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ABSTRACT 

We propose an automated compositional approach for 

component-based performance engineering, called the CB-SPE. It 

adapts to a CB framework the concepts and steps of the well-

known SPE technology, and uses for input modeling the standard 

RT-UML PA profile. The approach is two-layered: it is first 

applied by the component developer to achieve a parametric 

evaluation of the components in isolation; then by the system 

assembler, to predict the performance of the components assembly 

on the actual platform. We also present the CB-SPE tool 

architecture and its current status. 

1. MOTIVATION AND BACKGROUND 

Component Based Software Engineering (CBSE) is the emerging 

paradigm for the development of large complex systems. By 

maximizing the re-use of separately developed generic 

components, it promises to yield cheaper and higher quality 

assembled systems [11].  

The basic understood principle (or actually aspiration) is that the 

individual components are released once and for all with 

documented properties and that the properties then resulting for 

the assembled system can be obtained from these in compositional 

way. While this principle/aspiration has been actively pursued for 

the system functional properties since the advent of CBSE, it is 

only recently that equal emphasis is being devoted to the as 

important non-functional aspects or Quality of Service (QoS), 

such as reliability, security and performance (e.g., [2,9,12,15]). 

Our focus is on the evaluation of performance properties (like 

response time, throughput, etc.): we introduce an automated 

compositional approach for performance analysis of CB systems 

by the system assembler. In a companion paper [4], we also 

present a compositional language to describe a component 

assembly with adequate information for performance analysis.  

The approach we propose is called the CB-SPE, which stands for 

Component-based Software Performance Engineering. CB-SPE is 

a generalization of the Software Performance Engineering (SPE) 

(firstly presented in [10]), which is a systematic, quantitative 

approach to construct software systems that meet performance 

objectives.  

The original contribution of the CB-SPE approach over the 

existing SPE is two-fold: on one side, we equipped the CB-SPE 

of an input modeling notation that is conformant to the standard 

RT-UML PA sub-profile [13]: this makes the approach more 

easily usable, also from those designers who are not expert of the 

specialized (and awkward) performance models, but are familiar 

with the widespread UML language. On the other side, CB-SPE 

has been conceived for the analysis of component-based systems, 

so that the system assembler can derive the performance indices 

by composing and instantiating the documented component 

parameters.  

We have earlier described how the RT-UML PA sub-profile could 

be adopted to provide an easy-to-use and standard interface to 

SPE [1]. With regard to the generalization of such methodology to 

a CB context, while the inspiring ideas have been sketched in [2], 

in this paper we introduce the steps of the approach by means of 

an example of application, and the automated tool under 

development. 

The paper is organized as follows: after a brief presentation of the 

methodology in Section 2, we describe the CB-SPE tool structure 

and functioning in Section 3 and finally in Section 4 we outline an 

example of application with detailed description of the 

methodology. Future work is outlined in Section 5.  

2. THE CB-SPE APPROACH  
As its name implies, CB-SPE is proposed as a generalization of 

the well known SPE approach [10] to CB systems. We generically 

consider component-based applications, built up from software 

components glued together by means of some integration 

mechanism. In this context, the components provide the 

application-specific functionalities (and are mainly considered as 

black boxes), and the glue defines the workflow that integrates 

these functionalities to deliver the services required from the CB 

application. 

The CB-SPE approach is applied at two levels, namely the 

component layer and the application layer. The users of the 

approach at the two layers are referred below to as the 

“component developer” (CD) and the “system assembler” (SA). 

2.1 The component layer 
At the component layer, the goal is to obtain components with 

predicted performance properties (to be used later at the 

application layer) that are explicitly declared in the component 

interfaces. Roughly, this implies that the component developer 

must introduce and validate the performance requirements of the 
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component considered in isolation, by following the SPE 

approach. However, in the traditional SPE the component 

performance properties strongly depend on the execution 

environment of the component itself, while our goal is to have 

component performance properties that are platform independent 

(so that we can eventually use them on the yet unknown platform 

of the CB application). So in CB-SPE we need to define a 

component model based on an abstract but quantified 

specification of the environment, thus obtaining a model not 

depending on any specific platform (as in [8]).  

