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Abstract 
Formal semantic description is significant 

for design, reasoning and standardization of 
programming languages, and it plays an 
important part in the optimization of the 
compiler.  However, compared to the amount 
of effort that has been made to the research of 
various semantic frameworks over more than 
forty years, their actual applications are 
definitely frustrating. This survey reviews the 
history of developments on semantic 
description frame- works for programming 
languages. It also illustrates features and actual 
applications of the main frameworks (including 
operational, deno- tational, axiomatic and 
hybrid semantics). In some practical aspects, 
such as comprehensibility, extensibility and 
applicability, the qualitative comparisons of 
these frameworks are given distinctly. It 
suggests that a more popular formal semantic 
description should behave more elegantly in 
readability, modularity, abstractness, 
comparability, reasonability, applicability and 
tool-support. 
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1 Introduction 
As we know, the definition of a programming 

language consists of at least two parts, the syntax and the 
semantics. The syntax is concerned with the form of 
expressions, which are allowed in the language. On the 
other hand the semantic definition could describe the 
effect of executing or evaluating any syntactically correct 

expression or program or it could describe how to 
execute or evaluate them [Hen1990]. Of course, the 
syntax and the semantics are closely related, the former, 
which decides the form and structure of programs, is the 
pre-condition of describing the semantics of programs. 
The syntax is the earlier of the two to be defined and 
dealt with. In the definition of ALGOL 60, P.Naur 
introduced the notation now known as Backus-Naur 
Form (BNF). Descriptions are called formal when 
written in a notation that already has a precise meaning. 
The BNF is a formal notation for describing the syntax 
of programming languages. It was widely recognised and 
has become practically universal in its use, almost totally 
supplanting other techniques for syntactic description.  

In contrast, in over forty years of development, 
there is still no universally accepted formal notation for 
semantic description — on the contrary, a very large 
number of formal notations (some of them are listed in 
this paper) have been invented, and new formal notations 
are introduced regularly. The reason for this lies in the 
fact that program behaviour exhibits far greater 
complexity than program structure [Wan1997]. 
Nevertheless, there are a number of advantages to such a 
formal semantics approach. For instance, it gives a 
completely unambiguous definition. In comparison, 
programming language standards and manuals that are 
written using only descriptive prose are bound to be 
incomplete and/or ambiguous. A precise definition of the 
behaviour of programs is of great value to compiler 
writers (and to programmers if it sufficiently readable). 
The essence of formal semantics is the treatment of 
programs in a mathematically rigorous way [Cle2003].  

Before we survey the main frameworks available 
for describing the dynamic semantics of programming 
languages, we should consider exactly what are the 
demands made on a semantic notation. There are seven 
areas in which a semantic description is of use, and they 
are summarized below [Mos1992a, Wan1997, Rin1997, 
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Mos2001a, Mos2002a, Cle2003]. 
·   The semantics is the product of the programming 

language design process, and contains and 
communicates the decisions of the designers. 
During this process, the designers need to record 
decisions about particular language constructs, and 
to be made aware of omissions and irregularities in 
the overall design. 

·   During implementation of the language, the 
semantics is of use in ensuring correct behaviour 
of the implementation. The semantics must 
communicate comprehensively and accurately to 
the implementers the intentions of the designers. 

·   Standardization of the language is achieved by 
publishing an unambiguous semantics. Programs 
must be able to be transported between different 
implementations conforming to the semantics 
and exhibit the same behaviors. 

·   A programmer’s understanding of a language 
requires learning its behaviors, i.e., its semantics. 
The semantics must make clear the behaviors of the 
programming language and its various constructs in 
terms of familiar concepts, and must make apparent 
the relationship between this language and others 
with which the programmer is familiar. 

·     The semantics assists the programmer in reasoning 
about a program: verifying it does what it should, 
for example. This requires the semantics to allow 
mathematical manipulation of programs and 
meanings, and proof of assertions about programs 
and their behaviors. 

·   The semantics allows theoreticians to obtain new 
insight into programming concepts and open new 
research areas. For this, the semantics must isolate 
common properties of programming languages 
and allow investigation of these properties. 

·   Finally, semantic descriptions may be used to 
generate compilers and interpreters. Although 
some interesting prototype systems have been 
implemented, compilers and interpreters generated 
from semantic descriptions are generally not 
efficient enough to be practically useful—except 
for allowing empirical testing of the semantic 
description itself. 

