Density-Based Clustering in Spatial Databases:
The Algorithm GDBSCAN and its Applications

Jorg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 Muinchen, Germany
{sander | ester | kriegel | xwxu}@informatik.uni-muenchen.de

Abstract. The clustering algorithm DBSCAN relies on a density-based notion of clusters and is designed to dis-
cover clusters of arbitrary shape as well as to distinguish noise. In this paper, we generalize this algorithm in two
important directions. The generalized algorithm - called GDBSCAN - can cluster point objects as well as spatially
extended objects according to both, their spatial and their non-spatial attributes. In addition, four applications using
2D points (astronomy), 3D points (biology), 5D points (earth science) and 2D polygons (geography) are presented,
demonstrating the applicability of GDBSCAN to real world problems.

Keywords:. Clustering Algorithms, Spatial Databases, Efficiency, Applications.

1. Introduction

Soatial Database Systems (SDBS) (Gueting 1994) are database systemsfor the management of
gpatial data, i.e. point objects or spatially extended objectsin a2D or 3D space or in some high
dimensional vector space. While alot of research has been conducted on knowledge discovery
in relational databasesin the last years, only a few methods for knowledge discovery in spatial
databases have been proposed in the literature. Knowledge discovery becomes more and more
important in spatial databases since increasingly large amounts of data obtained from satellite
images, X-ray crystallography or other automatic equipment are stored in spatial databases.

Dataminingisastepinthe KDD process consisting of the application of dataanalysisand dis-
covery algorithmsthat, under acceptable computational efficiency limitations, produce a partic-
ular enumeration of patterns over the data (Fayyad et al.,1996). Clustering, i.e. grouping the ob-
jects of a database into meaningful subclasses, is one of the major data mining methods
(Matheuset al., 1993). There has been alot of research on clustering algorithms for decades but
the application to large spatial databasesintroduces the following new requirements:

(1) Minimal requirements of domain knowledge to determine the input parameters, because ap-
propriate values are often not known in advance when dealing with large databases.
(2) Discovery of clusterswith arbitrary shape, because the shape of clustersin spatial databases

may be non-convex, spherical, drawn-out, linear, el ongated etc.



(3) Good efficiency on large databases, i.e. on databases of significantly more than just a few
thousand objects.

(Ester et al., 1996) present the density-based clustering algorithm DBSCAN. For each point of
acluster its Eps-neighborhood for some given Eps > 0 hasto contain at least aminimum number
of points, i.e. the “density” in tHgps-neighborhood of points has to exceed some threshold. DB-
SCAN meets the above requirements in the following sense: first, DBSCAN requires only one
input parameter and supports the user in determining an appropriate value for it. Second, it dis-
covers clusters of arbitrary shape and can distinguish noise, and third, using spatial access meth-
ods, DBSCAN is efficient even for large spatial databases.

In this paper, we present the algorithm GDBSCAN generalizing DBSCAN in two important
ways. First, we can use any notion of a neighborhood of an object if the definition of the neigh-
borhood is based on a binary predicate which is symmetric and reflexive. For example, when
clustering polygons, the neighborhood may be defined by the intersect predicate. Second, in-
stead of simply counting the objects in the neighborhood of an object, we can use other mea-
sures, e.g. considering the non-spatial attributes such as the average income of a city, to define
the “cardinality” of that neighborhood. Thus, the generalized GDBSCAN algorithm can cluster
point objects as well as spatially extended objects according to both, their spatial and their non-
spatial attributes. Furthermore, we present four applications using 2D points (astronomy), 3D
points (biology), 5D points (earth science) and 2D polygons (geography) demonstrating the ap-
plicability of GDBSCAN to real world problems.

The rest of the paper is organized as follows. We discuss well-known clustering algorithms in
section 2 evaluating them according to the above requirements. In section 3, we present our den-
sity-based notion of clusters and section 4 introduces the algorithm GDBSCAN which discovers
such clusters in a spatial database. In section 5, we present an analytical as well as an experimen-
tal evaluation of the effectiveness and efficiency of GDBSCAN. Furthermore, a comparison
with the well-known clustering algorithms CLARANS and BIRCH is performed. In section 6,
four applications of GDBSCAN are discussed and section 7 concludes with a summary and

some directions for future research.



2. Related Work on Clustering Algorithms

Two main typesof clustering algorithms can be distinguished (Kaufman and Rousseeuw, 1990):
partitioning and hierarchical algorithms. Partitioning algorithms construct a partition of a data-
base D of n objectsinto aset of k clusters. The partitioning algorithmstypically start with anini-
tial partition of D and then use an iterative control strategy to optimize an objective function.
Each cluster is represented by the gravity center of the cluster (k-means algorithms)
(MacQueen, 1967) or by one of the objects of the cluster located near its center (k-medoid algo-
rithms) (Vinod, 1969). Consequently, a partition is equivalent to a voronoi diagram and each
cluster iscontained in one of the voronoi polygons. Thus, the shape of all clustersfound by apar-
titioning algorithm is convex (Kaufman and Rousseeuw, 1990) which is very restrictive for
many applications.

Ngand Han (Ng and Han, 1994) explore partitioning algorithmsfor mining in spatial databas-
es. An agorithm called CLARANS (Clustering Large Applications based on RANdomized
Search) isintroduced which is an improved k-medoid method restricting the huge search space
using two additional user-supplied parameters. Compared to former k-medoid algorithms,
CLARANS ismore effective and more efficient. Our experimental evaluation indicates that the
runtime of asingle call of CLARANSIscloseto quadratic (seetable 1, section 5). Consequently,
itispossibleto run CLARANS efficiently on databases of some thousands of objects, but not for
really large n. Methods to determine the “natural” numBgy; of clusters in a database are also
discussed (Ng and Han, 1994). They propose to run CLARANS once fok &aah 2 ton. For
each of the discovered clusterings the silhouette coefficient (Kaufman and Rousseeuw, 1990) is
calculated, and finally, the clustering with the maximum silhouette coefficient is chosen as the
“natural” clustering. Obviously, this approach is very expensive for large databases, because it
impliesO(n) calls of CLARANS.

Hierarchical algorithms create a hierarchical decomposition of a databDa3ée hierarchical
decomposition is represented bglendrogram, a tree that iteratively splif3 into smaller sub-
sets until each subset consists of only one object. In such a hierarchy, each level of the tree repre-
sents a clustering @f. The dendrogram can either be created from the leaves up to thagroot (
glomerative approach) or from the root down to the leaveti\isive approach) by merging or

dividing clusters at each step. In contrast to partitioning algorithms, hierarchical algorithms do



not need k as an input parameter. However, atermination condition hasto be defined indicating
when the merge or division process should be terminated, e.g. the critical distance D, between
al the clusters of D. Alternatively, an appropriate level in the dendrogram has to be selected
manually after the creation of the whole dendrogram.

The single-link method is a commonly used agglomerative hierarchical clustering method.
Different algorithms for the single-link method have been suggested (e.g. (Sibson, 1973),
(Jain and Dubes, 1988), (Hattori and Torii, 1993)). We will only describe the basic idea. The
single-link method startswith the disjoint clustering obtained by placing every object in aunique
cluster. In every step thetwo closest clustersin the current clustering are merged until al points
arein one cluster. The runtime of algorithms which construct the single-link hierarchy depends
on the technique for retrieving nearest neighbors. Without any spatial index support (see section
5.1 for abrief introduction into spatial access methods) for nearest neighbor queries, the runtime
complexity of single-link algorithmsis O(n?). This runtime can be significantly improved when

using multidimensional hash- or tree-based index structures (see (Murtagh, 1983)).