Let us suppose that a given component Ci offers h>=1 services Sj 

(j=1…h). Each offered service can be carried out either locally 

(i.e., exploiting only the resources of the component under exam) 

or externally (i.e., exploiting also the resources of other 

components).  The obtained performance analysis results for each 

Sj of Ci are exported at the component interfaces, in parametric 

form, as: 

 PerfCi(Sj[env-par]*) 

where Perf denotes the performance index we are interested in 

(e.g., demand of service, response time and communication delay) 

and [env-par]* a list of environment parameters (e.g., bandwidth, 

CPU time, memory buffer). In particular, when the service is 

local, [env-par]* represents the classical platform parameters, 

such as CPU demand or communication delay, of the node where 

the component is deployed; while in case of external services, 

[env-par]* parameters include also demands of resources 

deployed on nodes that could be different from the one hosting 

the considered component. 

An example of the adopted modeling notation based on the 

standard RT-UML PA profile is given in Figure 1.   

 

 

 

 

 

 

 

 

 

Figure 1:Example of component interface annotations 

2.2 The application layer  
Goal of the application layer is to obtain CB applications with the 

expected performance properties, by the assembly of components 

whose parametric properties are known. Figure 2 outlines the 

main steps involved, also highlighting (in italic) who is in charge 

of each. 

In summary, the system assembler chooses among the available 

components those that better fulfil the performance requirements. 

In fact, at this step, the system assembler knows the characteristics 

of the environment in which the components will be deployed and 

thus he/she can instantiate the component performance properties 

given in parametric form. The various component performance 

properties can now be combined in a system by following the 

architecture of the application. If, from the model analysis, the 

system assembler concludes that the performance requirement are 

fulfilled, he/she can proceed with the acquisition of the 

components and their assembly, otherwise he/she has to continue 

the search by repeating these steps, or at last declare the 

unfeasibility of the performance requirements.  

Input:  set of candidate components with performance parametric 

annotations on the provided interfaces (component developer) 

 

Step 1. Determine the usage profile and the performance goals 

(system assembler) 

Step 2. Component pre-selection/search (system assembler) 

Step 3. Modeling and annotation (system assembler)  

Step 4. Best/Worst case analysis (automated) 

 

For each couple of candidate SM and MM repeat 

Step 5. CB-SPE model generation (automated) 

Step 6.  Model evaluation (automated) 

Step 7.  Analysis of results (system assembler) 

 

Output: selection of the components and final modeling of the 

application with performance requirements satisfied, or otherwise 

declaration of performance requirements unfeasibility 

Figure 2: CB-SPE at the application layer 

3. APPROACH AUTOMATION  
The stepwise procedure described above can be partially 

automated. In principle, steps 4, 5 and 6 (involving the SPE 

related computations) could be fully automated, while for the 

other steps, guided support should be provided to the SA to 

facilitate the RT-UML modeling of the application workflow and 

of the resource requirements according to the syntax required 

formats.  

The tool architecture is illustrated in Fig. 3, where the grey cubes 

represent the constituent modules of the tool, while the rounded 

rectangles exemplify the XMI exchanged information. Some parts 

of this tool are still undergoing development. 

The Argo-UML [16] tool has been selected as the user interface 

for UML editing, since it is free and open source. The standard 

UML diagrams are augmented with performance annotations 

according to the PA profile. Then Argo automatically processes 

the input diagrams (with PA annotations) and generates an 

XML/XMI file that constitutes the input of our Model Generator 

module. This component (realized in Java) provides, according to 

the SPE basic principle, two different models (the two different 

outgoing arcs): a stand-alone performance model, namely an EG, 

and a contention based performance model, namely a QN model. 