The remainder of this paper is organized as follows. 
Section 2 overviews the history of semantic frameworks 
of programming languages. Section 3 gives the syntax of 
a simple imperative programming language While which 
is used to illustrates the various forms of semantics in its 
following sections. Section 4-7 illustrate features and 
applications of the main semantic description frameworks: 
operational, denotational, axiomatic, hybrid, respectively. 
Section 8 gives the qualitative comparison of these 
frameworks with respect to practical aspects, such as 
readability, modularity, and applicability. The two good 
candidates for greater popular framework are proposed in 
section 9. 

2 History of Semantic Frameworks 
 Since the appearance of denotational semantics in 

1960s, the development of formal semantics of 
programming languages passes over forty years. The 
formal semantic frameworks are gradually theoretic-perfect, 
and consider practical aspects, such as readability, 
modularity, and extensibility, which are especially 
significant when describing full-scale languages. In most 
literatures (such as [Cle2003, NN1992, Mos1998]), the 
frameworks for formal semantics were classified as 
operational, denotational, or axiomatic. In operational 
frameworks, the semantics of a program is specified as a 
sequence, or execution history, of state transitions, usually 
as operations on some hypothetical abstract machine. A 
denotational semantics is given by a mathematical 
function which maps the syntax of the program to a 
semantic value, a denotation 1 . Axiomatic semantics 
involves rules for deducing assertions about the correctness 
or equivalence of programs and corresponding parts. 

Each of the above three frameworks have particular 
properties, but the distinction between them is seldom 
sharp: they frequently borrow features from each other. 
These frameworks are however not complete substitutes 
for each other. They can sometimes be used in correct to 
describe different parts or aspects of a system. P.Mosses 
let this framework be a new one, called hybrid, since it is 
essentially hybrids of different kinds of frameworks 
[Mos2001a, Mos2001b, Mos2002a]. Make a comprehensive 
survey on the history of semantic frameworks, from their 
original study for grounded theory to now actual 
application with well readability and modularity, the 
research related to frameworks can be roughly classified 
into the following four phases. 

Phase 1 (1960-1980) was mainly concerned with 
the study on basic theory of frameworks. Denotational 
and axiomatic frameworks were put forwarded in this 
phase. The main approaches of denotational frameworks 
include D.Scott and C.Strachey’s Scott-Strachey 
Semantics [Ten1976, Sto1977, Sch1986], D.Bjørner and 
C.Jones’ VDM semantics [BJ1978], and E.Dijkstra’s 
predicate transformer semantics [Dij1975, DS1990]. 
Scott-Strachey Semantics is the original and classic style 
of denotational semantics. Domains of denotations and 
auxiliary entities are defined by domain equations. The 
elements of domains are specified in typed l-notation. 
VDM (the Vienna Development Method) is an approach 
for studying large computer software systems, developed 
by the Vienna workgroup in Vienna laboratory. In 
predicate transformer semantics, the denotation of a 
phrase is a predicate transformer that returns the weakest 
condition which ensures termination of the phrase with 
the argument condition holding. Since it involves 
                                                            

1 This function is usually a partial function (which is made total 
by introducing the special member ^), since some syntactically 
correct programs may not have a defined meaning, i.e. they may 
contain semantic errors or be intentionally undefined. 
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assertions about the values of variables before and after 
executing statements, it is often regarded as axiomatic.  

In this phase, the main axiomatic semantics includes 
C.Hoare’s Hoare logic (cf. [Hoa1969, Hoa1973]) and 
J.Goguen’s initial algebra semantics [GTWW1977]. 
Hoare logic, which is the classic style of axiomatic, gives 
rules for the relation between assertions about values of 
variables before and after execution of each construct. 

Phase 2 (1980-1990) introduced temporal feature 
into semantic frameworks, i.e., considered the sequence 
of executive process of a program. The new framework 
appeared in this phase was operational, whose main 
approaches include G.Plotkin’s structural operational 
semantics (SOS) [Plo1981], G.Kahn’s natural semantics, 
M.Fellesisen’s reduction semantics, and Y.Gurevich’s 
abstract state machines (ASM) [Gur1993, SSB2001, 
BS2003, Gle2003, AW2003]. The main aim of these 
approaches was to provide a simple and direct method, 
allowing concise and comprehensible semantic 
descriptions based on simple mathematics. Inspired by 
the idea of operational, D.Harel joined temporal feature 
to axiomatic, and put forward dynamic logic [Har1984, 
HKT2000], which can be described as a blend of three 
complementary classical ingredients: first-order predicate 
logic, modal logic, and the algebra of regular events.  

