
Development of Software Engineering: Co-operative
efforts from academia, government and industry

Fuqing Yang
School of Electronics Engineering and Computer

Science, Peking University
Beijing, 100871, China

yang@sei.pku.edu.cn

Hong Mei
School of Electronics Engineering and Computer

Science, Peking University
Beijing, 100871, China
meih@pku.edu.cn

ABSTRACT
In the past 40 years, software engineering has emerged as an
important sub-field of computer science. The quality and
productivity of software have been improved and the cost and risk
of software development been decreased due to the contributions
made in this sub-field. The software engineering community
needs to invest much more efforts to cope with the drastically
increasing demands on the information technology as well as the
extremely open and dynamic nature of the Internet. The history of
software engineering is reviewed with emphasis on the driving
forces of software and the milestones of software engineering
development. The history of software engineering in China is
reviewed with emphasis on the relationship between software
engineering and the software industry. Based on the above
reviews, we argue that software engineering should become an
independent discipline along with computer science and co-
operative efforts from academia, governments and industries
should be needed for the harmonious development of software
engineering. Some results are presented based on China’s
experience of developing software engineering under this model.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Design, Management, Human Factors, Standardization.

1. HISTORICAL REVIEW
The concept of software engineering was first discussed in the
late 1950s and early 1960s to address the issue of the so-called
software crisis. Many believe that the official start of the field of
software engineering was the two conferences on software
engineering that NATO sponsored in 1968 and 1969. Ever since
then, software engineering has developed considerably and made
substantial contribution to the computer industry. Now it has
evolved into a separate profession standing beside computer
science and traditional engineering regardless of the doubts on
whether it is a true engineering discipline and whether there is the

silver-bullet to software crisis. And its goal doesn’t change much:
producing quality software using limited resources and time.

In a historical point of view, software engineering technology and
software technology moves forward hand in hand. Technically,
software technology has significant impact on software
engineering development. So it is necessary to investigate the
driven forces of software technology to understand the nature of
software engineering and foresee its future trends.

1.1 Driving Forces of Software Technology
Software is essentially a computer program modeling the problem
space of the physical world and its solution. Software can perform
various tasks such as controlling hardware devices, computing,
communicating, etc. It always pursues a computing model ease of
construction and evolution.
Software technology has developed rapidly since its birth.
Generally, there are four driving forces of software technology:

 Better utilizing hardware capabilities. Hardware devices are
controlled by software, without which it is impossible for
them to work efficiently and flexibly. However, computer
hardware technology always develops much faster than that
of software, as has been proved by Moore’s law. Now the
booming of Internet and the ubiquitous computing devices
pose great challenges to and require corresponding support
from software and software engineering technology.

 Pursuing a computing model that is both expressive and
natural. A basic software model comprises entity elements
and the interactions among them. The model has evolved
from the initial machine language instruction and the
sequence and jump relationship, to high-level language
statement and the three control structures, procedures and
the sub-procedures relationship, object and message passing,
to the currently popular model of components and
connectors. The evolution of computing model greatly
facilitates software construction and maintenance.

 Bridging heterogeneity and facilitating interoperation.
Heterogeneity is the natural result of free marketing. The
need for open interoperation is always necessary. Operating
system and program language makes heterogeneous
hardware transparent to programmer and user, while
middleware resolves the heterogeneity of OS and language,
and so do the popular Web Service technology to different
middleware.

 Abstracting commonalities to promote reuse. The road of
software development is also the process of improving the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'06, May 20-28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

2

programmer’s abstraction level to work in. When
commonalities are abstracted, reuse is possible to increase
the productivity and quality of software development.
Operating system relives programmers from managing low-
level hardware devices. Middleware takes control of the
hard network connection issues, so programmers can only
focus on the high-level application business logic.

The development of software engineering is closely related to that
of software itself. When software technology evolves, it requires
corresponding support from software engineering in theory,
methodology and methods, or it won’t satisfy the industry’s
requirements. The soundness of this rule is proved by the software
engineering evolution road from structured analysis and design,
object-oriented development, to the currently popular component-
based software development.

1.2 Milestones of Software Engineering
In its three decades of history, software engineering has made
much progress. The following are some important events and
achievements organized in not-so-strict chronological order:

 1940s and 1950s: Early preliminary tools, such as macro
assemblers appeared.

 1960s: The high-level programming languages such as
FORTRAN, COBOL, and ALGOL were widely used. The
notion of reuse flourished. Modular programming was being
used in programming. Software engineering emerged as a
new sub-area of computer science and engineering.

 1970s: Advanced development tools such as the utility of
make and code repository emerged. The concept of software
lifecycle boosted the development of programming
methodologies and project management. Structured
programming, ADT, and principle of information hiding
were proposed. Some early CASE tools appeared.

 1980s: The PC era began. The important results include: the
prototyping technologies and formal methods, CASE tools
and environment, software process and software process
improvement, object technology, and the discussion about
silver bullet.

 1990s and the beginning of the 21st century: The attractive
technologies in this network era include: matured object
technology, middleware, software architecture, open source
software development, agile methods and web engineering.
Currently software engineering is expected to be an
independent discipline. In the late 1990s, component
technology became prevalence. This technology is firmly
supported by many leading companies such as Microsoft,
SUN, IBM, etc, thus getting popular quickly. Component
technology might be the key towards manufacturing
software in an engineering approach.