Let us first describe the round-trip tour for the EG model. Based 

on [1,3] a global EG is generated from the models of key 

performance scenarios represented in the SDs (according to their 

occurrence probability) and its demand vectors are instantiated 

according to the environment parameters given by the DD. The 

output of the Model Generator is an XMI document representing 

the EG. 

The EG Solver module is a component that applies standard graph 

analysis techniques [10] to associate an overall “cost” to each path 

in the obtained EG as a function of the cost of each node that 

belongs to that path. This stand-alone analysis result gives, for 

each resource, the total average demand, that, in the optimal case 

corresponds to the average response time [5]. 

The Results converter module receives in input both the 

application performance goals in terms of PA annotations for the 

different key performance scenarios and the performance results 

provided by the EG Solver component. A simple comparison can 

Component 

specification 
Client 

PAresptimeCi(Sj[env-par]*) 

PAdemandCi(Sj[env-par]*) 

… 

PAdelayCi(Sj[env-par]*) 



give insights about the hypothesized component and environment 

selection as described in the next section. 

 

 

 

 

 

 

 

 

 

Figure 3: CB-SPE tool architecture 

Let us now consider the second output of the Model Generator 

module, that is the QN models. To define a QN model it is 

necessary to determine: (i) the number of service centers and their 

characteristics (service discipline, service times) (ii) the network 

topology and (iii) the jobs in the network with their service 

demand and routing [5]. 

For (i) and (ii) the necessary information can be derived from the 

annotated DDs and SDs. For a first assessment, for example, we 

associate a QN service center to each DD node. The service center 

scheduling discipline is derived from the PA annotation and the 

service can be considered exponential with rate equal to the node 

throughput (also annotated on the DD). Similarly, the links among 

the service centers are derived from the ones existing in the DD. 

The kind of QN (closed, open or mixed) corresponds to the 

characteristics of the modeled workload (closed, open and mixed, 

respectively) annotated on the SDs. 

Concerning the job characteristics (iii), we derive all the essential 

information from detailed models of key performance scenarios 

represented in the EGs. The different job classes on the network 

model the distinct key performance scenarios. The job service 

demand at network service centers can be computed from the 

resource demand vectors of the EG. Similarly, the job routing 

correspond to the application dynamics given by the whole EG.  

4. APPLICATION-LAYER ANALYSIS 
To introduce the stepwise procedure conceived at the application 

layer, we adopt as a case study a simplified version of a software 

retrieval application described in [7], composed by 3 or 4 

components that interact through different network kinds. There is 

a user that, through a specialized user interface can select and 

download new software in an efficient way. A software manager 

agent obtains the desired catalog through an interaction with a 

data base and then creates a dedicated catalog agent that helps 

the user to select the software and performs all the operations 

required for the desired service. 

The user can choose to download some software or to browse the 

catalog of offered services and then select the desired software or 

can require a catalog refinement. This process can be repeated as 

many times as necessary. As in [7] we assume that the user 

accesses the software retrieval service through a wireless mobile 

device with a low bandwidth. Instead, the interactions between the 

SW manager, and the catalog agent or the DB take place through 

a high speed LAN. 

Now let us describe how the CB-SPE can be applied to this case. 

Input Example: Let us suppose that each component is specified 

following the proposed approach and that the interface presents 

annotations about its offered/required performance. 

Step 1: At this step the system assembler should define the 

different types of application users and the different Use Cases. 

Let us suppose, for example, that the SA defines the target 

application A by using four components. A is composed by two 

different functionalities F1=Browse and F2=Download, that yield 

a frequency of usage of 0.4 and 0.6, respectively. Following the 

RT-UML PA profile, the usage profile can be modelled by 

annotating each Sequence or Activity diagram modeling the Use 

Case with a PA attribute representing its usage frequency.  

For the performance goals, the SA, according to the whole 

application and to its performance requirements, can decide to 

assign (as in [6]) different importance levels (weights) (i.e., wk) to 

the various individual performance metric k (e.g., response time, 

utilization, throughput). wk is a relative importance weight and all 

weights sum up to 1. In this case, the SA decides that the 

performance metrics he/she is interested in are the CPU elapsed 

time with an importance factor w1 equal to 0.7 and the 

Communication delay with an importance factor w2 equal to 0.3. 

