
Abstract. The clustering algorithm DBSCAN relies on a density-based notion of clusters and is designed to dis-

cover clusters of arbitrary shape as well as to distinguish noise. In this paper, we generalize this algorithm in two

important directions. The generalized algorithm - called GDBSCAN - can cluster point objects as well as spatially

extended objects according to both, their spatial and their non-spatial attributes. In addition, four applications using

2D points (astronomy), 3D points (biology), 5D points (earth science) and 2D polygons (geography) are presented,

demonstrating the applicability of GDBSCAN to real world problems.

Keywords: Clustering Algorithms, Spatial Databases, Efficiency, Applications.

1. Introduction

Spatial Database Systems (SDBS) (Gueting 1994) are database systems for the management of

spatial data, i.e. point objects or spatially extended objects in a 2D or 3D space or in some high

dimensional vector space. While a lot of research has been conducted on knowledge discovery

in relational databases in the last years, only a few methods for knowledge discovery in spatial

databases have been proposed in the literature. Knowledge discovery becomes more and more

important in spatial databases since increasingly large amounts of data obtained from satellite

images, X-ray crystallography or other automatic equipment are stored in spatial databases.

Data mining is a step in the KDD process consisting of the application of data analysis and dis-

covery algorithms that, under acceptable computational efficiency limitations, produce a partic-

ular enumeration of patterns over the data (Fayyad et al.,1996). Clustering, i.e. grouping the ob-

jects of a database into meaningful subclasses, is one of the major data mining methods

(Matheus et al., 1993). There has been a lot of research on clustering algorithms for decades but

the application to large spatial databases introduces the following new requirements:

(1) Minimal requirements of domain knowledge to determine the input parameters, because ap-

propriate values are often not known in advance when dealing with large databases.

(2) Discovery of clusters with arbitrary shape, because the shape of clusters in spatial databases

may be non-convex, spherical, drawn-out, linear, elongated etc.

Density-Based Clustering in Spatial Databases:
The Algorithm GDBSCAN and its Applications

Jörg Sander, Martin Ester, Hans-Peter Kriegel, Xiaowei Xu

Institute for Computer Science, University of Munich
Oettingenstr. 67, D-80538 München, Germany

{sander | ester | kriegel | xwxu}@informatik.uni-muenchen.de

(3) Good efficiency on large databases, i.e. on databases of significantly more than just a few

thousand objects.

(Ester et al., 1996) present the density-based clustering algorithm DBSCAN. For each point of

a cluster its Eps-neighborhood for some given Eps > 0 has to contain at least a minimum number

of points, i.e. the “density” in the Eps-neighborhood of points has to exceed some threshold. DB-

SCAN meets the above requirements in the following sense: first, DBSCAN requires only one

input parameter and supports the user in determining an appropriate value for it. Second, it dis-

covers clusters of arbitrary shape and can distinguish noise, and third, using spatial access meth-

ods, DBSCAN is efficient even for large spatial databases.

In this paper, we present the algorithm GDBSCAN generalizing DBSCAN in two important

ways. First, we can use any notion of a neighborhood of an object if the definition of the neigh-

borhood is based on a binary predicate which is symmetric and reflexive. For example, when

clustering polygons, the neighborhood may be defined by the intersect predicate. Second, in-

stead of simply counting the objects in the neighborhood of an object, we can use other mea-

sures, e.g. considering the non-spatial attributes such as the average income of a city, to define

the “cardinality” of that neighborhood. Thus, the generalized GDBSCAN algorithm can cluster

point objects as well as spatially extended objects according to both, their spatial and their non-

spatial attributes. Furthermore, we present four applications using 2D points (astronomy), 3D

points (biology), 5D points (earth science) and 2D polygons (geography) demonstrating the ap-

plicability of GDBSCAN to real world problems.

The rest of the paper is organized as follows. We discuss well-known clustering algorithms in

section 2 evaluating them according to the above requirements. In section 3, we present our den-

sity-based notion of clusters and section 4 introduces the algorithm GDBSCAN which discovers

such clusters in a spatial database. In section 5, we present an analytical as well as an experimen-

tal evaluation of the effectiveness and efficiency of GDBSCAN. Furthermore, a comparison

with the well-known clustering algorithms CLARANS and BIRCH is performed. In section 6,

four applications of GDBSCAN are discussed and section 7 concludes with a summary and

some directions for future research.

2. Related Work on Clustering Algorithms

Two main types of clustering algorithms can be distinguished (Kaufman and Rousseeuw, 1990):

partitioning and hierarchical algorithms. Partitioning algorithms construct a partition of a data-

base D of n objects into a set of k clusters. The partitioning algorithms typically start with an ini-

tial partition of D and then use an iterative control strategy to optimize an objective function.

Each cluster is represented by the gravity center of the cluster (k-means algorithms)

(MacQueen, 1967) or by one of the objects of the cluster located near its center (k-medoid algo-

rithms) (Vinod, 1969). Consequently, a partition is equivalent to a voronoi diagram and each

cluster is contained in one of the voronoi polygons. Thus, the shape of all clusters found by a par-

titioning algorithm is convex (Kaufman and Rousseeuw, 1990) which is very restrictive for

many applications.

Ng and Han (Ng and Han, 1994) explore partitioning algorithms for mining in spatial databas-

es. An algorithm called CLARANS (Clustering Large Applications based on RANdomized

Search) is introduced which is an improved k-medoid method restricting the huge search space

using two additional user-supplied parameters. Compared to former k-medoid algorithms,

CLARANS is more effective and more efficient. Our experimental evaluation indicates that the

runtime of a single call of CLARANS is close to quadratic (see table 1, section 5). Consequently,

it is possible to run CLARANS efficiently on databases of some thousands of objects, but not for

really large n. Methods to determine the “natural” number knat of clusters in a database are also

discussed (Ng and Han, 1994). They propose to run CLARANS once for each k from 2 to n. For

each of the discovered clusterings the silhouette coefficient (Kaufman and Rousseeuw, 1990) is

calculated, and finally, the clustering with the maximum silhouette coefficient is chosen as the

“natural” clustering. Obviously, this approach is very expensive for large databases, because it

implies O(n) calls of CLARANS.

Hierarchical algorithms create a hierarchical decomposition of a database D. The hierarchical

decomposition is represented by a dendrogram, a tree that iteratively splits D into smaller sub-

sets until each subset consists of only one object. In such a hierarchy, each level of the tree repre-

sents a clustering of D. The dendrogram can either be created from the leaves up to the root (ag-

glomerative approach) or from the root down to the leaves (divisive approach) by merging or

dividing clusters at each step. In contrast to partitioning algorithms, hierarchical algorithms do

not need k as an input parameter. However, a termination condition has to be defined indicating

when the merge or division process should be terminated, e.g. the critical distance Dmin between

all the clusters of D. Alternatively, an appropriate level in the dendrogram has to be selected

manually after the creation of the whole dendrogram.

The single-link method is a commonly used agglomerative hierarchical clustering method.

Different algorithms for the single-link method have been suggested (e.g. (Sibson, 1973),

(Jain and Dubes, 1988), (Hattori and Torii, 1993)). We will only describe the basic idea. The

single-link method starts with the disjoint clustering obtained by placing every object in a unique

cluster. In every step the two closest clusters in the current clustering are merged until all points

are in one cluster. The runtime of algorithms which construct the single-link hierarchy depends

on the technique for retrieving nearest neighbors. Without any spatial index support (see section

5.1 for a brief introduction into spatial access methods) for nearest neighbor queries, the runtime

complexity of single-link algorithms is O(n2). This runtime can be significantly improved when

using multidimensional hash- or tree-based index structures (see (Murtagh, 1983)).

