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1. INTRODUCTION

UML (Unified Modeling Language [1]) is a
standard notation based on a set of diagrams to
describe the structure and the behavior of soft-
ware systems. In [2] the authors claim that “UML
is more than just a graphical language. Rather,
behind every part of its graphical notation there
is a specification that provides a textual state-
ment of the syntax and semantics of that build-
ing block”. However, the UML semantics docu-
ment [1] only gives an unambiguous textual def-
inition of the syntax for the UML notations and
leaves the behavioral content of various UML con-
structs largely open. The necessity to develop
the UML as a precise (i.e. well defined) modeling
language is widely felt [11,10,24] and the pUML
(precise UML) group has been created to achieve
this goal [23]. With this paper we want to sur-
vey previous work [3-5] done to provide a precise
definition of some basic concepts of UML which
are related to the dynamics of systems. Techni-
cal details are left out for lack of space but they
are duly referenced. Our goal here is to discuss a
framework for the rigorous description and anal-
ysis of different possible logically consistent inter-
pretations of the intuitions which underly UML
concepts: how (a) it faithfully reflects the orig-
inal intuitions as far as possible; (b) it makes
the so-called semantic variations points explicit;
(c) clarifies some dark but semantically relevant
points in the UML documents. This includes
the event deferring and completion mechanism,
the meaning of atomic and durative actions, con-
current internal activities and conflict situations

which may arise through the concurrent behavior
of active objects.

We develop this framework for one of the prin-
cipal diagram types which are used in UML for
the description of system behavior, namely stat-
echarts or UML state machines.

2. ABSTRACT STATE MACHINES

ASMs are transition systems, their states are
multi-sorted first-order structures, i.e. sets with
relations and functions, where for technical con-
venience relations are considered as characteristic
boolean-valued functions. The transition relation
is specified by rules describing the modification of
the functions from one state to the next, namely
in the form of guarded updates (“rules”)

if Condition then Updates
where Updates is a set of function updates
f(t1,...,ty) := t, which are simultaneously ex-
ecuted when Condition is true.

We use multi-agent ASMs [14] to model the
concurrent substates and the internal activities
which may appear in a UML state machine. A
multi-agent ASM is given by a set of (sequential)
agents, each executing a program consisting of
ASM rules. Multi-agent runs are defined in [14].

Since ASMs offer the most general notion of
state, namely structures of arbitrary data and
operations which can be tailored to any desired
level of abstraction, this allows us on the one side
to reflect in a simple and coherent way the inte-
gration of control and data structures, resulting
from mapping state machines to the UML object
model. In fact, machine transitions are described



by ASM rules where the actions become updates
of data (function values for given arguments). On
the other side also the interaction between ob-
jects is naturally reflected by the notion of state
of multi-agent (distributed) ASMs.

For the constructs of sequentialization, itera-
tion and submachine of sequential ASMs we use
the definitions which have been given in [6]. They
provide the concept of “stable” state needed to
guarantee that the event triggered sequential exit
from and entry into nested diagrams is not inter-
rupted by a too early occurrence of a next event.

3. UML STATE DIAGRAMS

State diagrams focus on the event-ordered be-
havior of an object, a feature which is specially
useful in modeling reactive systems.

A state reflects a situation in the life of an ob-
ject during which this object satisfies some con-
dition, performs some action, or waits for some
event. Transitions are viewed in UML as relation-
ships between two states indicating that an object
in the first state will enter the second state and
perform specific actions when a specified event oc-
curs provided that certain conditions are satisfied
[1]. Accordingly, we introduce the abstract sets
STATE and TRANSITION (more details can be
found in [3,4]).

3.1. Handling State Diagrams Control

To formalize the control in a state machine, we
introduce a set of AGENT's which move through
the diagram, each executing what is required for
its currently active state. A state becomes active
when it is entered as result of some transition,
and becomes inactive if it is exited as result of a
transition. “In a hierarchical state machine more
then one state can be active at once. If the control
is on a simple state that is contained in a com-
posite state, then all the composite states that
either directly or transitively contain the sim-
ple state are also active” [1]. To maintain the
current configuration of active states, we intro-
duce a dynamic function currState : AGENT —
P(STATE) whose updates follow the control flow
of the given state machine. The function deepest
: AGENT — STATE yields the last (innermost)

state reached by an agent.

The agents execute UML state machines, i.e.
all use the same ASM rule. As a consequence,
in the formulation of these rules below, we use
the O-ary function Self which is interpreted by
each agent a as a. When a new agent is cre-
ated to perform a concurrent subcomputation
(defined by one of the substates in a concur-
rent composite state), it is linked to the parent
agent by the dynamic function parent : AGENT
— AGENT U {undef}.The active subagents of
an agent a are collected in the set SubAgent(a) =
{a’ €AGENT | parent(a’) = a}. The function
descendents : AGENT — P(AGENT) yields the
set of all the active subagents of an agent at any
depth of concurrency.

