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Abstract

A knowledge-based approach is introduced for retrieving images by content. It sup-
ports the answering of conceptual image queries involving similar-to predicates, spatial
semantic operators, and references to conceptual terms. Interested objects in the images
are represented by contours segmented from images. Image content such as shapes and
spatial relationships are derived from object contours according to domain-specific image
knowledge.

A three-layered model is proposed for integrating image representations, extracted image
features, and image semantics. With such a model, images can be retrieved based on the
features and content specified in the queries.

The knowledge-based query processing is based on a query relazation technique. The
image features are classified by an automatic clustering algorithm and represented by Type
Abstraction Hierarchies (TAHs) for knowledge-based query processing. Since the features
selected for TAH generation are based on context and user profile, and the TAHs can be
generated automatically by a clustering algorithm from the feature database, our proposed
image retrieval approach is scalable and context-sensitive. The performance of the proposed
knowledge-based query processing is also discussed.

*This work is supported in part by the National Science Foundation Scientific Database Initiative, Grant

TRI9116849 and also in part by ARPA contract F30602-94-C-0207.



1 Introduction

Retrieving images by content is a key technology for image databases. Pixel matching meth-
ods employed for content-based retrieval are time-consuming and of limited practical use
since little of the image object semantics is explicitly modeled. QBIC [18] uses global shape
features such as area and circularity to retrieve similarly shaped objects. However, due to
the limited precision of global shape features [15], such an approach has limited expressive-
ness for answering queries with conceptual terms and predicates. VIMS [1] retrieves similar
images by relaxing feature values of the target image based on the standard deviation of the
features. Independent of the target data values, the same amount of relaxation is applied on
the target data values to represent the similarity of data. Such interpretation of similarity is
not sensitive to the location of the target data values inside their value range. In an image
data space, many features are based on multiple attributes. For example, location requires
at least two attributes (i.e., positions on x-axis and y-axis). Using a standard deviation
to interpret the variation of multi-attribute features lacks the consideration of correlation
among different attributes.

In addition to the shape features of image object, spatial relationships between objects
are also important. For example, Chang et al. [4] models the distribution of image objects
using orthogonal spatial relationships. Chu et al. [7] models both the orthogonal and
topological spatial relationships. To support image retrieval and ranking based on spatial
relationship similarity, we need models that allow images with similar spatial relationships
to be further compared and ranked.

Currently, images cannot be easily or effectively retrieved due to the lack of a compre-
hensive data model that captures the structured abstracts and knowledge needed for image
retrieval. To remedy such shortcomings, we propose a Knowledge-based Spatial Image
Model (KSIM) which supports queries with semantic and similar-to predicates. Semantic
predicates contain semantic spatial relationship operators (e.g., INSIDE, NEARBY, FAR_AWAY,
etc.) and/or conceptual terms (e.g., large, small, etc.). The similar-to predicates allow
users to retrieve images that are closely correlated with a given image based on a prespec-
ified set of features.

We use an instance-based knowledge discovery technique, MDISC [6], to cluster similar



images based on the user-specified image features (e.g., shape descriptors and spatial rela-
tionships). The knowledge required for resolving the meaning of similar-to and semantic
operators is called image content interpretation knowledge, and is represented based on the
generated clustering knowledge. MDISC can acquire more comprehensive image content in-
terpretation knowledge than that acquired by other multi-dimensional indexing techniques,
such as K-D-B-tree (used in FIBSSR [17]) and R* tree (used in QBIC [18]). This is because
MDISC classifies images based on conceptual difference of the feature values, while K-D-
B-tree and R™ tree cluster data based on minimizing the number of disk access per data
retrieval. In addition, these clustering techniques do not consider the semantic difference
of image features; thus no global conceptual view of the image clustering can be provided
to represent conceptual predicates such as LARGE tumor and tumor NEARBY an organ.

This paper is organized as follows: Section 2 presents the Knowledge-Based Spatial Im-
age Model (KSIM) which integrates the image representations, extracted image features,
and knowledge representing image semantics and similarity. Section 3 discusses the method-
ology of extracting image object features, such as shape features and spatial relationships,
from the object contours. Section 4 presents a methodology to extend existing query lan-
guages for including the proposed operators, and Section 5 describes the required intelligent
interpretation and access. Section 6 presents our knowledge-based query processing tech-

nique, and Sections 7 and 8 present the performance results and our conclusions.