2. SOFTWARE ENGINEERING IN CHINA
Software engineering in China was started in 1980. At that time,
there was almost no software industry. Therefore, one of the most
important goals of software engineering in China was to put
forward Chinese software industry. As the development of
software engineering in China was behind that in Europe and
North America at that time, most research and development were
conducted based on leading results produced by researchers from

Europe and North America. As Chinese government also realized
the importance of Chinese software industry, software
engineering research gradually acquired much funding from the
government.
An obvious effect of this way of software engineering
development was that it can accelerate software technology
maturation and thus boost the development of Chinese software
industry. As a result, in less than 30 years, both the software
industry and software engineering research in China achieved
very rapid growth. Figure 1 depicts the increasing revenue of
Chinese software industry in the past five years. Figure 2 depicts
the changes of the software industry in the world. From these two
figures, we can see clearly the rapid increase of Chinese software
industry in recent years. Under this scenario of software
engineering research, some researchers gradually targeted their
research at some well-known challenges in software engineering.
In the following, some representative research works are briefly
introduced with special emphasis on the largest project for
research on software technologies in China, known as the Jade
Bird project.

Figure 1. Revenue of Chinese software industry

100%10.37%2.65%2.56%10.63%30.44%39.80%3.55%Percentage

782.681.1920.72083.2238.2311.527.812004

100%14.84%1.39%1.48%9.60%31.20%40.20%1.20%Percentage

59688.468.328.8557.21862407.172000

TotalOthers S.
KoreaIndia JapanWest

Euro. U.S. ChinaCountry or
Area

Figure 2. Changes of Revenues of 2000 and 2004 (billion$)

2.1 Representative Research Work
2.1.1 Software Automation
This research was conducted by a group from Nanjing University
led by Prof. Jiafu Xu from 1980s to 1990s, and its primary
concern is to automate software production at different levels.
Therefore, the results were several systems for automating
different aspects of software production throughout the whole
lifecycle of software. Typical research includes automated
support for requirements analysis (for either structured or object-
oriented programming), automated support for system design and
programming (such as automation for algorithm design, program
synthesis and design of self-adaptive software) and automated
support for meta-level program transition etc. Please refer to [17]
for more details.

2.1.2 Temporal Logic Based Software Engineering
Environment
In 1980s, a research group from Institute of Software, Chinese
Academy of Sciences led by Prof. Zhisong Tang proposed XYZ/E,

3

the first executable temporal logic language in the world [16].
This language is a practical programming language in which state
transition of automata can be directly specified. In the following
years, a software engineering environment was developed around
this language. In this environment, software artifacts in different
development phases can be represented using a unified framework
based on XYZ/E. Furthermore, this environment can also support
different paradigms of programming (such as object orientation)
and/or domain specific programming (such as multimedia
programming). This work received a top award issued by the
government.

2.1.3 Acquisition and Reuse of Formal Specification
In 1990s, another research group from Software Institute, Chinese
Academy of Sciences led by Prof. Yunmei Dong started research
on acquisition and reuse of formal specification, called MLIRF
[1]. It is a formal method for representation, acquisition, and
reusing of formal specifications. The aim is to study how to assist
human users by computer, through human-machine cooperation,
to develop precise, complete and consistent formal specifications,
which are approved by human users through verification and then
used as the basis of software design and implementation, from
human users' vague, incomplete and inconsistent informal
statement of needs about target problems, together with, and
making full use of, known specification knowledge. Key points in
this work are a theory of recursive functions based context
insensitive languages and a reuse based method for syntax
deduction.

2.1.4 Jade Bird Software Engineering Environment
Series
During the past 20 years, a research group of researchers from
Peking University and some other Chinese Institutions were
devoted in the development of large scale software engineering
environments. The primary aim was to provide Chinese software
industry with a series of effective software production
technologies. As these environments were developed in the Jade
Bird project, they were named as JB1, JB2 and JB3. Details of the
Jade Bird project will be presented in the next section.

2.2 Jade Bird
The Jade Bird (JB) project, started in 1983 in the period of the 6th
State Five-year Plan (1981-1985), is a key/major/grand national
science and technology project. It has last more than 15 years
through the 7th, 8th, and 9th State Five-year Plan (1986-2000)
and is the largest software project getting continual support from
the government. More than 20 institutions, 300 researchers and
developers are involved in the development of JB. The name of
this project comes from a lucky and divine bird in ancient Chinese
mythology, who serves as a message deliverer in the world of
gods. With 3 feet, black eyes and red head, this beautiful bird is
viewed as a lucky symbol in China. There are many tales about
her in the folklore and literature.

The objective of JB project is to boost the development of
software industry in China by doing research and practice of
industrialization of software production, providing advanced
software engineering tools for software development enterprises,
and helping them to improve their software processes. Software
industry is selected as one of the key industries to be developed
with top priority in China by the government. The conduction of

this project (which is depicted in Figure 3) is one of the important
moves aimed at building the necessary infrastructure for rapid
development of the software industry.

