29 New Unclarities in the Semantics of UML 2.0
State Machines*

Harald Fecher, Jens Schénborn, Marcel Kyas, and Willem-Paul de
Roever

Christian-Albrechts-Universitat zu Kiel, Germany
{hf, jes,mky,wpr}@informatik.uni-kiel.de

Abstract. UML 2.0, which is the standard modeling language for object-
oriented systems, has only an informally given semantics. This is in par-
ticular the case for UML 2.0 state machines, which are widely used for
modeling the reactive behavior of objects. In this paper, a list of 29
newly detected trouble spots consisting of ambiguities, inconsistencies,
and unnecessarily strong restrictions of UML 2.0 state machines is given
and illustrated using 6 state machines having a problematic meaning;
suggestions for improvement are presented. In particular, we show that
the concepts of history, priority, and entry/exit points have to be recon-
sidered.

1 Introduction

UML has become the standard modeling language for object-oriented
systems. UML state machines are one of the most important constituents
of UML, since they are widely used for modeling the reactive behavior
of objects. UML state machines have evolved from Harel’s statecharts [4]
and their object-oriented version [5]. The fact that the semantics of UML
is only informally described leads to many ambiguities and inconsistencies
in earlier versions of UML, see for example [9,11]. Many of the detected
ambiguities and inconsistencies are ruled out in UML 2.0 [8], but new
ones are added.

We present a list of 29 newly detected ambiguities, inconsistencies
and unnecessarily strong restrictions of UML 2.0 (behavioral) state ma-
chines [8, p. 573-639], which we found during an attempt to define their
formal semantics [10]. These unclarities are illustrated on 6 state ma-
chines, which are legal according to [8] but having a problematic mean-
ing. Some of the listed unclarities are serious, i.e., they cannot straightfor-
wardly be eliminated. This holds, e.g., for the concepts of history, priority,

* Part of this work has been financially supported by IST project Omega (IST-2001-
33522) and NWO/DFG project Mobi-J (RO 1122/9-1, RO 1122/9-2)



and entry/exit points, which are discussed in Subsection 3.1 till Subsec-
tion 3.3, where also suggestions for improvement are given. Our sugges-
tions for improving UML state machines lead to a simplified and less
ambiguous semantics, in particular, all serious unclarities are eliminated.

2 TUML 2.0 State Machines

The basic concepts of UML 2.0 state machines are states and transitions
between them. A state may contain regions! (called direct subregions of
that state) and a region must contain states (called direct substates of
that region) such that this hierarchy yields a tree structure. States that
contain at least one region are called composite states, otherwise, they are
called simple states. For example state 1 in Fig. 1 is a simple state, state
3 is a composite state containing one region, and state 0 is a composite
state containing two regions.

[o]

Fig. 1. State machine

-
|
|
|

1

A configuration describes the currently active states, where exactly
one direct substate of an active region must be active and all regions of
an active state must be active. For example, {0,1, 3,5} is a configuration
in Fig. 1. A state may have associated an entry behavior (evoked when the
state becomes active), an exit behavior (evoked when the state becomes
deactivated), and a doActivity behavior (sequence of actions, which may
be (partially) executed when the state is active). In the following, to
execute doActivities means the partial execution of such action sequences.

The environment may send events to the state machine. These events
are collected in the event pool of the state machine. A state machine may
either execute doActivities of active states or may dispatch a single event
from its event pool to trigger transitions.

Beside its source and target, a transition consists of an event, a guard
(a boolean expression), and an action sequence. A transition is enabled if
its source state is currently active, its event is dispatched from the event
pool, and its guard evaluates to true. Among the enabled transitions,
those are fired which belong to a maximal set whose elements are pairwise
conflict-free. Two transitions are in conflict if the intersection of the set

! Multiple regions of a state are separated by a dashed line.



of states that will be left by the firing of these transitions is non empty. A
state s will be left by the firing of transitions ¢ if it is active and either a
substate of the source state of ¢ or, roughly spoken, the transition points
outside the border of s. For example, state 3 and 5 have to be left in
Fig. 1 by the firing of transition #; or by the firing of ¢2. Hence, ¢ and to
are in conflict.