2 The Knowledge-Based Spatial Image Model (KSIM)

A three-layered image model is used to integrate the image representations and image
features together with image content interpretation knowledge. The three layers are the
Representation Layer (RL), the Semantic Layer (SL), and the Knowledge Layer (KL). Each
layer consists of its own constructs, and these constructs are linked for cross-reference.
Raw images are stored in the RL where multiple representations of the same image
objects may exist (e.g., X-ray images, magnetic resonance images, CT images, etc.). Image
objects that can be queried are represented by contours in the RL. The contours can be
segmented manually, semi-automatically (e.g., using techniques like snake [12] and flooding
in [18]), or automatically [25, 24] depending on the contrast and separability of the image

objects. Computing image features based on known object contours rather than based
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Figure 1: An example representing the brain tumors in KSIM. SR(t,b), SR(t,1), and SR(t,f)
represent the spatial relationships between tumor and brain, tumor and lateral ventricle, and

tumor and frontal lobe. The detailed TAH for lateral ventricle is shown in Figure 3, and the
TAH for SR(t,]) is shown in Figure 6.

on raw images results in features of high certainty. Features of high certainty avoid the
probabilistic interpretation of image features [21]. Contour segmentation routines [25, 12,
14, 24] are available to assist in identifying object contours from raw images.

Despite the enormous efforts toward automatic segmentation of medical images, success
has been limited to only a few types of medical objects. These objects, in general, have
high contrast with respect to their background (e.g., bones in projectional X-rays and
computed tomography, and arteries with contrast agents in X-ray angiography), relatively
simple shapes (breast outline in a mammogram), sizes that are not too small, and little or
no overlap with other objects (e.g., central cross-sectional slice of lateral ventricle of the
brain). In general, large medical image repositories (e.g., radiological picture archiving and
communication systems) contain diverse instances of complex image objects (anatomy and
pathology), and thus automated segmentation of these objects are the bottleneck for the
large-scale deployment of our technique. The emergence of more intelligent segmentation
routines that use various physical models of the target objects (e.g., lungs and bronchial
tree) [2, 20, 23] to assist in object delineation may result in a greater number of robust and

automated medical image object identification programs.



In the SL, an object-oriented technique is used to model the image content extracted
from the image representations in the RL. Image objects are modeled as feature objects.
Spatial relationships among objects are represented by their spatial relationship features
such as distance of centroids, ratio of overlapping area, etc. Featuresin the SL are computed
from image object contours by the shape model and spatial relationship model. The shape
model computes the required shape features, and the spatial relationship model computes
the required spatial relationship features. Object-oriented inheritance hierarchies are used
to organize similarly related objects.

In the SL, features are classified into derived features, composite features, and conceptual
features. Derived features are features extracted from the corresponding contour(s) (e.g.,
area of an object contour) or derived from other features (e.g., the ratio of perimeter to area
of a contour). A composite feature combines several features into a multi-attribute feature
to reflect the specific content of an object. For example, the composite feature location
of an image object consists of the z_location and y_location of the contour’s centroid. A
conceptual feature is a composite or dertved feature with appended knowledge to represent
the image semantics or similarity based on the feature.

The knowledge layer (KL) contains the logic for interpreting image semantics and image
similarity based on the extracted image feature values. Type abstraction hierarchies (TAHs)
[8, 5, 9], which represent general image concepts in the higher levels and specific concept
in the lower levels, are used to represent the knowledge of the selected object features and
spatial relationships. TAHs provide a way to represent the image semantics and similarity.
Figure 1 illustrates the three-layered modeling and the linking among the representation
of image objects (i.e., contours), semantic relationships among the objects, and knowledge
required for representing brain tumors.

The features of contoured image objects in a database are extracted according to the
shape model and spatial relationship model and stored as a feature database. These fea-
tures are then classified by a conceptual clustering algorithm, MDISC [6], and the feature
classification hierarchy is represented in TAHs which provide a multi-level knowledge repre-
sentation of the image content based on analyzed features. Such TAHs are used to process
queries with semantic operators (e.g., "Find a large tumor NEARBY the lateral ventricle”)

and queries with similar-to operator (e.g., "Find patients with similar brain tumors to pa-
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Figure 2: The shape model decomposes a lateral ventricle into four natural sub-structures for
more precise shape description: upper left protrusion, upper right protrusion, lower left protru-
sion, and lower right protrusion.