Means of Software ProductionMeans of Software Production

Industrialized
Production

C
oncept

C
oncept

R
enovation

R
enovation

M
echanism

M

echanism

R
enovation

R
enovation

T
echnology

T
echnology

R
enovation

R
enovation

Key Factors

Fundamental
Research

Industrialization
Engineering

Commercialization
Practicalization

8181--85 BETA85 BETA--85 Kernel Software 85 Kernel Software
Engineering EnvironmentEngineering Environment

8686--90 90 JB2 Software Engineering JB2 Software Engineering
EnvironmentEnvironment

9191--95 95 JB2 Software Engineering JB2 Software Engineering
EnvironmentEnvironment

9696--97 JB3 Software Engineering 97 JB3 Software Engineering
EnvironmentEnvironment

9898--00 JB Software Production Line System00 JB Software Production Line System

H
istorical Points

Engineering Methods
Industrialized Technologies

Standards

Supporting Environments

TRDC
Model

TRDC
Model

Market
Technique
Engineering

Market
Technique
Engineering

Production
Management

Tool
Standard

Production
Management

Tool
Standard

0101--05 05 InternetInternet Based Component Library Based Component Library
Centric Software Development PlatformCentric Software Development Platform

Ad Hoc Production

Figure 3. Overview of Jade Bird in the past 20 years

Thanks to the great efforts and hard working of the project team, a
lot of achievements have been obtained. Of these achievements,
some have turned into commercial products used in software
enterprises, some have been published as research results on
national or international journals and conferences, and some have
been applied by the project team and other enterprises for
improving the productivity and quality of the software
development. In the past ten years, this project has received
several awards issued by the government and some industry
societies, due to its outstanding achievements in research and
practice of software engineering and great contribution to industry.
It is worth mentioning that in the progress of the project, many
young researchers and engineers became mature and have become
the backbone of the project team or other software enterprises.
The following are some milestones in the progress of the project:

 In 1985, BETA-85, a kernel software engineering
environment, was released [18]. It was the foundation of the
following development of JB project. The architecture of
BETA-85 is depicted in Figure 4.

 In 1990, JB1, an integrated software engineering
environment supporting structured software methodology,
was released. It was the first one in the JB environment
series, and also the first large-scale commercial software
engineering environment in China. It was then that the name
Jade Bird was first introduced. This environment is depicted
in Figure 5.

 In 1995, JB2, an object-oriented integrated software
engineering environment supporting both OO and structured
methodology, was released. It is an enhancement of JB1. At
the time, a series of JB software engineering standards and
specifications were published. Figure 6 illustrates an
overview of JB2. Please refer to [19] for details.

4

Project
Database

Software
Configuration

Database
File

Store

Program Editor

Host
SystemUnix & C

Kernel
Toolset

Integrated
Environment

Database
Systems

Interface

APIs
User Interfaces

Workbench System

Database
Management

System

Source Code
Control
System

File
System

Figure 4. BETA-85: kernel software engineering environment

Interface to
Information Base

Project
Management

SPMT

Requirements
Analysis
RDAT
DAT/R
DAT/T

Software
Design

SDT
DAT/D
DAT/T

Programming

CCD

Testing

CPTT

Maintenance

CPCT
Utility

Environment Information Base

Tailorable User Interfaces

Host System (Unix)

Toolset 1 Toolset 2 Toolset 3 Toolset 4 Toolset 5 Toolset 6 Toolset 7

Figure 5. JB1: integrated software engineering environment

Application Development

JB2/MIS Platform JB2/GIS Platform JB2/SCADA Platform

JB2/SM JB2/OO

Tailoring & Integration

User Interfaces

CASE C++ Structured Tools OO Tools Application Tools

Environmental Mechanism（OMS, MPS, …）

Further EnhancementStandards

JB2 Environment

Support

Figure 6. JB2: OO integrated software engineering

environment
 In 1997, JB3, called JB Software Production Line System

(depicted in Figure 7) that can support component-based
reuse, was released [20]. It is an enhancement of JB2,
consisting of a central component library and a set of tools.
In addition, a set of technical specifications on software
component technology were added into the list of JB

standards & specifications. In 2000, a new version of JB3
was released. In the past 3 years, JB3 system has been used
in practice widely and got much feedback. By the end of
this year, the task of JB Project in the 9th State Five-year
Plan was finished.

Component & Component &
ArchitectureArchitecture

ArchitectureArchitecture
LibraryLibrary

Component Component
Classification Classification

ToolTool

Component Component
Retrieval ToolRetrieval Tool

Component Component
Composition Composition

ToolTool
ReuseReuse

Reverse EngineeringReverse Engineering

ApplicationsApplications
Program Program

Understanding Understanding
and Component and Component

Capture ToolCapture Tool

Domain Analysis Domain Analysis
TollTollDomain EngineeringDomain Engineering

OO AnalysisOO Analysis
ToolTool

OO DesignOO Design
ToolTool

OO ProgrammingOO Programming
ToolTool

OO TestingOO Testing
ToolTool

ReuseReuse--Based OO Based OO
Development ToolsDevelopment Tools

ReRe--engineeringengineering

Jade Bird Environment MechanismJade Bird Environment Mechanism

Heterogeneous PlatformHeterogeneous PlatformMultiMulti--Database InterfaceDatabase Interface