Step 2: The SA chooses among the components that offer similar 

services, those that provide the best performance. In fact, he/she 

can now instantiate the generic PerfCi(Sj[env-par]*) given in the 

component interfaces, with the characteristics of the adopted (or 

hypothesized) environment, so obtaining a set of values among 

which the best ones can be selected.  

To carry out this choice we can use for instance a metric derived 

from [6] and reshaped according to this context; we call it perf-

err. This metric aggregates several performance metrics in a way 

that is independent of the units of measure of the individual 

metrics and it increases as the value of an individual metric 

improves with respect to its bound, while decreases as the value of 

an individual metric deteriorates with respect to its bound. It is 

computed as:  

perf-err =∑
=

∆
n

k

kkk fw

1

)(*   (1) 

where n is the number of metrics being aggregated, wk is the 

relative importance weight for metric k,  ∆k is a relative deviation 
of the performance metric k defined in a way that the relative 

deviation is positive when the performance metric satsfies its goal 

and negative otherwise, and fk (..) is an increasing function of  ∆k. 
For simplicity, in this case, we assume that each component offers 

a single service S. Thus the annotations in the component 

interfaces that the SA must instantiate have the form: 

CPU_DemandCi (S[env-par]*) and Comm_delayCi (S[env-par]*). 

Then by applying formula (1) with the performance metrics of 

interest and their relative wk, it is possible to select the 

combination of components that optimizes the perf-err metric. 

At the end of this step we assume that the components “User-

Interf”, “SW_man”, “Cat-agent” and “DB” are selected. 

Step 3: The SA should now describe, by one or more sequence 

diagrams (SD), the application workflow (the glue). Therefore, 

F1=Browse and F2=Download operations are modeled by means 

of Argo-UML using User-Interf, SW_man, Cat_agent and DB. 

For the adopted PA annotations, we have tried to adhere to the 

RT-UML standard as much as possible; however there are some 
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aspects, such as message size or use case probability, that are 

essential for the generation of the performance model, but are not 

covered by the standard (as also noticed in [1]). For these aspects, 

that are few ones anyway, we have followed the policy of 

including “minimal” lightweight extensions.  

Details of SD interactions for the Browse operation are given in 

Figure 4.  The first note of the SDs describes the kind of workload 

with its characteristics, using the stereotype PAClosedLoad. We 

had to define for this stereotype a new attribute, called PAsd, 

representing the occurrence probability of the modeled scenario. 

Each step is then annotated with the standard PAstep stereotype, 

where the attribute PAextop including the message size and the 

network name models the communication delay involved by the 

step. 

Similarly, he/she should construct a Deployment Diagram (DD) 

modeling the available resources and their characteristics. In this 

case the nodes of the DD can be associated to classical resources 

(device, processor, database) and communication means. The 

available resources and the possible component/node mappings 

can be modeled by a DD  with standard PA annotations. 

Step 4: In this step we perform two kinds of static analysis, called 

Best case and Worst case. 

A first kind of performance evaluation is called the best-case 

analysis. This is because the obtained “costs” correspond to the 

special case of a stand-alone application, i.e., where the 

application under study is the only one in the execution 

environment (therefore there is no resource contention), and the 

application dynamics is taken into account only in terms of 

component usage frequency. Hence these results provide an 

optimal bound on the expected performance for each component 

choice, and can help the system assembler in identifying a subset 

of components that deserve further investigation in the more 

realistic setting of application dynamics and of competition with 

other applications. 