tient with id ‘P0O00-001’ based on the tumor size and the location of the tumor NEARBY
the lateral ventricle”). The conceptual terms (e.g., large and NEARBY) can be translated
to value ranges of relevant features via TAHs. For example, the value range represent-
ing large-sized tumor can be derived from the TAH for tumor size, and the value ranges
representing NEARBY can be derived from the TAH that specifies the spatial relationship
between tumor and lateral ventricle (i.e., SR(t,1)). For similar-to operator, based on the
query context and user behavior, a set of relevant features representing the similarity of
the target image is selected. The appropriate TAHs that represent these selected features
can be used to derive the feature value ranges of the images that are most similar to the
target image. These derived value ranges are used as the query constraints for retrieving
the similar images. The methodology for extracting features and spatial relationships from
object contours is presented in Section 3, and the methodology for generating the required

knowledge is presented in Section 5.

3 Capturing Object Shape and Spatial Relation-
ships

The shape model and spatial relationship modelin the SL are used to extract image features

from contours.



‘ object feature ‘ conceptual terms

tumor.size small, medium, large

tumor.roundness circular, non_circular

lateral _ventricle.left to_right_symmetry | symmetric

upper_protrusion_pressed_to_the_right
upper_protrusion_pressed_to_the_left
lower_protrusion_pressed_to_the_right
lower_protrusion_pressed_to_the_left

Table 1: A shape feature description table for the brain

3.1 Modeling Shape

Shape of a contour can be described quantitatively using numeric shape descriptors such
as roundness, curveness, rectangularity, compactness, direction, elongatedness, and
eccentricity [22]. These descriptors are called shape features of the image objects. These
shape descriptors provide a global description of object shape, but lack detailed variations
[15]. We propose a two-staged approach to capture the shape content. In the first stage,
complex contours are decomposed into context-dependent natural sub-structures based on
the fundamental line and curve segments identified by the generated i — s function from
the chain code of the relevant object contours [16, 19]. For example, the lateral ventricle
is decomposed into four protrusions based on the two tips of the brain contour found by
the 1 — s function from the brain contour as shown in Figure 2. In the second stage,
these more elementary contour components are characterized by their shape features such
as area, hetght, and width. Thus, we can express the shape and spatial relationships
among these decomposed contours to reflect the specific shape content of the image object.
This two-staged shape description allows more specific and detailed shape description using
numerical shape descriptors rather than applying shape descriptors directly [18]. For exam-
ple, in Figure 2 the height and width of the four components of a lateral ventricle are used
to construct a multi-attribute shape feature to describe the left to right symmetry of the
lateral ventricle as (upperLRWidthRatio (wy;/w.,,), upperLRHeightRatio (hyi/hyr), low-
erLRWidthRatio (wy/w,), lowerLRHeightRatio (hy/hi.)). Grouping features (e.g., length,
width, height, area, etc.) from the decomposed components forms a composite feature that

describes the detailed shape characteristics of the contour.
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Figure 3: Multi-attribute Type Abstraction Hierarchy (generated by MDISC based on the de-
composed four protrusions) representing the left to right symmetry of the lateral ventricles

idsi fa= 35

ry=3.7

Figure 4: An example showing that using semantic operators (e.g., non_overlapping) and/or single
measurement (e.g., the shortest distance (d;)) is insufficient to capture the spatial relationship

of two objects. We need additional features such as angle of coverage (6.) and ratio of area (r,)
to classify the illustrated spatial relationship.

Decomposition provides an effective quantitative shape description when the image ob-
jects have limited numbers of shape components. This description provides sufficient image
content to retrieve similarly or specifically shaped image objects. Conceptual terms can be
defined on a shape feature. The shape feature description table (Table 1) lists the available
conceptual terms for the shape features in the system. Thus, users can ask queries with
conceptual terms for a specific shape feature such as “retrieving lateral ventricles whose

upper protrusion are pressed to the right” (see Query 3 in Section 4).

3.2 Modeling Spatial Relationships

Modeling spatial relationships merely by simple semantic constructs such as separated and

connected is insufficient to compare real-life spatial relationships (as illustrated in Figure 4).
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Figure 5: Semantic spatial relationship operators for different topological categories between
two objects (with the representative icons shown). The parameters under a branch classify the

sub-types under that category.