ComponentComponent
LibraryLibrary

OracleSybaseInformix

Figure 7. JB3: software production line system

Domain
Engineering

Object Oriented
Modeling

Software Re-
engineering

Software Quality
Evaluation

Component Composition and
Deployment

Software Component Management

Software Testing

OO Design
Measurement

System
PKU OODMS

Reverse
Engineering

Tool
PKU OBRET

Re-engineering
Tool

FDReengineer

DbC Supporting
Tool

PKUJDbCT

Java Mutation
Testing Tool

JUTO

Feature
Modeling Tool
PKU_FODM

OO Modeling
Tool

JBOO 3.0

UML 2.0
Modeling Tool

JBOO 4.0

EJB
Composition

Tool
BSAppBuilde

COM
Composition

Tool
SoloStudio

Software Fault
Analysis System

FRACAS

Public Component
Library

Management
System

Public Component
Library

Management
System

JBCLMS

Software Configuration
Management

System
JBCM

Change Control
Management

System
JBCCM

Software Reuse
Project

Management
System

PKU PM

R
euse-B

ased Softw
are Process M

anagem
ent

Figure 8. JB environment in the 10th State Five-Year Plan

 In the period of the 10th State Five-Year Plan (2001-2005),
JB project was still keeping moving ahead under the
funding of the State 863 High-Tech Program and the
National 973 Key Basic Research and Development
Program. It focused on the research on the architecture and
component based software development technology and the
promotion of the industrialization of software production in
China. In 2005, a software development platform based on a
nation-wide component library was set up and began to
provide services for software enterprises. With the
continuous efforts of the JB project, most software
enterprises in China have realized that architecture and
component based software development is the key to their
success. Now, the software industry in China begins to
restructure itself spontaneously to meet the requirements of
this new paradigm of software development. Figure 8
depicts the most recent JB environment.

5

3. CO-OPERATIVE DEVELOPMENT
Software engineering is a typical cross-disciplinary. It applies
technologies and practices from computer science, project
management, traditional engineering, mathematics, management,
psychology, economics, application domains, and other fields.
In many countries, software engineering affects economies and
societies—especially the IT industry—in many ways. In China,
software industry plays a very important role in the national
economy and contributes a lot to the economic growth. Thus there
is urgent demand of strong support from software engineering. To
meet the requirements, a harmonious, co-operative software
engineering development model suitable for the situation of China
is practiced.
There are mainly three forces in this development model: the
Chinese government, the industry and the academy. The
government plays the role of making policies, sponsoring
fundamental research projects and key technical-problem
attacking projects, constructing public infrastructure for the whole
industry. The academy plays the roles of education, training,
taking projects funded by the government and industry, and
making advanced research. The industry gets strong support from
government and academy. Some of the technologies and tools that
the industry need are either transferred from the research results
from the academies or freely provided by the government as
public infrastructure.
Practices in China show that this model is very effective and
greatly promotes the ecosystem. The industry develops rapidly.
Many companies grow up competitive in free market. The
academy receives considerable funding to carry out research
keeping the pace with the world.

3.1 Industry
The goals of China software industry development include: a)
extending the scale of the industry and the share of the global
market; 2) having kernel technologies and famous brand products;
3) having competitive multi-national companies. What is more,
China is the world’s largest developing economy, which requires
that quantities of high-quality software are produced in low-cost
within controlled time.
To meet the requirements, the software industry should change
the production mode from handcraft to engineering. This
transition requires strong supports from technology, infrastructure
and human resources. In this era of no silver bullets, component
based software development shows its potential and is selected as
one of the cornerstones of the technology system. Figure 9
illustrates the desired industry structure and the underlying
infrastructure.
In this industry structure, responsibilities are well divided: there
are the component vendors providing reusable domain-specific
components or general components, which are either reused by
the system integration vendors or the service providers. These
companies get support from the industry infrastructures. The most
important infrastructure here is the various component libraries:
enterprise component library, municipal component library,
domain component library and the national component library.
Among them the last three are public libraries. Software
companies are encouraged to put their components that have been

proved soundness into the public library. There are incentives and
protections for sharing and fees for reuse.

platform
Operating

platform
Developing

Basic platform

Enterprise Comp.Lib.

Enterprise developing platform

Comp.Lib.
National Specification facility

Security

Comp.Lib.
Domain

Comp.Lib.
Municipal

vendors
Component System integration

vendors providers
Service Structural Division

based on component/framework technology
Enterprise integration environment(EIA)

of Software Industry

Support Promotion

Software Industry Infrastructure

Figure 9. Structure of China software industry and the

underlying infrastructures
Peking University has developed a component library
management system with the following features: 1) Support
component-centered software asset management: component
description, classification, entity-relationship customization and
management. 2) Support the description and management of on-
line service components. 3) Support various access methods, e.g.,
the WWW method and the Web Services-based API method.
Component library greatly facilitates reuse. Now this system has
become one of the most important technical infrastructures in the
national 863 software incubator centers. Up till present, there are
more than eight active public software component libraries
deployed in the cities of Beijing, Shanghai, Guangzhou,
Shenyang, Changsha, Zhengzhou, and Xi’an, etc. These
component library management systems are autonomous, each
having different resources targeted for special domains and users.
The interoperation among them is well supported.