Unfortunately, the runtime of most of the above algorithms is very high on large databases.

Therefore, some focusing techniques have been proposed to increase the efficiency of clustering

algorithms: (Ester et al., 1995) presents an R*-tree based focusing technique (1) creating a sam-

ple of the database that is drawn from each R*-tree data page and (2) applying the clustering

algorithm only to that sample.

In (Zhang et al., 1997), compact descriptions of subclusters, i.e. Clustering Features (CF),

are incrementally computed containing the number of points, the linear sum and the square sum

of all points in the cluster. The CF-values are organized in a balanced tree. In the first phase,

BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) performs a linear scan

of all data points and builds a CF-tree, i.e. a balanced tree with branching factor B and

threshold T. A nonleaf node represents a cluster consisting of all the subclusters represented by

its entries. A leaf node has to contain at most L entries and the diameter of each entry in a leaf

node has to be less than T. A point is inserted by inserting the corresponding CF-value into the

closest leaf of the tree. If an entry in the leaf can absorb the new point without violating the

threshold condition, then the CF-values for this entry are updated, otherwise a new entry in the

leaf node is created. In an optional phase 2, the CF-tree can be further reduced until a desired

number of leaf nodes is reached. In phase 3, an arbitrary clustering algorithm, e.g. CLARANS,

is used to cluster the CF-values of the leaf nodes of the CF-tree.

The efficiency of BIRCH is similar to the R*-tree based focusing technique cited above.

Experiments with synthetic data sets show that the clustering quality using BIRCH in combina-

tion with CLARANS is even higher than the quality obtained by using CLARANS alone.

3. Density-Connected Sets

In section 3.1, we present “density-connected sets” which are a significant generalization of

“density-based clusters” (see Ester et al. 1996), and indicate some important specializations of

density-connected sets in section 3.2 illustrating the high expressiveness of this concept.

In the following, we assume a spatial database D to be a finite set of objects characterized by

spatial and non-spatial attributes. The spatial attributes may represent, e.g., points or spatially

extended objects such as polygons in some d-dimensional space S. The non-spatial attributes of

an object in D may represent additional properties of a spatial object, e.g., the unemployment

rate for a community represented by a polygon in a geographic information system.

3.1 A Generalized Definition of Density Based Clusters

The key idea of a density-based cluster is that for each point of a cluster its Eps-neighborhood

for some given Eps > 0 has to contain at least a minimum number of points, i.e. the “density” in

the Eps-neighborhood of points has to exceed some threshold (Ester et al. 1996). This idea is il-

lustrated by the sample sets of points depicted in figure 1. In these examples, we can easily and

unambiguously detect clusters of points and noise points not belonging to any of those clusters,

mainly because we have a typical density of points inside the clusters which is considerably

higher than outside of the clusters. Furthermore, the density within the areas of noise is lower

than the density in any of the clusters.

This idea of “density-based clusters” can be generalized in two important ways. First, we can

use any notion of a neighborhood instead of an Eps-neighborhood if the definition of the neigh-

borhood is based on a binary predicate which is symmetric and reflexive. Second, instead of sim-

ply counting the objects in a neighborhood of an object we can as well use other measures to de-

fine the “cardinality” of that neighborhood.

Definition 1: (neighborhood of an object) Let NPred be a binary predicate on D which is reflex-

ive and symmetric, i.e., for all p, q ∈ D: NPred(p, p) and, if NPred(p, q) then NPred(q, p). Then

the NPred-neighborhood of an object o ∈ D is defined as NNPred(o) = {o’ ∈ D| NPred(o, o’)}.

The definition of a cluster in (Ester et al., 1996) is restricted to the special case of a distance

based neighborhood, i.e., NEps(o) = {o’ ∈ D| |o - o’| ≤ Eps}. A distance based neighborhood is a

natural notion of a neighborhood for point objects, but if clustering spatially extended objects

such as a set of polygons of largely differing sizes it may be more appropriate to use neighbor-

hood predicates like intersects or meets for finding clusters of polygons.

Although in many applications the neighborhood predicate will be defined by using only spa-

tial properties of the objects, the formalism is in no way restricted to purely spatial neighbor-

hoods. We can as well use non-spatial attributes and combine them with spatial properties of ob-

jects to derive a neighborhood predicate (see application 4 in section 6.4).

Another way to take into account the non-spatial attributes of objects is as a kind of “weight”

when calculating the “cardinality” of the neighborhood of an object. To keep things as simple as

possible, we will not introduce a weight function operating on objects, but a weighted cardinality

function wCard for sets of objects. The “weight” of a single object o can then be expressed by the

weighted cardinality of the singleton containing o, i.e. wCard({ o}).

Definition 2: (MinWeight of a set of objects) Let wCard be a function from the powerset of the

Database D into the non-negative Real Numbers, wCard: 2D → ℜ≥0 and MinCard be a positive

real number. Then, the predicate MinWeight for a set S of objects is defined to be true iff

wCard(S) ≥ MinCard.

Figure 1. Sample databases

database 1 database 2 database 3

The expression wCard(S) ≥ MinCard generalizes the condition | NEps(o) | ≥ MinPts in the def-

inition of density-based clusters where cardinality is just a special case of a wCard function.

There are numerous possibilities to define wCard(S) for subsets of the database D. Simply sum-

ming up the values of some non-spatial attribute for the objects in S is another example of a

wCard function. E.g., if we want to cluster objects represented by polygons and if the size of the

objects should be considered to influence the “density” in the data space, then the area of the

polygons could be used as a weight for these objects. A further possibility is to sum up a value

derived from several non-spatial attributes, e.g. by specifying ranges for some non-spatial at-

tribute values of the objects (i.e. a selection condition). We can realize the clustering of only a

subset of the database D by attaching a weight of 1 to objects that satisfy the selection condition

and a weight of 0 to all other objects. Note that using non-spatial attributes as a weight for objects

one can “induce” different densities, even if the objects are equally distributed in the space of the

spatial attributes. Note also that by means of the wCard function the combination of a clustering

with a selection on the database is possible, i.e., performing a selection “on the fly” while clus-

tering the database. This may be more efficient than performing the selection first under certain

circumstances because GDBSCAN can use existing spatial index structures (see section 5.1).

We can now define density-connected sets, analogously to the definition of density-based

clusters in (Ester et al. 1996), in a straightforward way (see also Ester et al. 1997).

A naive approach could require for each object in a density-connected set that the weighted

cardinality of the NPred-neighborhood of that object has at least a value MinCard. However, this

approach fails because there may be two kinds of objects in a density-connected set, objects in-

side (core object) and objects “on the border” of the density-connected set (border objects). In

general, an NPred-neighborhood of a border object has a significantly lower wCard than an

NPred-neighborhood of a core object. Therefore, we would have to set the value MinCard to a

relatively low value in order to include all objects belonging to the same density-connected set.

This value, however, will not be characteristic for the respective density-connected set - particu-

larly in the presence of noise objects. Therefore, for every object p in a density-connected set C

there must be an object q in C so that p is inside of the NPred-neighborhood of q and the weight-

ed cardinality wCard of NPred(q) is at least MinCard. We also require the objects of the set C to

be somehow “connected” to each other. This idea is elaborated in the following definitions and

illustrated by 2D point objects by using a distance based neighborhood for the points and cardi-

nality as wCard function.

