested using some kind of nich-ing to keep the GA from converging to a single pointon the front. A niching mechanism, such as shar-ing [5], would allow the GA to maintain individualsall along the non-dominated frontier.Fonseca and Fleming [2], and, independently, Hornand Nafpliotis [7], implemented Goldberg's two sug-gestions, and successfully applied the resulting al-gorithms to di�cult, open problems. Fonseca and2We assume familiarity with the concept of Pareto optimality,but note here that the Pareto front often goes by the namesPareto optimal set, non-dominated frontier, e�cient points, andadmissible points.
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1994 IEEE (pp. 82-87) 2Fleming found many good tradeo�s in a four at-tribute gas turbine design problem. Horn and Naf-pliotis concentrated on a series of two attribute prob-lems, which we describe later in this paper.III. The Niched Pareto GAThe speci�cs of the Niched Pareto GA are local-ized to implementation of selection for the geneticalgorithm. One of the most widely implementedselection techniques for GAs is tournament selec-tion. In tournament selection a set of individuals israndomly chosen from the current population andthe best of this subset is placed in the next pop-ulation. By adjusting the size of the tournamentwe can exert some control over the amount of se-lection pressure and hence convergence speed. Thusthe smallest tournament size of two (binary tourna-ment) exhibits slower convergence than any largertournament size.Tournament selection assumes that we want a sin-gle answer to the problem. After a certain num-ber of generations the population will converge toa uniform one. To avoid convergence and maintainmultiple Pareto optimal solutions, we have alteredtournament selection in two ways. First we addedPareto domination tournaments. Second, when wehave a non-dominant tournament (i.e., a tie), shar-ing is implemented to determine the winner.A. Pareto domination tournamentsThe binary relation of domination leads naturallyto a binary tournament in which two randomly se-lected individuals are compared. If one dominatesthe other, it wins. Initially, we used such a smalllocal domination criterion, but we soon found thatit produced insu�cient domination pressure. Therewere too many dominated individuals in later gener-ations. It seemed that a sample size of two was toosmall to estimate an individual's true \dominationranking"3.Because we wanted more domination pressure, andmore control of that pressure, we implemented asampling scheme as follows. Two candidates for se-lection are picked at random from the population.A comparison set of individuals is also picked ran-domly from the population. Each of the candidatesare then compared against each individual in thecomparison set. If one candidate is dominated bythe comparison set, and the other is not, the latteris selected for reproduction. If neither or both aredominated by the comparison set, then we must use3Note that any partial order determines a unique ranking, inwhich maximal individuals are ranked �rst, then removed. Theremaining individuals are reordered, and the maximal individualsof this set are ranked second, and removed, etc. This is thedomination ranking scheme suggested by Goldberg [3].