3.2 Education
The immense growth of software industry requires corresponding
increase of professional software engineers and researchers.
Those making fundamental researches can be educated by the
traditional computer science departments of universities. However,
those making practical development (usually blue collar workers
and white collar engineers) are badly short of. These practitioners
are required to have not only the skills of software developing but
also domain knowledge that is hard to obtain from the classical
education systems. And another more severe problem is that the
number of software engineers that the industry demands far
exceeds that the education system could provide. In year 2001,
the shortage was expected to be over 200,000. To meet the
demands, since 2002, Chinese government has funded to set up
more than 35 demonstrative schools of software, amongst of
which the most representative one is the school of software,
Peking University.
The school of software, PKU aims at training high-level talents
with cross-disciplinary knowledge, domain expertise and global
perspective. The graduates are expected to have strong
professional background and balanced intelligent competence,
capable of software development and project management, and
have foreign language competence.

6

Currently there are over 2000 enrolled students, 33 full-time staffs
(12 foreigners) and 50 part-time staffs. The curriculum is set up to
meet the requirements of industry and market. Now the school
offers 142 courses on software engineering, integrated circuit
design and engineering, social sciences and humanities, advanced
technologies, etc. Many courses are taught in English.
There are three national bases in the school of software, PKU: the
National Talent Training Base in Software (Beijing), National
Talent Training Base of Integrated Circuit, and the Beijing
Engineering Base, National Engineering Research Center of
Software Engineering.
The school has good relationship with industries. There are 12
joint-labs funded by well-known companies. And more than 200
companies provide about 1600 internships every year. Students
have chances to intern in the leading corporations such as IBM,
Microsoft, Intel, Motorola, Lenovo, Founder, Cadence, AMD,
Huawei, etc. The fact that the students are well welcomed show
that the educating and training mode of software school is
successful.
These 35 schools of software contribute a lot to the whole
software ecosystem. In 2004, the number of software engineers
graduated was 170, 000, four times that in 2000. The human
resource shortage problem was alleviated.

3.3 Research
3.3.1 Internetware: A New Software Paradigm
In recent years, many new concepts and research topics have been
proposed. For example, Grid computing [3] proposes a new model
of networked applications from the perspective of resource
sharing and management. Pervasive computing [14] discusses a
new situation of networked applications from the perspective of
human computer interaction. Service Oriented Computing [13]
focuses on a new form of software with emphasis on collaboration
and dynamism from the philosophy of software as a service.
Almost all of the work, also including peer-to-peer computing,
semantic web, autonomic computing, model driven architecture,
etc., can be considered as attempts to review, rethink and evolve
information technology from some new perspectives.
When looking software in the above areas, it can be concluded
that there is a new and significant trend that software becomes
much more flexible, goal-directed and continuing reactive.
Basically, the emerging evolution of software results from the
four driving forces mentioned above in the era of Internet, whose
characteristics include heterogeneity, openness, dynamism and
variability. Technically, software will become autonomous,
evolvable, cooperative, polymorphic and context aware for
surviving and growing in the sea of rapid, continuous and
unpredictable changes of users and environments. Such software
is very different to current software. To distinguish them, we call
such new paradigm of software “Internetware”.
Obviously, existing software methodologies and technologies
cannot support the development, deployment and management of
Internetware in an efficient, cost-effective and low risk manner.
For example, the development methods for open and dynamic
systems are very different to those for closed and static systems,
as shown in Figure 10. In traditional software systems, the goals
of the target systems are well-planned and deterministic and all
resources involved in the development and deployment are

available and well controlled. Therefore, the development is
usually top-down, i.e., determining the scope of the target system
and then decomposing the target system into small pieces of
subsystems or modules which can be directly implemented. On
the contrary, the goals of Internetware systems are usually un-
deterministic due to the on demand business and all required
resources may only be available in a special period and usually
controlled by different parties. As a result, the development of
Internetware systems is usually bottom-up, i.e., determining the
changes caused by on demand business, discovering available
resources in Internet and composing them together in terms of
desired functions and qualities. There are many other critical
changes in the shift from traditional software to Internetware,
such as the software structure becoming much more open and
dynamic, the software entity becoming active and autonomous,
the collaboration among software entities becoming more flexible
and diverse, the software evolution continuing for a longer period
and being performed at runtime and so on.

Figure 10. Challenges to development of Internetware

3.3.2 Chinese research on Internetware
Definitely, these above changes bring new challenges to almost
all research and practice areas of software engineering. For
coping with these challenges, several Chinese universities and
institutes, including Peking University, Nanjing University,
Academy of Mathematics and Systems Science of Chinese
Academy Sciences, East China Normal University, Institute of
Software of Chinese Academy Sciences and Tsinghua University,
collaborate with each other under the support of the national basic
research program (973), called “Research on Theory and
Methodology of Agent-based Middleware on Internet Platform”.
The project aims to the formal model for capturing basic
characteristics Internetware, the agent-based theory and method
for incarnating the behavioral nature of Internetware, the
component-based methodology for developing Internetware
systems, the reference model of middleware for Internetware, the
trust theory and measurement for Internetware, and the technical
specifications and demonstration applications of Internetware.
Basically, this project takes two different ways, evolutionary and
revolutionary, approaching Internetware. In the evolutionary
approach, existing methods and techniques, e.g., the component
model and software architecture, will be enhanced by innovative
features required by Internetware. As a result, legacy systems or
new systems developed by existing methods and techniques can
be evolved to Internetware. In the revolutionary approach, agent-
like active entities (existing software agents cannot sufficiently
support the characteristics of Internetware) will act as the basic
units of software systems and all Internetware features will be
provided by the capabilities of individual entities and the
collaboration between two or more entities.

