
Compiling Scheme to JVM bytecode: a performance study

Bernard Paul Serpette
Inria Sophia-Antipolis

2004 route des Lucioles – B.P. 93
F-06902 Sophia-Antipolis, Cedex
Bernard.Serpette@sophia.inria.fr

http://www.inria.fr/oasis/Bernard.Serpette

Manuel Serrano
Inria Sophia-Antipolis

2004 route des Lucioles – B.P. 93
F-06902 Sophia-Antipolis, Cedex
Manuel.Serrano@sophia.inria.fr

http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
We have added a Java virtual machine (henceforth JVM)
bytecode generator to the optimizing Scheme-to-C compiler
Bigloo. We named this new compiler BiglooJVM. We have
used this new compiler to evaluate how suitable the JVM
bytecode is as a target for compiling strict functional lan-
guages such as Scheme. In this paper, we focus on the perfor-
mance issue. We have measured the execution time of many
Scheme programs when compiled to C and when compiled
to JVM. We found that for each benchmark, at least one of
our hardware platforms ran the BiglooJVM version in less
than twice the time taken by the Bigloo version. In order
to deliver fast programs the generated JVM bytecode must
be carefully crafted in order to benefit from the speedup of
just-in-time compilers.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Language Classifica-
tions—applicative (functional) languages ; D.3.4 [Program-
ming Languages]: Processors—compilers; I.1.3 [Symbolic
and Algebraic Manipulation]: Languages and Systems—
evaluation strategies

General Terms
Languages, Experimentation, Measurement, Performance

Keywords
Functional languages, Scheme, Compilation, Java virtual
Machine

1. INTRODUCTION
Many implementors of high-level languages have already

ported their compilers and interpreters to the Java Virtual
Machine [21]. According to Tolksdorf’s web page [34], there
are more than 130 compilers targeting JVM bytecode, for
all kinds of languages. In the case of functional languages

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICFP’02, October 4-6, 2002, Pittsburgh, Pennsylvania, USA.
Copyright 2002 ACM 1-58113-487-8/02/0010 ...$5.00.

(henceforth FLs), several papers describing such systems
have been published (Haskell [36], Scheme [7, 23, 9], and
SML [5]).

JVM bytecode is an appealing target because:

• It is highly portable. Producing JVM bytecode, it is
possible to “compile once and run everywhere”. For in-
stance, the BiglooJVM Scheme-to-JVM compiler that
is presented in this paper is implemented on Unix but
the very same bootstrapped version also runs on Mi-
crosoft Windows.

• The standard runtime environment for Java contains
a large set of libraries and features: widget libraries,
database access, network connection, sound libraries,
etc. A compiler which compiles a language to JVM
bytecode could make these fancy features available to
programs written in that language.

• A lot of programming environments and tools are de-
signed for the JVM. Some have no counterpart for
other languages (especially the ones that rely on the
high-level features of Java such as its automatic mem-
ory management). Producing JVM bytecode allows
these tools to be reused. For instance, we have al-
ready customized the Jinsight system [8] for profiling
Scheme compiled programs.

• The JVM is designed for hosting high-level, object-
oriented languages. It provides constructions and facil-
ities such as dynamic type testing, garbage collection
and subtype polymorphism. These runtime features
are also frequently required for FLs.

1.1 Performance of JVM executions
In spite of the previously quoted advantages, compiling

to JVM (or to Java) raises an important issue: what about
performance? Is it possible to deliver fast applications using
a FL-to-JVM compiler? Current Java implementations are
known not to be very fast and, in addition, because the JVM
is designed and tuned for Java, one might wonder whether
it is possible to implement a correct mapping from a FL to
JVM without an important performance penalty. The aim
of this paper is to provide answers to these questions.

We have added a new code generator to the existing op-
timizing Scheme-to-C compiler Bigloo. We call this new
compiler BiglooJVM. Because the only difference between
Bigloo and BiglooJVM is the runtime system, BiglooJVM
is a precise tool to evaluate JVM performance. We have used
it as a test-bed for benchmarking. We have compared the

259

performance of a wide range of Scheme programs when com-
piled to native code via C and when compiled to JVM. We
have used 21 Scheme benchmarks, implemented by differ-
ent authors, in different programming styles, ranging from
18 lines long programs to 100,000 lines long programs (see
Appendix A for a short description). We have tested these
programs on three architectures (Linux/x86, Solaris/Sparc
and Digital Unix/Alpha). We have found the ratios Bigloo-
JVM/Bigloo quite similar on Linux/x86 and Sparc. This
is not surprising as both configurations use the same JVM
(HotSpottm 2.0). We have thus decided not to present the
Sparc results in this paper.

It would be pointless to measure the performance penalty
imposed by the JVM if our compiler is a weak one. In order
to “validate” the BiglooJVM compiler we have compared it
to other compilers. In a first step, we have compared it to
two other Scheme compilers: i) Kawa [7] because it is the
only other Scheme compiler that produces JVM code and ii)
Gambit because it is a popular, portable and largely used
Scheme-to-C compiler. In a second step, we have compared
BiglooJVM to other compilers producing JVM code: iii)
MLj [5] and, iv) Sun’s Java compiler. We present these
comparisons in Section 2.

1.2 The Bigloo and BiglooJVM compilers
Bigloo is an optimizing compiler for the Scheme program-

ming language [18]. It compiles modules into C files. Its
runtime library uses the Boehm and Weiser garbage col-
lector [6]. Each module consists in a sequence of Scheme
definitions and top level expressions. After reading and
expanding a source file, Bigloo builds an abstract syntax
tree (AST) that passes from stage to stage. Many stages
implement high-level optimizations. That is, optimizations
that are hardware independent, such as source-to-source [27]
transformations or data flow reductions [29]. Other stages
implement simplification of the AST, such as the one that
compiles Scheme closures [25, 30, 26]. Another stage han-
dles polymorphism [20, 28]. That is, for each variable of the
source code, it selects a type that can be polymorphic, i.e.,
the type denoting any possible Scheme value, or monomor-
phic which can denote the type of primitive hardware values,
such as integers or floating point double precision. At the C
code generation point, the AST is entirely type-annotated
and closures are allocated as data structures. Producing the
C code requires just one additional transformation: the ex-
pressions of the AST are turned into C statements. In the
BiglooJVM, the bytecode generator takes the place of this
C statement generator (Figure 1).

Reusing all the Bigloo compilation stages is beneficial for
the quality of the produced JVM bytecode and for the sim-
plicity of the new resulting compiler. The JVM bytecode
only represents 12% of the code of the whole compiler (7,000
lines of Scheme code for the JVM generator to be compared
to the 57,700 lines of Scheme code for the whole compiler).
The JVM runtime system is only 5,000 lines of Java code
which have to be compared with 30,000 lines of Scheme code
that are common to both JVM and C back-ends. This can
also be compared with 33,000 lines of C code (including the
Garbage Collector which is 23,000 lines long) of the C run-
time system.

The first versions of BiglooJVM, a mere 2,000 lines of
Scheme code, were delivering extremely poor performance
applications. For instance, the JVM version of the Cgc

Parser Optimizer

generator
C

Scheme

runtime

.class

.o

C

runtime

JVM

runtime

Scheme

module

Bigloo

BiglooJVM generator
JVM

a.jar

a.out

Figure 1: The architecture of the Bigloo compiler.

benchmark (see Appendix A), when ran on a Linux/x86
architecture was more than 100 times slower than the cor-
responding C version. Modifying the produced JVM class
files, we have been able to speed up this benchmark and it is
now “only” 3 times slower than the C version. Many small
problems were responsible for the initial poor performance.
For instance, we found that some sequences of JVM instruc-
tions prevent the just-in-time compiler (JIT) from compiling
methods. We also found that on some 32-bit architectures,
using 64-bit integers is prohibitive. We found that some
JIT (Sun HotSpot and others) compilers have a size limit
per function above which they stop compiling. Finally, we
found that some JIT compilers refuse to compile functions
that include functional loops, that is, loops that push values
on the stack.