Unfortunately, the runtime of most of the above algorithms is very high on large databases.
Therefore, some focusing techni ques have been proposed to increase the efficiency of clustering
algorithms: (Ester et al., 1995) presents an R* -tree based focusing technique (1) creating asam-
ple of the database that is drawn from each R*-tree data page and (2) applying the clustering
algorithm only to that sample.

In (Zhang et a., 1997), compact descriptions of subclusters, i.e. Clustering Features (CF),
are incrementally computed containing the number of points, the linear sum and the square sum
of all pointsin the cluster. The CF-values are organized in a balanced tree. In the first phase,
BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) performsalinear scan
of al data points and builds a CF-tree, i.e. a balanced tree with branching factor B and
threshold T. A nonleaf node represents a cluster consisting of all the subclusters represented by
itsentries. A leaf node has to contain at most L entries and the diameter of each entry in aleaf
node hasto be lessthan T. A point isinserted by inserting the corresponding CF-value into the
closest leaf of the tree. If an entry in the leaf can absorb the new point without violating the
threshold condition, then the CF-values for this entry are updated, otherwise a new entry in the

leaf node is created. In an optional phase 2, the CF-tree can be further reduced until a desired



number of leaf nodesisreached. In phase 3, an arbitrary clustering algorithm, e.g. CLARANS,
is used to cluster the CF-values of the leaf nodes of the CF-tree.

The efficiency of BIRCH is similar to the R*-tree based focusing technique cited above.
Experiments with synthetic data sets show that the clustering quality using BIRCH in combina-
tion with CLARANS s even higher than the quality obtained by using CLARANS alone.

3. Density-Connected Sets

In section 3.1, we present “density-connected sets” which are a significant generalization of
“density-based clusters” (see Ester et al. 1996), and indicate some important specializations of
density-connected sets in section 3.2 illustrating the high expressiveness of this concept.

In the following, we assume a spatial dataliage be a finite set of objects characterized by
spatial and non-spatial attributes. The spatial attributes may represent, e.g., points or spatially
extended objects such as polygons in sdrdenensional spacg The non-spatial attributes of
an object inD may represent additional properties of a spatial object, e.g., the unemployment

rate for a community represented by a polygon in a geographic information system.

3.1 A Generalized Definition of Density Based Clusters
The key idea of a density-based cluster is that for each point of a cluBjes-iteighborhood

for some giverEps > 0 has to contain at least a minimum number of points, i.e. the “density” in
theEps-neighborhood of points has to exceed some threshold (Ester et al. 1996). This idea is il-
lustrated by the sample sets of points depicted in figure 1. In these examples, we can easily and
unambiguously detect clusters of points and noise points not belonging to any of those clusters,
mainly because we have a typical density of points inside the clusters which is considerably
higher than outside of the clusters. Furthermore, the density within the areas of noise is lower
than the density in any of the clusters.

This idea of “density-based clusters” can be generalized in two important ways. First, we can
use any notion of a neighborhood instead dEsineighborhood if the definition of the neigh-
borhood is based on a binary predicate which is symmetric and reflexive. Second, instead of sim-
ply counting the objects in a neighborhood of an object we can as well use other measures to de-

fine the “cardinality” of that neighborhood.



L]

L]

[ ]

L)

[J

*
St
K3

.o ool oo o PUTTIRRY
LN e 'o'.: .g-':.';.l :‘.':-'.: .
.

database 1 database 2 database 3

Figure 1. Sample databases
Definition 1: (neighborhood of an object) Let NPred be abinary predicate on D whichisreflex-

iveand symmetric, i.e., for al p, g L1 D: NPred(p, p) and, if NPred(p, g) then NPred(q, p). Then
the NPred-neighborhood of an object o [ D isdefined as Nypeq(0) = {0’ LU D| NPred(o, 0'}.

The definition of a cluster in (Ester et al., 1996) is restricted to the specia case of a distance
based neighborhood, i.e., Ngp(0) ={0’ [ D| |o - 0’| < Epg. A distance based neighborhood is a
natural notion of a neighborhood for point objects, but if clustering spatially extended objects
such as a set of polygons of largely differing sizes it may be more appropriate to use neighbor-
hood predicates like intersector meetdor finding clusters of polygons.

Although in many applications the neighborhood predicate will be defined by using only spa-
tial properties of the objects, the formalism isin no way restricted to purely spatial neighbor-
hoods. We can aswell use non-spatial attributes and combine them with spatial properties of ob-

jectsto derive aneighborhood predicate (see application 4 in section 6.4).

Another way to take into account the non-spatial attributes of objects is as a kind of “weight”

when calculating the “cardinality” of the neighborhood of an object. To keep things as simple as

possible, we will not introduce a weight function operating on objectsvimigjlated cardinality

functionwCard for sets of objects. The “weight” of a single objectin then be expressed by the

weighted cardinality of the singleton containmg.e.wCard({ 0}).
Definition 2: (MinWeight of a set of objects) LetCard be a function from the powerset of the
Databas® into the non-negative Real Numbes€ard: 2° — [J2°andMinCard be a positive
real number. Then, the predicdtBnWeight for a setS of objects is defined to be true iff
wCard(S) = MinCard.



The expression wCard(S) = MinCard generalizes the condition | Ngpg(0) | 2 MinPtsin the def-

inition of density-based clusters where cardinality is just a special case of a wCard function.

There are numerous possibilitiesto definewCard(S) for subsets of the database D. Simply sum-

ming up the values of some non-spatial attribute for the objects in Sis another example of a

wCard function. E.g., if wewant to cluster objects represented by polygonsand if the size of the

objects should be considered to influence the “density” in the data space, then the area of the
polygons could be used as a weight for these objects. A further possibility is to sum up a value
derived from several non-spatial attributes, e.g. by specifying ranges for some non-spatial at-
tribute values of the objects (i.e. a selection condition). We can realize the clustering of only a
subset of the databaBeby attaching a weight of 1 to objects that satisfy the selection condition
and a weight of O to all other objects. Note that using non-spatial attributes as a weight for objects
one can “induce” different densities, even if the objects are equally distributed in the space of the
spatial attributes. Note also that by means oi@ard function the combination of a clustering

with a selection on the database is possible, i.e., performing a selection “on the fly” while clus-
tering the database. This may be more efficient than performing the selection first under certain
circumstances because GDBSCAN can use existing spatial index structures (see section 5.1).

We can now define density-connected sets, analogously to the definition of density-based
clusters in (Ester et al. 1996), in a straightforward way (see also Ester et al. 1997).

A naive approach could require for each object in a density-connected set that the weighted
cardinality of theNPred-neighborhood of that object has at least a visluard. However, this
approach fails because there may be two kinds of objects in a density-connected set, objects in-
side ¢ore object) and objects “on the border” of the density-connectedoseddr objects). In
general, arNPred-neighborhood of a border object has a significantly low@ard than an
NPred-neighborhood of a core object. Therefore, we would have to set theWiaGerd to a
relatively low value in order to include all objects belonging to the same density-connected set.
This value, however, will not be characteristic for the respective density-connected set - particu-
larly in the presence of noise objects. Therefore, for every gbje@ density-connected et
there must be an objegtn C so thap is inside of théNPred-neighborhood ofl and the weight-
ed cardinalitywCard of NPred(q) is at leasMinCard. We also require the objects of the Geb

be somehow “connected” to each other. This idea is elaborated in the following definitions and



illustrated by 2D point objects by using a distance based neighborhood for the points and cardi-
nality aswCard function.

Definition 3: (directly density-reachable) An object p isdirectly density-reachable from an
object g with respect to NPred, MinWeight if

1) p U Nypreg(a) and
2) MinWWeight(Nnpreqg(d)) = true (core object condition).

