
Software Performance Engineering of Component-based
Systems

Antonia Bertolino
Istituto di Scienza e Tecnologie dell’Informazione “A.

Faedo”, CNR
Pisa, Italy

+39 050 3152914
antonia.bertolino@isti.cnr.it

Raffaela Mirandola
Dip. Informatica, Sistemi e Produzione

Università di Roma TorVergata
Roma, Italy

+39 06 72597381
mirandola@info.uniroma2.it

ABSTRACT

We propose an automated compositional approach for

component-based performance engineering, called the CB-SPE. It

adapts to a CB framework the concepts and steps of the well-

known SPE technology, and uses for input modeling the standard

RT-UML PA profile. The approach is two-layered: it is first

applied by the component developer to achieve a parametric

evaluation of the components in isolation; then by the system

assembler, to predict the performance of the components assembly

on the actual platform. We also present the CB-SPE tool

architecture and its current status.

1. MOTIVATION AND BACKGROUND

Component Based Software Engineering (CBSE) is the emerging

paradigm for the development of large complex systems. By

maximizing the re-use of separately developed generic

components, it promises to yield cheaper and higher quality

assembled systems [11].

The basic understood principle (or actually aspiration) is that the

individual components are released once and for all with

documented properties and that the properties then resulting for

the assembled system can be obtained from these in compositional

way. While this principle/aspiration has been actively pursued for

the system functional properties since the advent of CBSE, it is

only recently that equal emphasis is being devoted to the as

important non-functional aspects or Quality of Service (QoS),

such as reliability, security and performance (e.g., [2,9,12,15]).

Our focus is on the evaluation of performance properties (like

response time, throughput, etc.): we introduce an automated

compositional approach for performance analysis of CB systems

by the system assembler. In a companion paper [4], we also

present a compositional language to describe a component

assembly with adequate information for performance analysis.

The approach we propose is called the CB-SPE, which stands for

Component-based Software Performance Engineering. CB-SPE is

a generalization of the Software Performance Engineering (SPE)

(firstly presented in [10]), which is a systematic, quantitative

approach to construct software systems that meet performance

objectives.

The original contribution of the CB-SPE approach over the

existing SPE is two-fold: on one side, we equipped the CB-SPE

of an input modeling notation that is conformant to the standard

RT-UML PA sub-profile [13]: this makes the approach more

easily usable, also from those designers who are not expert of the

specialized (and awkward) performance models, but are familiar

with the widespread UML language. On the other side, CB-SPE

has been conceived for the analysis of component-based systems,

so that the system assembler can derive the performance indices

by composing and instantiating the documented component

parameters.

We have earlier described how the RT-UML PA sub-profile could

be adopted to provide an easy-to-use and standard interface to

SPE [1]. With regard to the generalization of such methodology to

a CB context, while the inspiring ideas have been sketched in [2],

in this paper we introduce the steps of the approach by means of

an example of application, and the automated tool under

development.

The paper is organized as follows: after a brief presentation of the

methodology in Section 2, we describe the CB-SPE tool structure

and functioning in Section 3 and finally in Section 4 we outline an

example of application with detailed description of the

methodology. Future work is outlined in Section 5.

2. THE CB-SPE APPROACH
As its name implies, CB-SPE is proposed as a generalization of

the well known SPE approach [10] to CB systems. We generically

consider component-based applications, built up from software

components glued together by means of some integration

mechanism. In this context, the components provide the

application-specific functionalities (and are mainly considered as

black boxes), and the glue defines the workflow that integrates

these functionalities to deliver the services required from the CB

application.

The CB-SPE approach is applied at two levels, namely the

component layer and the application layer. The users of the

approach at the two layers are referred below to as the

“component developer” (CD) and the “system assembler” (SA).

2.1 The component layer
At the component layer, the goal is to obtain components with

predicted performance properties (to be used later at the

application layer) that are explicitly declared in the component

interfaces. Roughly, this implies that the component developer

must introduce and validate the performance requirements of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

WOSP 04, January 14-16, 2004, Redwood City, CA.

Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

component considered in isolation, by following the SPE

approach. However, in the traditional SPE the component

performance properties strongly depend on the execution

environment of the component itself, while our goal is to have

component performance properties that are platform independent

(so that we can eventually use them on the yet unknown platform

of the CB application). So in CB-SPE we need to define a

component model based on an abstract but quantified

specification of the environment, thus obtaining a model not

depending on any specific platform (as in [8]).