Definition 3: (directly density-reachable) An object p is directly density-reachable from an

object q with respect to NPred, MinWeight if

1) p ∈ NNPred(q) and

2) MinWeight(NNPred(q)) = true (core object condition).

Obviously, directly density-reachable is symmetric for pairs of core objects. In general, how-

ever, it is not symmetric if one core object and one border object are involved. Figure 2 shows

the asymmetric case.

Definition 4: (density-reachable) An object p is density-reachable from an object q with respect

to NPred and MinWeight if there is a chain of objects p1, ..., pn, p1 = q, pn = p such that for all

i=1, ..., n: pi+1 is directly density-reachable from pi with respect to NPred and MinWeight.

Density-reachability is a canonical extension of direct density-reachability. This relation is

transitive, but it is not symmetric. Figure 3 depicts the relations of some sample objects and, in

particular, the asymmetric case. Although not symmetric in general, it is obvious that density-

reachability is symmetric for core objects because a chain from q to p can be reversed if also p is

a core object.

Two border objects of the same density-connected set C are possibly not density reachable

from each other because the core objects condition might not hold for both of them. However, for

a density-connected set C we require that there must be a core object in C from which both bor-

der objects of C are density-reachable. Therefore, we introduce the notion of density-connectiv-

ity which covers this relation of border objects.

Definition 5: (density-connected) An object p is density-connected to an object q with respect to

NPred, MinWeight if there is an object o such that both, p and q are density-reachable from o with

respect to NPred, MinWeight.

Figure 2. Core objects and border objects

q: core object

p: border object p directly density-
reachable from q

q not directly density-
reachable from p

p

q

p

q

Density-connectivity is a symmetric relation. For density reachable objects, the relation of

density-connectivity is also reflexive (c.f. figure 3).

Now, a density-connected set is defined to be a set of density-connected objects which is max-

imal with respect to density-reachability.

Definition 6: (density-connected set) A density-connected set C with respect to NPred,

MinWeight in D is a non-empty subset of D satisfying the following conditions:

1) Maximality: For all p, q ∈ D: if p ∈C and q is density-reachable from p with respect to NPred,

MinWeight, then q ∈C.

2) Connectivity: For all p,q ∈ C: p is density-connected to q with respect to NPred, MinWeight.

Note that a density-connected set C with respect to NPred and MinWeight contains at least one

core object: since C contains at least one object p, p must be density-connected to itself via some

object o (which may be equal to p). Thus, at least o has to satisfy the core object condition. Con-

sequently, the NPred-Neighborhood of o has to satisfy MinWeight.

The following lemmata are important for validating the correctness of our clustering algo-

rithm. Intuitively, they state the following. Given NPred and MinWeight, we can discover a den-

sity-connected set in a two-step approach. First, choose an arbitrary object from the database sat-

isfying the core object condition as a seed. Second, retrieve all objects that are density-reachable

from the seed obtaining the density-connected set containing the seed.

Lemma 1: Let p be an object in D and MinWeight(NNPred(p)) = true. Then the set

O = {o ∈D | o is density-reachable from p with respect to NPred, MinWeight}

is a density-connected set with respect to NPred, MinWeight.

Proof: 1) O is non-empty: p is a core object by assumption. Therefore p is density-reachable

from p. Then p is in O. 2) Maximality: Let q1 ∈O and q2 be density-reachable from q1 with re-

spect to NPred, MinWeight. Since q1 is density-reachable from p and density-reachability is tran-

sitive with respect to NPred, MinWeight, it follows that also q2 is density-reachable from p with

Figure 3. Density-reachability and density-connectivity

p density-
reachable from q

q not density-
reachable from p

p and q density-
connected to
each other by o

p

q

p

qo

respect to NPred, MinWeight. Hence, q2 ∈O. 3) Connectivity: All objects in O are density-con-

nected via object p. ❏

Furthermore, a density-connected set C with respect to NPred, MinWeight is uniquely deter-

mined by any of its core objects, i.e., each object in C is density-reachable from any of the core

objects of C and, therefore, a density-connected set C contains exactly the objects which are den-

sity-reachable from an arbitrary core object of C.

Lemma 2: Let C be a density-connected set with respect to NPred, MinWeight and let p be any

object in C with MinWeight(NNPred(p)) = true. Then C equals to the set

O = {o ∈D | o is density-reachable from p with respect to NPred, MinWeight}.

Proof: 1) O ⊆ C by definition of O. 2) C ⊆ O: Let q ∈ C. Since also p ∈ C and C is a density-

connected set, there is an object o ∈ C such that p and q are density-connected via o, i.e. both p

and q are density-reachable from o. Because both p and o are core objects, it follows that also o

is density-reachable from p (symmetry for core objects). With transitivity of density-reachability

with respect to NPred, MinWeight it follows that q is density-reachable from p. Then q ∈ O. ❏

We will now define a clustering CL of a database D with respect to NPred and MinWeight as

the set of all density-connected sets with respect to NPred and MinWeight in D, i.e. all clusters

from a clustering CL are density-connected sets with regard to the same “parameters” NPred and

MinWeight. Noise will then be defined relative to a given clustering CL of D, simply as the set of

objects in D not belonging to any of the clusters of CL.

Definition 7: (clustering) A clustering CL of D with respect to NPred, MinWeight is a set of den-

sity-connected sets with respect to NPred, MinWeight in D, CL = {C1 ,. . ., Ck} , such that for all C

the following holds: if C is a density-connected set with respect to NPred, MinWeight in D, then

C ∈CL.

Definition 8: (noise) Let CL={C1 ,. . .,Ck} be a clustering of the database D with respect to

NPred, MinWeight. Then we define the noise in D as the set of objects in the database D not be-

longing to any density-connected set Ci , i.e. noiseCL = D \ (C1 ∪ . . . ∪ Ck).

There are other possibilities to define a clustering based on definition 6. But this simple notion

of a clustering has the nice property that two clusters can at most overlap in objects which are

border objects in both clusters. Figure 4 illustrates the overlap of two clusters using cardinality

and MinCard = 4.

Lemma 3: Let CL be a clustering of D with respect to NPred, MinWeight.

If C1, C2 ∈CL and C1 ≠ C2, then for all p ∈C1 ∩ C2 it holds that p is not a core object, i.e.

wCard(NPred(p)) < MinCard.

Proof: Since NPred and MinWeight are the same for all clusters in CL it follows that if p ∈ C1 ∩
C2 would be a core object for C1, then p would also be a core object for C2. But then it follows

from Lemma 2 that C1 = C2, in contradiction to the assumption. Hence, p is not a core object. ❏

3.2 Important Specializations

The first specialization of a density-connected set obviously is a density-based cluster as de-

fined in (Ester et al., 1996):

• NPred: “distance ≤ Eps”, wCard: cardinality, MinWeight(N): | N | ≥ MinPts

Specializing this instance further will yield a description of a level in the single-link hierarchy

determined by a “critical distance” Dmin = Eps (Sibson, 1973):

• NPred: “distance ≤ NN-dist”, wCard: cardinality, MinWeight(N): | N | ≥ 2, every point p in the

set noiseCL must be considered as a single cluster.

Note that if cardinality is used and MinCard ≤ 3 there exists no overlap between the clusters of

a clustering CL. But then, the well-known “single-link effect” can occur, i.e., if there is a chain

of points between two clusters where the distance of each point in the chain to the neighboring

point in the chain is less than ε then the two clusters will not be separated. Higher values for Min-

Card will significantly weaken this effect and even for regular distributions where the k-distance

values may not differ from the 1-distance values for almost all points, a clustering according to

definition 7 and 8 will in general not be equivalent to a level in the single-link hierarchy.