_ _ p directly density-
p: border ?bJeCt L. P . o reachable from q
g: core object °q° o o o °

o (-]

° o g not directly density-

S ® ®e reachablefromp
(-] o -]

Figure 2. Core abjects and border objects

Obvioudly, directly density-reachable is symmetric for pairs of core objects. In general, how-
ever, it isnot symmetric if one core object and one border object are involved. Figure 2 shows
the asymmetric case.

Definition 4: (density-reachable) An object p isdensity-reachable from an object g with respect
to NPred and MinWeight if there is a chain of objects py, ..., Pp, P1 = 0, Py = P Such that for all
I=1, ..., n: pj+1 isdirectly density-reachable from p; with respect to NPred and MinWeight.

Density-reachability is a canonical extension of direct density-reachability. This relation is
transitive, but it is not symmetric. Figure 3 depicts the relations of some sample objectsand, in
particular, the asymmetric case. Although not symmetric in general, it is obvious that density-
reachability issymmetric for core objects because achain fromqto p can bereversedif alsopis
acore object.

Two border objects of the same density-connected set C are possibly not density reachable
from each other because the core objects condition might not hold for both of them. However, for
adensity-connected set C we require that there must be a core object in C from which both bor-
der objects of C are density-reachable. Therefore, we introduce the notion of density-connectiv-
ity which coversthisrelation of border objects.

Definition 5: (density-connected) An object p is density-connected to an object q with respect to
NPred, MinWeight if thereisan object o such that both, p and q are density-reachable from o with
respect to NPred, MinWeight.



Density-connectivity is a symmetric relation. For density reachable objects, the relation of

density-connectivity isalso reflexive (c.f. figure 3).

p density- )

reachable from q p and q density-
° connected to

g not density-

reachable from p

Figure 3. Density-reachability and density-connectivity

Now, adensity-connected set isdefined to be a set of density-connected objectswhichis max-
imal with respect to density-reachability.

Definition 6: (density-connected set) A density-connected set C with respect to NPred,
MinWeight in D isanon-empty subset of D satisfying the following conditions:

1) Maximdlity: For al p, q L1 D: if p LIC and g isdensity-reachablefrom p with respect to NPred,
MinWeight, thenq LIC.

2) Connectivity: For all p,q LI C: pis density-connected to g with respect to NPred, MinWeight.

Note that a density-connected set C with respect to NPred and MinWeight contains at |east one
core object: since C contains at least one object p, p must be density-connected to itself viasome
object o (which may be equal to p). Thus, at least 0 hasto satisfy the core object condition. Con-
sequently, the NPred-Neighborhood of o0 hasto satisfy MinWeight.

The following lemmata are important for validating the correctness of our clustering algo-
rithm. Intuitively, they state the following. Given NPred and MinWeight, we can discover aden-
sity-connected set in atwo-step approach. First, choose an arbitrary object from the database sat-
isfying the core object condition as aseed. Second, retrieve all objectsthat are density-reachable
from the seed obtaining the density-connected set containing the seed.

Lemma 1: Let p bean object in D and MinWeight(Nnpreg(P)) = true. Then the set

O={oLID | oisdensity-reachable from p with respect to NPred, MinW\eight}
isadensity-connected set with respect to NPred, MinWeight.

Proof: 1) O is non-empty: p is a core object by assumption. Therefore p is density-reachable
fromp. Thenpisin O. 2) Maximality: Let g, [JO and g, be density-reachable from g, with re-
spect to NPred, MinWeight. Since g, isdensity-reachablefrom p and density-reachability istran-
sitive with respect to NPred, MinWeight, it follows that a so g, is density-reachable from p with



respect to NPred, MinWeight. Hence, g, [JO. 3) Connectivity: All objectsin O are density-con-
nected viaobject p. [

Furthermore, a density-connected set C with respect to NPred, MinWeight is uniquely deter-
mined by any of its core objects, i.e., each object in C is density-reachable from any of the core
objectsof C and, therefore, adensity-connected set C contains exactly the objectswhich are den-
sity-reachable from an arbitrary core object of C.

Lemma 2: Let C be a dengity-connected set with respect to NPred, MinWeight and let p be any
object in C with MinWeight(Nypreg(P)) = true. Then C equalsto the set

O={oLID | oisdensity-reachable from p with respect to NPred, MinWeight} .

Proof: 1) O U C by definition of 0.2) CJ O: Let q O C. Sinceaso p O C and C is adensity-
connected set, thereisan object o [ C such that p and q are density-connected viao, i.e. both p
and g are density-reachable from o. Because both p and o are core objects, it followsthat also o
isdensity-reachablefrom p (symmetry for core objects). With transitivity of density-reachability
with respect to NPred, MinWeight it followsthat q is density-reachable from p. Thenq L] O. [

We will now define a clustering CL of adatabase D with respect to NPred and MinWeight as
the set of all density-connected sets with respect to NPred and MinWeight in D, i.e. al clusters
fromaclustering CL are density-connected sets with regard to the same “paranidfees’and
MinWeight. Noise will then be defined relative to a given cluster@€igof D, simply as the set of
objects inD not belonging to any of the clustersGif.

Definition 7: (clustering) A clusterin€L of D with respect ttNPred, MinWeight is a set of den-
sity-connected sets with respecN©red, MinWeight inD, CL = {C; ,.. ., C,}, such that for alC
the following holds: ifC is a density-connected set with respedtfoed, Min\eight in D, then
cucL.

Definition 8: (noise) LetCL={C, ,. . .,C,} be a clustering of the databa3ewith respect to
NPred, MinW\eight. Then we define theoise in D as the set of objects in the datab2set be-
longing to any density-connected €gti.e.noisec =D\ (C, U ... Cy).

There are other possibilities to define a clustering based on definition 6. But this simple notion
of a clustering has the nice property that two clusters can at most overlap in objects which are
border objects in both clusters. Figure 4 illustrates the overlap of two clusters using cardinality
andMinCard = 4.



Lemma3: Let CL beaclustering of D with respect to NPred, MinWeight.

If Cq, C, LICL and C; # C,, then for all p [IC; n C, it holds that p is not a core object, i.e.
wCard(NPred(p)) < MinCard.

Proof: Since NPred and MinWeight are the samefor all clustersin CL it followsthat if p [l C; N
C, would be a core object for C,, then p would aso be a core object for C,. But then it follows

from Lemma 2 that C; = C,, in contradiction to the assumption. Hence, p isnot acore object. [

.borderpoi nt in both clusters

Figure 4. Overlap of two clustersfor MinCard = 4

3.2 Important Specializations
The first specialization of a density-connected set obvioudly is a density-based cluster as de-

finedin (Ester et al., 1996):

* NPred: “distance< Eps’, wCard: cardinality, Min\\eight(N): | N | = MinPts
Specializing this instance further will yield a description val in thesingle-link hierarchy

determined by a “critical distanc®,,, = Eps (Sibson, 1973):

* NPred: “distance< NN-dist”, wCard: cardinality MinWeight(N): |[N |= 2, every poinpin the
setnoisec, must be considered as a single cluster.
Note that if cardinality is used adMinCard < 3 there existao overlap between the clusters of

a clusteringCL. But then, the well-knownsfngle-link effect’” can occur, i.e., if thereisachain
of points between two clusters where the distance of each point in the chain to the neighboring
point inthechainislessthan € then thetwo clusterswill not be separated. Higher valuesfor Min-
Cardwill significantly weaken this effect and even for regular distributionswherethe k-distance
values may not differ from the 1-distancevaluesfor amost all points, a clustering according to
definition 7 and 8 will in general not be equivalent to alevel in the single-link hierarchy.