Let us suppose that a given component Ci offers h>=1 services Sj

(j=1…h). Each offered service can be carried out either locally

(i.e., exploiting only the resources of the component under exam)

or externally (i.e., exploiting also the resources of other

components). The obtained performance analysis results for each

Sj of Ci are exported at the component interfaces, in parametric

form, as:

 PerfCi(Sj[env-par]*)

where Perf denotes the performance index we are interested in

(e.g., demand of service, response time and communication delay)

and [env-par]* a list of environment parameters (e.g., bandwidth,

CPU time, memory buffer). In particular, when the service is

local, [env-par]* represents the classical platform parameters,

such as CPU demand or communication delay, of the node where

the component is deployed; while in case of external services,

[env-par]* parameters include also demands of resources

deployed on nodes that could be different from the one hosting

the considered component.

An example of the adopted modeling notation based on the

standard RT-UML PA profile is given in Figure 1.

Figure 1:Example of component interface annotations

2.2 The application layer
Goal of the application layer is to obtain CB applications with the

expected performance properties, by the assembly of components

whose parametric properties are known. Figure 2 outlines the

main steps involved, also highlighting (in italic) who is in charge

of each.

In summary, the system assembler chooses among the available

components those that better fulfil the performance requirements.

In fact, at this step, the system assembler knows the characteristics

of the environment in which the components will be deployed and

thus he/she can instantiate the component performance properties

given in parametric form. The various component performance

properties can now be combined in a system by following the

architecture of the application. If, from the model analysis, the

system assembler concludes that the performance requirement are

fulfilled, he/she can proceed with the acquisition of the

components and their assembly, otherwise he/she has to continue

the search by repeating these steps, or at last declare the

unfeasibility of the performance requirements.

Input: set of candidate components with performance parametric

annotations on the provided interfaces (component developer)

Step 1. Determine the usage profile and the performance goals

(system assembler)

Step 2. Component pre-selection/search (system assembler)

Step 3. Modeling and annotation (system assembler)

Step 4. Best/Worst case analysis (automated)

For each couple of candidate SM and MM repeat

Step 5. CB-SPE model generation (automated)

Step 6. Model evaluation (automated)

Step 7. Analysis of results (system assembler)

Output: selection of the components and final modeling of the

application with performance requirements satisfied, or otherwise

declaration of performance requirements unfeasibility

Figure 2: CB-SPE at the application layer

3. APPROACH AUTOMATION
The stepwise procedure described above can be partially

automated. In principle, steps 4, 5 and 6 (involving the SPE

related computations) could be fully automated, while for the

other steps, guided support should be provided to the SA to

facilitate the RT-UML modeling of the application workflow and

of the resource requirements according to the syntax required

formats.

The tool architecture is illustrated in Fig. 3, where the grey cubes

represent the constituent modules of the tool, while the rounded

rectangles exemplify the XMI exchanged information. Some parts

of this tool are still undergoing development.

The Argo-UML [16] tool has been selected as the user interface

for UML editing, since it is free and open source. The standard

UML diagrams are augmented with performance annotations

according to the PA profile. Then Argo automatically processes

the input diagrams (with PA annotations) and generates an

XML/XMI file that constitutes the input of our Model Generator

module. This component (realized in Java) provides, according to

the SPE basic principle, two different models (the two different

outgoing arcs): a stand-alone performance model, namely an EG,

and a contention based performance model, namely a QN model.

Let us first describe the round-trip tour for the EG model. Based

on [1,3] a global EG is generated from the models of key

performance scenarios represented in the SDs (according to their

occurrence probability) and its demand vectors are instantiated

according to the environment parameters given by the DD. The

output of the Model Generator is an XMI document representing

the EG.

The EG Solver module is a component that applies standard graph

analysis techniques [10] to associate an overall “cost” to each path

in the obtained EG as a function of the cost of each node that

belongs to that path. This stand-alone analysis result gives, for

each resource, the total average demand, that, in the optimal case

corresponds to the average response time [5].

The Results converter module receives in input both the

application performance goals in terms of PA annotations for the

different key performance scenarios and the performance results

provided by the EG Solver component. A simple comparison can

Component

specification
Client

PAresptimeCi(Sj[env-par]*)

PAdemandCi(Sj[env-par]*)

…

PAdelayCi(Sj[env-par]*)

give insights about the hypothesized component and environment

selection as described in the next section.

Figure 3: CB-SPE tool architecture

Let us now consider the second output of the Model Generator

module, that is the QN models. To define a QN model it is

necessary to determine: (i) the number of service centers and their

characteristics (service discipline, service times) (ii) the network

topology and (iii) the jobs in the network with their service

demand and routing [5].