At the beginning of the computation, we re-
quire that there is a unique agent positioned on
the initial state of the top state, and whose pro-
gram consists of the rules Transition Selection
(described below) for selecting and executing a
transition, and Generate Completion Event
(see [3,4] for a complete explanation) to handle
completion events. These two rules define the top
level behavior of UML state diagrams.

3.2. Event Handling

“An event is received when it is placed on the
event queue of its target. An event is dispatched
when it is dequeued from the event queue and
delivered to the state machine for processing. At
this point, it is referred as the current event. Fi-
nally, it is consumed when event processing is
complete. A consumed event is no longer avail-
able for processing” [1]. Since the particular
event enqueuing and dispatching mechanisms are
deliberately not furthermore specified in UML,
we model them explicitly as semantic variation
points and therefore use a monitored predicate
dispatched indicating which event is dequeued to
be processed.

The run to completion assumption requires
that a state diagram processes one event at a time
and finishes all the consequences of that event be-
fore processing another event [1]. We reflect this
requirement by a constraint on dispatched.

At any moment, the only transitions that are
eligible to fire when an event e occurs are the ones



departing from an active state (i.e. belonging
to currState) and whose associated guard eval-
uates to true. This is expressed by the condi-
tion enabled(t,e,a) = evenl(t) = e & guard(t) &
source(t) € currState(a) .

It is possible for more than one transition to
be enabled by the same event, but UML allows
only those transitions to be fired simultaneously
which occur in concurrent substates [1]. In all
the other cases, the enabled transitions are said
to be in conflict with each other. A number of
conflicting situations are reported in the UML
official documentation. In general, these conflicts
are left open as semantic variation points. In UML
the selection among conflicting transitions is con-
strained only when two or more transitions with
different source states, but belonging to the same
active state configuration, are enabled by the oc-
currence of an event. In this case priority is given
to the innermost enabled transition.

Let enabled(e) be the set of all transitions
(simultaneously) enabled by e. On enabled(e)
we define an equivalence relation: V ty,to €
enabled(e), t1 ~ to iff source(t;) = source(ts).
The nesting of states induces the total order
relation < on the quotient set enabled(e)/ ~,
defined as [t1]a < [t2]s, a,b € AGENT,
iff (@ = b & source(t;) is a direct or a
transitively nested substate of source(tz)) V
(a € descendants(b) & source(t1) € currState(a)
& source(tz) € currState(b) & source(ty) is
a direct or a transitively nested substate of
concurrentComp(source(ts)).

Let FirableTrans(e) be the minimum equiva-
lence class in enabled(e)/ ~. It reflects the UML
requirement that among transitions enabled by
the same event and with different source states,
priority is given to an innermost one. The choice
among those innermost ones is left open as se-
mantic variation point (see the choose construct
in the Transition Selection rule).

Remark. More conflict situations, not reported in
the UML official documentation and mainly con-
cerning transitions in concurrent substates, have
been discovered by simulating our model in [7].
For a complete description of conflicting situa-
tions we refer the reader to [4].

Deferred Events. Events may be specified by a

state as being possibly deferred. They are actu-
ally deferred if, when occurring, they do not trig-
ger any transition. This will last until a state is
reached where they are no more deferred or where
they trigger a transition. An event deferred in a
composite state is automatically deferred in all its
directly or transitively nested substates [1].

If a dispatched event does not trigger any tran-
sition in the current state, it is lost unless it
occurs in the deferred set of the deepest active
state. This is formalized by the following predi-
cate deferrable on EVENT: deferrable(e) = true
& enabled(e) = 0 & e € defer(deepest).

To store deferred events we associate to each
agent a list deferQueue of events that is dynam-
ically updated during the computation. We can
therefore define deferred(e) to mean e € defer-
Queue. We call a deferred event releasable when
it is ready to be consumed, i.e. when it can trigger
a transition in the current state: releasable(e) =
true < deferred(e) & enabled(e) # 0 .

4. STATE DIAGRAMS BEHAVIOR

To describe the dynamic semantics of state di-
agrams by ASM rules, we proceed in a modu-
lar and top down fashion. At the top level, we
describe the run-to-completion (rtc) step which
is the passage between two state configurations,
and then we define in more details the sequence
of steps a machine performs in changing state.

The Run To Completion Step. A rtc step
of a state machine consists in choosing an event
with an enabled transition and firing the enabled
transition. Apparently, UML leaves it unspecified
how to choose between dispatched and releasable
events. We reflect this by using a selection func-
tion which, at any step, chooses either a dis-
patched event triggering a transition, or an event
that has been deferred. A dispatched event, if de-
ferrable, has to be inserted into the deferQueue.
A releasable event, when chosen for execution,
has to be deleted from deferQueue. This implies
that when choosing an event which is simultane-
ously dispatched and releasable, that event will be
deleted from the deferred events.