A further specialization of density-connected sets alows the clustering of spatially extended
objects such as polygons:
* NPred: “intersects’ or “meets’, wCard: sum of areadvlin\eight(N): sum of areas MinArea



There are a so specializations equivalent to simpleforms of region growing (Niemann, 1990),
i.e.only local criteriafor expanding aregion can be defined by theweighted cardinality function.
For instance, the neighborhood may be given simply by the neighboring cellsin agrid and the
weighted cardinality function may be some aggregation of the non-spatial attribute val ues.
* NPred: “neighbor”, MinWeight(N): aggr(non-spatial valuesy threshold

While region growing algorithms are highly specialized to pixels, density-connected sets can
be defined for any data types.

Figure 5 illustrates some specializations of density-connected sets.

bl 2

Density-based clusters Clustering of polygons Simple region growing

Figure 5. Different specializations of density-connected sets

4. GDBSCAN: Generalized Density Based Spatial Clustering of Applications

with Noise

In section 4.1, we present the algorithm GDBSCAN (Generalized Density Based Spatial Clus-
tering of Applications with Noise) which is designed to discover the density-connected sets and
the noise in a spatial database. To apply the algorithm, we have to knbiWrdaeneighbor-
hood,MinCard and thenCard function. In section 4.2, the issue of determining these “parame-
ters” is discussed and a simple and effective heuristic to deteEpsrendMinCard for Eps-

neighborhoods combined with cardinality&Sard function is presented.

4.1 TheAlgorithm
To find a density-connected set, GDBSCAN starts with an arbitrary qigect retrieves all ob-

jects density-reachable fropwith respect tdNPred andMinWeight. If p is a core object, this
procedure yields a density-connected set with respaédPted andMinWeight (see Lemma 1
and 2). Ifp is not a core object, no objects are density-reachablegrandp is assigned to
NOISE. This procedure is iteratively applied to each olgedhich has not yet been classified.

Thus, a clustering and the noise according to definitions 7 and 8 are detected.



Infigure 6, we present abasic version of GDBSCAN omitting details of datatypes and gener-

ation of additional information about clusters:

GDBSCAN (SetOfObjects, NPred, MinCard, wCard)
Il SetOfObjectsis UNCLASSIFIED
Clusterld := nextld(NOISE);
FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOf Objects.get(i);

IF Object.Clld = UNCLASSIFIED THEN
IF ExpandCluster(SetOfObjects,Object,Clusterld, NPred,MinCard,wCard) THEN

Clusterld:=nextld(Clusterld)

END IF

END IF

END FOR
END; // GDBSCAN

Figure 6. Algorithm GDBSCAN

SetOfObjects is either the whole database or a discovered cluster from a previous run. NPred
and MinCard are the global density parameters and wCard is a pointer to a function wCard(Ob-
jects) that returns the weighted cardinality of the set Objects. Clusterlds are from an ordered and
countable datatype (e.g. implemented by Integers) where UNCLASSIFIED < NOISE < “other
Ids”, and each object is marked with a clust@tbfbct.Clid. The functiomextld(clusterld) returns
the successor afusterld in the ordering of the datatype (e.g. implementedias|d+1). The
functionSetOfObjects.get(i) returns thé-th element o8etOfObjects. In figure 7, functiorExpand-

Cluster constructing a density-connected set for a core oDfgett is presented in more detail.

A call of SetOfObjects.neighborhood(Object,NPred) returns théNPred-neighborhood oPoint in
SetOfPoints as a list of objects. Obviously the efficiency of the above algorithm depends on the
efficiency of the neighborhood query because such a query is performed exactly once for each
object inSetOfObjects which satisfies the selection condition. The performance of GDBSCAN
will be discussed in detail in section 5, where we will see that neighborhood predicates based on
spatial proximity like distance predicates or intersection can be evaluated very efficiently by us-
ing spatial index structures.

The clusterld of some objeqtswvhich are marked to keOISE becausavCard(NPred(p)) <
MinCard may be changed later if they are density-reachable from some other object of the data-

base. This may happen only for border objects of a cluster. Those objects are then not added to



ExpandCluster(SetOf Objects, Object, Clid, NPred, MinCard, wCard): Boolean;
IF wCard({ Object}) < 0 THEN // point not in selection
SetOfPoints.changeClId(Object, UNCLASSIFIED);
RETURN Falseg;
END IF
seeds:=SetOf Objects.neighborhood(Object, NPred);
|F wCard(seeds) < MinCard THEN // no core point
SetOfObjects.changeCl 1 d(Object, NOISE);
RETURN Falsg;
END IF
/1 still here? Object is a core object
SetOf Objects.changeCl I ds(seeds,Cl I d);
seeds.del ete(Object);
WHILE seeds # Empty DO
currentObject := seeds.first();
result := SetOfObjects.neighborhood(currentObject, NPred);
|F wCard(result) > MinCard THEN
FOR i FROM 1 TO result.size DO
P := result.get(i);
IFwCard({P}) >0AND PClId IN {UNCLASSIFIED, NOISE} THEN
IF PClld = UNCLASSIFIED THEN
seeds.append(P);
END IF;
SetOf Objects.changeClId(P,ClId);
END IF; // wCard > 0 and UNCLASSIFIED or NOISE
END FOR;
END IF; // wCard = MinCard
seeds.del ete(currentObject);
END WHILE; // seeds # Empty
RETURN True;
END; // ExpandCluster

Figure 7. Function ExpandCluster
the seeds-list because we already know that an object with a Clusterld of NOISE isnot a core ob-

ject, i.e., no other objects are density-reachable from them.

If two clusters C; and C, are very close to each other, it might happen that some object p be-
longs to both C; and C,. Then p must be a border object in both clusters according to Lemma 3.
In this case, object p will only be assigned to the cluster discovered first. Except from theserare
situations, the result of GDBSCAN isindependent of the order in which the objects of the data-
base arevisited dueto Lemma 1 and 2.

There may be reasonsto apply apostprocessing to the clustering obtained by GDBSCAN. Ac-
cording to definition 7, each set of objects having MinWeight is adensity-connected set. In some



applications (see, e.g., section 6.1), however, density-connected sets of this minimum size are
too small to be accepted as clusters. Furthermore, GDBSCAN produces clusters and noise. But
for some applicationsanon-noise classlabel for each object isrequired. For thispurpose, we can
reassign each noise object and each object of arejected cluster to the closest of the accepted clus-
ters. This postprocessing requiresjust asimple scan over the whole database without much com-
putation, in particular no region queries are necessary. Therefore, such postprocessing does not
increase the runtime complexity of GDBSCAN.

To conclude this section, we introduce the algorithm DBSCAN (Ester et al., 1996) as an im-
portant specialization of GDBSCAN.
Definition 9: (DBSCAN) DBSCAN is a specialization of the algorithm GDBSCAN using the
following parameters: NPred: “distanceEps’, wCard: cardinality MinWeight(N): [N |= MinPts.

4.2 Determining the Parametersfor GDBSCAN
GDBSCAN requires a neighborhood prediddRred, a weight functiomvCard and a minimum

weightMinCard. Which concrete parameters we will use, depends on the goal of the application.

In some applications there may be a natural way to provide values without any further parameter
determination. In other cases, we may only knoviyppeof neighborhood that we want to use,

e.g. a distance based neighborhood for the clustering of point objects. In these cases we have to
use a heuristic to determine the appropriate parameters.