A further specialization of density-connected sets allows the clustering of spatially extended

objects such as polygons:

• NPred: “intersects” or “meets”, wCard: sum of areas, MinWeight(N): sum of areas ≥ MinArea

Figure 4. Overlap of two clusters for MinCard = 4

cluster 1 cluster 2

borderpoint in both clusters

There are also specializations equivalent to simple forms of region growing (Niemann, 1990),

i.e. only local criteria for expanding a region can be defined by the weighted cardinality function.

For instance, the neighborhood may be given simply by the neighboring cells in a grid and the

weighted cardinality function may be some aggregation of the non-spatial attribute values.

• NPred: “neighbor”, MinWeight(N): aggr(non-spatial values) ≥ threshold

While region growing algorithms are highly specialized to pixels, density-connected sets can

be defined for any data types.

Figure 5 illustrates some specializations of density-connected sets.

4. GDBSCAN: Generalized Density Based Spatial Clustering of Applications

with Noise

In section 4.1, we present the algorithm GDBSCAN (Generalized Density Based Spatial Clus-

tering of Applications with Noise) which is designed to discover the density-connected sets and

the noise in a spatial database. To apply the algorithm, we have to know the NPred-neighbor-

hood, MinCard and the wCard function. In section 4.2, the issue of determining these “parame-

ters” is discussed and a simple and effective heuristic to determine Eps and MinCard for Eps-

neighborhoods combined with cardinality as wCard function is presented.

4.1 The Algorithm

To find a density-connected set, GDBSCAN starts with an arbitrary object p and retrieves all ob-

jects density-reachable from p with respect to NPred and MinWeight. If p is a core object, this

procedure yields a density-connected set with respect to NPred and MinWeight (see Lemma 1

and 2). If p is not a core object, no objects are density-reachable from p and p is assigned to

NOISE. This procedure is iteratively applied to each object p which has not yet been classified.

Thus, a clustering and the noise according to definitions 7 and 8 are detected.

Figure 5. Different specializations of density-connected sets

Density-based clusters Clustering of polygons Simple region growing

In figure 6, we present a basic version of GDBSCAN omitting details of data types and gener-

ation of additional information about clusters:

SetOfObjects is either the whole database or a discovered cluster from a previous run. NPred

and MinCard are the global density parameters and wCard is a pointer to a function wCard(Ob-

jects) that returns the weighted cardinality of the set Objects. ClusterIds are from an ordered and

countable datatype (e.g. implemented by Integers) where UNCLASSIFIED < NOISE < “other

Ids”, and each object is marked with a clusterId Object.ClId. The function nextId(clusterId) returns

the successor of clusterId in the ordering of the datatype (e.g. implemented as Id := Id+1). The

function SetOfObjects.get(i) returns the i-th element of SetOfObjects. In figure 7, function Expand-

Cluster constructing a density-connected set for a core object Object is presented in more detail.

A call of SetOfObjects.neighborhood(Object,NPred) returns the NPred-neighborhood of Point in

SetOfPoints as a list of objects. Obviously the efficiency of the above algorithm depends on the

efficiency of the neighborhood query because such a query is performed exactly once for each

object in SetOfObjects which satisfies the selection condition. The performance of GDBSCAN

will be discussed in detail in section 5, where we will see that neighborhood predicates based on

spatial proximity like distance predicates or intersection can be evaluated very efficiently by us-

ing spatial index structures.

The clusterId of some objects p which are marked to be NOISE because wCard(NPred(p)) <

MinCard may be changed later if they are density-reachable from some other object of the data-

base. This may happen only for border objects of a cluster. Those objects are then not added to

GDBSCAN (SetOfObjects, NPred, MinCard, wCard)
// SetOfObjects is UNCLASSIFIED
ClusterId := nextId(NOISE);
FOR i FROM 1 TO SetOfObjects.size DO

Object := SetOfObjects.get(i);
 IF Object.ClId = UNCLASSIFIED THEN
 IF ExpandCluster(SetOfObjects,Object,ClusterId, NPred,MinCard,wCard) THEN

ClusterId:=nextId(ClusterId)
 END IF
 END IF

END FOR
END; // GDBSCAN

Figure 6. Algorithm GDBSCAN

the seeds-list because we already know that an object with a ClusterId of NOISE is not a core ob-

ject, i.e., no other objects are density-reachable from them.

If two clusters C1 and C2 are very close to each other, it might happen that some object p be-

longs to both C1 and C2. Then p must be a border object in both clusters according to Lemma 3.

In this case, object p will only be assigned to the cluster discovered first. Except from these rare

situations, the result of GDBSCAN is independent of the order in which the objects of the data-

base are visited due to Lemma 1 and 2.

There may be reasons to apply a postprocessing to the clustering obtained by GDBSCAN. Ac-

cording to definition 7, each set of objects having MinWeight is a density-connected set. In some

ExpandCluster(SetOfObjects, Object, ClId, NPred, MinCard, wCard): Boolean;
IF wCard({Object}) ≤ 0 THEN // point not in selection

SetOfPoints.changeClId(Object,UNCLASSIFIED);
RETURN False;

END IF
seeds:=SetOfObjects.neighborhood(Object,NPred);
IF wCard(seeds) < MinCard THEN // no core point

SetOfObjects.changeClId(Object,NOISE);
RETURN False;

END IF
// still here? Object is a core object
SetOfObjects.changeClIds(seeds,ClId);
seeds.delete(Object);
WHILE seeds ≠ Empty DO

currentObject := seeds.first();
result := SetOfObjects.neighborhood(currentObject, NPred);
IF wCard(result) ≥ MinCard THEN

FOR i FROM 1 TO result.size DO
P := result.get(i);
IF wCard({P}) > 0 AND P.ClId IN {UNCLASSIFIED, NOISE} THEN
IF P.ClId = UNCLASSIFIED THEN

seeds.append(P);
END IF;
SetOfObjects.changeClId(P,ClId);

END IF; // wCard > 0 and UNCLASSIFIED or NOISE
END FOR;

END IF; // wCard ≥ MinCard
seeds.delete(currentObject);

END WHILE; // seeds ≠ Empty
RETURN True;

END; // ExpandCluster

Figure 7. Function ExpandCluster

applications (see, e.g., section 6.1), however, density-connected sets of this minimum size are

too small to be accepted as clusters. Furthermore, GDBSCAN produces clusters and noise. But

for some applications a non-noise class label for each object is required. For this purpose, we can

reassign each noise object and each object of a rejected cluster to the closest of the accepted clus-

ters. This postprocessing requires just a simple scan over the whole database without much com-

putation, in particular no region queries are necessary. Therefore, such postprocessing does not

increase the runtime complexity of GDBSCAN.

To conclude this section, we introduce the algorithm DBSCAN (Ester et al., 1996) as an im-

portant specialization of GDBSCAN.

Definition 9: (DBSCAN) DBSCAN is a specialization of the algorithm GDBSCAN using the

following parameters: NPred: “distance≤Eps”, wCard: cardinality, MinWeight(N): |N | ≥ MinPts.

4.2 Determining the Parameters for GDBSCAN

GDBSCAN requires a neighborhood predicate NPred, a weight function wCard and a minimum

weight MinCard. Which concrete parameters we will use, depends on the goal of the application.

In some applications there may be a natural way to provide values without any further parameter

determination. In other cases, we may only know the type of neighborhood that we want to use,

e.g. a distance based neighborhood for the clustering of point objects. In these cases we have to

use a heuristic to determine the appropriate parameters.