The submachine stateMachineExecution is re-
sponsible for the execution of transitions. Its pa-



rameterization by transitions allows us to modu-
larize the definition for the different types of tran-
sitions and the involved states.

Rule Transition Selection
choose e : dispatched(e) V releasable(e)
choose trans in FirableTrans(e)
stateMachineExecution(trans)
if deferrable(e) then insert(e,deferQueue)
if releasable(e) then delete(e,deferQueue)

State machine execution. If an internal tran-
sition is triggered, then the corresponding ac-
tion is executed (no exit or entry actions are
performed). Otherwise, if an external transi-
tion is triggered, we must determine the correct
sequence of exit and entry actions to be exe-
cuted according to the transition source and tar-
get state. Transitions outgoing from composite
states are inherited from their substates so that
a state may be exited because a transition fires
that departs from some of its enclosing states. If
a transition crosses several state boundaries, sev-
eral exit and entry actions may be executed in
the given order. To this purpose, we seek the in-
nermost composite state that encloses both the
source and the target state, i.e. their least com-
mon ancestor. Then the following actions are ex-
ecuted sequentially: (a) the exit actions of the
source state and of any enclosing state up to, but
not including, the least common ancestor 705, in-
nermost first; (b) the action on the transition; (c)
the entry actions of the target state and of any
enclosing state up to, but not including, the least
common ancestor FromS, outermost first; finally
(d) the “nature” of the target state is checked
and the corresponding operations are performed.
(Details on the macros can be found in [3,4].)
stateMachineExecution(trans) =
if internal(trans) then action(trans)
else
seq exitState(source(trans), ToS)
action(trans)
enterState( FromS,target(trans))
case target(trans)
SequentialState:
enterInitialState(target(trans))
ConcurrentState:
start ConcurrComput(target(trans))
HistoryState: restoreConfig(target(trans))
endcase

The ASM constructs for sequentialization and
iteration defined in [6] provide the combination of

black box (atomic step) view and the white box
(durative) view which is needed in the definition
of the parameterized macro stateMachineExecu-
tion to guarantee that when the ASM rule is ex-
ecuted, all the updates which occur in the called
macros are performed before the next event is dis-
patched or becomes releasable.

Transitions to/from Concurrent Substates
If a transition drawn from a concurrent state
boundary fires, any active states in all its sub-
regions are properly exited according to the
stateMachineExecution macro. However, transi-
tions may be drawn directly from states within a
concurrent state region at any nesting depth to
outside states. All exit actions are performed for
any states that are exited on any transition [1].

In case a triggered transition overcomes the
boundary of a concurrent sub-region, the run-to-
completion step has to be performed by the ances-
tor agent lying in the transition’s source/target
least common ancestor state. The stateMachi-
neExecution performed by this agent guarantees
the correct semantics. In order to guarantee
the reaction of the correct agent to the firing
of a transition, we have redefined the predicate
enabled(t,e,a). (See [5] for details).

A transition drawn to a concurrent state
boundary indicates a transition to the initial
pseudostate of each of its concurrent substates.
However, transitions may be drawn directly to
states within a concurrent composite state region
at any nesting depth. All entry actions are per-
formed for any states that are entered on any
transition. The transition target state is entered,
whereas any other concurrent regions start with
their default initial pseudostate.

To formalize the complex entering mecha-
nism when the triggered transition overcomes the
boundary of a concurrent region, we have re-
fined the entering state procedure, as given by
the macro enterState, in order to guarantee that
the following actions are executed sequentially:
(a) entering the sequence of nested states crossed
by the transition from the direct substate of the
transition’s source/target least common ancestor
state, to the first concurrent state of the chain; (b)
starting the concurrent computation of as many



new sub-agents as the number of concurrent sub-
regions of the concurrent state; all the newly cre-
ated agents are set on the initial states of their
associated subcomponents, except the agent lying
in the subregion crossed by the transition, which
must (¢) proceed the entering action through the
down chain of nested states till the next concur-
rent nested state. Details on the enterState macro
refinement can be found in [5].

5. DISCUSSION

In this section we discuss some ambiguities in
the official semantics of UML state machines [1]
which are resolved in the ASM model and show
how the UML requirements for statecharts are
satisfied by our model.

The state machine execution is formalized
through the macro stateMachineExecution that
reflects the scheme of a generic control machine.
The resulting ASM statecharts reflect all the
characteristics of the state machines metamodel
in [1] and add to its structural, static definition
the underlying control flow semantics. It answers
subtle questions related to the execution of ongo-
ing state activities. E.g. what does happen when
an internal transition occurs? Does the activity
interrupt and then restart from the same com-
putation point, or does it never interrupt? The
way we model internal activities guarantees the
second, to our understanding reasonable, alterna-
tive. However, our model can be easily adapted
to formalize other behaviors.