 

Figure 4: SD for Browse operation

Let us suppose that the application involves n components Ci and 

that either the number of services h=1 (∀ Ci) or the application 
uses only one service at a time for each Ci. Then the performance 

of the application for a given index is:  

[ ] )(* *

1

parenvSPerfpPerf CiCi

n

i
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=

 (2) 

where ⊕ denotes a “composition operation” that assumes 

different meaning according to the performance measure of 

interest (for example for CPU_demand it becomes a sum), pCi 
denotes the usage frequency of the component Ci (and all pCi, 

i=1…n, must sum to one) and is obtained by combining the 

information derived by the usage profile and the information 

contained in the SD [3,14]. Similarly, we can derive an optimum 

bound when the application requires to each component a number 

h>1 of services. 

For functionality F1, the analysis of the SD in Figure 4 for the 

derivation of pCi leads to: pUI=(2+nb)/(5+2nb), pSM= 2/(5+2nb), 

pCA=nb/(5+2nb), Pdb=1/(5+2nb). Then the best case analysis for 

CPU demand and communication delay yields, respectively:  
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In the previous formulas, uSi, denotes the required service units to 

the CPUi, xi represents the actual number of service unit/sec that 

the CPUi processes and rati denotes the percentage of CPU that is 



devoted to this task. This information can be derived from the PA 

annotations on the UML diagrams.  

The communication delay is given by the ratio between the sum of 

the exchanged message sizes (sk) and the network speed  for this 

communication (vwc*rat_wc, vlan*rat_lan) also derived from PA 

annotations. For the sake of generality, the previous formulas are 

given in parametric form. A similar study can be made for 

functionality F2.  

If the required performance for A can be satisfied by the obtained  

optimal values weigthed by their importance factors, then the 

process can go on; otherwise the SA can return to step 2.1   

With regard to Worst case analysis, we can also compute a 

pessimistic bound on the application performance by supposing 

that M (equal or similar) applications compete for the same 

resources, and that, to obtain a required service, the M-th 

application must wait, every time, for the completion of the other 

M-1 applications. The formulae are omitted for space limitations.  

Step 5: While the results provided in Step 4 provide already some 

coarse indications, a more realistic performance model should 

consider the application dynamics, resource contention and 

communication costs. By the Model generator module we first 

derive an EG modeling the application example.  

The second output of the Model generator module is a QN model 

including the information in the SM modeled by the EG and  the 

components deployment on the given platform according to the 

modeled DD. 

Note that we can repeat this (analysis) step on more than one 

model, so to select the most adequate components. Thanks to the 

separation between the SM and the MM, we can also investigate 

different couplings of platforms and software components.  

Step 6: As already stated the performance measures we are 

interested in are the CPU-demand and the communication delay. 

The EG solver module applies first some graph reduction rules. 

The obtained results from Step 6 give the total CPU demand for 

the different resources and the communication delay required by 

the application both for the LAN and for the wireless network. 

The results obtained from the QN solver are again the CPU 

demand and the communication delay, but they are more precise, 

as they include the waiting times for the contended resources. It is 

possible to observe both local (related to a single resource) and 

global  (related to the whole network) performance indices. 

Step 7: The results automatically obtained in step 6 are analyzed 

by the SA and, if different from those expected (or desired), 

he/she can go back to step 1 (or 2), modify the settled parameters, 

and repeat the process until the desired results are obtained or 

after a while the unfeasibility of the performance requirements is 

declared. To perform this step the SA can apply formula (1) where 

the performance indexes under exam this time are those relative to 

the whole application, instead of those of the single component. 

5. FUTURE WORK 
Although this has not been discussed here, the approach can be 

generalized to allow in turn for incremental compositionality 

between applications. 

                                                                 

1 Note that the optimization of the CPU demand can lead to a greater 

comm-delay, and vice versa. So, the optimization step can be easy only 

if there are single performance requirements. 

Future work also includes the validation of the proposed 

methodology by its application to case studies coming from the 

industrial world. To this purpose, we are now completing the 

development of the CB-SPE tool, whose architecture has been 

described. Our long term goal is in fact to include this tool in a 

general framework for the computer assisted discovery and 

composition of software components, encompassing both 

functional and non-functional properties. 
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