In this section, we present a simple heuristic which is effective in many cases to determine the
parameter&ps andMinCard for DBSCAN (.f. definition 9) which is the most important spe-
cialization of GDBSCAN. DBSCAN uses a distance based neighborhood “distance less or equal
thanEps’ and cardinality as theCard function. Thus, we have to determine appropriate values
for EpsandMinCard. The density parameters of the “thinnest”, i.e. least dense, cluster in the da-
tabase are good candidates for these global values specifying the lowest density which is not
considered to be noise.

For a giverk> 1 we define a functiok-distance, mapping each object to the distance from its
k-th nearest neighbor. When sorting the objects of the database in descending orddsdifstheir
tance values, the plot of this function gives some hints concerning the density distribution in the
database. We call this plot tharted k-distance plot (see figure 8 for an example). If we choose

an arbitrary objegp, set the parameté&ips to k-distance(p) and set the parametelinCard to



k+1, all objectswith an equal or smaller k-distance value will be core objects, because there are
at least k+1 objectsin an Eps-neighborhood of an object p if Epsisset to k-distance(p). If wecan
now find athreshold object with the maximum k-distancevalue in the “thinnest” cluster @f, we
would obtain the desired parameter values. Therefore, we have to answer the following ques-
tions. 1) Which value dfis appropriate? 2) How can we determine a threshold gifject

We will discuss the valukfirst, assuming it is possible to set the appropriate valueg®r
The smaller we choose the value kpthe lower are the computational costs to calculat&-the
distancevalues and the smaller is the corresponding valuedein general. But a small change
of k for an objecp will in general only result in a small changekedistance(p). Furthermore,
our experiments indicate that tkeelistance plots for “reasonablek (e.g. < k<10 in 2D space)
do not significantly differ in shape and that also the results of DBSCAN for the corresponding
parameter pairk(Eps) do not differ very much. Therefore, the choicé fnot very crucial for
the algorithm. We can even fix the value kdwith respect to the dimension of the dataspace),
eliminating the parametafinCard for DBSCAN. Considering only the computational cost, we
would like to sek as small as possible. On the other hand, if wiesét thek-distance value for
an objecp will be the distance to the nearest neighbgraridthe “single-link effect can occur.
To weaken this effect, we must choose avaluefor k > 1.

We proposeto set kto 2* dimensionrr 1. Our experimentsindicate that thisvalueworkswell for
databases D where each point occursonly once, i.e. if D isreally asetof points. Thusin thefol-
lowing, if not stated otherwise, k will be set to thisvalue, and the valuefor MinCardwill befixed
according to the above strategy (MinCard=k + 1, e.g. MinCard=4in 2D space).

To determine the parameter Epsfor DBSCAN, we have to know an object in the “thinnest”
cluster of the database with a higtistance value for that cluster. Figure 8 shows a soktelts-
tance plot for sample database 3 which is very typical for databases where the density of clusters
and noise are significantly different. Our experiments indicate that the threshold object is an ob-
ject near the first “valley” of the sortéedistance plot (see figure 8). All objects with a higher
distance value (to the left of the threshold) will then be noise, all other objects (to the right of the
threshold) will be assigned to some cluster.

In general, itis very difficult to detect the first “valley” automatically, but it is relatively simple

for a user to recognize this valley in a graphical representation. Additionally, if the user can esti-



3-di stancé‘ x
' threshold

1_ /poi nt
\\

noise| clusters

objede
Figure 8. Sorted 3-distance plot for sample database 3

mate the percentage x of noise, a proposal for the threshold object can be derived, because we
know that most of the noise objects have a higher k-distance value than objects of clusters. The
k-distance values of noise objects are located on the left of the k-distance plot, so that we can
simply select an object after x percent of the sorted k-distance plot.

Thereisawaysarange of valuesfor the parameter Epsthat yield the same clustering because
not all objects of the “thinnest” cluster need to be core objects. They will also belong to the clus-
ter if they are only density-reachable. FurthermoreEjtsevalue may be larger than needed if
the clusters are well separated and the density of noise is clearly lower than the density of the
thinnest cluster. Thus the robustness of the parameter determination, i.e. the width of the range
of appropriateEps values, depends on the application. However, in general the width of this
range is broad enough to allow the parameters to be determined in sibstadce plot for
only a very small sample of the whole database (1% - 10%).

To summarize, we propose the following interactive approach for determining the parameters
for DBSCAN
. The user gives a value fo{default isk = 2*dimension - 1).
. The system computes and displaysktuiestance plot for a sample of the database.
. The user selects an object as the threshold object akdiittiance value of this object is used

as thekEps value;MinCard is set tak+1 (if the user can estimate the percentage of noise, the

system can derive a proposal for the threshold object from it).

Obviously, the shape of the sortedistance plot and hence the effectiveness of the proposed
heuristic depends on the distribution of the k-nearest neighbor distances. For example, the plot
will look more “stairs-like” if the objects are distributed more regularly within each cluster, or

the first “valley” will be less clear if the densities of the clusters differ not much from the density



of noise (which also meansthat the clusters are not well separated). Then, knowing the approxi-
mate percentage of noise in the datamay be very helpful.

Though for some applicationsit may be difficult to determine the correct parameters, we want
to point out that the parameters may be re-used in different but similar applications, e.g., if the
different datasets are produced by a similar process. And, we will see in section 6 that there are
even applications where the appropriate parameter valuesfor DBSCAN can be derived analyti-
cally (e.g. section 6.2), or a natural notion of a neighborhood for the application exists which

does not require any further parameters (e.g. intersectsfor polygons).

5. Perfor mance Evaluation

In this section, we evaluate the performance of GDBSCAN. In section 5.1, we discuss the per-
formance of GDBSCAN with respect to the underlying spatial index structure. In section 5.2, an
experimental evaluation of GDBSCAN and a comparison with the well-known clustering algo-
rithms CLARANS and BIRCH is presented.

5.1 Analytical Evaluation
The runtime of GDBSCAN obviously isO(n * runtime of aneighborhood query): n objects are

visited and exactly one neighborhood query is performed for each of them. The number of neigh-
borhood queries cannot be reduced since aclusterld for each object isrequired. Thus, the overall
runtime depends on the performance of the neighborhood query. Fortunately, the most interest-
ing neighborhood predicates are based on spatial proximity - like distance predicates or intersec-
tion - which can be efficiently supported by spatial index structures. Such index structuresare as-
sumed to be available in a SDBS for efficient processing of several types of spatial queries
(Brinkhoff et a., 1994).

In the following, we will introduce a typical spatial index, the R*-tree (Beckmann et
al., 1990). The R*-tree (seefigure 9) generalizesthe 1-dimensional B-treeto d-dimensional data
spaces, specificaly an R*-tree manages k-dimensional hyperrectanglesinstead of 1-dimension-
al keys. An R*-tree may organize extended objects such as polygons using minimum bounding
rectangles (MBR) as approximations as well as point objects asaspecial case of rectangles. The
leaves store the MBRs of the data objects and a pointer to the exact geometry of the polygons.

Internal nodes store a sequence of pairs consisting of arectangle and a pointer to a child node.



Theserectanglesarethe MBRsof all data or directory rectangles stored in the subtree having the
referenced child node as its root. To answer a region query, starting from the root, the set of
rectangles intersecting the query region is determined and then their referenced child nodes are

searched until the data pages are reached.

directory
level 1
director K
level 2y [ ﬁ
1
data- éjgg%
pages

A
polygons  [DS | [(RS] [ 1 |

Figure 9. Structure of an R*-tree

The height of an R*-treeis O(log n) for a database of n objects in the worst case and a query
with a “small” query region has to traverse only a limited number of paths in the R*-tree. Since
mostNPred-neighborhoods are expected to be small compared to the size of the whole database,
the average runtime complexity of a single neighborhood query is Q(log

Table 1 lists the runtime complexity of GDBSCAN with respect to the underlying spatial in-
dex structure. Without any index support, the runtime of GDBSCA(D(rié). This does not
scale well with the size of the database. But, if we use a spatial index, the runtime is reGuced to
(nlogn). If we have a direct access to tiered-neighborhood, e.g. if the objects are organized

in a grid, the runtime is further reducedam).