sharing to choose a winner, as we explain later. Thesample size tdom (size of comparison set) gives uscontrol over selection pressure, or what we call dom-ination pressure. The performance of the NichedPareto GA is somewhat sensitive to the amount ofdomination versus sharing pressure applied [7].A problem will arise if both candidates are onthe current non-dominated front since neither willbe dominated. Even o� the front, a small tdomcould mean that neither appears dominated. Andof course both could be dominated. How is a winnerthen chosen in such a \tie"? If we choose the winnerat random, genetic drift will cause the population toconverge to a single region of the Pareto front. Toprevent this we implement a form of sharing whenthere is no preference between two individuals.B. Sharing on the non-dominated frontierFitness sharing was introduced by Goldberg andRichardson [5], analyzed in detail by Deb [1], andapplied successfully to a number of di�cult and realworld problems. The goal of �tness sharing is todistribute the population over a number of di�erentpeaks in the search space, with each peak receiv-ing a fraction of the population in proportion to theheight of that peak4.To achieve this distribution, sharing calls for thedegradation of an individual's objective �tness fi bya niche countmi calculated for that individual. Thisdegradation is obtained by simply dividing the ob-jective �tness by the niche count to �nd the shared�tness: fi=mi. The niche count mi is an estimateof how crowded is the neighborhood (niche) of indi-vidual i. It is calculated over all individuals in thecurrent population: mi =Pj2Pop Sh[d[i; j] ], whered[i; j] is the distance between individuals i and j andSh[ d ] is the sharing function. Sh[d] is a decreasingfunction of d[i; j], such that Sh[0] = 1 and Sh[d ��share] = 0. Typically, the triangular sharing func-tion is used, where Sh[d] = 1 � d=�share for d ��share and Sh[d] = 0 for d > �share. Here �share isthe niche radius, �xed by the user at some estimateof the minimal separation desired or expected be-tween the goal solutions. Individuals within �sharedistance of each other degrade each other's �tness,since they are in the same niche. Thus convergenceoccurs within a niche, but convergence of the fullpopulation is avoided. As one niche \�lls up", itsniche count increases to the point that its shared�tness is lower than that of other niches.Fitness sharing was originally combined with �t-ness proportionate (a.k.a., roulette wheel) selection.When sharing is combined with the more popular4The authors sometimes refer to this form of niching as �tnessproportionate sharing.
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1994 IEEE (pp. 82-87) 3tournament selection, however, the niched GA ex-hibits chaotic behaviour [8]. The wild 
uctuations inniche subpopulations induced by the \naive" com-bination of sharing and tournament selection canbe avoided. Oei, Goldberg, and Chang [8] suggestthe use of tournament selection with continuouslyupdated sharing, in which niche counts are calcu-lated not by using the current population, but ratherthe partly �lled next generation population. Thismethod was used successfully by Goldberg, Deb,and Horn [4] on a \niching-di�cult" problem. Alsoin [4], it was found empirically that sampling thepopulation was su�cient to estimate the niche countand so avoid the O(N2) comparisons needed to cal-culate exactly the mi. We incorporate both tech-niques (continously updated sharing and niche countsampling) in the Niched Pareto GA.In any application of sharing, we can implementgenotypic sharing, since we always have a genotype(the encoding). But Deb's work [1] indicated that ingeneral, phenotypic sharing is superior to genotypicsharing. Intuitively, we want to perform sharing ina space we \care more about", that is, some pheno-typic space. Since we are interested in maintainingdiversity along the phenotypic Pareto optimal front,which exists only in attribute space, it makes senseto perform our sharing in attribute space5.When the candidates are either both dominatedor both non-dominated, it is likely that they are inthe same equivalance class (in the partial order in-duced by the domination relation). Because we areinterested in maintaining diversity along the front,and most of the individuals in these equivalenceclasses can be labeled \equally" �t, we do not imple-ment any form of �tness degradation according tothe niche count. Instead, the \best �t" candidateis determined to be that candidate which has theleast number of individuals in its niche and thus thesmallest niche count. We call this type of sharingequivalence class sharing6.Figure 1 illustrates how this formof sharing shouldwork between two non-dominated individuals. Herewe are maximizing along the x-axis and minimizingon the y-axis. In this case the two candidates forselection are not dominated by the comparison set.Thus the two candidates are in the Pareto optimalsubset (the dashed region) of the union of the com-parison set and the candidates. From a Pareto pointof view, neither candidate is preferred. But if we5To impose a meaningful metric on attribute space, the at-tributes should be scaled to the same numerical range, (e.g., 0 to1). This is possible if we have some idea of the extreme valuestheoretically attainable by each attribute.6This technique might also be called 
at �tness sharing, sincethe same e�ect is produced in normal (single-attribute) �tnesssharing when two individuals have the exact same �tness.
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Niches Determined by Figure 1: Equivalence class sharing.want to maintain useful diversity (i.e., a representa-tive sampling of the Pareto frontier), it is apparentthat it would be best to choose the candidate thathas the smaller niche count. In this case, that iscandidate 2.IV. Application to Three ProblemsA. Problem 1: A simple test functionWe begin testing our new algorithm by constructinga simple, arti�cial problem with an easily calculatedPareto optimal front. We call problem 1 \unitationversus pairs" for the two attributes of unitation andcomplementary adjacent pairs. Unitation Unit[s]is simply the number of ones in the �xed lengthbit string s, thus Unit[01110010] = 4. Pairs Prs[s]is the number of pairs of adjacent complementarybits, either 01 or 10. Thus Prs[01110010] = 4. Theproblem is to maximize both attributes. Amongstrings of a particular unitation, those strings withthe greatest \mixing" of ones and zeroes dominatethose who \clump" their ones (e.g., 01010 dominates01100, though both have the same unitation).In Figure 2, we plot the feasible region of the two-dimensional attribute space Unit versus Prs for a12-bit problem. P indicates a point on the Paretofront, while \-" indicates a feasible point that isdominated by some member(s) of the Pareto set.In Figure 3, we plot the initial population (genera-tion 0) of 100 randomly generated 12-bit individuals7.The numbers plotted in attribute space are the num-bers of individuals with attribute values correspond-ing to the coordinates in attribute space.Figure 4 shows the population after 100 genera-tions. We can see that the GA has succeeded in�nding all but one member of the Pareto set, and7Tournament size tdom = 10, niche size �share = 2:0, single-point crossover probability pc = 0:9, and mutation rate pm =0:01.