‘ spatial relationship ‘ representative features ‘ defined semantic terms

SR(t,b) (T, Yor Ta)s (a) SLIGHTLY_OCCUPIED, EXTREMELY_OCCUPIED
SR(t.f) (T, Yor 75) SLIGHTLY_TOUCHED, INTIMATEDLY TOUCHED
SR(t,]) (0., de, 7, yo) NEARBY, FAR_AWAY

Table 2: A spatial relationship description table for the brain tumor

Additional parameters are needed to more precisely describe the spatial relationships. A
set of required spatial relationship features should be specified by domain experts, and the
values of these spatial relationships are stored in the database. In Figure 5, useful param-
eters are illustrated with their importance in distinguishing the topoligical relationships
between two objects. More important parameters for distinguishing the sub-types under a
category are placed first in the list, and parameters appearing at higher branches may also
be used in their decendant branches. In Figure 5, BORDERING means that only the surfaces
of the two objects are joined (i.e., r. > 0,r; = 0); INVADING implies that their areas are
joined (i.e., one of the object is deformed by the other, 0 < r; < 100% ); and CIRCUMJACENT
implies that r; = 100%. The required operators are necessary for every spatial relationship.

In an image with a tumor and lateral ventricle, for example, the spatial relationship
instance between the tumor and lateral ventricle is classified as an instance of the class
SR(t,1). This spatial relationship requires 6., d., @., and y. to represent it. These values
are computed based on the object contours. The spatial relationship description table (as
shown in Table 2) lists the representative parameters and available semantic terms for the
spatial relationships in the system.

Figure 6 is an image classification hierarchy of images in the database which is generated
by MDISC based on spatial relationship features of SR(t,l) where two operators NEARBY
and FAR_AWAY are defined. With this spatial relationship modeling, a richer set of spatial
relationship parameters not only enhances the quality of the (context-senstive) semantic
spatial relationship operators, but also provides suitable parameters to be considered for

resolving SIMILAR TO operators in comparing spatial relationships.
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Figure 6: The MDISC-generated TAH for representing the spatial relationship between tumor

and lateral ventricle. The TAH is generated based on d., 0., z., and y. ( denoted as centroidDist,

angleOfCoverage, xCordOfCentroids, and yCordOfCentroids in the figure).
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4 Extending Query Language with Knowledge-based
Spatial Query Constructs

We shall now present the BNF specification for extending an object-oriented query language,
such as OQL-93 [3], to include the proposed three types of predicates: (1) SIMILAR_TO
predicates, (2) semantic spatial relationship predicates, and (3) predicates with conceptual
terms. A similar extension for SQL was explored in CoBase [10, 9] for transportation and
GIS applications.

The SIMILAR _TO operator is used to search for objects similar to a specified target object
BASED ON a set of features specified in the query. The syntax of the SIMILAR_TO predicate

in BNF is:

similar_to_pred object SIMILAR_TO object (target_obj_condition)
BASED_ON obj_features |
image SIMILAR_TO image (target_image_condition)

[ BASED_ON spatial_aspects]

spatial_aspects spatial_aspect ["," spatial_aspects]

spatial_aspect spatial_relationship_feature | obj_feature

DISJOINED |NEARBY |FAR_AWAY |NEARBY_and_SURROUNDING |
NEARBY_butNot_SURROUNDING |
PARTIALLY_SURROUND_without_BORDERING|
FULLY_SURROUND_without_BORDERING | JOINED | BORDERING |
BORDERING_Int-Ext_MARGINS|BORDERING_Ext-Ext_MARGINS|
PARTIALLY_SURROUND_with_BORDERING |
FULLY_SURROUND_with_BORDERING | INTIMATE_TOUCHING |
INVADING|IMPINGING_INTO|BULGING_INTO|NEARLY_ENGULFED |
CIRCUMJACENT |PERIPHERALLY_CIRCUMJACENT|
CENTRALLY_CIRCUMJACENT | SLIGHT _OCCUPIED|EXTREMELY_OCCUPIED

spatial_relationship::

target_obj_condition ::= object_pathlist = literal

target_image_condition ::= image_pathlist = literal | image SELECTED_ON_THE_SCREEN

The object, obj_feature and spatial relationship feature correspond to the se-
mantic object, object features, and spatial relationship features in the SL. The image refers
to an image from which a collection of image objects are extracted for querying and compar-
ison. The BASED_ON subclause specifies the shape features (i.e., obj_feature) and/or spe-

cific spatial relationships between objects (i.e., object spatial relationship object)

12



that represent the intended similarity of the query. If no BASED_ON subclause is specified,
the knowledge in the KI. determines the features that represent the similarity based on the
query context and user type. target_object_condition and target_image condition
specify the path condition (e.g., image.patient.ID) to select a distinct target object or
image to be compared with where literal is a constant. SELECTED ON_THE SCREEN is a
special function used to specify an image on the screen as the target image for matching.