We present our experience with JVM bytecode generation
in this paper. Most of the presented information is indepen-
dent of the source language to be compiled so it could be
beneficial to anyone wishing to implement a compiler pro-
ducing JVM bytecode.

1.3 Overview
In Section 2 we present the performance evaluation fo-

cusing on the difference between Bigloo and BiglooJVM.
In Section 3 we present the specific techniques deployed in
the BiglooJVM code generator and the BiglooJVM runtime
system. In Section 4 we present the important tunings we
have applied to the code generator and the runtime system
to tame the JIT compilers. In Section 5, we compare the
BiglooJVM compiler with other systems.

2. PERFORMANCE EVALUATIONS
We present in this section the performance evaluation of

BiglooJVM. In a first step, we compare it to Bigloo (that
is the C back-end of Bigloo). Then, we compare it with
other Scheme implementations. Finally, we compare it with
non-Scheme implementations that produce JVM bytecode.

2.1 Settings
To evaluate performance, we have used two different ar-

chitectures:

• Linux/x86: An AMD/Thunderbird 800Mhz, 256MB,
running Linux 2.2, Java HotSpottm of the JDK 1.3.0,
used in “client” mode.

260

BiglooJVM vs Bigloo (Linux/x86)
1 2 3 4 5

Traverse 2.7
Slatex 4.4
Sieve 1.4
Rgc 10.4
Qsort 1.0
Queens 1.0
Puzzle 1.5
Peval 4.3
Nucleic 1.3
Mbrot 4.1
Maze 3.2
Leval 2.0
Fib 0.6
Fft 2.0
Earley 3.0
Conform 4.6
Cgc 3.2
Boyer 1.9
Bigloo 3.3
Beval 1.4
Bague 1.6

Figure 2: Scores are relative to Bigloo, which is the
1.0 mark. Lower is better.

• Alpha: An Alpha/21264 500Mhz, 512MB, running Dig-
ital Unix 4.0F, Classic VM version 1.2.2-3.

Each program was ran three times and the minimum sum
of cpu + system time, as reported by the Unix times com-
mand, was collected. For JVM executions, the bytecode
verifier is disabled (see Section 4.3).

In this paper we present ratios for which the base value
is the execution time of the program when compiled to C
by Bigloo. In consequence, when studying a configuration
K, we present the ratio of K/Bigloo. The mark 1 is the
execution time of Bigloo; lower is better.

2.2 BiglooJVM vs Bigloo
Figures 2 and 3 present the ratio of BiglooJVM/Bigloo

for the Linux/x86 and Alpha platforms. The efficiency of
JVM executions vary from one benchmark to another and
from one platform to another. However, if for each bench-
mark, we consider the configuration with the smaller Bigloo-
JVM/Bigloo ratio, we found that BiglooJVM measurements
fall roughly between once and twice the time taken by Bigloo.
The only three exceptions to this rule are: i) Fib, ii) Bigloo
(the bootstrap of the Bigloo compiler) and, iii) Cgc (a toy
compiler that produces Mips code for a C-like language).
Fib is faster with the JVM implementation but tackling
with C compilation options, Bigloo can reach the speed of
BiglooJVM. More precisely if we prevent the C compiler
from using a register as frame pointer (the gcc -fomit-

frame-pointer option) then Bigloo performs as well as Bigloo-
JVM. Bigloo and Cgc benchmarks are slower when com-
piled to JVM with a deficient ratio of 3.2. It would have been
interesting to study the performance of Bigloo on the Al-
pha platform, unfortunately, the virtual machine crashes for
that benchmark because of stack overflow and we have found
no mean to extent the stack on this platform. We are cur-
rently testing a new version of BiglooJVM that reduces the

BiglooJVM vs Bigloo (Alpha)
1 2 3 4 5

Traverse 1.2
Slatex 1.3
Sieve 1.2
Rgc 1.5
Qsort 1.3
Queens 1.2
Puzzle 1.2
Peval 0.9
Nucleic 2.0
Mbrot 1.5
Maze 2.2
Leval 1.7
Fib 1.2
Fft 3.1
Earley 1.5
Conform 1.9
Cgc 3.5
Boyer 1.3
Beval 1.4
Bague 3.2

Figure 3: Scores are relative to Bigloo, which is the
1.0 mark. Lower is better.

stack consumption of the produced code. On the other hand,
we explain in Section 3.3.1 the reason why Cgc is slower
when ran with the JVM runtime. Comparing the “best of
all platforms” (that is, considering the time gathered on
the Linux platform when the ratio BiglooJVM/Bigloo is the
smallest, considering the Alpha platform otherwise) demon-
strates that there is no technical impossibility for a JVM
implementation to deliver performance comparable to the
one of C. The Compaq implementation on Alpha almost
achieves this level of performance.

2.2.1 Variations on the JVM implementation
It exists many implementations of the JVM. Some are

based on pure interpretation techniques [12]. Some are based
on static compilation of JVM bytecode to native code [17].
Finally, some are based on just-in-time compilers [19, 1].
Amongst the last category some use adaptive compilation [32,
31, 3] which was pioneered by the Self project [14, 15]. It
consists in an on-demand compilation of the “hot spots” of
a program. Interpreters cannot compete with compilers for
performance thus we have not tested any. In addition, we
have not considered testing static JVM compilers because
one of the most important advantage of JVM over C is the
ability to compile once and to run everywhere. This prop-
erty does not hold for static native compilation. In addition,
previous experiments show that this compilation technique
has a moderate impact on performance [16].

For the Linux operating system alone, more than ten im-
plementations of the JVM exist. It is beyond the scope
of this paper to evaluate all of them. According to the
Java performance report [22], two implementations perform
best: Sun’s HotSpot (JDK 1.3) [32] and IBM JDK 1.3 [31].
HotSpot seems to be the most reliable one on Linux so it is
our base reference. In Figure 4 we present the performance
evaluations of BiglooJVM on Linux/x86 using the differ-
ent JVM implementations. Only HotSpot/client is able to

261

JVM implementations

HS/Client HS/Server IBM

1 2 3 4 5

Traverse
4.2

2.5
2.7

Slatex
2.9

5.1
4.4

Sieve
4.0

1.1
1.4

Rgc 10.9
10.4

Qsort
0.7

1.0
1.0

Queens 0.8
1.0

Puzzle
1.0

1.5
1.5

Peval
1.7

2.3
4.3

Nucleic
2.3

1.4
1.3

Mbrot
2.2

5.0
4.1

Maze
3.8

2.3
3.2

Leval
3.4

6.0
2.0

Fib
0.4
0.5
0.6

Fft
0.9

1.3
2.0

Earley
2.8

1.3
3.0

Conform
3.0

3.4
4.6

Cgc 3.7
3.2

Boyer
1.9

1.2
1.9

Bigloo
5.0

3.3

Beval
1.5

2.3
1.4

Bague
0.8

0.7
1.6

Figure 4: BiglooJVM with Sun’s JDK, with Sun’s
JDK/server and with IBM’s JDK vs Bigloo on
Linux/x86 architecture. Lower is better.

run all the benchmarks. Missing values denote a JVM fail-
ure. It seems that these three machines implement different
adaptive compilation strategies because they deliver differ-
ent performance. We cannot conclude that one machine
always delivers the best performance. We can thus only use
this test to emphasize that: i) performance of JVM is hardly
predictable and highly dependent of the hardware/software
platforms, and ii) comparing all the “best” JVM measured
execution times to the C execution times, we found that
only one benchmark took more than twice as long when run
on the JVM.