In this section, we present a simple heuristic which is effective in many cases to determine the

parameters Eps and MinCard for DBSCAN (c.f. definition 9) which is the most important spe-

cialization of GDBSCAN. DBSCAN uses a distance based neighborhood “distance less or equal

than Eps” and cardinality as the wCard function. Thus, we have to determine appropriate values

for Eps and MinCard. The density parameters of the “thinnest”, i.e. least dense, cluster in the da-

tabase are good candidates for these global values specifying the lowest density which is not

considered to be noise.

For a given k ≥ 1 we define a function k-distance, mapping each object to the distance from its

k-th nearest neighbor. When sorting the objects of the database in descending order of their k-dis-

tance values, the plot of this function gives some hints concerning the density distribution in the

database. We call this plot the sorted k-distance plot (see figure 8 for an example). If we choose

an arbitrary object p, set the parameter Eps to k-distance(p) and set the parameter MinCard to

k+1, all objects with an equal or smaller k-distance value will be core objects, because there are

at least k+1 objects in an Eps-neighborhood of an object p if Eps is set to k-distance(p). If we can

now find a threshold object with the maximum k-distance value in the “thinnest” cluster of D, we

would obtain the desired parameter values. Therefore, we have to answer the following ques-

tions. 1) Which value of k is appropriate? 2) How can we determine a threshold object p?

We will discuss the value k first, assuming it is possible to set the appropriate value for Eps.

The smaller we choose the value for k, the lower are the computational costs to calculate the k-

distance values and the smaller is the corresponding value for Eps in general. But a small change

of k for an object p will in general only result in a small change of k-distance(p). Furthermore,

our experiments indicate that the k-distance plots for “reasonable” k (e.g. 1 ≤ k ≤ 10 in 2D space)

do not significantly differ in shape and that also the results of DBSCAN for the corresponding

parameter pairs (k, Eps) do not differ very much. Therefore, the choice of k is not very crucial for

the algorithm. We can even fix the value for k (with respect to the dimension of the dataspace),

eliminating the parameter MinCard for DBSCAN. Considering only the computational cost, we

would like to set k as small as possible. On the other hand, if we set k = 1, the k-distance value for

an object p will be the distance to the nearest neighbor of p and the “single-link effect” can occur.

To weaken this effect, we must choose a value for k > 1.

We propose to set k to 2*dimension - 1. Our experiments indicate that this value works well for

databases D where each point occurs only once, i.e. if D is really a set of points. Thus in the fol-

lowing, if not stated otherwise, k will be set to this value, and the value for MinCard will be fixed

according to the above strategy (MinCard = k + 1, e.g. MinCard = 4 in 2D space).

To determine the parameter Eps for DBSCAN, we have to know an object in the “thinnest”

cluster of the database with a high k-distance value for that cluster. Figure 8 shows a sorted k-dis-

tance plot for sample database 3 which is very typical for databases where the density of clusters

and noise are significantly different. Our experiments indicate that the threshold object is an ob-

ject near the first “valley” of the sorted k-distance plot (see figure 8). All objects with a higher k-

distance value (to the left of the threshold) will then be noise, all other objects (to the right of the

threshold) will be assigned to some cluster.

In general, it is very difficult to detect the first “valley” automatically, but it is relatively simple

for a user to recognize this valley in a graphical representation. Additionally, if the user can esti-

mate the percentage x of noise, a proposal for the threshold object can be derived, because we

know that most of the noise objects have a higher k-distance value than objects of clusters. The

k-distance values of noise objects are located on the left of the k-distance plot, so that we can

simply select an object after x percent of the sorted k-distance plot.

There is always a range of values for the parameter Eps that yield the same clustering because

not all objects of the “thinnest” cluster need to be core objects. They will also belong to the clus-

ter if they are only density-reachable. Furthermore, the Eps value may be larger than needed if

the clusters are well separated and the density of noise is clearly lower than the density of the

thinnest cluster. Thus the robustness of the parameter determination, i.e. the width of the range

of appropriate Eps values, depends on the application. However, in general the width of this

range is broad enough to allow the parameters to be determined in a sorted k-distance plot for

only a very small sample of the whole database (1% - 10%).

To summarize, we propose the following interactive approach for determining the parameters

for DBSCAN

. The user gives a value for k (default is k = 2*dimension - 1).

. The system computes and displays the k-distance plot for a sample of the database.

. The user selects an object as the threshold object and the k-distance value of this object is used

as the Eps value; MinCard is set to k+1 (if the user can estimate the percentage of noise, the

system can derive a proposal for the threshold object from it).

Obviously, the shape of the sorted k-distance plot and hence the effectiveness of the proposed

heuristic depends on the distribution of the k-nearest neighbor distances. For example, the plot

will look more “stairs-like” if the objects are distributed more regularly within each cluster, or

the first “valley” will be less clear if the densities of the clusters differ not much from the density

Figure 8. Sorted 3-distance plot for sample database 3

threshold

3-distance

noise clusters

objects

point

of noise (which also means that the clusters are not well separated). Then, knowing the approxi-

mate percentage of noise in the data may be very helpful.

Though for some applications it may be difficult to determine the correct parameters, we want

to point out that the parameters may be re-used in different but similar applications, e.g., if the

different datasets are produced by a similar process. And, we will see in section 6 that there are

even applications where the appropriate parameter values for DBSCAN can be derived analyti-

cally (e.g. section 6.2), or a natural notion of a neighborhood for the application exists which

does not require any further parameters (e.g. intersects for polygons).

5. Performance Evaluation

In this section, we evaluate the performance of GDBSCAN. In section 5.1, we discuss the per-

formance of GDBSCAN with respect to the underlying spatial index structure. In section 5.2, an

experimental evaluation of GDBSCAN and a comparison with the well-known clustering algo-

rithms CLARANS and BIRCH is presented.

5.1 Analytical Evaluation

The runtime of GDBSCAN obviously is O(n * runtime of a neighborhood query): n objects are

visited and exactly one neighborhood query is performed for each of them. The number of neigh-

borhood queries cannot be reduced since a clusterId for each object is required. Thus, the overall

runtime depends on the performance of the neighborhood query. Fortunately, the most interest-

ing neighborhood predicates are based on spatial proximity - like distance predicates or intersec-

tion - which can be efficiently supported by spatial index structures. Such index structures are as-

sumed to be available in a SDBS for efficient processing of several types of spatial queries

(Brinkhoff et al., 1994).

In the following, we will introduce a typical spatial index, the R*-tree (Beckmann et

al., 1990). The R*-tree (see figure 9) generalizes the 1-dimensional B-tree to d-dimensional data

spaces, specifically an R*-tree manages k-dimensional hyperrectangles instead of 1-dimension-

al keys. An R*-tree may organize extended objects such as polygons using minimum bounding

rectangles (MBR) as approximations as well as point objects as a special case of rectangles. The

leaves store the MBRs of the data objects and a pointer to the exact geometry of the polygons.

Internal nodes store a sequence of pairs consisting of a rectangle and a pointer to a child node.

These rectangles are the MBRs of all data or directory rectangles stored in the subtree having the

referenced child node as its root. To answer a region query, starting from the root, the set of

rectangles intersecting the query region is determined and then their referenced child nodes are

searched until the data pages are reached.

The height of an R*-tree is O(log n) for a database of n objects in the worst case and a query

with a “small” query region has to traverse only a limited number of paths in the R*-tree. Since

most NPred-neighborhoods are expected to be small compared to the size of the whole database,

the average runtime complexity of a single neighborhood query is O(log n).