The syntax for the semantic spatial relationship predicates is:

sr_pred = object spatial_relationship object

To avoid ambiguity in specifying the operators, a pull-down menu is available that
display the available specialized operators as in the spatial relationshp description table
(Table 2) for the user to select a suitable operator to be used in the query.

The syntax for the predicate expressed with conceptual term(s) is:
obj_feature IS conceptual_term

Likewise, a pull-down menu is also used to display the available conceptual terms
for the specified obj_feature as in the shape feature description table (Table 1). The
conceptual term is interpreted by the knowledge residing in the KL [5, 9].

Example Queries

Query 1: “Find patients with similar brain tumors to the patient with id ‘PO00-001° based

on the tumor size and tumor location NEARBY lateral ventricle.”

select patientWithImage( patient: il.patient, image: il.image)
from Images il, it
where i1 SIMILAR_TO it ( it.patient.id = ‘P000-001’ )
BASED_ON (it.tumor.size,
it. [tumor,lateral ventricle]. (., y. 0., d.))

patientWithImage is a constructed type for displaying query results [3].
Query 2: “Find large tumor NEARBY the lateral ventricle.”

select patientWithImage( patient: t.patient, image: t.image)

from Tumors t, Lateral_Ventricles 1

where t NEARBY 1 and
t.size IS ‘large’

13



Query 3: “Find the lateral ventricle whose upper protrusion is pressed to the right.”

select patientWithImage( patient: l.patient, image: 1.image)
from Lateral_Ventricles 1
where 1l.left_to_right_symmetry

IS ‘upper_protrusion_pressed_to_the_right’

The knowledge representing upper_protrusions pressed_to_the right is provided in
Figure 3.

A brain surgeon wishes to retrieve images of patients in the database with similar spatial
characteristics as the presented MR image. The textually expressed query is shown in Query

4, and a graphical expression of the same query is illustrated in Figure 11 in Section 6.

Query 4: “Find images in the database that have similar spatial characteristics as the given

image on the screen.”

select patientWithImage( patient: pl, image: pl.image)
from Patients pl, Patients pt
where pl.image SIMILAR_TO pt.image (pt.image SELECTED_ON_THE_SCREEN)

The intended features and spatial relationships of Query 4 are derived by the knowledge

layer based on the image content in PT.image and the user type (i.e., brain surgeon).

5 Intelligent Interpretation and Access

The criteria of our image feature clustering algorithm is to minimize the averaged pair-wise
euclidean distance of image feature values in a cluster. Such a measure, known as the
relazation error [6], considers both the frequency of the value occurrence and the difference
between values. Based on minimizing the summed relazation error of all the new partitioned
clusters in each iteration, the clustering algorithm, MDISC, recursively partitions the data
set to generate a multi-attribute feature type abstraction hierarchy (MTAH). As both the
feature value distribution and the correlation among different attributes of a feature are
considered, our clustering algorithm provides better image feature classification than those

using standard deviation to represent image similarity [1].

14
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Figure 7: Knowledge-based query relaxation

5.1 Query Interpretation via TAH

The image classification hierarchies are represented in type abstraction hierarchies [8, 5,
9] for processing similar-to and semantic predicates. The concept in the TAH nodes is
represented as the value ranges of the features (see Figure 3 and Figure 6). These value
ranges can be used to retrieve similar images. As shown in Figure 7(a), higher nodes in the
TAH represent more generalized concepts (i.e., wider range of feature values) than that of
the lower nodes (i.e., narrower range of the feature values). The TAH nodes can be labeled
with conceptual terms (e.g., large, small, upper_protrusion pressed_to_the right) to
represent the specific knowledge. These available conceptual terms are listed in Table 1 to
provide a pull-down menu for assisting users during query specification.