2.3 BiglooJVM vs Scheme implementations
Figure 5 presents a comparison of BiglooJVM, Kawa v1.6.7

and Gambit v3.0 (unsafe mode and optimizations enabled)
on Linux/86. Kawa produces JVM bytecode, Gambit pro-
duces C code. For all tested benchmarks BiglooJVM is
significantly faster than Kawa. One may notice that since
Kawa unfortunately does not provide specialized arithmetic
operations, slow executions are therefore to be expected.
The Kawa compiler does not seem able to automatically

Scheme implementations

BiglooJvm Kawa Gambit

0 2 4 6 8 10

Traverse 6.1
5.8

2.7

Slatex 2.8
5.0

4.4

Sieve 1.9
14.6

1.4

Qsort 9.8
341.2

1.0

Queens 2.7
46.8

1.0

Puzzle 1.6
329.2

1.5

Peval 2.5
6.2

4.3

Nucleic 2.4
1.3

Mbrot 25.4
589.7

4.1

Maze 2.9
3.2

Leval 4.4
4.0

2.0

Fib 1.1
140.3

0.6

Fft 72.6
276.2

2.0

Earley 6.3
43.0

3.0

Conform 5.4
4.6

Boyer 2.5
7.0

1.9

Beval 2.1
178.2

1.4

Bague 6.8
1.6

Figure 5: BiglooJVM, Kawa and Gambit vs Bigloo
on Linux/x86 architecture. Lower is better.

turn generic arithmetic function calls to specialized arith-
metic calls. So, Kawa programs always use generic arith-
metic. This is a huge handicap.

For all but two programs, BiglooJVM is faster than Gam-
bit. Gambit is not mainly designed for maximal efficiency.
It implements the exact definition of Scheme when Bigloo
does not1. In particular, Gambit performance is affected by
the implementation of tail recursive calls. This speed test
between Gambit and Bigloo thus only demonstrates that
BiglooJVM deliver programs with “acceptable” performance
since Gambit is considered by the Scheme community as an
efficient enough system. In consequence, we think that if
speed is not an implementor’s highest priority, the JVM
should be considered.

2.4 BiglooJVM vs other languages
It is always difficult to compare compilers for different

1Bigloo is not fully Scheme compliant mainly because it is
not properly tail-recursive and because it does not imple-
ment arithmetic bound checking.

262

programming languages. Because the programs cannot be
the very same, we can fear that a small difference in the im-
plementation invalidates the test. For instance, Scheme and
SML share a lot of features and constructions: they both
are functional languages, promoting first class closures and
polymorphism, using garbage collection, etc. However the
programming styles of these two languages differ. It is thus
to be expected that a compiler for Scheme and a compiler
for SML optimize different patterns of source expressions.
It is likely that a Scheme program written using an SML
style would not be efficiently optimized by a Scheme com-
piler and vice-versa. In order to avoid these pitfalls we have
only tested small and simple programs that we have tried to
implement using the natural style of each programming lan-
guages. In addition, we have slightly modified some bench-
marks in order to prevent the Bigloo compiler from applying
too aggressive optimizations. For instance, the original ver-
sion of the Mbrot benchmark was running 40 times faster
when compiled by BiglooJVM than when compiled by Javac,
the Sun’s standard Java compiler. This was only due to in-
lining and constant folding. Since we do not want, in this
paper, to emphasize compiler techniques and optimizations
but runtime system efficiency, we have found relevant to
write a “neutral” benchmark version that prevents Bigloo
optimizations. However, one should note that because of
the Java object model and because of dynamic class load-
ing, a compiler for FLs to JVM bytecode is likely to have
more opportunities to optimize the source code than a Java
compiler. We present the comparison between BiglooJVM,
MLj and Javac compilers Figure 6.

On the five small programs we have used, we have found
that BiglooJVM and MLj (version 0.2c) deliver programs
with comparable performance.

JVM code generators

BiglooJvm MLj Javac

1 2 3 4

Sieve 1.5
1.3
1.4

Qsort 1.0
1.9

1.0

Queens 1.4
1.0

Nucleic 1.3
1.3

Mbrot 3.3
4.1

Fib 0.9
1.4

0.6

Bague 1.3
1.6

Figure 6: BiglooJVM, MLj and Javac vs Bigloo on
Linux/x86 architecture. Lower is better.

We decided to perform these tests for Java too, even
though we assumed that a Java compiler would produce
better code for the JVM than BiglooJVM. Surprisingly, our
programs performed comparably to those produced by Sun’s
Javac (JDK 1.3). In fact, on the Sieve benchmark Sun’s

code is even slower. To us, this demonstrates that Bigloo-
JVM makes efficient use of the JVM.

3. THE BiglooJVM BACK-END
In this section we present the most important points of

the compilation of Scheme, i.e. a functional programming
language using dynamic type checking, to JVM bytecode.
We start, in Section 3.1, by presenting the compilation of
functions. We then discuss in Section 3.2 the implementa-
tion of dynamic type checking. We conclude in Section 3.3
with a description of data representation.

3.1 Compiling functions
Bigloo uses three different frameworks for compiling func-

tions. We first present in Section 3.1.1 how local functions
can be compiled to loops. Then in Section 3.1.2 we show
the general framework applied to functions. In Section 3.1.3
we present how does Bigloo handle closures. Finally, in Sec-
tion 3.1.4 we present limitations of our JVM back-end.

3.1.1 Compiling functions to loops
Closure analysis aims at compiling Scheme functions into

JVM loops. This framework applies when local Scheme
functions do not escape (that is, when functions are not used
as first-class values) and when these functions are always in-
voked tail-recursively (see Section 3.1.4 for a discussion of
generalized tail recursion). Here is an example of two mu-
tually recursive functions that map to JVM loops:

(definedefine (odd? x)
(letrecletrec ((even? (λ (m)

(ifif (= m 0) #t (odd? (- m 1)))))
(odd? (λ (n)

(ifif (= n 0) #f (even? (- n 1))))))
(odd? x)))

is compiled as:

(method odd? (x) (n m)
(iload x)
(istore n)

L1 (iload n) ;; beginning of odd?
(iconst_0)
(if_icmpne L2) ;; compare the argument n with 0
(iconst_0) ;; return (for odd?) false
(ireturn)

L2 (iload n) ;; prepare the actual value for
(iconst_1) ;; the even? function
(isub)
(istore m)
(iload m) ;; even? is inlined here
(iconst_0)
(if_icmpne L3) ;; compare the argument m with 0
(iconst_1) ;; return (for even?) true
(ireturn)

L3 (iload m) ;; otherwise prepare the call to odd?
(iconst_1)
(isub)
(istore n)
(goto L1)) ;; goto odd?

As illustrated by the Qsort or Sieve benchmarks that
use loops extensively, this compilation framework delivers
good performance.