The firing of transition ¢ leads, in this order, (i) to the deactivation of
the states that will be left by the firing of ¢ together with the execution
of the exit behavior of these states, (ii) the execution of the actions of ¢
(which we simply call the execution of t), and (iii) the activation of its
target states (the transition’s target state together with the non-active
states ‘crossed’ by the transition and some substates of the target state
via a default mechanism) together with the execution of the entry be-
havior of these states. UML state machines follow the run-to-completion
assumption, i.e., “an event occurrence can only be taken from the pool
and dispatched if the processing of the previous current occurrence is fully
completed” [8, p. 617].

There also exist different kinds of additional pseudostates, which are
not allowed to occur in configurations, and which have special interpreta-
tions. For example, a choice pseudostate, which is depicted by a diamond-
shaped symbol (see Fig. 5), leads to a new decision concerning which
of its outgoing transitions will be fired without completing the run-to-
completion step. In other words, the guards of transition leaving a choice
pseudostate are evaluated when the choice pseudostate is left, contrary
to guards of other transitions, which are evaluated when an event is dis-
patched. Further pseudostates are described in the next section. Transi-
tions may also have pseudostates as their sources or targets. A compound
transition is, roughly spoken, a transition obtained by subsuming transi-
tions involving pseudostates. In particular, one (single) transition between
states is also a compound transition. The semantics of firing transitions
is defined on compound transitions.

3 Semantical Unclarities of UML 2.0 State Machines

The unclarities discussed here are categorized as:

Incompleteness: meaning that no clear statement is made.

Inconsistency: meaning that parts are in contradiction with other parts.

Ambiguity: meaning that interpretations in more than one way are pos-
sible.

Equivocality: meaning that it is unclear whether the implicitly given
interpretation is the intended one.



3.1 History pseudostates

An initial pseudostate of composite state s indicates how the substates
of s are entered if a transition ¢ with target state s was fired: after firing
t, the unique transition leaving the initial pseudostate of s, called initial
transition, will be fired. A history pseudostate of a region r is used to
activate those substates of r that were active when r was the last time
active. The shallow history concept considers only the direct substates of
r, whereas that of deep history considers also deeper nested substates. In
case r was not active before or the last active direct substate of r is a
final state, the history default transition, which is the unique transition
leaving the history pseudostate, is fired instead. Final states are special
simple states. Initial pseudostates are depicted by a solid filled circle, a
deep history pseudostate by a circle containing an ‘H*’, and a final state
by a circle surrounding a solid filled circle, see, e.g., Fig. 2.

Inconsistency 1 On the one hand, history pseudostates belong to re-
gions [8, p. 598]. On the other hand, the semantics of a history pseu-
dostate is defined for its containing state [8, p. 591] and, therefore, no
meaning of history pseudostates belonging to multiple regions of a com-
posite state is defined.

We proceed by applying the definition of its semantics to its containing
region.

Incompleteness 2 The firing of transitions is only defined for com-
pound transitions, which do not include history or initial pseudostates [8,
p. 625]. Hence, the semantics of firing transitions that point to history
pseudostates (or initial pseudostates) is not defined.

The solution to allow also history and initial pseudostates as targets
of a compound transition does not eliminate all unclarities:

Incompleteness 3 May a transition to a history pseudostate be fired if
the guard of the history default transition evaluates to false and either
the corresponding region was not visited before or a final state of the
corresponding region was last active?

UML 2.0 only mentions implicitly that initial transitions and history
default transitions have to point to default states [8, p. 591], thus:

Equivocality 4 Is it really the case that transitions from initial pseu-
dostates or from history pseudostates may not point to pseudostates (such
as a choice pseudostate)?



Fig. 2. History illustration

Improvement: Interpret history and initial pseudostates as choice points
with additional semantics. Then more than one transition may leave a his-
tory or a initial pseudostate, and may point to pseudostates; the model
is ill-formed (i.e., any behavior is possible) when a history (or initial)
pseudostate is reached and all guards of the outgoing transitions evaluate
to false.

Ambiguity 5 The semantical behavior of transitions that point to a deep
history pseudostate from inside the region containing the history pseu-
dostate is not clear.