7

3.3.3 ABC as a methodology for Internetware
Peking University focuses on the methodology of engineering
Internetware. Belonging to the evolutionary approach, the
methodology is called ABC (Architecture Based Component
Composition) [10], which employs software architecture (SA) as
the blueprint and middleware technology as the runtime
infrastructure for the development, deployment, maintenance and
evolution of component based systems. The most distinguished
feature of ABC is the introduction of SA into each phase of
software life cycle, as shown in Figure 11.

Figure 11. Process model and architectural views of ABC

To achieve the traceability and consistency between requirement
specifications and system design, ABC introduces concepts and
principles of software architecture into requirements analysis and
specifications. In this phase, there is no actual SA but only the
requirement specifications of the system to be developed, which
are structured in the way similar to SA. It consists of a set of
component specifications, connector specifications and constraint
specifications and will be used as the basis for software
architecting.
In the phase of software architecting, the requirements
specifications are refined, and some overall design decisions are
made. To produce SA meeting functional and non-functional
requirements of the target system, the architects may study the
requirement specifications, refine components and connectors in
the problem space, create necessary artificial components and
connectors, produce dynamic and static SA models, build
mapping relationships between requirement specifications and SA,
check SA and so on.
In the phase of component composition, the components,
connectors and constraints in the reusable assets repository will be
selected, qualified and adapted to implement the logic entities
produced in architecting. However, there are still some elements
unable to be implemented by reusable assets. These elements
have to be implemented by hand in object-oriented languages or
other ones. Being implemented and tested, the elements will be
stored into the repository and then composed into the target
system as reusable assets. In that sense, the design view of SA can
be fully implemented by the reusable assets.
Component-based systems are usually implemented and executed
with the help of some common middleware, such as
CORBA/CCM, J2EE/EJB and COM. Before the implementation
of the system being executed, it must be deployed into the
middleware platform. In this phase, SA should be complemented
with some information so that middleware can install and execute
the system correctly. Typically, the information includes
declaration of its required resources, security realm and roles,
component names for runtime binding, and so on.

In some sense, the development of a system in ABC can be
considered as a series of refinement and transformation of
architecture models. The syntax and semantics of SA would
become more accurate or complete after every refinement or
transformation. SA in maintenance and evolution has the most
accurate and complete details of SA describing the final system.
Since it represents the actual situation of the runtime system, the
runtime view of SA has a significant different perspective on
components, connectors and constraints from the design view.
There are many challenges to the ABC approach as well as many
novel ideas, including the feature modeling for reusability, the
software architecting for changeability, the architecture based
deployment for high performance and dependability, the
architecture based reflection for autonomic management and so
on.

Figure 12. Feature modeling tool

As discussed above, new software systems can be implemented
by reusing existing software in Internetware. Usually, reusability
makes sense if and only if it is applied to an application domain or
a product line. There are many domain oriented modeling
methods, in which the feature oriented modeling is best-of-breed
and selected by ABC [12] [21]. The feature-oriented approach to
requirements modeling treats features as the basic entities in the
problem space, and uses features and relations between features
(namely, feature model) to specify the problem space, as shown in
Figure 12. A feature describes a software characteristic from user
or customer views, which essentially consists of a cohesive set of
individual requirements. Besides the nature of capturing
commonality and variation, there are two important benefits to
model requirements of component based systems in feature
models. The first is to support software architecting at the
requirements level. In the context of component-oriented
programming, the design space is modularized by components
and connectors. But there lacks a method to modularize the
problem space. The second is to facilitate the reuse of SA. A
carefully designed SA can be reused by a set of similar
applications which share a set of common requirements. There
needs an effective way to represent the requirements of the set of
applications, rather than doing it repeatedly to each application.
Since feature model is very different to software architecture,
there are two critical challenges, i.e. how to trace features to
components and construct the software architecture based on the
feature model. It should be noted that the software architecture
here is abstract and acts as the architecture oriented requirement

8

specifications. The concept of responsibility is introduced to
handle these two issues [22]. A responsibility is a cohesive set of
program specifications from programmers’ viewpoint, and can be
used as a unit for work assignment. Tracing features to
components is complex. One important reason is the complex n-
to-n relations between features and components. By introducing
responsibilities as the bridge, the n-to-n relations are decomposed
into two sets of 1-to-n relations. One set contains the 1-to-n
relations between features and responsibilities, indicating that a
feature can be generally operationalized into several
responsibilities. The other set contains the 1-to-n relations
between components and responsibilities, showing that a
component may be assigned several responsibilities. Based on the
decomposition, tracing features to components can be done in a
two-step way: first operationalizing features into responsibilities,
then assigning responsibilities to components. As to the problem
of the software architecture’s construction, we decompose it into
two sub-problems, namely, component construction and
interaction identification. Based on the 1-to-n relations between
features/components and responsibilities, components can be
constructed by clustering responsibilities operationalized from
features. The problem of interaction identification is resolved by
analyzing interactions between responsibilities when
operationalizing features, and using them as the source of
interactions between components.