For (i) and (ii) the necessary information can be derived from the

annotated DDs and SDs. For a first assessment, for example, we

associate a QN service center to each DD node. The service center

scheduling discipline is derived from the PA annotation and the

service can be considered exponential with rate equal to the node

throughput (also annotated on the DD). Similarly, the links among

the service centers are derived from the ones existing in the DD.

The kind of QN (closed, open or mixed) corresponds to the

characteristics of the modeled workload (closed, open and mixed,

respectively) annotated on the SDs.

Concerning the job characteristics (iii), we derive all the essential

information from detailed models of key performance scenarios

represented in the EGs. The different job classes on the network

model the distinct key performance scenarios. The job service

demand at network service centers can be computed from the

resource demand vectors of the EG. Similarly, the job routing

correspond to the application dynamics given by the whole EG.

4. APPLICATION-LAYER ANALYSIS
To introduce the stepwise procedure conceived at the application

layer, we adopt as a case study a simplified version of a software

retrieval application described in [7], composed by 3 or 4

components that interact through different network kinds. There is

a user that, through a specialized user interface can select and

download new software in an efficient way. A software manager

agent obtains the desired catalog through an interaction with a

data base and then creates a dedicated catalog agent that helps

the user to select the software and performs all the operations

required for the desired service.

The user can choose to download some software or to browse the

catalog of offered services and then select the desired software or

can require a catalog refinement. This process can be repeated as

many times as necessary. As in [7] we assume that the user

accesses the software retrieval service through a wireless mobile

device with a low bandwidth. Instead, the interactions between the

SW manager, and the catalog agent or the DB take place through

a high speed LAN.

Now let us describe how the CB-SPE can be applied to this case.

Input Example: Let us suppose that each component is specified

following the proposed approach and that the interface presents

annotations about its offered/required performance.

Step 1: At this step the system assembler should define the

different types of application users and the different Use Cases.

Let us suppose, for example, that the SA defines the target

application A by using four components. A is composed by two

different functionalities F1=Browse and F2=Download, that yield

a frequency of usage of 0.4 and 0.6, respectively. Following the

RT-UML PA profile, the usage profile can be modelled by

annotating each Sequence or Activity diagram modeling the Use

Case with a PA attribute representing its usage frequency.

For the performance goals, the SA, according to the whole

application and to its performance requirements, can decide to

assign (as in [6]) different importance levels (weights) (i.e., wk) to

the various individual performance metric k (e.g., response time,

utilization, throughput). wk is a relative importance weight and all

weights sum up to 1. In this case, the SA decides that the

performance metrics he/she is interested in are the CPU elapsed

time with an importance factor w1 equal to 0.7 and the

Communication delay with an importance factor w2 equal to 0.3.

Step 2: The SA chooses among the components that offer similar

services, those that provide the best performance. In fact, he/she

can now instantiate the generic PerfCi(Sj[env-par]*) given in the

component interfaces, with the characteristics of the adopted (or

hypothesized) environment, so obtaining a set of values among

which the best ones can be selected.

To carry out this choice we can use for instance a metric derived

from [6] and reshaped according to this context; we call it perf-

err. This metric aggregates several performance metrics in a way

that is independent of the units of measure of the individual

metrics and it increases as the value of an individual metric

improves with respect to its bound, while decreases as the value of

an individual metric deteriorates with respect to its bound. It is

computed as:

perf-err =∑
=

∆
n

k

kkk fw

1

)(* (1)

where n is the number of metrics being aggregated, wk is the

relative importance weight for metric k, ∆k is a relative deviation
of the performance metric k defined in a way that the relative

deviation is positive when the performance metric satsfies its goal

and negative otherwise, and fk (..) is an increasing function of ∆k.
For simplicity, in this case, we assume that each component offers

a single service S. Thus the annotations in the component

interfaces that the SA must instantiate have the form:

CPU_DemandCi (S[env-par]*) and Comm_delayCi (S[env-par]*).

Then by applying formula (1) with the performance metrics of

interest and their relative wk, it is possible to select the

combination of components that optimizes the perf-err metric.

At the end of this step we assume that the components “User-

Interf”, “SW_man”, “Cat-agent” and “DB” are selected.

Step 3: The SA should now describe, by one or more sequence

diagrams (SD), the application workflow (the glue). Therefore,

F1=Browse and F2=Download operations are modeled by means

of Argo-UML using User-Interf, SW_man, Cat_agent and DB.