3.1.2 Compiling functions to JVM methods
When the previous scheme does not apply, non-escaping

n-ary functions map to JVM n-ary static methods. Consider
the Scheme fib definition:

263

(definedefine (fib x)
(ifif (< x 2)

1
(+ (fib (- x 1)) (fib (- x 2)))))

It is compiled as:

1: (method fib (x) () 11: (isub)
2: (iload x) 12: (invokestatic fib)
3: (iconst_2) 13: (iload x)
4: ;; test with numeral 2 14: ;; second recursive call
5: (if_icmpge 9) 15: (iconst_2)
6: (iconst_1) 16: (isub)
7: (ireturn) 17: (invokestatic fib)
8: ;; first recursive call 18: (iadd)
9: (iload x) 19: (ireturn))

10: (iconst_1)

The good performance of the Fib, Beval and other bench-
marks using non tail recursive calls shows the efficiency of
this compilation framework. The JVM’s static method in-
vocation is as fast as C’s function invocation.

3.1.3 Higher-order and Heap-allocated closures
Scheme is a higher-order language: functions are first-

class objects which can be passed as arguments, returned by
functions and stored in memory. The front-end of the com-
piler resolves the lexical visibility of variables inside func-
tions by making explicit closures on demand. The back-end
still has to implement an abstract type pointer-to-function
(defined in a straightforward manner for the C back end).
Fortunately, this abstract type was designed to appear only
in specific functions (closure creators) and is used indirectly
by specific special forms (funcall and apply nodes). This
allows us to implement pointer-to-function as an index (in-
teger) into a switch tables for the JVM back-end. This tech-
nique is similar to the one deployed in Gambit to implement
tail recursive calls [11]. One unique index is allocated for
each static closure creation on a compilation unit (a Bigloo
module). Indexes may be identical for 2 different modules
(since one switch table has been allocated per module). Con-
sider the simple following Bigloo module example:

(modulemodule test (exportexport app0 app1))
(definedefine (app0 f l) (f l))
(definedefine (app1 f l) (f (reverse l)))

The compiler generates a class file similar to:

publicpublic classclass test extendsextends bigloo.procedure {
publicpublic staticstatic procedure app0 = new test(2, 0);
publicpublic staticstatic procedure app1 = new test(2, 1);
publicpublic test(int arity, int index) {

super(arity, index);
}
publicpublic Object funcall2(Object a1, Object a2) {

switch(this.index) {
casecase 0: returnreturn anonymous0(this, a1, a2);
casecase 1: returnreturn anonymous1(this, a1, a2);
default: funcall_error2(this, a1, a2);

}
}
privateprivate staticstatic Object anonymous0(
procedure fun, Object a1, Object a2) {
returnreturn ((procedure) a1).funcall1(a2);

}
privateprivate staticstatic Object anonymous1(
procedure fun, Object a1, Object a2) {
returnreturn ((procedure) a1).funcall1(reverse(a2));

}
}

Where procedure is a runtime Bigloo class defined as:

package bigloo;
publicpublic abstract classclass procedure {

publicpublic int index, arity;
publicpublic Object[] env;
publicpublic procedure(int arity, int index) { ... };
publicpublic abstract Object funcall1(Object a1);
publicpublic abstract Object funcall2(Object a1, Object a2);

}

One should keep in mind that according to Sections 3.1.1
and 3.1.2, this generic compilation framework is used only
when the compiler is unable to statically discover which
functions are called at an application site. However, we
found that some JITs are unable to produce code with a
constant complexity for the tableswitch instruction (see
Section 4.4.3).

An alternative compilation is used by Kawa [7], where
each function used as value is compiled into a new JVM
class. This compilation framework gets rid of tableswitches.
Our different solution is motivated by reducing the num-
ber of generated classes. For instance, the Kawa technique
would yield to more than 4,000 classes to compile the clo-
sures of the Bigloo bootstrap, with each class been compiled
into a separate .class file!

Moreover, in the current Bigloo version, each global that
is declared to be accessible from the Scheme interpreter, is
associated with two Bigloo functions; one to get the value of
the global, one to set a new value. This would also increase
significantly the number of generated classes.

3.1.4 Call/cc and tail recursion
BiglooJVM imposes one restriction to Bigloo: continu-

ations can only be invoked in the dynamic extent of the
call/cc expression from which they have been reified. This
restriction comes from the design of the JVM instruction set
and from the bytecode verifier. The JVM does not provide
a mean to save and restore execution stacks.

The lack of general stack operators also makes very dif-
ficult a “correct” JVM implementation of tail calls. In the
current BiglooJVM version, only recursive calls to local func-
tions are correctly handled, i.e., without stack consumption
(see Section 3.1.1 for an example and a previous article [29]
by the authors for more details). The same restriction ap-
plies to the C Bigloo runtime. In addition, we think that the
trampoline technique [4, 33, 11] is infeasible for the current
JVM implementation, as it would cause an excessive per-
formance penalty (see Section 3.1.3). Performance of JVM
executions highly depend on the performance of embedded
JIT compilers. Because executed at application runtime,
these compilers have to be extremely fast. They only have
the opportunity to deploy simple and local optimizations.
It is thus likely that JIT compilers will fail at optimizing
pure trampolined code, which is an unusual style of JVM
bytecode. On the other hand, a recent study shows a vari-
ant of trampolined code that appears to fit the requirement
of JIT compilers and that could be used to implement tail
recursion under the JVM [24].

3.2 Dynamic typing
The Scheme type system may be viewed as a huge, un-

limited union type. Since the JVM does not provide union
types or parametric types, the usual way to mimic union
types is to use subtyping. In order to specify a union type
T which is a sum of some Ti, it is usual to declare a class
T and implement all Ti as subclasses of T . Type-dependent

264

behaviors take the form of methods added to each subclass.
This strategy impacts earliest stages of the compiler. This
would have forced widespread changes to the existing Bigloo
source code, and we decided not to use this design. In-
stead, we have used the JVM instruction instanceof that
implements dynamic type checking. As in the case of the
tableswitch instructions, we have found that some JITs
fail to compile instanceof efficiently. For instance, Sun’s
JDK 1.3 on Linux/x86 is 40 times slower to answer “no”
than to answer “yes” to instanceof. This explains some
distortions on the benchmarks results. As for tableswitch,
the Alpha implementation of the JDK does not seem to suf-
fer from this problem.

We plan to get rid of the instanceof instruction by adding
a specific tag to all Scheme objects. The drawback of this
implementation is that all foreign values require wrapping
in a specific Scheme type. We hope that the SUA optimiza-
tion [28] will do the same nice job as for boxed integers (see
Section 3.3.1).

3.3 Data representation
We present in this section the BiglooJVM data represen-

tations. We start showing in Section 3.3.1 the main differ-
ences in the representation of data structures between the C
runtime and the JVM runtime. Then, in Section 3.3.2, we
focus on the representation of integers in the JVM runtime
system.

3.3.1 Tagging, boxing and pointers alignment
Some well-known C tricks enable faster implementations

of dynamic type identification [13]. These techniques rely
on hardware alignment requirements. Because pointers are
aligned on four- or eight-byte boundaries, the two or three
least significant bits of values can be used to encode type
information. In the Bigloo C back-end we use these bits for
two purposes: i) using tagged instead of boxed representa-
tion for integers, and ii) using lightweight two-words repre-
sentation for pairs. Because Java is a safe high-level lan-
guage it does not provide operations on pointers and thus,
these C tricks do not apply to the BiglooJVM runtime sys-
tem. In order to estimate the impact of these techniques,
we have built two additional versions of the regular Scheme-
to-C version of Bigloo: i) the first one, called Bigloo32, is
identical to Bigloo but integers are 32 bits long and boxed;
ii) the second one, called Bigloo32+ is identical to Bigloo32
but pairs are implemented using 3 memory words (one more
than with Bigloo and Bigloo32).