Consider, e.g., the firing sequence (to, t3, t5, t2, t7, tg) in Fig. 2. Then which
one of the states 3,5,6,7 is active? The comment given at [8, p. 591],
which concerns the last active configuration before exiting, favors state
6, whereas the recursive application of the shallow history rule [8, p. 606]
favors state 5, and when ‘last active’ does not correspond to the exiting
of the state then state 3 would be active.

Furthermore, the recursive application approach mentioned leads to
the following unclarities:

Equivocality 6 Is it really the case that also the deeper mested final
states will not be activated in case of a deep history activation?

Consider, e.g., the firing sequence (g, to, tg, t5,t1) in Fig. 2. Then state 7
is active and not the final state that is contained in state 4.

Ambiguity 7 How is the default activation for nested substates deter-
mined in case of deep history activation. Are they determined by the ini-
tial transitions or are they determined by the default history states of the
corresponding regions?

Consider, e.g., the firing sequence (tg,t1) in Fig. 2. Then, is state 6 or
state 7 active?



Ambiguity 8 How is the history information reset when a final state is
reached? Are only the direct substates reset or are all substates reset?

Consider, e.g., the firing sequence (g, to,ts, t5,t4) in Fig. 2. Then state 7
is active if the firing of tg also resets state 4. Otherwise, state 5 is active.

Improvement: We suggest to store the history information at the point
in time when the region is left. The ‘last active’ direct substate, instead
of the ‘last active’ subconfiguration, is stored (deep history will use this
information recursively), which reduces the complexity. The history infor-
mation of region r is set to a ‘not-visited’ value, whenever (i) r was not
visited before, or (ii) r or an outer region of r was exited after a final
state was reached there. The firing of a transition pointing to a deep his-
tory pseudostate h of region r (i) fires the default history transition of h
(where a default entering determined by the initial transitions takes place
in its target) if the history information of r yields the ‘non-visited’ value,
or (i) recursively activates the states stored in the history information
(also the stored final states) otherwise.

Our suggestion has the advantage that (a) no configuration that partly
consist of history information and partly consist of default information is
generated; (b) a default history entering just corresponds to the firing of
the corresponding history default transition; and (c) entering a region
where a final state was last active has the same behavior as if the region
was not visited before.

Concerning our examples this suggestions yields that (i) state 5 is
active after the firing of (to,ts,ts5,t2,t7,ts) in Fig. 2; (ii) the final state
contained in state 4 is active after (o, to, to,ts5,t1); (iii) state 6 is active
after (to,t1); and (iv) state 7 is active after (o, t2, s, t5,t4).

3.2 Priority

Priority between transitions is used to rule out some nondeterminism in
determining the set of transitions that may fire. “By definition, a tran-
sition originating from a substate has higher priority than a conflicting
transition originating from any of its containing states” [8, p. 618]. Join
pseudostates define a set of states, rather than a single state, as source
of a compound transition. Fork pseudostates define a set of states, rather
to a single state as target of a compound transition. Join and also fork
pseudostates are depicted by a short heavy bar as, e.g., illustrated in
Fig. 3.



Inconsistency 9 The definition of priority of joined transition (“The
priority of joined transitions is based on the priority of the transition with
the most transitively nested source state” [8, p. 618]) is not well defined
and in contradiction to the algorithm describing the determination of the
sets of transitions that will be fired [8, p. 618].

The priority definition for join transitions is not well defined, since the
‘most transitively nested source state’ (the state that has the the great-
est distance to the outermost region) cannot be uniquely determined and,
therefore, the priority between transitions cannot be uniquely determined.
For example, it is not clear if transition ¢y in Fig. 3 has priority over t;
or not. The contradiction between the priority definition for join transi-

Fig. 3. Priority illustration

tions and the algorithm is illustrated on the following example: In Fig. 3,
transition to has priority over t3 with respect to the priority definition for
joined transition, but ¢3 has priority over o with respect to the algorithm.

The algorithm mentioned contains the sentence: “For each state at a
given level, all originating transitions are evaluated to determine if they
are enabled” [8, p. 618].