By replacing the informal UML terms of “ac-
tion” and “activity” with “ASM rule” in its struc-
tured form [6], we provide a precise mathematical
content to these terms without loosing the gener-
ality intended by the designers of UML. In partic-
ular, a precise meaning of the informal UML term
“ongoing internal activity” is obtained, namely as
execution of an ASM in a multi-agent distributed
run as defined in [14]. The sequentialization, it-
eration and ASM submachine constructs defined
in [6] clarify in what sense sequences of nested
exit and entry actions can be guaranteed to be
executed in one “run to completion step”, as pos-
tulated by the UML documents, namely before
the next event may trigger the next “step”. Our

model also makes explicit some semantically rel-
evant features—e.g. whether abortion of internal
activities and exit actions of concurrent agents
should be synchronized or not—which have not
been considered in the official UML specification.

Many papers on the semantics of statecharts
exist in the literature (see next section), never-
theless, the debate is still ongoing on what ex-
actly should be considered as the authoritative
definition of UML State Machines which integrate
statecharts with the UML object model. Unless
necessary to avoid inconsistencies, we do not take
any position on which of these understandings of
UML state machine concepts is reasonable or de-
sirable but build a framework which shows the
freedom offered to implementors by the semantic
variations points, read: different possible logically
consistent interpretations of the intuitions which
underly the UML concepts.

Our specific goals concerning UML state ma-
chines are to: (a) accurately define the UML
event handling scheme making its semantic varia-
tion points explicit, including the event-deferring
and the event-triggered run-to-completion mech-
anisms; (b) encapsulate the run-to-completion
step in two simple rules (Transition Selection
and Generate Completion Events), where
the peculiarities relative to entry/exit or transi-
tion actions and sequential, concurrent or history
states are dealt with in a modular way; (c) clar-
ify various difficulties concerning the scheduling
scheme for internal ongoing (really concurrent)
activities, including an analysis of the conflict
situations which may arise through the concur-
rent behavior of active objects; (d) describe all
the UML state machine features that break the
thread-of-control, including transitions from and
to concurrent states in the context of event de-
ferring and run-to-completion. Note that this in-
volves the sequential execution, respectively the
termination, of entry and exit actions, in the or-
der prescribed by the diagram structure as well
as starting or terminating all the subcomputa-
tions encountered at the boundaries of concur-
rent substates between source and target state;
(e) integrate smoothly the state machine control
structure with the data flow; (f) provide a pre-
cise computational content to the UML terms of



atomic and durative actions/activities, without
losing the intended generality of these concepts.

Our model can also serve as reference model for
implementing tools for code generation, simula-
tion and verification of UML models. A. Cavarra
has extended the ASM interpreter AsmGofer [26]
to build a simulator for UML state machines that
can be used for high-level simulation [8,7].

6. RELATED WORK

Several semantics for statecharts have been
proposed in the literature. Differently from the
formalization of UML state machines in [13,19,
24,27], our model reflects the original structure
of machines as described in the UML documents,
without imposing any graphical transformation
or flattening of diagrams. [13] uses graph rewrit-
ing techniques to transform UML state machines
into a “normal form”, without considering the ex-
ecution of actions and activities. A similar ap-
proach based on graph transformation is used in
[19] where however history states, actions, and
guards are not formalized. Also in the model
in [24], which uses an algebraic specification ap-
proach, some state machines features are left out
or covered by semantical equivalences. A par-
tial definition of UML state machine semantics is
given in [27] using Labelled Transition Systems.
Latella et al. [21] exploit hierarchical automata
as an intermediate language for formulating the
semantics in terms of Kripke structures.

Lilius and Paltor [22] develop an operational se-
mantics of UML statechart on the basis of a term-
rewriting system and a predetermined static pri-
ority relation on transitions. This then serves as
the theoretical basis of their vUML tool. Schéfer
et al. propose in [25] a dynamic computation
algorithm; they model states as individual pro-
cesses communicating through channels. In or-
der to determine firable transitions, the control
is transferred from the top state process down to
leaf state processes. Translations of UML models
into the SPIN input language Promela for verifi-
cation in SPIN are provided in [22,25,20,12] .

Compton et al. present in [9] an ASM model
for statecharts in order to develop a tool for UML
model properties verification. They built an ex-

tended statechart by adding a transition for ev-
ery affected state of a firing transition. In [17,18]
Jiirjens provides an ASM semantics for a part of
UML that allows one to use UML subsystems to
group together several diagrams making use of
the statechart semantics from [3]. Using ASMs,
Jin et al. present in [16] a generic approach to
integrating a visual language in a heterogeneous
modeling and simulation environment; they use
UML diagrams as an example for their approach.
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