Figure 7 compares BiglooJVM and these two new ver-
sions. We see that Cgc is highly sensitive to integer boxing.
When compiled to C using boxed integers, this program is
no longer faster than its JVM counterpart. Cgc. Most of
its execution time is spent in a library of bit-vectors. These
are used for data flow analyses such as liveness or reach-
ability property computations. In Cgc the bit-vectors are
implemented using vectors of integers. Because of the pro-
gramming style of Cgc, the Bigloo compiler is unable to
demonstrate that these vectors cannot contain non-integer
values. Thus, it cannot optimize these vectors. That is, it
cannot replace them with native integer vectors. With the C
tagged version of Bigloo this is not a performance problem.
The main consequence of tagging is that a couple of bits is
wasted for each of the word of the bit-vectors, making the
vectors slightly larger. With the boxed version of integers,

Boxed integers and 3 words-large pairs

BiglooJVM Bigloo32 Bigloo32+

1 2 3 4

Traverse
3.1

1.9
2.7

Slatex
1.0
1.0

4.4

Sieve
2.9

1.8
1.4

Rgc
1.1
1.0

10.4

Qsort
1.0
1.0
1.0

Queens
1.8

1.1
1.0

Puzzle
1.0
1.1

1.5

Peval
1.5

1.0
4.3

Nucleic
1.2
1.2
1.3

Mbrot
0.8
0.8

4.1

Maze
1.6

1.3
3.2

Leval
1.2

1.0
2.0

Fib
0.9
0.9

0.6

Fft
1.2
1.2

2.0

Earley
1.6

1.1
3.0

Conform
1.2

1.0
4.6

Cgc
3.3
3.4

3.2

Boyer
1.5

1.0
1.9

Bigloo
1.1
1.1

3.3

Beval
1.1
1.1

1.4

Bague
0.9
0.9

1.6

Figure 7: BiglooJVM, Bigloo C with boxed inte-
gers (Bigloo32) and Bigloo C with boxed integers
and 3 words long pairs (Bigloo32+) vs Bigloo on
Linux/x86 architecture. Lower is better.

bit-vector operations become expensive because new inte-
gers have to be allocated. That is, each time a set operation
is computed such as an union, a disjunction, etc., new inte-
gers are allocated. One may argue that this problem is due
to the poor implementation of Cgc. It is clear that Cgc
could be easily improved. However, we wanted to use this
program “as is” because this current version points out one
real problem of the JVM version. If integers cannot be un-
boxed by a compiler, the JVM runtime system performance
could be much slower than the one of C.

3.3.2 Integer arithmetic
As presented Section 3.3.1, BiglooJVM uses heap-allocated

boxed integers such as Java Integer instances. Boxing in-
tegers is expensive but preallocating small ones avoid mem-
ory consumption and memory allocation in most cases (for
example all 256 Scheme characters are preallocated). For
32-bit integers we have preallocated integers in the range

265

[-100...2048]. For the Bigloo benchmark, only 3.8% of
integers are outside this range. Thanks to the SUA [28],
an optimization that enables unboxing for polymorphic lan-
guages, fewer than 4% of the static arithmetic operations
(including loading constants) need boxing for this bench-
mark.

Impact of 64 bits arithmetic

JDK 1.3 JDK 1.2 JDK 1.1

0 2 4 6 8 10

Rgc
1.1
1.0
1.1

Queens
0.8
0.9

4.9

Nucleic
0.9
1.0

1.6

Leval
1.0
1.0
1.0

Fft
1.3
1.2

8.4

Earley
1.1
1.1

3.2

Conform
1.0
1.0

3.1

Cgc
1.3
1.4

10.9

Beval
1.0
1.0

10.9

bague
1.3
1.1

5.0

Figure 8: BiglooJVM-64 bits/BiglooJVM-32 bits on
Linux/86. Lower is better.

Aside from boxing, some choices have to be made for the
size of basic types. These choices are directed by the target
languages. For C, sizes are unspecified but the long type is
usually large enough to contain any address. By contrast,
the JVM specifies the length of all basic types. In order to
choose between 32-bit integers and 64-bit arithmetic inte-
gers we have tested the two settings with the Sun’s JDK on
Linux/x86. This test is presented Figure 8. Because 64-bit
arithmetic in JDK1.3 has such a major performance penalty,
we decided to use 32-bit arithmetic on all platforms. Using
this configuration, JDK 1.3 is the fastest JVM we have found
on Linux/x86 and Solaris/Sparc.

4. JVM BYTECODE TUNING
Because of the currently leading technology relying on dy-

namic compilation for executing JVM programs, special at-
tention must be paid to produce JVM bytecode that pleases
the JIT compilers. We report the most important facts we
have learned during our work on BiglooJVM.

4.1 Data flow optimizations
Data flow optimizations turn out to be important. We

have found that certain JVM bytecode sequences disable

some JIT compilers. Since JIT compilers such as HotSpot
use methods as compilation units, it is important to remove
such sequences; otherwise, the whole function that contains
it is left uncompiled, i.e., interpreted.

The Bigloo compiler already implements some data flow
analysis. However, we have added three new transformation
rules for the JVM bytecode generator that are enabled when
the compiler is able to prove that expressions are side-effect
free:
1. Let bindings with no bound variables are removed:

R1

. . .

(let () expr)

. . .

=

. . .

expr

. . .

2. Let-bound variables that are only used in a function
called are reduced:

R2

. . .

(let (. . . (x expr) . . .)
(f . . . x . . .))

. . .

=

. . .

(let (.)
(f . . . expr . . .))

. . .

3. Let-bound variables used only in a test position are re-
duced:

R3

. . .

(let (. . . (x expr) . . .)
(if x . . .))

. . .

=

. . .

(let (.)
(if expr . . .))

. . .

None of these rewriting rules are difficult to implement and
they are well-known [2, 35]. However, they are important
for our JVM back-end. For instance, disabling rule R2 slows
down the Bigloo benchmark by more than 20%, because
the pattern reduced by rule R2 is frequently introduced by
earlier Bigloo compilation stages.

4.2 Functional loops
On the one hand, functional languages are expression ori-

ented languages. On the other hand, Java, as C, is statement-
oriented. Scheme loops (e.g., Scheme inner functions) are
expressions, that is, there evaluations produces a value. This
feature is depicted in this naive example:

(definedefine (test a n b) ;; compute a + b * n
(definedefine (mul m r)

(ifif (= m 0) r (mul (- m 1) (+ b r))))
(+ a (mul n 0)))

In a first version of the back-end we had left the value of
a in the JVM stack. The generated bytecode was:

266

(method test (a n b) (r m)
(iload a) ;; Prepare a for addition
(iload n) ;; Prepare arguments for mul: m
(iconst_0) ;; ...: r

muls (istore r) ;; stack entry for mul, store in reg r
(istore m) ;; ... reg m

mul (iload m) ;; reg entry for mul
(iconst_0)
(if_icmpne l1) ;; m == 0 ?
(iload r) ;; return loop with r
(iadd) ;; continuation of the loop
(ireturn)

l1 (iload m) ;; Prepare arg 1 of mul: m-1
(iconst_1)
(isub)
(iload b) ;; Prepare arg 2 of mul: b+r
(iload r)
(iadd)
(goto muls)) ;; back to stack entry of mul