Ambiguity 10 The interpretation of level is not clear. Does it corre-
spond to the maximal distance to a simple state or does it correspond to
the distance to the outermost region?

For example, if level corresponds to the maximal distance to a simple
state, then in Fig. 3 transition t4 has priority over t5 and over tg, and
t¢ has priority over t5. On the other hand, if level corresponds to the
distance to the outermost region, then tg has priority over ¢4 and over ¢,
and no priority between t4 and t5 exists.

Improvement: Use the definition given by the algorithm except that
level is ignored®: t has priority over t' if every source state of t is a

2 Ignoring level yields less priorities and, therefore, the approaches where level is
interpreted can be considered as a refinement step in the sense that less executions
are allowed.



substate of a source state of t' and one is a proper one. Then in Fig. 3
transition tg has priority over t4 and no further priorities exist between
ty, ts, and tg. The advantage of this definition is that the priority relation
is completely determined by the source states (e.g., further substates are
irrelevant, which is not the case if level is interpreted as distance to simple
states).

3.3 Entry/exit points

Another unclarity concerns entry/exit points. Entry/exit points are pseu-
dostates that belong to state machines or to composite states. “An entry
pseudostate [and symmetrically, an exit pseudostate] is used to join an
external transition terminating on that entry point to an internal transi-
tion emanating from that entry point” [8, p. 601]. Entry (exit) points are
depicted by a small circle (respectively, by a small circle with a cross) on
the border of the state machine or composite state.

Inconsistency 11 Is it really the case that entry points (respectively,
exit points) only exist at the topmost region of a state machine [8, p. 591]
(i.e., cannot belong to composite state), since entry points (respectively,
exit points) belonging to composite states are explicitly discussed at [8,
pp. 592,594,603].

In the following, we assume that entry/exit points are also allowed at
composite states. Junction pseudostates describe sets of transitions ob-
tained by combining any incoming transition with an outgoing transition.

Inconsistency 12 On the one hand, the entry (exit) behavior of a state
is executed between the transition pointing to an entry (respectively, exit)
point and the transition leaving that entry (exit) point [8, pp. 601,606]
(e.g., the entry behavior of state 0 in Fig. 4 is executed in between tran-
sitions to and t1). On the other hand, entry (exit) pseudostates are con-
sidered as junction pseudostates [8, pp. 607-608] and, therefore, the entry
behavior of state 0 is executed after the execution of transitions to and

t1 [8, pp. 625-628].
[o]
@

Fig. 4. Entry/exit point illustration

The approach to drop the correspondence to junction pseudostates
does not eliminate all unclarities as illustrated in the following;:



Incompleteness 13 How is the behavior defined if an exit point is reached
that does not have an outgoing transition? Is this an ill-formed situation?

Incompleteness 14 [t is not explicitly mentioned that the invocation of
the exit (entry) behavior of a state enforced through an exit (respectively,
entry) point corresponds to the point in time when the state is exited
(respectively, entered). Furthermore, it is not even clear if the state is
always exited in this situation.

For example, consider Fig. 4. Suppose the compound transition consisting
of ta,ts,ty is fired. Is then only the exit (respectively, entry) behavior of
state 0 executed without exiting state 07 This question is essential for
execution of doActivities and conflict determination.

In the following, we assume that a state is immediately left after
executing its exit behavior and that a state is immediately entered before
executing its entry behavior.

Equivocality 15 The deepest state (or region) containing the source and
target state of a transition (called the least common ancestor of the tran-
sition) is not sufficient to determine the conflict relation.

For example, in Fig. 4 the compound transition consisting of o, t3,t4 is
in conflict with transition t¢5, since the firing of each transition will exit
state 4 (if a composite state, like 0, is exited all its substates have to be
exited). But the least common ancestor of these transition yields different
subregions of state 0.

Incompleteness 16 May transitions (or transition paths on pseudostates)
point from entry points to exit points as, e.g., depicted in the second pic-
ture of Fig. 47

More problematic, transitions from an entry point belonging to state
s may point outside s (probably by using pseudostates in between), which
contradicts the invariant that after a run-to-completion step a configu-
ration will be reached [8, p. 617]. Furthermore, transitions pointing from
inside state s to an entry point belonging to s would execute the entry
behavior of an already active state. Therefore:

Incompleteness 17 The following restrictions are needed: Every transi-
tion path on pseudostates starting at an entry (exit) point of a composite
state s may only leave (respectively, enter) that state through an exit (re-
spectively, entry) point of s.