Figure 13. Software architecting tool

One of the most challenging issues of Internetware is how to
survive in the rapid and continuous changes. Currently, there are
plentiful research and practice on the adaptability. Particularly,
adaptable or reflective middleware provides powerful and
practical mechanisms for monitoring and changing runtime
systems. However, these mechanisms only handle “how to do”
other than “why, when and what to do” the adaptation. Then the
adaptation for changes is still difficult, error-prone and time-
consuming. On the other hand, developers can predict some
changes and plan corresponding adaptations before the target
system runs. Unfortunately, developers, especially designers, do
not take the runtime adaptable mechanisms into account when
developing the target system. For enhancing changeability of
Internetware, ABC supports the modeling of self-adaptive
software architecture (SASA), as shown in Figure 13. In details,
we synthesize some sophisticated methods in architecture based
software engineering, that is, the quality analysis in software

architecture for WHEN to change, the design and description of
dynamisms in software architecture for WHAT to change, and the
runtime software architecture for HOW to change. Some cases
studies, such as adaptation of workflow [24] and exception
handling in software architecture [2], demonstrate the
effectiveness and feasibility of the idea.

Figure 14. Architecture based deploy tool

When deploying a software system into a target environment,
some challenging issues have to be handled, such as the
configuration of the system to be deployed should match the
configuration of the target environment, the new system should
not put any bad impact on existing systems in the same
environment and the resource requirements of the new system
have to be satisfied. Otherwise, not only the new system but also
existing systems cannot provide desired functions and qualities.
These issues become much more challenging due to the extremely
open and dynamic nature of Internetware. In ABC, software
architecture is introduced into the deployment for facilitating and
automating the analysis, reasoning and decision making [5]. As
shown in Figure 14, the software architecture of the system to be
deployed can be visualized, which help the deployers to
understand the structures, behaviors, desired functions and
qualities of the system. All machines in a local area network and
their resource consumption can be also visualized so that the
deployers can allocate enough resources to the new system by
dragging-and-dropping the components to a machine. Moreover,
since almost all configuration information can be derived from the
software architecture description, it is not necessary for deployers
to write the configuration by hand any more.
Different to traditional software systems, Internetware has to be
maintained and evolved frequently at runtime for keeping 7(days)
x 24(hours) availability in the rapid and continuous changes of
user requirements and operating environments. Since one of the
most critical issues in software maintenance and evolution is the
complexity of understanding the target system, software
architecture is considered as a promising way. However, existing
architecture based maintenance and evolution methods are usually
based on source code and other documentation and then cannot
capture the actual and up-to-date structure, states and behaviors of
the target system and change the runtime system at once. In ABC,
runtime software architecture is proposed to solve the problem of
architecture based maintenance and evolution. Runtime software
architecture is a model that represents a runtime system as a set of

9

architectural elements which are causally connected with the
internal states and behaviors of the runtime system [4]. The causal
connection is implemented as reflection so that changes to the
runtime software architecture immediately cause corresponding
changes to the runtime system, as shown in Figure 15. The
correctness of the reflection, that is, the changes taking place in
the runtime software architecture and the runtime system are
exactly equal and do not cause deadlocks, can be proved by some
formalized methods [15]. Based on the architecture based
reflection, a set of autonomic management programs can be
implemented, such as the automatic configuration of the thread
pool for achieving the best response time and throughput [5], the
automatic coordinated recovery of correlated faults of middleware
services [7], and so on.

Figure 15. Architecture based reflective J2EE server

4. CONCLUSION
The development of software engineering has been accompanied
by the rapid growth of software technology and software industry
in the past four decades. When looking back to the history, four
main driving forces for software technologies can be concluded,
which then technically determined the development of software
engineering. Actually, milestones of software engineering in the
history can also be viewed as reflection of the changes in software
technologies. In the new millennium, the drastically increasing
demands on software technologies and the extremely open and
dynamic nature of the Internet have presented new challenges for
software engineering. This paper firstly reviews the history of
software engineering in the world and in China especially. Based
on these reviews, a new paradigm is proposed for the future
development of software engineering. In this paradigm, software
engineering is viewed as an independent discipline along with
computer science and its development relies on co-operative
efforts from academia, governments and industries.

The authors would like to thank our research group for their
inspiration and support in the past two decades. Thanks Gang
Huang, Lu Zhang and Donggang Cao in the preparation of the
materials. Thanks to ShingChi Cheung and Robert Lai for their
comments. This work was supported by several government-
funded projects, including the National Key Projects in the State
6th to 10th Five-Year Plan, the State 863 High-Tech Program, the
National Basic Research Program (973), the National Natural
Science Foundation of China, the research program from Ministry
of Education, etc.

5. REFERENCES
Due to the space limit and the language, so many papers and
reports, especially in Chinese, referred by this paper are omitted
here. We would like to thank the authors of these materials.
[1] Dong, Y., K. Li, H. Chen, et al., Design and implementation

of the formal specification acquisition system SAQ, Conf.
Software: Theory and Practice, IFIP 16th World Computer
Congress 2000. Beijing, 2000, 201-211.

[2] Feng, Y., Gang Huang, Yali Zhu, Hong Mei. Exception
Handling in Component Composition with the Support of
Middleware. Fifth International Workshop on Software
Engineering and Middleware (SEM 2005), co-located with
ESEC-FSE'05, Lisbon, Portugal, September 5-6, 2005, ACM
Press, pp.90-97.