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1994 IEEE (pp. 82-87) 4Unitation12 | P11 | - P10 | - - - P09 | - - - - - P08 | - - - - - - - P07 | - - - - - - - - - P06 | - - - - - - - - - - P05 | - - - - - - - - - -04 | - - - - - - - -03 | - - - - - -02 | - - - -01 | - -00 | -|||||||||||||||||||||||{0 1 2 3 4 5 6 7 8 9 10 11 12 PairsFigure 2: Problem 1's discrete, two dimensional attributespace, with feasible (-) and Pareto (P) points indicated.Unitation Generation 012 | 011 | 0 210 | 0 0 1 409 | 0 0 1 2 1 208 | 0 0 0 4 8 1 2 107 | 0 0 1 2 5 3 6 1 0 006 | 0 0 2 2 6 3 5 6 0 0 005 | 0 0 6 2 2 2 1 6 0 004 | 0 2 0 1 1 3 0 103 | 0 0 0 0 0 102 | 0 1 0 001 | 0 000 | 0|||||||||||||||||||||||{0 1 2 3 4 5 6 7 8 9 10 11 12 PairsFigure 3: Distribution of the randomly generated initialpopulation.appears to be maintaining substantial subpopula-tions at each such point. Moreover, there are few(none here) dominated individuals in the currentpopulation. Although not shown, we have plottedpopulation distributions over many generations, andnoticed that the GA does indeed maintain roughlyequal size subpopulations at each Pareto point overmany generations. Dominated solutions regularlyappear, due to crossover and mutation, but are notmaintained.We have observed similar behaviour over manyruns of the GA on di�erent initial population dis-tributions (all random, but using di�erent randomseeds). We have also successfully tried larger prob-lems (l > 12), with correspondingly larger popula-tion sizes N , such as 400 individuals on a 28 bitproblem [7].Finally, we note that this problem is GA-easy (inUnitation Generation 10012 | 2611 | 0 1110 | 0 0 0 1409 | 0 0 0 0 0 1208 | 0 0 0 0 0 0 0 1607 | 0 0 0 0 0 0 0 0 0 2106 | 0 0 0 0 0 0 0 0 0 0 005 | 0 0 0 0 0 0 0 0 0 004 | 0 0 0 0 0 0 0 003 | 0 0 0 0 0 002 | 0 0 0 001 | 0 000 | 0|||||||||||||||||||||||{0 1 2 3 4 5 6 7 8 9 10 11 12 PairsFigure 4: Stable subpopulations on the Pareto front.
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35Figure 5: Scha�er's function F2, P = fx j 0 � x � 2gthat it is easy to �nd points on the front), but notnecessarily easy for the Niched Pareto GA. Sincethere are actually many more solutions at middlepoints on the front, and only one or two at each endpoint of the front, it should be harder to maintainequal size subpopulations at the extreme points.B. Problem 2: Scha�er's F2Next we compare our algorithm to Scha�er's VEGAby running it on one of the test functions from Schaf-fer's dissertation [10]. This is the simple functionF2, with a single decision variable, the real-valuedx, and two attributes, f21 andf22 to be minimized:f21(x) = x2 f22(x) = (x� 2)2The decision variable is mapped to a 14-bit stringas a binary-coded integer. Thus 00000000000000 =xmin = �6:00 and 11111111111111 = xmax = 6:00.We plot f21 and f22 over this range of x in Figure 5.It is clear that the Pareto front is where the tradeo�exists between the two functions. That is, for 0 �x � 2:00, one of the functions is decreasing to itsbest while the other is increasing away from its best.Like Scha�er, we use a small population size N =30. Our niche size �share = 0:1 and tournamentsize tdom = 4. As Figure 6 illustrates, the NichedPareto GA is able to maintain a fairly even spreadof solutions along the Pareto front. There are afew dominated individuals in the population (to theright of x = 2:00), as in the VEGA run above, butmost individuals are on the front. Although ourpopulation has several gaps in its distribution onthe front, it appears more evenly distributed thangeneration 3 of the VEGA run8. Most importantly,the Niched Pareto GA exhibits stability in this pop-ulation distribution for many more generations thanwere indicated for VEGA (200 > 3).F2 is an easy problem for the GA: the initial pop-ulation contains many individuals on the front al-ready. However, this front is much denser than thatof problem 1 above, challenging the Niched ParetoGA to maintain N subpopulations of size 1 alongthe front.8Scha�er (1984) only gave results for generations 0, 1, and 3.
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6Figure 6: VEGA versus the Niched ParetoGA. Top: VEGAon F2's Pareto frontier, generation 3. Bottom: The NichedPareto GA's distribution, generation 200.C. Problem 3: Open problem in hydrosystemsTo challenge the Niched Pareto GA's ability to searchfor diverse tradeo�s, we chose a larger, real-world(i.e., unsolved) application for our third test prob-lem: optimal well placement for groundwater con-taminant monitoring9. The problem is to place aset of k out of a possible w wells in order to max-imize the number of detected leak plumes from aland�ll into the surrounding groundwater, and tominimize the volume of cleanup involved. These twoobjectives con
ict. Simply optimizing for the mini-mum volume of cleanup will give us an answer withattributes f0; 0g, where we detect no plumes andtherefore have no volume of contaminant to cleanup. If we maximize the number of detected plumesour volume of cleanup increases dramatically.It is important to note that this problem is in-tractable. The search space is of size (wk ). In ourspeci�c example we have w = 396 and k = 20. Thewhole search space is then �39620 � which is 2:269 �1033. This makes it impossible to know the actualPareto optimal front from enumeration.Monte-Carlo simulation was used to develop a setof possible leak plumes, the set of wells that detecteach plume, and the volume leaked when each welldetected the contaminant plume. Using these data,we constructed a vector-valued �tness function toreturn the number of plumes and average volumedetected by any given set of wells.In our �rst few runs, N = 2000, �share = 40,tdom = 40, pc = 0:8, and no mutation. In Figure 7one can see that the random initial population isdistributed throughout the search space. Figure 8shows that after 230 generations the Niched Pareto9This open problem was developed by Wayland Eheart and hiscolleagues at the Civil Engineering Department at the Universityof Illinois at Urbana-Champaign. We are grateful to Dr. Eheartand his students S. Ranjithan, P. Stork, and S. Cieniawski forhelping us implement it.
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Figure 7: Initial population distribution, problem 3.
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0 50 100 150 200 250 300 350 400 450 500