The knowledge of the semantic spatial relationship operators can also be represented
by the TAH. Based on the topological relationships of two objects [13], useful semantic
operators are shown in Figure 5. MDISC is used to classify image features for defining these
semantic spatial relationship operators based on the values of the representative spatial
relationship features. The resultant TAH nodes can be labeled with an appropriate subset of
the detailed operators (e.g., NEARBY, FAR_AWAY) to represent the value ranges representing
the semantic spatial relationship operators. These value ranges are used as the query

constraint to retrieve images satisfying the conceptual predicates.

15
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To solve a similar-to query whose intended similarity includes the features or spatial
relationship classified by a TAH, the lower TAH nodes are attached with more specific value
ranges. In solving the similar-to query, we shall first locate the TAH node that has a value
range closest to that of the target image based on the selected features. By traversing up
(i.e., generalizing) and down (i.e., specializing) the selected TAH, the feature value range
in the finalized TAH node is used to modify the query constraints for retrieving similar
images from the database, as shown in Figure 7(b). The TAH traversal is controlled either
by user input or by relaxation policy provided in the user model.

There is a TAH directory in the system that stores such information as object names,
sets of features, spatial relationships, user type, explanation about the emphasis or purpose
of the TAH, etc. Based on this information, the system (or user) selects and retrieves the
appropriate TAHs for processing the query. If the retrieved TAH does not match user’s
specification, it can be edited by the user to meet his/her application.

The time complexity to generate a multi-attribute hierarchy by MDISC is O (m(n(log(n)))),
where m is the number of attributes, and n is the number of distinct instances used in gen-
erating the TAH [6]. Our experiment reveals that to generate a MTAH with about one
hundred images based on four features takes a fraction of a second’s processing time on a

Sun Sparc 10 workstation.

5.2 User Model

In our knowledge-based query processing, user behavior is characterized by his/her concerns
(including image objects, set of features, and spatial relationships), object matching policy,
and the policies for relaxing query conditions when no satisfactory answer is found. These
behaviors can be represented by a user model to customize the query processing. Different
types of users can be represented by different user profiles in the model. Objects in the
user profile are divided into mandatorily matched objects and optional matched objects.
Mandatorily matched objects of a user profile must be matched with the query context for
the user profile to interpret the query. Optionally matched objects provide guidance for
additional matched features to enhance the query constraints. Such an option permits a
partial matching of the user model and increases the matching occurrences. The relaxation

policy describes how to relax the selected TAHs when no satisfactory answers are found,
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user : brain surgeon

mandatorily matched objects:
Lesion and Brain (highlighted
by thick-lined box) Brain Lesion Er()bntal
ope

optional mathed objects 2) 1)
Lateral Ventricle and Frontal Lobe

relaxation order:
SR(l,Iv) and SR(l,f) (specified by (1)) are Lateral
more important than SR(l,b) Ventricle

(specified by (2)) (D)

Figure 8: A user profile for brain surgeons

where each MTAH (such as SR(t,1) and SR(t,b)) represents different knowledge about the
image objects. The relaxation policy specifies the relazation order (e.g., which MTAH
should be relaxed first), relazation level, non-relaxable objects, etc. For more discussion on
relaxation operators, interested readers should see reference [9].

In an MR brain image with tumor(s), for example, a brain surgeon’s concerns regarding
the brain tumors are their locations and the spatial relationships with other objects in the
brain, as shown in Figure 8. The information in this user profile can be used for processing
queries such as “retrieve similar images as the brain tumor shown on the screen.” Different
types of users (e.g., radiologists, surgeons, and clinicians) may have a different emphasis.

Thus, different user profiles can be represented in the user model for the same set of images.

6 Knowledge-Based Query Processing
6.1 Query Processing

Query processing can be divided into three phases, as shown in Figure 9: the query analysis
and feature selection phase, the knowledge-based content matching phase, and the query
relaxation phase. In the query analysis and feature selection phase, based on the target
image, query context, and user type, the system analyzes and selects the relevant features
and spatial relationships for processing the query. For similar-to queries (i.e., path 1 in
Figure 9 is selected), the features and spatial relationships specified in the BASED_ON
subclause are the features representing the intended image similarity. If no BASED_ON
subclause is specified, the user type and objects contained in the target image are used
to select the features and spatial relationships representing the intended image similarity

according to the matched user profile. After the intended features are selected, the shape
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Figure 9: The flow diagram of knowledge-based query processing
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and spatial relationship models extract their values from the object contours in the target
image. For semantic queries (i.e., path 2 in Figure 9 is selected), the semantic spatial
relationship predicates and conceptual terms in the query provide the selected features and
spatial relationships.