Any transition path on pseudostates starting from outside (inside) a com-
posite state s or from an exit (respectively, entry) point of s and which
(i.e., that path) does not contain an entry (respectively, exit) point of s
may not end at an exit (entry) point of s.

For example, the third and the fourth state machine of Fig. 4 should
be not allowed.

Inconsistency 18 Consider the state machine of Fig. 5. Suppose tg will
be fired. Then state 0 has to be left (independent whether transition ti or
ts will be taken). But if t1 will be fired, state 0 is left after the execution
of t1 (and, therefore, after ty) by the semantics of exit points [8, p. 606].
On the other hand, if ts will be fired, then state 0 has to be left before
transition ty is executed, since states have to be left before the compound
transition is executed [8, pp. 627].

In particular, no allowed execution order exists if the execution of the exit
behavior of state 0 changes the evaluation of the guard of t1 to true and
of to to false.

Fig. 5. Entry/exit point illustration (2)

Inconsistency 19 Consider the state machine of Fig. 5. On the one
hand, by the semantics of exit pseudostates state 6 has to be left after
the execution of ts. On the other hand, state 4 has to be exited before
transition ts is executed, since states have to be left before the compound
transition is executed [8, pp. 627]. Furthermore, state 4 may only be exited
if all its active substates are exited, hence state 6 has to be exited before
ts is executed.

Equivocality 20 Transitions from fork pseudostates may not point to
entry points or to history pseudostates, since transitions from fork pseu-
dostates may not point to pseudostates [8, p. 624].

Equivocality 21 Transitions from exit points may not point to join pseu-
dostates, since transitions pointing to join pseudostates may not have
pseudostates as their sources [8, p. 624].

Improvement: Many unclarities can be avoided by forbidding transi-
tions crossing state borders. Instead, use always entry/exit points. This

10



has the consequence that only the substates of the source (target) states
of a compound transition are exited (respectively, entered) before (respec-
tively, after) the transition is executed; all other states are exited (respec-
tively, entered) in between the execution of the transition.

Furthermore, exit (entry) points should be considered as join (respectively,
fork) pseudostates, where the source of a transition pointing to an exit
point of state s has to be a direct substate of s or an exit point of a direct
substate of s. The same holds, for transitions leaving entry points of s,
except that they may also point to direct subpseudostates of s. Note that
in this approach no explicit join or fork pseudostates are needed.

3.4 Transitions

It is unclear whether the default state (the target of an initial transition)
has to be a direct substate. More problematic is that an initial transition
may point outside its region, which contradicts, similarly to Incomplete-
ness 17, the invariant that after a run-to-completion step a configuration
will be reached [8, p. 617]. Therefore:

Incompleteness 22 The following restriction is needed: Transitions from
initial pseudostates or from history pseudostates may only point to sub-
states of the region that directly contains the corresponding pseudostate.

For example, the state machine on the left hand side of Fig. 6 should
not be allowed, since if state 0 is entered by default then states 0 and 1
become active. The reason is that these states are direct substates of the
same region and that only one direct substate of a region may be active
[8, p. 605].

[o]
Fy =

Fig. 6. Disallowed and allowed state machines

Another restriction, which is necessary to guarantee the above men-
tioned configuration invariant, concerns local transitions, i.e., transitions
with transition kind ‘local’. A local transition differs from a normal (i.e.,
external) transition in the sense that if it is fired, its source state is not
exited (only the substates of the source state) [8, p. 634].

Incompleteness 23 The following restriction is needed: A local transi-
tion may only point to its source state or to substates (properly reached
through a fork pseudostate) of its source state.

11



For example, the second state machine of Fig. 6 is not allowed, since if
the local transition® fires, then state 3 remains active and state 5 becomes
active, which is forbidden, as explained before. On the other hand, the
third state machine of Fig. 6 does not yield any semantical problems.