We have found that some JITs do not compile this pro-
gramming style and we now require that all loops (back-
ward branches) must be done in a “statement” style, with
an empty stack. (One should note that such loops used as
expressions cannot be produced by a Java compiler because
Java is a statement-based language.) As a result, the current
BiglooJVM version now produces:

(method test (a n b) (reg1 r m save)
(iload a) ;; Prepare a for addition
(iload n) ;; Prepare arguments for mul: n
(iconst_0) ;; ...: r

muls (istore r) ;; stack entry for mul: store in reg r
(istore m) ;; .. reg m
(istore save) ;; SAVE THE STACK

mul (iload m) ;; reg entry for mul
(iconst_0)
(if_icmpne l1) ;; m == 0 ?
(iload r) ;; return loop with r
(istore reg1) ;; RESTORE THE STACK
(iload save) ;; RESTORE THE STACK
(iload reg1) ;; RESTORE THE STACK
(iadd) ;; continuation of the loop
(ireturn)

l1 (iload m) ;; Prepare arg 1 of mul: m-1
(iconst_1)
(isub)
(iload b) ;; Prepare arg 2 of mul: b+r
(iload r)
(iadd)
(istore r) ;; prepare for reg entry point of mul
(istore m)
(goto mul)) ;; back to reg entry of mul

In order to perform this transformation, the code genera-
tor must know the type of stack elements at each loop entry.
The size of the stack is not enough since for each element we
have to know if we have to generate an istore or an astore

instruction. Even if more complex, this second version runs
18 times faster on SUN JDK1.3 or 1.2 than the former one!

4.3 Bytecode verification
Since all functions (or more generally methods) must have

a prototype (declaration of arguments and return type), the
JVM may be considered as a strongly typed language. These
prototypes are used for two main reasons. First, it is possi-
ble to define two different functions with the same name and
use the prototype as an additional key for linking purposes.
This is not to be confused with Java overloading which is
resolved statically at compile time. Second, prototypes are
used by the bytecode verifier at runtime. Bytecode veri-
fier compliant programs must explicitly, at runtime, check

downward casts. Event if for instance, in order to comply
to the JVM bytecode verifier the following Scheme function
definition:

1: (definedefine (first x)
2: (condcond
3: ((pair? x) (car x))
4: ((vector? x) (vector-ref x 0))
5: (elseelse #f)))

must be compiled such as:

1: (method first (x) () 10: (instanceof [jobject)
2: (aload x) 11: (ifeq 17)
3: (instanceof pair) 12: (aload x)
4: (ifeq 9) 13: (checkcast [jobject)
5: (aload x) 14: (iconst_0)
6: (checkcast pair) 15: (aaload)
7: (getfield car) 16: (areturn)
8: (areturn) 17: (getstatic bfalse)
9: (aload x) 18: (areturn))

That is, if the compiler is able to prove that the type of x is a
pair line 3 or a vector line 4 depending on the branch of the
cond, it still has to enforce a dynamic type test when fetch-
ing values from the data structure, such as lines 6 and 13.
One may enable or disable the bytecode verifier when run-
ning JVM programs. Because the bytecode generated pro-
duced by BiglooJVM is not bytecode verifier compliant all
the previously given time figures have been gathered with
the bytecode verifier disabled. BiglooJVM provides an op-
tion to generate code that complies with the verifier. We
have not yet implemented the optimization which removes
unnecessary checkcast instructions. We have noticed that
the current overhead of the bytecode verifier compliance
ranges from 10% to 55%. We think that this slowdown is
acceptable, so we have postponed the work on this topic.

4.4 JVM idiosyncrasies
We have noticed that current JVM implementations are

highly sensitive to the shape of the generated bytecode. In
this section we present three JIT related problems we have
encountered and the solution we have applied for two of
them.

4.4.1 Startup time
In order to gather accurate time informations, we have

considered long lasting benchmarks. All but Bigloo and
Cgc benchmarks, when compiled to C, last more than 10
seconds on our AMD Athlon 800 Mhz. However, we must
point out that JVM applications have long startup times.
For instance, when Bigloo is invoked with the -help op-
tion which displays command line options and exits, the
C time is about 0.02s while the JVM time is 2.52s. That
is, the startup time of the JVM version is 126 slower than
the C one! This extremely slow startup time explains the
poor result of the overall Bigloo benchmark for the JVM
version. Prohibitive startup times are a problem for short-
lasting applications. For instance, it is currently impossible
to use BiglooJVM to implement shell-like commands such
as ls, cat, etc. We have no solution to this problem yet.

4.4.2 Method size considerations
We have noticed that the current JIT compilers use a

compilation threshold. In particular, we have experimen-
tally found out that Sun’s HotSpot stops compiling func-
tions for which the body is larger than 8000 JVM bytecode
instructions. Expectingly, some of our benchmarks suffer

267

from this strict limitation. The most significant one is Rgc
which performs miserably with HotSpot (see Figure 2). This
benchmark uses Bigloo regular grammars. These lex-like
grammars are compiled to deterministic finite automata that
are, in turn, compiled into Scheme functions. Each grammar
is compiled into one global Scheme function for which the
states of the automaton are implemented using local func-
tions. Because all function calls to these local functions are
tail calls, the Bigloo compiler is able to inline or integrate
them (see Section 3.1.1). In consequence, for one regular
grammar, Bigloo produces exactly one JVM method. The
Rgc benchmark uses a large grammar that implements a
complete Scheme reader (the actual Bigloo reader). When
compiled to JVM this grammar uses 8252 JVM instructions.
That is 252 instructions more than the accepted number! In
consequence the JVM method resulting of the compilation
of the regular grammar is left uncompiled by HotSpot. All
the execution time of the benchmark is spent in the com-
piled regular grammar. This explains why that benchmark
performs so badly with this Java virtual machine. We hope
that this problem will be fixed in the next HotSpot version.
A JVM flag enabling user customization of the compilation
threshold would be a workaround to this problem.

4.4.3 JVM compilation of tableswitch
We found that some JITs are unable to produce code with

a constant complexity for the tableswitch instruction. For
example, on Linux/x86, using Sun’s JIT, tableswitch im-
plementation is linear in time. More precisely, we found that
the execution time of tableswitch is 17.68 ∗ index + 34.39
nanoseconds. On the same platform, iadd was benchmarked
around 14 nanoseconds. When index is not in the specified
range, the longest time is required. This poor compilation of
tableswitch explains some distortions on the benchmarks
results. One should note that stable timing results were
measured on the Alpha platform. The efficiency of this
compilation framework is demonstrated by the good per-
formance of benchmarks using higher order functions (e.g.,
Queens, Leval).

5. RELATED WORK
In this section we compare BiglooJVM with two others

Scheme to JVM compilers, Kawa and with a ML to JVM
compiler, MLj.

5.1 The Kawa Scheme compiler
Kawa is another Scheme compiler to JVM. Kawa imple-

mentation techniques differ from BiglooJVM in many re-
spects. For instance, Kawa closures are implemented by
the means of classes (see Section 3.1.3). Kawa strings dif-
fer from BiglooJVM strings. Kawa maps Scheme strings
into Java strings, while BiglooJVM maps them into array of
bytes. Java strings are not suitable for implementing Scheme
strings because the former are immutable while the later are
mutable.