For the adopted PA annotations, we have tried to adhere to the

RT-UML standard as much as possible; however there are some

 PM

solver

 Model

Generator

component

+ RT-UML PA annotations

UML Model

(XMI)
Results

converter

Performance results

(XMI)

PM

solver

Performance

 Models (XMI)

ArgoUML

tool

aspects, such as message size or use case probability, that are

essential for the generation of the performance model, but are not

covered by the standard (as also noticed in [1]). For these aspects,

that are few ones anyway, we have followed the policy of

including “minimal” lightweight extensions.

Details of SD interactions for the Browse operation are given in

Figure 4. The first note of the SDs describes the kind of workload

with its characteristics, using the stereotype PAClosedLoad. We

had to define for this stereotype a new attribute, called PAsd,

representing the occurrence probability of the modeled scenario.

Each step is then annotated with the standard PAstep stereotype,

where the attribute PAextop including the message size and the

network name models the communication delay involved by the

step.

Similarly, he/she should construct a Deployment Diagram (DD)

modeling the available resources and their characteristics. In this

case the nodes of the DD can be associated to classical resources

(device, processor, database) and communication means. The

available resources and the possible component/node mappings

can be modeled by a DD with standard PA annotations.

Step 4: In this step we perform two kinds of static analysis, called

Best case and Worst case.

A first kind of performance evaluation is called the best-case

analysis. This is because the obtained “costs” correspond to the

special case of a stand-alone application, i.e., where the

application under study is the only one in the execution

environment (therefore there is no resource contention), and the

application dynamics is taken into account only in terms of

component usage frequency. Hence these results provide an

optimal bound on the expected performance for each component

choice, and can help the system assembler in identifying a subset

of components that deserve further investigation in the more

realistic setting of application dynamics and of competition with

other applications.

Figure 4: SD for Browse operation

Let us suppose that the application involves n components Ci and

that either the number of services h=1 (∀ Ci) or the application
uses only one service at a time for each Ci. Then the performance

of the application for a given index is:

[])(* *

1

parenvSPerfpPerf CiCi

n

i

appl −= ⊕
=

 (2)

where ⊕ denotes a “composition operation” that assumes

different meaning according to the performance measure of

interest (for example for CPU_demand it becomes a sum), pCi
denotes the usage frequency of the component Ci (and all pCi,

i=1…n, must sum to one) and is obtained by combining the

information derived by the usage profile and the information

contained in the SD [3,14]. Similarly, we can derive an optimum

bound when the application requires to each component a number

h>1 of services.

For functionality F1, the analysis of the SD in Figure 4 for the

derivation of pCi leads to: pUI=(2+nb)/(5+2nb), pSM= 2/(5+2nb),

pCA=nb/(5+2nb), Pdb=1/(5+2nb). Then the best case analysis for

CPU demand and communication delay yields, respectively:

LDBLDB

SDB

SMSM

SCA

SMSM

SSW

MUMU

SUI
Ui

rat*x

u
*

rat*x

u
*

rat*x

u
*

rat*x

u
*p(F1)CPU_Demand

DBCA

SM

pp

p

+

++=

 +
+

+++
=

lanratv

scsb

wcratv

sesfnbsgsa
FdelaymC

LANWC _*_*

)(*
)1(_om

In the previous formulas, uSi, denotes the required service units to

the CPUi, xi represents the actual number of service unit/sec that

the CPUi processes and rati denotes the percentage of CPU that is

devoted to this task. This information can be derived from the PA

annotations on the UML diagrams.

The communication delay is given by the ratio between the sum of

the exchanged message sizes (sk) and the network speed for this

communication (vwc*rat_wc, vlan*rat_lan) also derived from PA

annotations. For the sake of generality, the previous formulas are

given in parametric form. A similar study can be made for

functionality F2.

If the required performance for A can be satisfied by the obtained

optimal values weigthed by their importance factors, then the

process can go on; otherwise the SA can return to step 2.1

With regard to Worst case analysis, we can also compute a

pessimistic bound on the application performance by supposing

that M (equal or similar) applications compete for the same

resources, and that, to obtain a required service, the M-th

application must wait, every time, for the completion of the other

M-1 applications. The formulae are omitted for space limitations.

Step 5: While the results provided in Step 4 provide already some

coarse indications, a more realistic performance model should

consider the application dynamics, resource contention and

communication costs. By the Model generator module we first

derive an EG modeling the application example.

The second output of the Model generator module is a QN model

including the information in the SM modeled by the EG and the

components deployment on the given platform according to the

modeled DD.