Inconsistency 24 Transitions crossing regions, as illustrated in the fourth
picture of Fig. 6, are forbidden [8, p. 627], but their meaning is explicitly
described [8, p. 627].

If guards with side effects are used [8, p. 624,627], an ill-formed situ-
ation occurs and therefore no behavior can be guaranteed.

Incompleteness 25 How should it be ensured that the evaluation of
guards does not need time, which is a side effect?

Improvement: One possibility is to make the observable time steps so
coarse that the execution time of the guards cannot be observed.

Another possibility is to allow only guards that depend on single boolean
attributes, which are, e.g., calculated by the entry behavior. In order to
obtain a dynamic dependency, these boolean attributes can be updated by
doActivities.

3.5 Nondeterminism

The determination of the set of firing transitions is not completely de-
terministic [8, pp. 618], since not always a priority between conflicting
transitions exist. Suppose transitions ¢y and ¢; are enabled in Fig. 7, then
either tg or t7 fires.

Fig. 7. Illustration of a state machine for nondeterminism

UML 2.0 seems to enforce at least determinism between the selection
of transitions that have the same source state: “Each event name may
appear more than once per state if the guard conditions are different” [8,
p. 609].

3 Local transitions are illustrated by the attached symbol .

12



Ambiguity 26 What does different guard conditions mean? Does it mean
that for each pair of guards, there exists a situation where one of the
guards is true and the other is false? Does different guards mean mutu-
ally exclusive guard conditions (i.e., no two guards may be true at the
same time), as enforced for completion transitions* [8, p. 626]?

The order in which transitions of a compound transition fire is not
completely deterministic. More precisely, transitions to a join pseudostate
(respectively, leaving a fork pseudostate) can be fired in any order. In
UML 2.0, there is a contradiction in the definition of the execution order
of the initial transition of a composite state that is a target of a firing
transition (such as t4 after firing t1p):

Inconsistency 27 “The entry behavior of the composite state is executed
before the behavior associated with the initial transition” [8, p. 605] is in
contradiction to the fact that “A transition to the enclosing state repre-
sents a transition to the initial pseudostate in each region” [8, p. 600] and
that actions corresponding to a compound transition are executed before
entry behaviors [8, p. 627-628].

For example, after firing transition t1g in Fig. 7, must the entry behavior of
state 1 be executed before transition t4 or must transition ¢4 be executed
before the entry behavior of state 17

Ambiguity 28 Suppose transitions to the enclosing state represent tran-
sitions to the initial pseudostate: In which order are actions of transitions
from fork pseudostates and actions of the enabled initial transitions exe-
cuted? Is there a depth-first or branching-first strategy? Is the order com-
pletely nondeterministic (except for the fact that actions of transitions to
outer states have to be executed first)?

For example, if t5 fires in Fig. 7, then it is not clear which of the execution
sequences (tg,t7,t3), (t6,ts,t7), (t7,ts,ts) are allowed.

Equivocality 29 Is it really the case that the actions of the initial tran-
sition do mot have to be executed before the entry behavior of the target
state of the initial transition, in case of default entry?

For example, after the firing of tg in Fig. 7, it is not clear whether ¢4 may

also be executed after the entry behavior of state 5.

4 Completion transitions are transitions that do not have an explicit trigger. They are
triggered if their source states are completed. Roughly spoken, a state is completed if

its doActivities are terminated and their direct subregions, if existing, have reached
a final state.

13



4 Conclusion and Related Work

We have presented 29 inconsistencies, ambiguities, forgotten restrictions,
and unnecessary strong restrictions in UML 2.0 state machines. Some of
the unclarities are serious, i.e., their elimination is not straightforward.
This holds for history pseudostates, priority, exit/entry points, and as-
suring side-effect-free guards. The serious problems are eliminated by our
improvements.