A
v
e
r
a
g
e
 
V
o
l
u
m
e
 
D
e
t
e
c
t
e
d

Number of Plumes Detected

Generation 230

gen 230 =

Figure 8: Final distribution, problem 3.GA has found an apparent front that is indeed im-proved over the initial population. It is promisingto see that even after a large number of generationswe are maintaining diversity over most of an appar-ent front. There is de�nite improvement as to thelocation of the front and the decrease in the numberof dominated individuals in the population.We do not know yet whether this is the actualPareto optimal front or a sub-optimal front. Butour �rst few runs indicate that the equivalence-classsharing and dominance tournaments are working to-gether. We have shown that a tradeo� curve betterthan a random sampling can be developed by theNiched Pareto GA on an open problem.V. DiscussionThese preliminary results on the application of theniched, Pareto technique are encouraging. Fonsecaand Fleming [2] have also reported initial successwith a similar algorithm. But we have found thatthe performance of the Niched Pareto GA is sensi-tive to the settings of several parameters. In partic-ular, it is important to have a large enough popula-
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1994 IEEE (pp. 82-87) 6tion to search e�ectively and to sample the breadthof the Pareto front. Both [7] and [2] discuss the set-ting of �share and population size together to yielde�ective sampling.But the behaviour of the Niched Pareto GA seemsto be most a�ected by the degree of selection pres-sure applied. Just as tournament size tsize is criticalto selection pressure and premature convergence ina regular GA with tournament selection, so tdom di-rectly e�ects the convergence of the Niched ParetoGA. Horn and Nafpliotis [7] illustrate the e�ects oftoo little and too much dominance pressure. Here,we summarize their empirically-derived, order-of-magnitude guidelines:� tdom � 1% of N ; results in too many dominatedsolutions (a very fuzzy front).� tdom � 10% of N ; yields a tight and completedistribution.� tdom � 20% of N ; causes the algorithm to pre-maturely converge to a small portion of thefront. Alternative tradeo�s were never evenfound.We have not yet addressed the critical issue ofsearch, but we have some intuitions. Our intuitionin the case of Pareto optimization is that the diver-sity along the currently non-dominated frontier ac-tually helps the search for new and improved trade-o�s, thus extending the frontier. Individuals fromvery di�erent parts of the front might be crossedto produce o�spring that dominate a portion of thefront lying between their parents. That is, infor-mation from very di�erent types of tradeo�s couldbe combined to yield other kinds of good tradeo�s.Indeed, we see some evidence for this in problem3. Because equivalence class sharing cannot be ex-pected to maintain more than one copy of an indi-vidual (i.e., niche counts are approximately 1 for allniches at steady state), and because we used highcrossover rates (typically 0.7-0.9), the maintenanceof the front over hundreds of generations was largelydue to the constant generation and regeneration ofindividuals on the front from the crossover of twodi�erent parents. Therefore, most crosses of par-ents on or near the front yielded o�spring also onor near the front. This behaviour is evidence thatPareto diversity helps Pareto search.Finally, we point out that the domination tour-nament does not rely strictly on a domination re-lation, but rather on an antisymmetric, transitiverelation. Similarly, equivalence class sharing is use-ful not only on the Pareto optimal frontier, but inany equivalence class in a partial order. Thus theNiched Pareto GA can be used to search any par-tially ordered space, not just those induced by the
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