The Kawa eq? predicate has a different meaning than the
BiglooJVM one’s. Kawa eq? is false for integers, which is
a correct implementation, according to the Scheme Revised5

Report [18]. Bigloo implements exact eq? for integers. Thus,
for the sake of compatibility between the two runtime sys-
tems, we have decided to provide the same semantics for eq?
with BiglooJVM. Providing integers eq? impacts the perfor-
mance of eq?. As reported Section 3.3.2, integers are allo-

cated which leads to the following implementation of eq?:

boolean EQ(Object o1, Object o2) {
ifif(o1 == o2) returnreturn true;
returnreturn((o1 instanceof BINT) &&

(o2 instanceof BINT) &&
((BINT)o1.value == (BINT)o2.value));

}

If equality is not considered for integer, eq? could be:

boolean EQ(Object o1, Object o2) {
returnreturn o1 == o2;

}

When, thanks to the SUA, the Bigloo front-end succeeds
in demonstrating that either one of the eq? arguments is
not an integer, this fast implementation is preferred to the
former one. In order to minimize the performance slow down
of the compatibility between Bigloo and BiglooJVM we have
added a compilation flag that switches from compatible to
incompatible eq?. For all benchmarks, we have disable eq?

compatibility.

5.2 The MLj compiler
MLj is an optimizing compiler for Standard ML producing

JVM bytecode. BiglooJVM and MLj share a main goal:
efficiently compiling a strict functional language to JVM.
The paper [5] concentrates on the front-end of that compiler
and does not detail its bytecode production. The present
paper focuses on the runtime system. The two papers are
thus complementary.

It seems that MLj uses type information to avoid boxing
when Bigloo uses a global analysis. The MLj analysis is
too briefly described. For this reason, we cannot compare
the respective accuracy of the two approaches. The most
important difference between MLj and BiglooJVM seems to
be that MLj does not support separate compilation while
Bigloo does [5]. The authors of MLj state that “...the rea-
sonable [MLj] performance has only been achieved at the
price of high compile times and a limitation on the size of
programs which may reasonably be compiled. Our deci-
sion to do whole-program optimization is certainly contro-
versial...”. As reported in Figure 6 it seems that Bigloo-
JVM produces comparable performance without this limi-
tation. In addition, BiglooJVM supports separate compi-
lation. So, the BiglooJVM, which is a program of about
100,000 lines of code (the compiler plus the runtime system)
is bootstrapped. On the other hand, the good performance
of BiglooJVM is achieved at the price of producing code that
does not comply with the bytecode verifier while MLj does
not suffer from this limitation. Using a compilation option,
BiglooJVM produces bytecode verifier compliant code but
this currently slows down executions.

6. CONCLUSION
We have added a new JVM bytecode generator to the

Bigloo Scheme-to-C optimizing compiler. In order to esti-
mate, from a performance point of view, how suitable JVM
is as a target for compiling strict functional languages, we
compared the applications when run on the C-based and the
JVM-based runtime systems. We have tested several imple-
mentations of the JVM on several different hardware archi-
tectures. Given a code generator that is carefully written
and aware of the JVM’s idiosyncrasies, we found that most
of the JVM compiled applications are no more than twice as
slow as compiled C applications. The performance of JVM

268

has not ceased to increase significantly since the first imple-
mentation. If JVM implementations keep improving at this
pace, we think that in a near future, JVM bytecode may
become a true performance challenger.

ACKNOWLEDGMENTS
Many thanks to Christian Queinnec, Xavier Leroy, John
Clements, and to Céline for their helpful feedbacks on this
work.

7. REFERENCES
[1] A. Adl-Tabatabai, M. Cierniak, G-Y. Lueh, V. Parikh, and

J. Stichnoth. Fast, Effective Code Generation in a
Just-In-Time Java Compiler. In Conference on
Programming Language Design and Implementation, pages
280–190, June 1998.

[2] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1986.

[3] M. Arnold, D. Fink, M. Hind, and P. Sweeney. Adaptive
Optimization in the Jalapeño JVM. In Conference on
Object-Oriented Programming, Systems, Languages, and
Applications, Minneapolis, USA, October 2000.

[4] H. Baker. CONS Should Not CONS Its Arguments,
Part II: Cheney on the M.T.A <1>. Sigplan Notices,
30(9):17–20, September 1995.

[5] N. Benton and G. Kennedy, A. Russel. Compiling
Standard ML to Java Bytecodes. In Int’l Conf. on
Functional Programming, 1998.

[6] H.J. Boehm and M. Weiser. Garbage Collection in an
Uncooperative Environment. Software — Practice and
Experience, 18(9):807–820, September 1988.

[7] P. Botner. Kawa: Compiling Scheme to Java. In Lisp
users conference, Berkeley, California, USA, November
1998.

[8] W. De Pauw and G. Sevitski. Visualizing Reference
Patterns for Solving Memory Leaks in Java. In
Proceedings ECOOP’99, pages 116–134, Lisbon, Portugal,
June 1999.

[9] M. DePristo. SINTL: A Strongly-Typed Generic
Intermediate Language for Scheme. Northwestern
University, Computer Science Honors Thesis, 2000.

[10] P. H. Hartel et al. Pseudoknot: a Float-Intensive
Benchmark for Functional Compilers. Journal of
Functional Programming, 6(4):621–655, 1996.

[11] M. Feeley, J. Miller, G. Rozas, and J. Wilson. Compiling
Higher-Order Languages into Fully Tail-Recursive
Portable C. Technical Report Rapport technique 1078,
Université de Montréal, Département d’informatique et
r.o., August 1997.

[12] E. Gagnon and L. Hendren. SableVM: A Research
Framework for the Efficient Execution of Java
Bytecode. Technical Report 2000-3, McGill University,
School of Computer Science, November 2000.

[13] D. Gudeman. Representing Type Information in
Dynamically Typed Languages. Technical report,
University of Arizona, Departement of Computer Science,
Gould-Simpson Building, The University of Arizona,
Tucson, AZ 85721, April 1993.

[14] U. Hölzle. Adaptive Optimization for Self:
Reconciling High Performance with Exploratory
Programming. PhD thesis, Stanford University, August
1994.

[15] U. Hölzle and D. Ungar. Reconciling responsiveness
with performance in pure object-oriented
languages. ACM Transactions on Programming
Languages and Systems, 18(4):355–400, July 1996.

[16] M. Honeyford. Weighing in on Java native
compilation. Technical Report developerWorks, IBM,
January 2002.

[17] C.-H. Hsieh, J. Gyllenhaal, and W. Hwu. Java bytecode
to native code translation: The Caffeine prototype
and preliminary results. In IEEE/ACM Int’l
Symposium on Microarchitecture, 1996.

[18] R. Kelsey, W. Clinger, and J. Rees. The Revised(5)
Report on the Algorithmic Language Scheme.
Higher-Order and Symbolic Computation, 11(1), September
1998.

[19] A. Krall. Efficient JavaVM Just-in-Time
Compilation. In Proceedings PACT’98, Paris, France,
October 1998.

[20] X. Leroy. Unboxed objects and polymorphic typing.
In Symposium on Principles of Programming Languages,
pages 177–188, Albuquerque, New Mexico, January 1992.

[21] T. Lindholm and F. Yellin. The Java Virtual Machine.
Addison-Wesley, 1996.

[22] O. Pinali Doederlein. The Java Performance Report –
Part IIA. http://www.javalobby.org/features/jpr, August
2000.

[23] C. Queinnec. The influence of browsers on evaluators.
In Int’l Conf. on Functional Programming, pages 23–33,
Montréal, Canada, September 2000.