Table 1. runtime complexity of GDBSCAN

runtime complexity of a single neighborhood query the GDBSCAN algorithm
without index O(n) o)
with spatial index O(log n) O(n * log n)
with direct access 0o(1) o(n)

5.2 Experimental Evaluation
We have implemented GDBSCAN in C++ based on an implementation of the R*-tree (Beck-

mann et al., 1990). All experiments were run on HP 735 / 100 workstations. In order to allow a

comparison with CLARANS and BIRCH - which both use a distance based neighborhood defi-



nition - we eval uated the specialized DBSCAN agorithm (c.f. definition 9). For an evaluation of
the effectivity of the more general GDBSCAN, see the applicationsin section 6.

To compare DBSCAN with CLARANS in terms of effectiveness (accuracy), we use the three
synthetic sample databases which are depicted in figure 1. Since DBSCAN and CLARANS are
clustering algorithms of different types, they have no common quantitative measure of the clas-
sification accuracy. Therefore, we evaluate the accuracy of both algorithms by visual inspection.
In sample database 1, there are four ball-shaped clusters of significantly differing sizes. Sample
database 2 contains four clusters of nonconvex shape. In sample database 3, there are four clus-
tersof different shape and size with additional noise. To show the results of both clustering algo-
rithms, we visualize each cluster by a different color. To give CLARANS some advantage, we
set the parameter k (number of clusters) to 4 for these sampl e databases. The clusterings discov-

ered by CLARANS are depicted in figure 10.

database 1 database 2 database 3
Figure 10. Clusterings discovered by CLARANS

For DBSCAN, the parameter Epswas set, giving anoise percentage of 0% for sample databas-
es 1 and 2, and 10% for sample database 3, respectively. The clusterings discovered by DB-
SCAN aredepicted infigure 11.

DBSCAN discovers al clusters (according to definition 7) and detects the noise points (ac-
cording to definition 8) from all sample databases. CLARANS, however, splits clustersif they
arerelatively largeor if they are close to some other cluster. Furthermore, CLARANS has no ex-
plicit notion of noise. Instead, all points are assigned to their closest medoid.

To test the efficiency of DBSCAN and CLARANS, we use the SEQUOIA 2000 benchmark
data. The SEQUOIA 2000 benchmark database (Stonebraker et a., 1993) usesreal data setsthat
aretypical for Earth Sciencetasks. There arefour types of datain the database: raster data, point



cluster.:

cluster, 2 cIu.s.tgc.!.. ::-',-.. duster 3 cIl.J§ter 2
’e e o le0, K el
:..o. .0..', ’:.oz'. cluster 1
P IR\ R g
cluster 2 .'::’. duster 4
oo cluster 3
clustgr 4 .',.s" .o cluster 4
.c.' o 0’

S duser 3
database 1 database 2
Figure 11. Clusterings discovered by DBSCAN

data, polygon dataand directed graph data. The point data set contains 62,584 Californian names

° °%
o0y .:...- X

of landmarks, extracted from the US Geological Survey’s Geographic Names Information Sys-
tem, together with their location. The point data set occupies about 2.1 MB. Since the runtime of
CLARANS on the whole data set is very high, we have extracted a series of subsets of the SE-
QUIOA 2000 point data set containing from 2% to 20% representatives of the whole set. The
runtime comparison of DBSCAN and CLARANS on these databases is shown in table 2. The re-
sults of our experiments show that the runtime of DBSCAN is almost linear to the number of
points. The runtime of CLARANS, however, is close to quadratic to the number of points. The
results show that DBSCAN outperforms CLARANS by a factor of between 250 and 1,900

which grows with increasing size of the database.

Table 2. comparison of runtime (in sec.)

ggmt’ser of 1052 2503 3910 5213 | 6256 | 7820 8937 10426 12512 62584
DBSCAN 3 7 1 16 18 25 28 33 42 233

CLARANS 758 3026 6845 11,745 18,029 29,826 39,265 60,540 80,638 7?7?

Since we found it rather difficult to set the parameters of BIRCH appropriately for the SEQUI-
OA 2000 point data, we used the test data sets 1, 2 and 3 introduced by Zhang et al. (Zhang et
al., 1997) to compare DBSCAN with BIRCH. The used implementation of BIRCH - using
CLARANS in phase 3 - was provided by its authors. The runtime of DBSCAN was 1.8, 1.8 and
12.0 times the runtime of BIRCH. Note, however, that in general the same restrictions with re-
spect to clusters of arbitrary shape apply to BIRCH as they apply to CLARANS. Furthermore,

the clustering featureson which BIRCH is based - can be only defined in a Euclidean vector



space implying a limited applicability of BIRCH compared to DBSCAN (and compared to
CLARANS).

6. Applications

In this section, we present four typical applications of GDBSCAN. In the first application we
cluster a spectral space (5D points) created from satellite images in different spectral channels
which isacommon task in remote sensing image analysis. The second application comes from
molecular biology. The points on a protein surface (3D points) are clustered to extract regions
with special properties. To find such regionsisasubtask for the problem of protein-protein dock-
ing. Thethird application uses astronomical image data (2D points) showing theintensity on the
sky at different radio wavelengths. Thetask of clustering isto detect celestial sourcesfrom these
images. Thelast application isthe detection of spatial trendsin ageographicinformation system.
GDBSCAN is used to cluster 2D polygons creating so-called influence regions which are used

asinput for trend detection.

6.1 Application 1: Earth Science (5D points)
In this application, we use a 5-dimensional feature space obtained from several satellite images

of aregion onthesurface of the earth covering California. Theseimagesaretaken fromtheraster
dataof the SEQUOIA 2000 Storage Benchmark. After some preprocessing, fiveimages contain-
ing 1,024,000 intensity values (8 bit pixels) for 5 different spectral channelsfor the sameregion
were combined. Thus, each point on the surface, corresponding to an earth surface area of 1,000
by 1,000 meters, isrepresented by a5-dimensional vector.

Finding clustersin such feature spacesisacommon task in remote sensing digital image anal -
ysis(e.g. (Richards, 1983)) for the creation of thematic mapsin geographic information systems.
Theassumptionisthat feature vectorsfor pointsof the sametype of underground ontheearth are
forming groups in the high dimensional feature space (see figure 12 illustrating the case of 2D
raster images).

Application 1 has two characteristics that were not present in the synthetic databases used in
section 5.2. First, the coordinates of points can only be integer values between 0 and 255 in each

dimension. Second, many of the raster points have exactly the samefeatures, i.e. are represented



(12,17.5) | o—o—0—0 Channel 1

000 luster Cluster

oo 00 12 1 2
(85187)|® @ o @

S%_@ Cluster 3

1127

1122 165180 200 220 Chamnel 2

3232

surface of the earth feature space

Figure 12. Relation between 2D image and featur e space
by the same 5-dimensional feature vector. Only about 600,000 of the 1,024,000 feature vectors

aredifferent from each other.

We used “dist(X,Y) < 1.42asNPred(X,Y)The neighborhoods are very small dueto thefirst
characteristic of the application, e.g. for about 15% of the points the distance to the 9th nearest
neighbor is 0. We used cardinality aswCardfunction and set MinCardto 20 to take into account
the second characteristic of the data.