Table 1 lists the runtime complexity of GDBSCAN with respect to the underlying spatial in-

dex structure. Without any index support, the runtime of GDBSCAN is O(n2). This does not

scale well with the size of the database. But, if we use a spatial index, the runtime is reduced to O

(n log n). If we have a direct access to the NPred-neighborhood, e.g. if the objects are organized

in a grid, the runtime is further reduced to O(n).

5.2 Experimental Evaluation

We have implemented GDBSCAN in C++ based on an implementation of the R*-tree (Beck-

mann et al., 1990). All experiments were run on HP 735 / 100 workstations. In order to allow a

comparison with CLARANS and BIRCH - which both use a distance based neighborhood defi-

Table 1. runtime complexity of GDBSCAN

runtime complexity of a single neighborhood query the GDBSCAN algorithm

without index O(n) O(n2)

with spatial index O(log n) O(n * log n)

with direct access O(1) O(n)

directory

data-

level 1

directory
level 2

pages

. . .
Figure 9. Structure of an R*-tree

polygons

nition - we evaluated the specialized DBSCAN algorithm (c.f. definition 9). For an evaluation of

the effectivity of the more general GDBSCAN, see the applications in section 6.

To compare DBSCAN with CLARANS in terms of effectiveness (accuracy), we use the three

synthetic sample databases which are depicted in figure 1. Since DBSCAN and CLARANS are

clustering algorithms of different types, they have no common quantitative measure of the clas-

sification accuracy. Therefore, we evaluate the accuracy of both algorithms by visual inspection.

In sample database 1, there are four ball-shaped clusters of significantly differing sizes. Sample

database 2 contains four clusters of nonconvex shape. In sample database 3, there are four clus-

ters of different shape and size with additional noise. To show the results of both clustering algo-

rithms, we visualize each cluster by a different color. To give CLARANS some advantage, we

set the parameter k (number of clusters) to 4 for these sample databases. The clusterings discov-

ered by CLARANS are depicted in figure 10.

For DBSCAN, the parameter Eps was set, giving a noise percentage of 0% for sample databas-

es 1 and 2, and 10% for sample database 3, respectively. The clusterings discovered by DB-

SCAN are depicted in figure 11.

DBSCAN discovers all clusters (according to definition 7) and detects the noise points (ac-

cording to definition 8) from all sample databases. CLARANS, however, splits clusters if they

are relatively large or if they are close to some other cluster. Furthermore, CLARANS has no ex-

plicit notion of noise. Instead, all points are assigned to their closest medoid.

To test the efficiency of DBSCAN and CLARANS, we use the SEQUOIA 2000 benchmark

data. The SEQUOIA 2000 benchmark database (Stonebraker et al., 1993) uses real data sets that

are typical for Earth Science tasks. There are four types of data in the database: raster data, point

Figure 10. Clusterings discovered by CLARANS

 database 1 database 2 database 3

x

x

x

x

x

x

x

x

x

x

x x

data, polygon data and directed graph data. The point data set contains 62,584 Californian names

of landmarks, extracted from the US Geological Survey’s Geographic Names Information Sys-

tem, together with their location. The point data set occupies about 2.1 MB. Since the runtime of

CLARANS on the whole data set is very high, we have extracted a series of subsets of the SE-

QUIOA 2000 point data set containing from 2% to 20% representatives of the whole set. The

runtime comparison of DBSCAN and CLARANS on these databases is shown in table 2. The re-

sults of our experiments show that the runtime of DBSCAN is almost linear to the number of

points. The runtime of CLARANS, however, is close to quadratic to the number of points. The

results show that DBSCAN outperforms CLARANS by a factor of between 250 and 1,900

which grows with increasing size of the database.

Since we found it rather difficult to set the parameters of BIRCH appropriately for the SEQUI-

OA 2000 point data, we used the test data sets 1, 2 and 3 introduced by Zhang et al. (Zhang et

al., 1997) to compare DBSCAN with BIRCH. The used implementation of BIRCH - using

CLARANS in phase 3 - was provided by its authors. The runtime of DBSCAN was 1.8, 1.8 and

12.0 times the runtime of BIRCH. Note, however, that in general the same restrictions with re-

spect to clusters of arbitrary shape apply to BIRCH as they apply to CLARANS. Furthermore,

the clustering features - on which BIRCH is based - can be only defined in a Euclidean vector

Table 2. comparison of runtime (in sec.)

number of
points

1252 2503 3910 5213 6256 7820 8937 10426 12512 62584

DBSCAN 3 7 11 16 18 25 28 33 42 233

CLARANS 758 3,026 6,845 11,745 18,029 29,826 39,265 60,540 80,638 ???

Figure 11. Clusterings discovered by DBSCAN

 database 1 database 2

 database 3

cluster 2

cluster 1

cluster 4

cluster 3

cluster 2

cluster 1

cluster 4

cluster 3 cluster 2

cluster 1

cluster 4
cluster 3

space implying a limited applicability of BIRCH compared to DBSCAN (and compared to

CLARANS).

6. Applications

In this section, we present four typical applications of GDBSCAN. In the first application we

cluster a spectral space (5D points) created from satellite images in different spectral channels

which is a common task in remote sensing image analysis. The second application comes from

molecular biology. The points on a protein surface (3D points) are clustered to extract regions

with special properties. To find such regions is a subtask for the problem of protein-protein dock-

ing. The third application uses astronomical image data (2D points) showing the intensity on the

sky at different radio wavelengths. The task of clustering is to detect celestial sources from these

images. The last application is the detection of spatial trends in a geographic information system.

GDBSCAN is used to cluster 2D polygons creating so-called influence regions which are used

as input for trend detection.

6.1 Application 1: Earth Science (5D points)

In this application, we use a 5-dimensional feature space obtained from several satellite images

of a region on the surface of the earth covering California. These images are taken from the raster

data of the SEQUOIA 2000 Storage Benchmark. After some preprocessing, five images contain-

ing 1,024,000 intensity values (8 bit pixels) for 5 different spectral channels for the same region

were combined. Thus, each point on the surface, corresponding to an earth surface area of 1,000

by 1,000 meters, is represented by a 5-dimensional vector.

Finding clusters in such feature spaces is a common task in remote sensing digital image anal-

ysis (e.g. (Richards, 1983)) for the creation of thematic maps in geographic information systems.

The assumption is that feature vectors for points of the same type of underground on the earth are

forming groups in the high dimensional feature space (see figure 12 illustrating the case of 2D

raster images).

Application 1 has two characteristics that were not present in the synthetic databases used in

section 5.2. First, the coordinates of points can only be integer values between 0 and 255 in each

dimension. Second, many of the raster points have exactly the same features, i.e. are represented

by the same 5-dimensional feature vector. Only about 600,000 of the 1,024,000 feature vectors

are different from each other.

We used “dist(X,Y) < 1.42” as NPred(X,Y). The neighborhoods are very small due to the first

characteristic of the application, e.g. for about 15% of the points the distance to the 9th nearest

neighbor is 0. We used cardinality as wCard function and set MinCard to 20 to take into account

the second characteristic of the data.