[24] M. Schinz and M. Odersky. Tail call elimination of the
Java Virtual Machine. In Proceedings of Babel’01,
Florence, Italy, September 2001.

[25] N. Séniak. Théorie et pratique de Sqil: un langage
intermédiaire pour la compilation des langages
fonctionnels. PhD thesis, Université Pierre et Marie Curie
(Paris VI), November 1991.

[26] M. Serrano. Control Flow Analysis: a Functional
Languages Compilation Paradigm. In 10th Symposium
on Applied Computing, pages 118–122, Nashville,
Tennessee, USA, February 1995.

[27] M. Serrano. Inline expansion: when and how? In Int.
Symp. on Programming Languages, Implementations,
Logics, and Programs, pages 143–147, Southampton, UK,
September 1997.

[28] M. Serrano and M. Feeley. Storage Use Analysis and
its Applications. In 1fst Int’l Conf. on Functional
Programming, pages 50–61, Philadelphia, Penn, USA, May
1996.

[29] M. Serrano and P. Weis. Bigloo: a portable and
optimizing compiler for strict functional languages.
In 2nd Static Analysis Symposium, Lecture Notes on
Computer Science, pages 366–381, Glasgow, Scotland,
September 1995.

[30] O. Shivers. Control Flow Analysis in Scheme. In
Proceedings of the SIGPLAN ’88 Conference on
Programming Language Design and Implementation,
Atlanta, Georgia, June 1988.

[31] T. Suganama, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-in-time compiler.
IBM Systems Journal, 39(1), 2000.

[32] Sun Microsystems. The Java HotSpot Performance
Engine, April 1999.

[33] D. Tarditi, A. Acharya, and P. Lee. No assembly
required: Compiling Standard ML to C. ACM
Letters on Programming Languages and Systems,
2(1):161–177, 1992.

[34] Tolksdorf. Compiling to JVM.
http://grunge.cs.tu-berlin.de/~tolk, 2000.

[35] T. VanDrunen, A. Hosking, and J. Palsberg. Reducing
loads and stores in stack architectures, 2000.

[36] D. Wakeling. Compiling Lazy Functional Programs
for the Java Virtual Machine. Journal of Functional
Programming, 9(6):579–603, November 1999.

269

CPU+SYS seconds
Bench Bigloo C BiglooJvm Gambit Kawa MLj Javac
Bague 10.12 (1.00 δ) 15.88 (1.56 δ) 69.05 (6.82 δ) 13.39 (1.32 δ)
Beval 10.61 (1.00 δ) 15.30 (1.44 δ) 22.18 (2.09 δ) 1890.9 (178.22 δ)
Bigloo 3.89 (1.00 δ) 12.85 (3.30 δ)
Boyer 12.73 (1.00 δ) 24.28 (1.90 δ) 31.82 (2.50 δ) 89.17 (7.00 δ)
Cgc 2.35 (1.00 δ) 7.43 (3.16 δ)
Conform 11.01 (1.00 δ) 51.18 (4.64 δ) 59.33 (5.38 δ)
Earley 10.51 (1.00 δ) 31.81 (3.02 δ) 65.75 (6.25 δ) 452.08 (43.01 δ)
Fft 8.96 (1.00 δ) 17.92 (2.00 δ) 650.46 (72.60 δ) 2474.9 (276.22 δ)
Fib 13.58 (1.00 δ) 8.49 (0.62 δ) 14.59 (1.07 δ) 1905.4 (140.31 δ) 19.65 (1.44 δ) 12.03 (0.88 δ)
Leval 9.26 (1.00 δ) 18.94 (2.04 δ) 40.73 (4.39 δ) 37.21 (4.01 δ)
Maze 13.87 (1.00 δ) 43.74 (3.15 δ) 39.58 (2.85 δ)
Mbrot 13.72 (1.00 δ) 55.85 (4.07 δ) 347.95 (25.36 δ) 8090.0 (589.65 δ) 44.98 (3.27 δ)
Nucleic 9.12 (1.00 δ) 12.14 (1.33 δ) 21.82 (2.39 δ) 11.58 (1.27 δ)
Peval 14.50 (1.00 δ) 62.77 (4.32 δ) 36.20 (2.49 δ) 89.50 (6.17 δ)
Puzzle 13.13 (1.00 δ) 20.20 (1.53 δ) 20.62 (1.57 δ) 4322.4 (329.21 δ)
Queens 12.22 (1.00 δ) 12.38 (1.01 δ) 33.13 (2.71 δ) 571.82 (46.79 δ) 17.09 (1.39 δ)
Qsort 19.38 (1.00 δ) 19.74 (1.01 δ) 190.66 (9.83 δ) 6611.7 (341.17 δ) 36.15 (1.86 δ) 18.92 (0.97 δ)
Rgc 10.64 (1.00 δ) 110.45 (10.38 δ)
Sieve 11.88 (1.00 δ) 16.06 (1.35 δ) 22.05 (1.85 δ) 173.34 (14.59 δ) 15.76 (1.32 δ) 17.61 (1.48 δ)
Slatex 13.91 (1.00 δ) 61.81 (4.44 δ) 38.44 (2.76 δ) 69.69 (5.01 δ)
Traverse 18.68 (1.00 δ) 50.69 (2.71 δ) 113.06 (6.05 δ) 107.89 (5.77 δ)

Figure 9: Benchmarks timing on an AMD Tbird 800Mhz/256MB, running Linux 2.2.8

Appendix A: The benchmarks
Here is a short description of the benchmarks we have been
using so far. The numbers of lines are always given for the
Bigloo version of the source files. Figure 9 presents all the
numerical values on Linux/x86.
•Bague by P. Weis (105 lines). Tests fixnum arithmetic and vec-

tors. •Beval (582 lines). The regular Bigloo Scheme evaluator.

•Bigloo (99,376 lines). The bootstrap of the BiglooC compiler

and the runtime library. •Boyer (626 lines) by B. Boyer and

modified by B. Shaw and W. Clinger. Tests symbols and condi-

tional expressions. •Cgc (8,128 lines). A simple compiler for a C

like language that produces Mips assembly code. •Conform (596

lines). It uses lists, vectors and numerous small inner functions.

•Earley by M. Feeley (672 lines). An implementation of the Ear-

ley parser. •Fft (120 lines). Yet another Gabriel’s benchmark.

Fast Fourier transform ported to Scheme by Harry Barrow. •Fib
(18 lines). Fibonacci numbers. •Leval by M. Feeley (555 lines).

A Scheme evaluator using lambda expressions. •Maze by O.

Shivers (809 lines). Uses arrays fixnum operations and iterators.

•Mbrot (47 lines). The Mandlebrot curve that tests floating

point arithmetic. •Nucleic (3,507 lines). Described in [10], this

benchmark measures the efficiency of numerical computations.

•Peval by M. Feeley (639 lines). A partial evaluator that uses

a lot of nested functions and allocates many lists and symbols.

•Puzzle by F. Baskett (208 lines). Another Gabriel’s bench-

mark. •Queens by L. Augustsson (131 lines). Ported from Lml

to Scheme, tests list allocations. •Quicksort by P. Weis (124

lines). It tests arrays and fixnum arithmetic. •Rgc (348 lines).

The Bigloo regular grammar that implements the Bigloo reader.

•Sieve (53 lines) Fixnum arithmetic and list allocations. •Slatex
by D. Sitaram (2,827 lines). This is a LATEX preprocessor imple-

mented by Rice University that tests Input/Output capacities.

•Traverse modified by J. Siskind (136 lines). It allocates and

modifies lists.

270