There are several reasons to apply a postprocessing to improve the clustering result of GDB-
SCAN. First, GDBSCAN only ensuresthat acluster containsat least MinCard points (using car-
dinality aswCardfunction), but aminimum size of 20 pointsistoo small for thisapplication, es-
pecially because many points have the same coordinates. Therefore, we accepted only the
clusters containing more than 200 points. Thisvalue seems arbitrary but aminimum size can be
chosen reasonably after the size of all clustersis known. Second, GDBSCAN produces clusters
and noise. But for this application anon-noise classlabel for each raster point isrequired. There-
fore, we reassigned each noise point and each point of arejected cluster to the closest of the ac-
cepted clusters. We obtained 9 clusters with sizesranging from 598,863 to 2,016 points.

To visualize the result, each cluster was coded by a different color. Then each point in the im-
age of the surface of the earth was colored according to the identificator of the cluster containing
the corresponding 5-dimensional vector. The resulting image is shown in figure 13. A high de-
gree of correspondence between the obtained image and a physical map of Californiacan easily

be seen. A detailed discussion of this correspondence is beyond the scope of this paper.



Figure 13. Visualization of the clustering result for the SEQUIOA 2000 raster data

6.2 Application 2: Molecular Biology (3D points)
Proteins are biomolecules consisting of some hundreds to thousands of atoms. Their mode of

operation lies in the interaction with other biomolecules, e.g. proteins, DNA or smaller partner
molecules. These interactions are performed by the so-called docking, i.e. the process of con-
necting the partner molecules.

Molecular biologists point out that the geometry of the molecular surfaces at the interaction
site plays an important role along with the physicochemical properties of the molecules. A nec-
essary condition for protein-protein docking is the complementarity of the interaction site with
respect to surface shape, electrostatic potential, hydrophobicity, etc. We use the crystallographi-
cally determined atom coordinates of proteinsand protein complexesfrom the Brookhaven Pro-
tein DataBank (Bernstein et al. 1977, Protein Data Bank 1994) and derivefor each protein asur-
face with some 10,000 equally distributed 3D points. For each point on the protein surface,
several geometric and physicochemical features are computed. The solid angle (SA), for exam-
ple, (Connolly, 1986) is a geometric feature describing the degree of convexity or concavity of
the surface in the neighborhood of the considered point.

A database system for protein-protein docking has to process queries for proteins with com-
plementary surfaces. Thissearch isperformed at thelevel of surface segments, defined asa set of

neighboring surface points with similar non-spatial attributes, e.g. with similar SA values. The



segments should have a good correlation with the known docking sites of the proteins, i.e. a
docking site on a protein surface should consist of a small number of segments. Therefore, find-
ing a segmentation of protein surfacesis an important subtask for aprotein docking DB. We ap-
plied GDBSCAN for thistask.

We used awCard function performing a simple selection on the SA values. The SA values are
normalized intheinterval [0, 1], such that high SA valuesindicate points on aconvex and low SA
values indicate points on a concave surface segment. To find the convex segments, we defined
wCard(S) asthe number of pointsin Swith SA value between 0.75 and 1.00. Asthe selection cri-
terion for points on a concave surface segment, we used SA values between 0.00 and 0.65. The
parameters NPred and MinCard were determined analytically. Since the surface points are
equally distributed with adensity of 5 points per A2, we used “dist(X,Y) < 0/6as NPred(X,Y)
and set MinCard = 5. Note that if we would use these parameters together with cardinality, only
asingle cluster containing all points of the protein surface would be found. In applications with
equally distributed points GDBSCAN can only find reasonable clustersif thewCardfunctionis
defined appropriate, i.e. the wCard function must “simulate” regions of different density. We
searched for clusters covering at least 1% of the surface points of the protein. For example, for
the protein 133DA consisting of 5,033 surface points, only clusters with a minimum size of 50
surface points were accepted. In this case 8 convex and 4 concave clusters (segments) were
found by using the above parameter settings. Figure 14 depicts the clustering results of GDB-
SCAN for this protein. Note that some of the clusters are hidden in the visualization. GDBSCAN
discovered the most significant convex and concave surface segments of the protein, which can

easily be verified by visual inspection.

convex segments concave segments

Figure 14. Visualization of the clustering resultsfor protein 133DA



6.3 Application 3: Astronomy (2D points)
Surveys of the sky form an integral part of astronomy. Celestial sources detected in asurvey are

typically classified by the domain scientists; large surveys will detect many objects and enable
statistical studies of the objects in a given classification. Surveys may also reveal exotic or
anomalous objects or previously unidentified classes of objects. A typical result of asurvey isa
2-dimensional grid of theintensity on the sky. The measured intensity istypically the sum of the
emission from discrete sources, diffuse emission (e.g., from the atmosphere, interplanetary me-
dium or interstellar medium), and noise contributed by the surveying instrument itself. Modern
surveys are capable of producing thousands of images of the sky, consuming 10 GB - 1 TB of
storage space, and may contain 10° to 10° or more sources, e.g., (Reid et al. 1991, Becker et al.
1995).

Maximizing the yield from a survey requires an accurate yet efficient method of detecting
sources. Thetraditional method of separating the discrete sourcesfrom the noise and other emis-
sionsisto require that the sources exceed a predefined threshold, e.g. 50, where o isan estimate
of the rmsintensity in the image, e.g. (Becker et al. 1995). Recently, alternate methods, which
utilize the expected statistics of theintensity (Zepkaet al. 1994) or classifier systems (Welir et al.
1995), have been deployed.

An extreme example of anoisy imageis shown on the left side of figure 16. The image shows
the intensity, as measured by the Very Large Array, in adirection towards the Galactic center at
aradio wavelength of 4,865 MHz. Theimage is dominated by a celestial source near the center,
and the sidel obeswhich appear asradial spokesand are produced by the optics of theinstrument.
A second image of the same area at aslightly different wavelength was also given for this appli-
cation. Because of its similarity to the first image, it is not depicted. The intensity valuesin the
images range from -0.003084 to 0.040023 and from -0.003952 to 0.040509 respectively. We ap-
plied GDBSCAN using the same parameter settingsfor both images:

- NPred(X,Y) is “dist(X,Y) < 1.42, i.e. the neighborhood of araster point is a 3x3 array of
points.

- wCardcal culates the sum of the weights of all 9 points of the neighborhood weighting each

point by itsintensity value.

- MinCard= 0.045 (i.e. the average intensity required for pointsin clusters = 0.005).



Theresulting clusterings for bothimagesaregiven infigure 15. For example, the brightest ce-

lestial source can easily beidentified asthe cluster in the center.

Figure 15. Clustering resultsfor both images

For the other clustersit is not so easy to verify that they areinfact celestial sources. The only

way to confirm aweak source isto detect it again in different images, e.g. if it can be detected

again by looking at it at slightly different frequencies. A sourceisrequired to appear at the same

position, maybe with ashift of apixel or two, at all frequencies. Therefore, we extracted only the

clusters which are present in both images. There are 20 of them. The result of this procedureis

depicted on theright side of figure 16.

DECLINATION {d2000)

i i
I
P Lkt
174110 05 10 aoss 50 45 a0 35

RIGHT ASCENSION (J2008)
Grey seale flux range= -2418 4.748 MIIY/BEAN

greyscal e representation of one image

15

cluster present in both images

Figure 16. Visualization of the astronomy data and the potential sourcesfound by DBSCAN

6.4 Application 4: Geography (2D polygons)

In the following, we present a simple method for detecting spatial trends based on GDBSCAN.