In the knowledge-based content matching phase, the spatial relationship operators and
conceptual terms are used to select the matched TAH(s) and TAH node(s) for processing
the semantic queries. For similar-to queries, the selected features, spatial relationships, and
user types are used to match TAH(s). The matched TAHs are traversed to locate the node
with a value range closest to that of the target image. The set of images contained in the
TAH nodes that has the closest matched value ranges represents the set of images similar
to the target image.

In the query relaxation phase, the query is processed by traversing up and down the
TAH(s) starting from the matched TAH nodes based on the relaxation policy provided in
the matched user profile and user input. In every relaxation iteration, the query constraints
are modified by the value ranges specified in the selected TAH nodes to retrieve the similar
images. This relaxation process repeats until it reaches user satisfaction (e.g., number of
similar images, relaxation error, etc. [5]). The returned images can be ranked based on the
selected features. For the queries with semantic operators and/or conceptual terms, the
value ranges in the finalized TAH nodes (i.e., the TAH nodes whose labels best match the
semantic operators and/or conceptual terms) are used as the query constraints to retrieve
the intended images. Since TAHs are user- and context-sensitive, the user can select the
appropriate TAHs for his/her applications.

Figure 10 illustrates the query processing for a query with a similar-to operator where
the target image is shown in the target image canvas of Figure 11. No BASED_ON subclause
is provided in this example query, and the user model in Figure 8 is matched. The system
allows user input to control the relaxation process which may overwrite the relaxation policy
provided by the selected user model. According to the relaxation control specified in the
user model, SR(t,l) is the first candidate TAH to be relaxed. Based on the TAH of SR(t,l)
in Figure 6, the resulting value ranges for retrieving similar images are:

(43.91 < SR(t,1).d. < 71.31), (0.85 < SR(t,1).0. < 1.54),

(4.0 < SR(t,1).x. < 49), (27 < SR(t,1).y. < 57)
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Objects extracted from the target image

Select the matched user profile from
the user model (mandatory matched
objects are highlighted by thick-lined
box).

The matched user profile is used to
select the features and spatial
relationship for representing tumor
similarity.

Retrieve the TAH(s) from the TAH
directory that match the selected
features. Locate the TAH nodes in
the TAHs such that their value ranges
are most close to the target data
values to start the query relaxation.

The query constraints are relaxed based
on user input or the relaxation policy
from the user model. The value ranges
in the finalized TAH nodes are used to
retrieve similar images.
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Figure 10: The query processing of Query 4 (the TAH of SR(t.]) is shown in Figure 6)
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Figure 11: The graphical user interface (GUI) of the knowledge-based query answering

These value ranges correspond to the value range of the TAH node two levels higher from
the matched leaf node.

The retrieved images are shown and ranked on the GUI with the relaxzation error at-
tached to each retrieved image. There is an explanation window which displays the selected
features and spatial relationships used for the matching, the relaxation level, and the num-
ber of instances matched on the TAH node. During the relaxation process, if the relaxation
of a TAH reaches a certain relazation error threshold provided by the user model, then the
system selects the next TAH for relaxation according to the relaxation policy. Users can
also selectively combine the TAHs with logical operations (e.g., AND, OR, etc.) to retrieve

the (desired) images.
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7 Performance of the Knowledge-Based Query Pro-
cessing

The TAH generation is based on the set of features used to classify objects in the images. For
example, size and location are used in classifying images of brain tumors. The instances
covered by the selected TAH node are candidates for matching the target image. Thus
the set of features used for classifying affect the precision of the retrieval (i.e., retrieved
relevant answers/all relevant answers). Using irrelevant features in classification will reduce
the precision of the retrieval. For query with a SIMILAR_TO operator, the set of features
used to compare the similarity affects the precision value. The weights assigned to the
features reflect their relative importance in computing the similarity measure for ranking
the retrieved images.

As the relationship among the objects in the image becomes more complex, more features
are needed to specify the target images. For example, in specifying the characteristics of
an object in an image, in addition to size, we can also include the shape and position of
the object. In specifying the spatial relationship between two objects, in addition to their
relative location and angle of coverage, the ratio of joining area or volume, and longest or
shortest distance of the two objects can also be used in specifying additional characteristics
of the target image. Therefore, using more precise specifications increases precision of the
retrieval.