[3] Foster, I., C. Kesselman and S. Tuecke, The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International
Journal of High Performance Computing Applications, 2001,
15 (3), pp. 200-222.

[4] Huang, G., M. Hong, F.Q. Yang. Runtime Recovery and
Manipulation of Software Architecture of Component-based
Systems. International Journal of Automated Software
Engineering, to appear in Vol. 13 No. 2, 2006, pp. 257-281.

[5] Huang, G., Tiancheng Liu, Hong Mei, Zizhan Zheng, Zhao
Liu, Gang Fan. Towards Autonomic Computing Middleware
via Reflection. In Proceedings of 28th Annual International
Computer Software and Applications Conference
(COMPSAC), Hongkong, China, September 28-30, 2004,
pp.122-127.

[6] Lan, L., Gang HUANG, Liya MA, Meng WANG, Hong
MEI, Long ZHANG, Ying CHEN. Architecture based
Deployment of Large-Scale Component based Systems: the
Tool and Principles. 8th International SIGSOFT Symposium
on Component-based Software Engineering (CBSE), 2005,
LNCS 3489, Springer, pp. 123-138.

[7] Liu, T., HUANG Gang, FAN Gang, MEI Hong, The
Coordinated Recovery of Data Service and Transaction
Service in J2EE, In Proceedings of 29th Annual International
Computer Software and Applications Conference
(COMPSAC05), Edinburgh, Scotland, July 2005, pp. 485-
490.

[8] Mei, H. and G. Huang. PKUAS: An Architecture-based
Reflective Component Operating Platform, 10th IEEE
International Workshop on Future Trends of Distributed
Computing Systems, 2004, Suzhou, China. pp 163-169.

[9] Mei, H., A Complementary Approach to Requirements
Engineering: Software Architecture Orientation, ACM
SIGSOFT Software Engineering Notes, 2000, 25(2): 40-45.

[10] Mei, H., Chang J.C. and Yang F.Q., Software component
composition based on ADL and middleware, Science in
China (Series F), 2001, 44(2): 136-151.

[11] Mei, H., Feng Chen, Qianxiang Wang and Yaodong Feng.
ABC/ADL: An ADL Supporting Component Composition.
In proceedings of 4th International Conference on Formal
Engineering Methods (ICFEM2002), 2002, pp. 38-47.

10

[12] Mei, H., W. Zhang, F. Gu. A feature oriented approach to
modeling and reusing requirements of software product lines.
In Proceedings of COMPSAC 2003, pp. 250-256.

[13] Papazoglou, M. P., D. Georgakopoulos. Editors. Special
Issue on Service Oriented Computing. Communications of
ACM. Oct. 2003, Vol. 46, No. 10, 24-60.

[14] Satyanarayanan, M. Pervasive computing: vision and
challenges. IEEE Personal Communications, Aug 2001,
Volume: 8, Issue: 4, 10-17.

[15] Shen, J., Xi Sun, Gang Huang, Wenpin Jiao, Yanchun Sun,
and Hong Mei, Towards a Unified Formal Model for
Supporting Mechanisms of Dynamic Component Update,
The fifth joint meeting of the European Software
Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC-FSE'05),
Lisbon, Portugal, September 5-9, 2005, pp. 80-89.

[16] Tang, C.-S. Toward a Unified Logic Basis for Programming
Languages. IFIP Congress 1983, pp.425-429.

[17] Xu, J., Lu, J. Software Languages and Their Implementation,
Scientific Publishing House, 2000. (in Chinese)

[18] Yang, F., et al. Kernel Software Engineering Environment
BETA-85, Science in China (A), Vol.19, No.7, 1989.

[19] Yang, F., Shao, W., Mei, H., The Design and
Implementation of Object-Oriented CASE Environment Jade
Bird 2(JB2), Science in China (A), Vol.25, No.5, 1995, 533-
542. (in Chinese)

[20] Yang, F., Mei, H., Research on Technology for
Industrialization Production of Software---Practice of JB
(Jade Bird) Project, Symposium of Sino-American
Engineering Technology, Oct. 1997, Beijing, 190-200.

[21] Zhang, W., Hong Mei, Haiyan Zhao, A Feature-Oriented
Approach to Modeling Requirements Dependencies, in
Proceedings of 13th IEEE International Requirements
Engineering Conference (ICRE), pp,273-282, La Sorbonne,,
France, August 29-September 2, 2005.

[22] Zhang, W., Hong Mei, Haiyan Zhao, Jie Yang,
Transformation from CIM to PIM: Feature-Oriented
Component-Based Approach, 8th International Conference
on Model Driven Engineering Languages and Systems
(MoDELS 2005), Montego Bay, Jamaica, October 2-7, 2005,
Proceedings. LNCS 3713: 248-263

[23] Zhu, Y., Gang HUANG, Hong MEI. Modeling Diverse and
Complex Interactions Enabled by Middleware as Connectors
in Software Architectures. 10th IEEE International
Conference on the Engineering of Complex Computer
Systems (ICECCS2005), 2005, pp. 37-46.

[24] Zhu, Y., Gang Huang, Hong Mei, Quality Attribute Scenario
Based Architectural Modeling for Self-Adaptation Supported
by Architecture-based Reflective Middleware, Asia Pacific
Software Engineering Conference (APSEC 2004), Busan,
Korea, November 30 C December 3, 2004, pp. 2-9.

11