Note that we can repeat this (analysis) step on more than one

model, so to select the most adequate components. Thanks to the

separation between the SM and the MM, we can also investigate

different couplings of platforms and software components.

Step 6: As already stated the performance measures we are

interested in are the CPU-demand and the communication delay.

The EG solver module applies first some graph reduction rules.

The obtained results from Step 6 give the total CPU demand for

the different resources and the communication delay required by

the application both for the LAN and for the wireless network.

The results obtained from the QN solver are again the CPU

demand and the communication delay, but they are more precise,

as they include the waiting times for the contended resources. It is

possible to observe both local (related to a single resource) and

global (related to the whole network) performance indices.

Step 7: The results automatically obtained in step 6 are analyzed

by the SA and, if different from those expected (or desired),

he/she can go back to step 1 (or 2), modify the settled parameters,

and repeat the process until the desired results are obtained or

after a while the unfeasibility of the performance requirements is

declared. To perform this step the SA can apply formula (1) where

the performance indexes under exam this time are those relative to

the whole application, instead of those of the single component.

5. FUTURE WORK
Although this has not been discussed here, the approach can be

generalized to allow in turn for incremental compositionality

between applications.

1 Note that the optimization of the CPU demand can lead to a greater

comm-delay, and vice versa. So, the optimization step can be easy only

if there are single performance requirements.

Future work also includes the validation of the proposed

methodology by its application to case studies coming from the

industrial world. To this purpose, we are now completing the

development of the CB-SPE tool, whose architecture has been

described. Our long term goal is in fact to include this tool in a

general framework for the computer assisted discovery and

composition of software components, encompassing both

functional and non-functional properties.

6. ACKNOWLEDGMENTS
Work partially supported by the MIUR-COFIN project:

“SAHARA: Software Architectures for heterogeneous access

network infrastructures”, and by Ericsson Lab Italy in the Pisatel

initiative: http://www.iei.pi.cnr.it/ERI.

7. REFERENCES
[1] Bertolino A., Marchetti, E., Mirandola, R., “Real-Time UML-based

Performance Engineering to Aid Manager's Decisions in Multi-

project Planning”, in Proc. WOSP 2002.

[2] Bertolino A., Mirandola R., “Towards Component-based Software

Performance Engineering”, Proc. of CBSE 2003, on line at:
http://www.csse.monash.edu.au/~hws/cgibin/CBSE6/Proceedings/pr

oceedings.cgi

[3] Cortellessa V., Mirandola R. “PRIMA-UML: a Performance

Validation Incremental Methodology on Early UML Diagrams”,

Science of Computer Programming, 44 (2002), 101-129, July 2002.

[4] Grassi V., Mirandola R., “Towards Automatic Compositional

Performance Analysis of Component-based Systems”, in Proc.

WOSP 2004.

[5] Lazowska E.D., et al., “Quantitative System Performance: Computer

System Analysis using Queueing Network Models”, on line at :

http://www.cs.washington.edu/homes/lazowska/qsp/

[6] Menascé D.A., “Automatic QoS Control” IEEE Internet

Computing, Jan.-Feb. 2003.

[7] Merseguer J., et al. “Performance evaluation for the design of agent-

based systems: A Petri Net approach”. In Proc. of Software

Engineering and Petri Nets (SEPN 2000).

[8] Selic B., “Performance-Oriented UML Capabilities”. Tutorial talk

at WOSP 2002.

[9] Sitaraman M., et al., “Performance specification of software

components”. Proc. of SSR '01, p. 310. ACM/SIGSOFT, May 2001.

[10] Smith, C.U. , Williams L. “Performance Solutions: A practical

guide to creating responsive, scalable software”, Addison-Wesley,

2001

[11] Szyperski C., with Gruntz D., and Murer, S., “Component Software:

Beyond Object-Oriented Programming”, 2nd Ed., Addison-Wesley,

2002.

[12] Wallnau K.C. “Volume III: a technology for predictable assembly

from certifiable components” CMU/SEI-2003-TR-009, Apr. 2003.

[13] UML Profile for Schedulability, Performance, and Time

Specification: on line at: http://cgi.omg.org/docs/ptc/02-03-02.pdf

[14] Yacoub S., Cukic B., Ammar H.H “Scenario-based reliability

analysis of component-based software”, Proc. ISSRE’99

[15] Yacoub S. “Performance Analysis of Component-Based

Application”. Proc. SPLC 2002, p.299-315

[16] www.tigris.org Argo-UML documentation