The recall of retrieval (retrieval relevant answers/all retrieval answers) depends on the
relaxation error of the TAH node(s) of the referenced TAH(s) (i.e., the larger the relaxation
error of a node, the lower recall value the TAH node yields) as well as the importance of
the features in characterizing objects in the image. To increase the recall value, the range
of the TAH nodes should be small (small relaxation error) and the selected TAH(s) for
query processing should contain important attributes for characterizing the objects and
their interrelationship in the image. Since TAHs can be customized based on user type and
context, the user can select the set of features for generating the TAH(s) for processing
a specific query and control the performance of the retrieval based on the complexity of
objects in the image and the available features of the objects for classification.

We have collected image and computed features for brain tumor examples as described
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| | | TAH(size) | TAH(size, location, angle_of_coverage) |

Precision | without ranking | 32.92% 73.33%
with ranking 33.75% 82.96%

Recall | without ranking | 27.43% 52.52%
with ranking 28.13% 59.41%

Table 3: Performance of the knowledge-based query processing (in terms of precision and recall)

for Query 4 based on the two different TAHs

in query 4 in our prototype system. The images database consists of 65 magnetic resonance
(MR) images (256 x 256 x 8 bits) containing brain tumors. Using the DISC algorithm, the
images are classified into two TAHs: one based on tumor size and the other based on size,
location, and the angle of coverage relative to the lateral ventricle. The relevant answers for
each target instance are determined by exhaustively ranking all the images in the database
by the similarity measurement based on the features selected by the domain expert (e.g.,
radiologists). Using the best-10 retrieving strategy (i.e., the generalization steps continue
until the TAH node covers at least 10 instances) and taking each of the 65 images in the
database as the target image, the average precision and recall values are shown in Table 3.
This illustrates that the number of features used to specify the target image as well the
ranking plays an important role in the performance of the retrieval.

The query response time includes the time for parsing, feature computation (this is
needed only in the case when the features of the target image are not pre-computed), query
processing, image retrieval, and image display. Our testbed uses the GemStone object-
oriented database and VisualWorks as the application development tools running on a
SPARC 10 SUN Workstation. The query response time for Query 4 is as follows: parsing
takes less than 1 second, feature computation takes around 12 seconds (for extracting
features of the target image shown on the screen), knowledge-based query processing (i.e.,
selecting TAH nodes to match with features) takes about 1 to 2 seconds, image display
takes about 3 to 5 seconds (depending on the number of returned images). Each relaxation
processing (i.e., generalize and specialize TAH nodes to obtain sufficient number of images)
takes about 0.5 seconds. Thus the time of the knowledge-based query processing is about
2 to 3 seconds which is relatively small compared to the time for feature extraction and

image display.
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8 Conclusions

In this paper, we present a knowledge-based approach for retrieving images by image
features and content. The model supports semantic operators (e.g., JOINED, NEARBY,
FAR_AWAY), similar-to operators, and references to conceptual terms (e.g., LARGE, SMALL)
in the image queries.

The proposed KSIM model consists of three layers: the Representation Layer, the Se-
mantic Layer, and the Knowledge Layer. These layers integrate the image representation
(i.e., image contours) together with the knowledge required to capture image content and
interpret the captured content to provide domain- and user-specific query.

Our model considers shape structure and shape features as well as spatial relation-
ship features. These features can be automatically or semi-automatically extracted from
the image contours and stored in a feature database. Based on the specified features and
spatial relationships, the knowledge of image semantics and image similarity can be au-
tomatically generated by our conceptual clustering algorithm using the extracted features
in the database. The knowledge is represented in a special knowledge structure, Type
Abstraction Hierarchy (TAH), which is used in the query processing through a generaliza-
tion /specialization process on the TAHs. The value ranges of the finalized TAH node are
used to modify the query conditions for retrieving images. A user model is introduced to
allow users to customize their requirement of query answering. The system also presents
the quality of the answers measured in relaxzation error to the user. Since the feature
computation and knowledge acquisition are automated, our proposed technique is scalable.

A prototype image database system, KMeD [11], based on the proposed model has been
implemented at UCLA using the GemStone/VisualWorks platform. Our preliminary result
indicates that such a knowledge-based technique is a feasible and effective approach to

retrieve images by features and content.
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