There are several reasons to apply a postprocessing to improve the clustering result of GDB-

SCAN. First, GDBSCAN only ensures that a cluster contains at least MinCard points (using car-

dinality as wCard function), but a minimum size of 20 points is too small for this application, es-

pecially because many points have the same coordinates. Therefore, we accepted only the

clusters containing more than 200 points. This value seems arbitrary but a minimum size can be

chosen reasonably after the size of all clusters is known. Second, GDBSCAN produces clusters

and noise. But for this application a non-noise class label for each raster point is required. There-

fore, we reassigned each noise point and each point of a rejected cluster to the closest of the ac-

cepted clusters. We obtained 9 clusters with sizes ranging from 598,863 to 2,016 points.

To visualize the result, each cluster was coded by a different color. Then each point in the im-

age of the surface of the earth was colored according to the identificator of the cluster containing

the corresponding 5-dimensional vector. The resulting image is shown in figure 13. A high de-

gree of correspondence between the obtained image and a physical map of California can easily

be seen. A detailed discussion of this correspondence is beyond the scope of this paper.

Figure 12. Relation between 2D image and feature space

• • • •
• • • •
• • • •
• • • •

surface of the earth feature space

Channel 1

Channel 2
16.5 22.020.018.0
8

12

10

•
(12,17.5)

(8.5,18.7)
•••

•
••• •

••
••••

1 1 1 2
1 1 2 2
3 2 3 2
3 3 3 3

Cluster Cluster

Cluster 3

 1 2

6.2 Application 2: Molecular Biology (3D points)

Proteins are biomolecules consisting of some hundreds to thousands of atoms. Their mode of

operation lies in the interaction with other biomolecules, e.g. proteins, DNA or smaller partner

molecules. These interactions are performed by the so-called docking, i.e. the process of con-

necting the partner molecules.

Molecular biologists point out that the geometry of the molecular surfaces at the interaction

site plays an important role along with the physicochemical properties of the molecules. A nec-

essary condition for protein-protein docking is the complementarity of the interaction site with

respect to surface shape, electrostatic potential, hydrophobicity, etc. We use the crystallographi-

cally determined atom coordinates of proteins and protein complexes from the Brookhaven Pro-

tein Data Bank (Bernstein et al. 1977, Protein Data Bank 1994) and derive for each protein a sur-

face with some 10,000 equally distributed 3D points. For each point on the protein surface,

several geometric and physicochemical features are computed. The solid angle (SA), for exam-

ple, (Connolly, 1986) is a geometric feature describing the degree of convexity or concavity of

the surface in the neighborhood of the considered point.

A database system for protein-protein docking has to process queries for proteins with com-

plementary surfaces. This search is performed at the level of surface segments, defined as a set of

neighboring surface points with similar non-spatial attributes, e.g. with similar SA values. The

Figure 13. Visualization of the clustering result for the SEQUIOA 2000 raster data

segments should have a good correlation with the known docking sites of the proteins, i.e. a

docking site on a protein surface should consist of a small number of segments. Therefore, find-

ing a segmentation of protein surfaces is an important subtask for a protein docking DB. We ap-

plied GDBSCAN for this task.

We used a wCard function performing a simple selection on the SA values. The SA values are

normalized in the interval [0, 1], such that high SA values indicate points on a convex and low SA

values indicate points on a concave surface segment. To find the convex segments, we defined

wCard(S) as the number of points in S with SA value between 0.75 and 1.00. As the selection cri-

terion for points on a concave surface segment, we used SA values between 0.00 and 0.65. The

parameters NPred and MinCard were determined analytically. Since the surface points are

equally distributed with a density of 5 points per Å2, we used “dist(X,Y) < 0.6” as NPred(X,Y)

and set MinCard = 5. Note that if we would use these parameters together with cardinality, only

a single cluster containing all points of the protein surface would be found. In applications with

equally distributed points GDBSCAN can only find reasonable clusters if the wCard function is

defined appropriate, i.e. the wCard function must “simulate” regions of different density. We

searched for clusters covering at least 1% of the surface points of the protein. For example, for

the protein 133DA consisting of 5,033 surface points, only clusters with a minimum size of 50

surface points were accepted. In this case 8 convex and 4 concave clusters (segments) were

found by using the above parameter settings. Figure 14 depicts the clustering results of GDB-

SCAN for this protein. Note that some of the clusters are hidden in the visualization. GDBSCAN

discovered the most significant convex and concave surface segments of the protein, which can

easily be verified by visual inspection.

Figure 14. Visualization of the clustering results for protein 133DA

convex segments concave segments

6.3 Application 3: Astronomy (2D points)

Surveys of the sky form an integral part of astronomy. Celestial sources detected in a survey are

typically classified by the domain scientists; large surveys will detect many objects and enable

statistical studies of the objects in a given classification. Surveys may also reveal exotic or

anomalous objects or previously unidentified classes of objects. A typical result of a survey is a

2-dimensional grid of the intensity on the sky. The measured intensity is typically the sum of the

emission from discrete sources, diffuse emission (e.g., from the atmosphere, interplanetary me-

dium or interstellar medium), and noise contributed by the surveying instrument itself. Modern

surveys are capable of producing thousands of images of the sky, consuming 10 GB - 1 TB of

storage space, and may contain 105 to 106 or more sources, e.g., (Reid et al. 1991, Becker et al.

1995).

Maximizing the yield from a survey requires an accurate yet efficient method of detecting

sources. The traditional method of separating the discrete sources from the noise and other emis-

sions is to require that the sources exceed a predefined threshold, e.g. 5σ, where σ is an estimate

of the rms intensity in the image, e.g. (Becker et al. 1995). Recently, alternate methods, which

utilize the expected statistics of the intensity (Zepka et al. 1994) or classifier systems (Weir et al.

1995), have been deployed.

An extreme example of a noisy image is shown on the left side of figure 16. The image shows

the intensity, as measured by the Very Large Array, in a direction towards the Galactic center at

a radio wavelength of 4,865 MHz. The image is dominated by a celestial source near the center,

and the sidelobes which appear as radial spokes and are produced by the optics of the instrument.

A second image of the same area at a slightly different wavelength was also given for this appli-

cation. Because of its similarity to the first image, it is not depicted. The intensity values in the

images range from -0.003084 to 0.040023 and from -0.003952 to 0.040509 respectively. We ap-

plied GDBSCAN using the same parameter settings for both images:

- NPred(X,Y) is “dist(X,Y) < 1.42” , i.e. the neighborhood of a raster point is a 3x3 array of

points.

- wCard calculates the sum of the weights of all 9 points of the neighborhood weighting each

point by its intensity value.

- MinCard = 0.045 (i.e. the average intensity required for points in clusters = 0.005).

The resulting clusterings for both images are given in figure 15. For example, the brightest ce-

lestial source can easily be identified as the cluster in the center.

For the other clusters it is not so easy to verify that they are in fact celestial sources. The only

way to confirm a weak source is to detect it again in different images, e.g. if it can be detected

again by looking at it at slightly different frequencies. A source is required to appear at the same

position, maybe with a shift of a pixel or two, at all frequencies. Therefore, we extracted only the

clusters which are present in both images. There are 20 of them. The result of this procedure is

depicted on the right side of figure 16.

6.4 Application 4: Geography (2D polygons)

In the following, we present a simple method for detecting spatial trends based on GDBSCAN.

GDBSCAN is used to extract density-connected sets of neighboring objects having a similar val-

ue of the non-spatial attribute(s). To define the similarity on an attribute, we partition its domain

Figure 15. Clustering results for both images

Figure 16. Visualization of the astronomy data and the potential sources found by DBSCAN

cluster present in both imagesgreyscale representation of one image

into a number of disjoint classes and consider the values in the same class as similar to each other.