Many of the detected unclarities also exist in earlier versions of UML.
In particular, most unclarities concerning history pseudostates® (Unclar-
ities 2-5 and 7), all unclarities concerning priority, and the assurance of
side-effect-free guards also exists in UML 1.5 [7]. Entry/exit points do
not exist in UML 1.5. The semantics of history and priority with respect
to join pseudostates in UML 1.x are defined in the literature as follows:

In the work of van der Beeck [12], concerning history, ‘last active’ does
not correspond to the exiting of the state. Furthermore, a transition ¢ has
priority over ¢’ if the least common ancestor of ¢ is below the least common
ancestor of ¢/, i.e., this yields a weaker priority concept concerning join
pseudostates.

The history information in the work of Borger et al. [1] corresponds to
the ‘last active configuration’. Furthermore, when a state is entered via
history, the history information is forgotten, i.e., in this case the semantics
of transitions pointing to the history pseudostates from inside the region
is unclear. Join pseudostates are encoded by completion transitions and,
therefore, a priority principle similar to the one in [12] is used.

In [3], where no history pseudostates are considered, priority is han-
dled as a variation point. Nevertheless, the authors make the suggestion
that a transition ¢ has lesser or equal priority than t’ if every source state
of t is below a source state of ¢'. This differs from our suggestion, e.g.,
in Fig. 3 transition ¢4 has priority over ¢; in their suggestion, whereas no
priority between t4 and t; exists in our suggestion.

In [2], priority is also handled as variation point and in [6] join tran-
sitions are compiled away, but an exact definition of the transformation
is missing and, therefore, the used priority schema is unclear. Both works
do not consider history pseudostates. Most of the other works on the se-
mantics of UML 1.x state machines, see, e.g., the references given in [10],
do not consider join or history pseudostates and, therefore, do not cover
the related problems. We are not aware of works different from ours [10]
that define formal semantics of UML 2.0 state machines.

5 Note that final states do not reset the history information in UML 1.5.

14



Future work is to define a precise formal semantics with respect to

all the suggested improvements, e.g., our semantics [10] does not handle
entry/exit points and choice pseudostates. The redefinition concept in
UML 2.0 state machines has to be examined, e.g., to clarify to which
extent redefinition corresponds to a refinement concept.

References

1.

10.

11.

12.

E. Borger, A. Cavarra, and E. Riccobene. Modeling the Dynamics of UML State
Machines. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract
State Machines: Theory and Applications, volume 1912 of LNCS, pages 223-241.
Springer-Verlag, 2000.

R. Eshuis, D. N. Jansen, and R. Wieringa. Requirements-level semantics and
model checking of object-oriented statecharts. Requirements Engineering Journal,
7:243-263, 2002.

S. Gnesi, D. Latella, and M. Massink. Modular semantics for a uml statechart dia-
grams kernel and its extension to multicharts and branching time model-checking.
The Journal of Logic and Algebraic Programming, 51(1):43-75, 2002.

D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, July 1987.

D. Harel and E. Gery. Executable object modeling with statecharts. Computer,
30(7):31-42, July 1997.

J. Lilius and I. P. Paltor. Formalising UML state machines for model checking.
In R. France and B. Rumpe, editors, UML, volume 1723 of LNCS, pages 430-445.
Springer-Verlag, 1999.

Object Management Group. OMG Unified Modeling Language Specification, Ver-
sion 1.5, 2003. http://www.omg.org/cgi-bin/doc?formal/03-03-01.

Object Management Group. UML 2.0 Superstructure Specification, Oct. 2004.
(updated version). http://www.omg.org/cgi-bin/doc?ptc/2004-10-02.

G. Reggio and R. Wieringa. Thirty one problems in the semantics of uml 1.3
dynamics. In OOPSLA’99 workshop, Rigorous Modelling and Analysis of the UML:
Challenges and Limitations, 1999.

J. Schénborn. Formal semantics of UML 2.0 behavioral state machines. Master’s
thesis, Christian-Albrechts Universitét zu Kiel, 2005. http://www.informatik.
uni-kiel.de/~jes/jsFsemUMLsm.pdf.

A. J. H. Simons and I. Graham. 30 things that go wrong in object modelling with
uml 1.3. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Specifications
of Businesses and Systems, pages 237-257. Kluwer Academic, 1999.

M. von der Beeck. A structured operational semantics for UML-statecharts. Soft-
ware and System Modeling, 1(2):130-141, 2002.

15