GDBSCAN isused to extract density-connected sets of neighboring objectshaving asimilar val-

ue of the non-spatial attribute(s). To define the similarity on an attribute, we partition itsdomain



into anumber of digjoint classesand consider theval uesin the same classassimilar to each other.
The setswith the highest or lowest attribute value(s) are most interesting and are called influence
regions, i.e. the maximal neighborhood of a center having a similar value in the non-spatial at-
tribute(s) asthe center itself. Then, the resulting influence region is compared to the circular re-
gion representing the theoretical trend to obtain a possible deviation. Different methods may be
used for this comparison. A difference-based method cal cul ates the difference of both, the ob-
served influence region and the theoretical circular region, thusreturning someregionindicating
the location of a possible deviation. An approximation-based method cal culates the optimal ap-
proximating ellipsoid of the observed influence region. If the two main axes of the ellipsoid dif-
fer in length significantly, then the longer oneisreturned indicating the direction of adeviation.
GDBSCAN can be used to extract theinfluence regionsfrom an SDBS. We define NPred(X,Y)
as “intersect(X,Y) attr-class(X) = attr-class(Y)” and use cardinalitynsZard function. Fur-
thermore, we saé¥linCard to 2 in order to exclude sets of less than 2 objects.
To illustrate the results of this approach, we discuss some typical influence regions obtained
by GDBSCAN. The influence region of Ingolstadt is elongated indicating a deviation in west-
east direction caused by the river Danube traversing Ingolstadt in this direction. Figure 17 shows

the approximating ellipsoid and the significantly longer main axis in west-east direction.

Figure 17. Approximating ellipsoid of the influence region of I ngolstadt
The influence region of Munich has four significant deviations from the theoretical region (NE,
SW, S and SE). Figure 18 illustrates the difference between the observed influence region and the

theoretical circular region. These areas coincide with the highways originating from Munich.

Figure 18. Difference between the observed and the theoretical influence region of Munich



7. Conclusions

In this paper, we presented the clustering algorithm GDBSCAN generalizing the density-based
algorithm DBSCAN (Ester et al., 1996) in two important ways. GDBSCAN can cluster point ob-
jectsaswell as spatially extended objects according to both, their spatial and their non-spatial at-
tributes. After areview of related work, the general concept of density-connected setsand an al-
gorithm to discover them were introduced. A performance evaluation, analytical as well as
experimental, showed the effectiveness and efficiency of GDBSCAN on large spatial databases.
Furthermore, we presented four applications using 2D points (astronomy), 3D points (biology),
5D points(earth science) and 2D polygons (geography) demonstrating the applicability of GDB-
SCAN to real world problems.

Futureresearch will haveto consider thefollowing issues. First, heuristicsto determinethe pa-
rametersfor GDBSCAN wherewCard isdifferent from the cardinality function should be devel -
oped. Second, GDBSCAN createsaonelevel clustering. However, ahierarchical clustering may
be more useful, in particular if the appropriate input parameters cannot be estimated accurately.
An extension of GDBSCAN to detect simultaneously a hierarchy of clusterings will be investi-

gated.

Acknowledgements

We thank T. Joseph W. Lazio for making the astronomy data available to us and for his substan-
tial help in understanding and modeling the astronomy application. We also thank Thomas
Schmidt and Thomas Seidl for providing the protein data. We are grateful to Henning Brockfeld

for introducing usinto the application of mining in the area of economic geography.

Refer ences

Becker, R.H., White, R.L., and Helfand, D.J. 1995. “The FIRST Survey: Faint Images of the Radio Sky at
Twenty Centimeters”. Astrophys. J. 450: 559.

Beckmann N., Kriegel H.-P., Schneider R, and Seeger B. 1990. “The R*-tree: An Efficient and Robust
Access Method for Points and Rectanglégoc. ACM SIGMOD Int. Conf. on Management of Data.
Atlantic City, NJ, 322-331.

Bernstein F. C., Koetzle T. F.,, Williams G. J., Meyer E. F,, Brice M. D., Rodgers J. R., Kennard O.,
Shimanovichi T., Tasumi M. 1977. “The Protein Data Bank: a Computer-based Archival File for
Macromolecular Structures”. Journal of Molecular Biology 112: 535-542.



Brinkhoff T., Kriegel H.-P., Schneider R., and Seeger B. 1994. “Multi-Step Processing of Spatfal Joins
Proc. ACM SIGMOD Int. Conf. on Management of Data. Minneapolis, MN, 197-208.

Connolly M.L. 1986. “Measurement of protein surface shape by solid angles”. Journal of Molecular
Graphics, 4(1): 3-6.

Ester M., Kriegel H.-P., Sander J. and Xu X. 1996. “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining.
Portland, OR, 226-231.

Ester M., Kriegel H.-P., and Xu X. 1995. “A Database Interface for Clustering in Large Spatial
Databases”. Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 94-99.

Fayyad U., Piatetsky-Shapiro G., and Smyth P. 1'9Q60owledge Discovery and DataMining: Towards
a Unifying Framework”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR,
82-88.

Gueting R.H. 1994. An Introduction to Spatial Database Systéms/LDB Journal 3(4): 357-399.

Hattori K., and Torii Y.: 1993.“Effective algorithms for the nearest neighbor method in the clustering
problem”. Pattern Recognition, 26(5): 741-746.

Jain A.K., and Dubes R.C. 1988. “Algorithms for Clustering Data”. New Jersey: Prentice Hall.

Kaufman L., and Rousseeuw P.J. 1990. “Finding Groups in Data: an Introduction to Cluster Analysis”.
John Wiley & Sons.

MacQueen J. 1967. “Some Methods for Classification and Analysis of Multivariate Observations”. 5th
Berkeley Symp. Math. Statist. Prob., edited by L. Le Cam and J. Neyman, Volume 1, pp. 281-297.

Matheus C.J., Chan P.K., and Piatetsky-Shapiro G. 1993. “Systems for Knowledge Discovery in
Databases”. IEEE Transactions on Knowledge and Data Engineering 5(6): 903-913.

Murtagh F. 1983. “A Survey of Recent Advances in Hierarchical Clustering Algorithms”, The Computer
Journal 26(4): 354-359.

Ng R.T., and Han J. 1994. “Efficient and Effective Clustering Methods for Spatial Data Mining”. Proc.
20th Int. Conf. on Very Large Data Bases. Santiago, Chile, 144-155.

Niemann H. 1990. “Pattern Analysis and Understanding”. Springer-Verlag, Berlin.

Protein Data Bank 1994. “Quarterly Newsletter 70”. Brookhaven National Laboratory. Upton, NY.
Reid, I.N. et al. 1991. “The Second Palomar Sky Survey”. Publ. Astron. Soc. Pacific 103: 661.
Richards A.J. 1983. “Remote Sensing Digital Image Analysis. An Introduction”. Berlin: Springer Verlag.

Sibson R. 1973. “SLINK: an optimally efficient algorithm for the single-link cluster method”.The
Computer Journal 16(1): 30-34.

Stonebraker M., Frew J., Gardels K., and Meredith J. 1993. “The SEQUOIA 2000 Storage Benchmark”.
Proc. ACM SIGMOD Int. Conf. on Management of Data. Washington, DC, 2-11.

Vinod H. 1969. “Integer Programming and the theory of grouping”. J. Amer. Statist. Assoc. 64, 506-517.

Weir, N., Fayyad, U.M., and Djorgovski, S. 1995. “Automated Star/Galaxy Classification for Digitized
POSS-II.” Astron. J. 109: 2401.

Zepka, A.F., Cordes, J.M., and Wasserman, |. 1994. “Signal Detection Amid Noise with Known
Statistics”. Astrophys. J.: 427 - 438.

Zhang T., Ramakrishnan R., and Linvy M. 1997. “BIRCH: An Efficient Data Clustering Method for Very
Large Databases”. Data Mining and Knowledge Discovery 1(2): 141-182.