The sets with the highest or lowest attribute value(s) are most interesting and are called influence

regions, i.e. the maximal neighborhood of a center having a similar value in the non-spatial at-

tribute(s) as the center itself. Then, the resulting influence region is compared to the circular re-

gion representing the theoretical trend to obtain a possible deviation. Different methods may be

used for this comparison. A difference-based method calculates the difference of both, the ob-

served influence region and the theoretical circular region, thus returning some region indicating

the location of a possible deviation. An approximation-based method calculates the optimal ap-

proximating ellipsoid of the observed influence region. If the two main axes of the ellipsoid dif-

fer in length significantly, then the longer one is returned indicating the direction of a deviation.

GDBSCAN can be used to extract the influence regions from an SDBS. We define NPred(X,Y)

as “intersect(X,Y) ∧ attr-class(X) = attr-class(Y)” and use cardinality as wCard function. Fur-

thermore, we set MinCard to 2 in order to exclude sets of less than 2 objects.

To illustrate the results of this approach, we discuss some typical influence regions obtained

by GDBSCAN. The influence region of Ingolstadt is elongated indicating a deviation in west-

east direction caused by the river Danube traversing Ingolstadt in this direction. Figure 17 shows

the approximating ellipsoid and the significantly longer main axis in west-east direction.

The influence region of Munich has four significant deviations from the theoretical region (NE,

SW, S and SE). Figure 18 illustrates the difference between the observed influence region and the

theoretical circular region. These areas coincide with the highways originating from Munich.

Figure 17. Approximating ellipsoid of the influence region of Ingolstadt

Figure 18. Difference between the observed and the theoretical influence region of Munich

7. Conclusions

In this paper, we presented the clustering algorithm GDBSCAN generalizing the density-based

algorithm DBSCAN (Ester et al., 1996) in two important ways. GDBSCAN can cluster point ob-

jects as well as spatially extended objects according to both, their spatial and their non-spatial at-

tributes. After a review of related work, the general concept of density-connected sets and an al-

gorithm to discover them were introduced. A performance evaluation, analytical as well as

experimental, showed the effectiveness and efficiency of GDBSCAN on large spatial databases.

Furthermore, we presented four applications using 2D points (astronomy), 3D points (biology),

5D points (earth science) and 2D polygons (geography) demonstrating the applicability of GDB-

SCAN to real world problems.

Future research will have to consider the following issues. First, heuristics to determine the pa-

rameters for GDBSCAN where wCard is different from the cardinality function should be devel-

oped. Second, GDBSCAN creates a one level clustering. However, a hierarchical clustering may

be more useful, in particular if the appropriate input parameters cannot be estimated accurately.

An extension of GDBSCAN to detect simultaneously a hierarchy of clusterings will be investi-

gated.

Acknowledgements

We thank T. Joseph W. Lazio for making the astronomy data available to us and for his substan-

tial help in understanding and modeling the astronomy application. We also thank Thomas

Schmidt and Thomas Seidl for providing the protein data. We are grateful to Henning Brockfeld

for introducing us into the application of mining in the area of economic geography.

References

Becker, R.H., White, R.L., and Helfand, D.J. 1995. “The FIRST Survey: Faint Images of the Radio Sky at
Twenty Centimeters”. Astrophys. J. 450: 559.

Beckmann N., Kriegel H.-P., Schneider R, and Seeger B. 1990. “The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles”. Proc. ACM SIGMOD Int. Conf. on Management of Data.
Atlantic City, NJ, 322-331.

Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Brice M. D., Rodgers J. R., Kennard O.,
Shimanovichi T., Tasumi M. 1977. “The Protein Data Bank: a Computer-based Archival File for
Macromolecular Structures”. Journal of Molecular Biology 112: 535-542.

Brinkhoff T., Kriegel H.-P., Schneider R., and Seeger B. 1994. “Multi-Step Processing of Spatial Joins”.
Proc. ACM SIGMOD Int. Conf. on Management of Data. Minneapolis, MN, 197-208.

Connolly M.L. 1986. “Measurement of protein surface shape by solid angles”. Journal of Molecular
Graphics, 4(1): 3-6.

Ester M., Kriegel H.-P., Sander J. and Xu X. 1996. “A Density-Based Algorithm for Discovering Clusters
in Large Spatial Databases with Noise”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining.
Portland, OR, 226-231.

Ester M., Kriegel H.-P., and Xu X. 1995. “A Database Interface for Clustering in Large Spatial
Databases”. Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining. Montreal, Canada, 94-99.

Fayyad U., Piatetsky-Shapiro G., and Smyth P. 1996. “ Knowledge Discovery and Data Mining: Towards
a Unifying Framework”. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining, Portland, OR,
82-88.

Gueting R.H. 1994. An Introduction to Spatial Database Systems. The VLDB Journal 3(4): 357-399.

Hattori K., and Torii Y.: 1993.“Effective algorithms for the nearest neighbor method in the clustering
problem”. Pattern Recognition, 26(5): 741-746.

Jain A.K., and Dubes R.C. 1988. “Algorithms for Clustering Data”. New Jersey: Prentice Hall.

Kaufman L., and Rousseeuw P.J. 1990. “Finding Groups in Data: an Introduction to Cluster Analysis”.
John Wiley & Sons.

MacQueen J. 1967. “Some Methods for Classification and Analysis of Multivariate Observations”. 5th
Berkeley Symp. Math. Statist. Prob., edited by L. Le Cam and J. Neyman, Volume 1, pp. 281-297.

Matheus C.J., Chan P.K., and Piatetsky-Shapiro G. 1993. “Systems for Knowledge Discovery in
Databases”. IEEE Transactions on Knowledge and Data Engineering 5(6): 903-913.

Murtagh F. 1983. “A Survey of Recent Advances in Hierarchical Clustering Algorithms”, The Computer
Journal 26(4): 354-359.

Ng R.T., and Han J. 1994. “Efficient and Effective Clustering Methods for Spatial Data Mining”. Proc.
20th Int. Conf. on Very Large Data Bases. Santiago, Chile, 144-155.

Niemann H. 1990. “Pattern Analysis and Understanding”. Springer-Verlag, Berlin.

Protein Data Bank 1994. “Quarterly Newsletter 70”. Brookhaven National Laboratory. Upton, NY.

Reid, I.N. et al. 1991. “The Second Palomar Sky Survey”. Publ. Astron. Soc. Pacific 103: 661.

Richards A.J. 1983. “Remote Sensing Digital Image Analysis. An Introduction”. Berlin: Springer Verlag.

Sibson R. 1973. “SLINK: an optimally efficient algorithm for the single-link cluster method”.The
Computer Journal 16(1): 30-34.

Stonebraker M., Frew J., Gardels K., and Meredith J. 1993. “The SEQUOIA 2000 Storage Benchmark”.
Proc. ACM SIGMOD Int. Conf. on Management of Data. Washington, DC, 2-11.

Vinod H. 1969. “Integer Programming and the theory of grouping”. J. Amer. Statist. Assoc. 64, 506-517.

Weir, N., Fayyad, U.M., and Djorgovski, S. 1995. “Automated Star/Galaxy Classification for Digitized
POSS-II.” Astron. J. 109: 2401.

Zepka, A.F., Cordes, J.M., and Wasserman, I. 1994. “Signal Detection Amid Noise with Known
Statistics”. Astrophys. J.: 427 - 438.

Zhang T., Ramakrishnan R., and Linvy M. 1997. “BIRCH: An Efficient Data Clustering Method for Very
Large Databases”. Data Mining and Knowledge Discovery 1(2): 141-182.