In this phase, I.Guessarian formally put forward 
algebraic semantics [Gue1981], and then Y.Gurevich 
gave algebraic operational semantics (AOS) [Gur1987, 
GM1988, TZ1988], which is a hybrid of algebraic and 
operational semantics. Algebraic semantics can uniquely 
interpret meanings of programs in the way of algebra. 
AOS combines the notion of time with SOS in an 
axiomatic fashion. 

In the second half of this phase, the modularity of 
semantic descriptions was being taken into account. 
Mosses directly joined denotational together with 
operational, and put forward a hybrid framework 
—action semantics (AS) [Mos1986, Wat1986, MW1987, 
Mos1989, Mos1992a, Mos1996a, Mos1996b], which 
posses modularity and readability simultaneously. 
Denotations in action semantics are so-called actions, 
which encapsulated some basic and fixed programming 
concepts, such as control and data flow, scopes of 
bindings, and effects on storage. Another approach to 
provide modularity is E.Moggi’s monadic semantics 
[Mog1989, Mog1991]. He firstly introduced monads (cf. 
[Mog1989, Mog1991, Wad1990, LHJ1995])into denotational. 
Monadic semantics is based on category-theoretic 
functor concepts. It is a parameterized semantics, and 
can be instantiated using different underlying monads. 

Phase 3 (1990-2000) is characterized by contemplation 
of practical features of programs, such as reusability, 
expansibility, and comprehensibility. Inspired by the 
modularity that can be obtained in denotational 
semantics by the use of monads, Mosses introduced 
modularity into conventional operational frameworks, 
and brought forward modular SOS (MSOS) and modular 
natural semantics [Mos1998, Mos1999, Mos2002b]. In 

order to enhance readability of denotational, A.Blass 
joined interactive behaviour to denotational, and gave 
game semantics [Bla1992, AM1998, Byu2003, McC1996, 
HO2000, AJM2000], which models computation as 
interaction between a system and its environment, and 
models a program as a set of possible interactions.  

Besides action semantics in phase 2, the main 
approaches of hybrid frameworks include S.Liang, 
P.Hudak and M.Jones’ modular monadic semantics 
(MMS) (cf. [LHJ1995, Lia1998]) and K.Wansbrough’s 
modular monadic action semantics (MMAS) [Wan1997, 
WH1997]. These approaches adopt more disciplined 
notations for avoiding any reference to irrelevant 
semantic components when defining the semantics of 
each construct, and all attempt to reduce the conceptual 
distance that must be bridged when formally specifying a 
high-level language (see Figure 1 (3)-(5)).  
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 Figure 1  Semantic Description Techniques  

     m : shows the transition is modular 

We are now at the beginning of Phase 4, where 
user-friendly semantic frameworks with mature supported 
tools are developing. This phase will pay much attention 
to well pragmatic aspects and quality tools for semantic 
frameworks.  

In next five sections, we shall illustrate the main 
semantic frameworks with fragments involving the 
description of a simple if-statement and an assignment 
expression of While language.  

3 The Example Language While 
This paper illustrates the various forms of semantics 

on a very simple imperative programming language 
While [NN1992, LS2002, KLNS2002], whose BNF 
syntax is as follows:  

a ::= n | x | a1 + a2 | a1 * a2 | a1 -  a2  
b ::= true | false | a1 = a2 | a1 <= a2 | ¬  b | b1  L b2 
S ::= x := a | if b then S1 else S2 | S1 ; S2 | skip | while b do S 

The meta-variables (that will be used to range over 
constructs of categories) a, b, S, n, x will range over 
arithmetic expressions (category Aexp), boolean expressions 
(Bexp), statements (Stm), numerals (Num), variables (Var), 
respectively. The meta-variables can be primed or 
subscripted. So, for example, a, a', a1, a2 all stand for 
arithmetic expressions. For the limitation of paper space, 
we will only give semantics of if-statement and assignment 
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expression of While language. 
Programming language semantics is usually divided 

into static and dynamic semantics. Static semantics 
describes properties of a program that can be reasoned 
about prior to the execution of the program, while 
dynamic semantics describe properties of the program 
during its execution. Static semantics especially concerns 
with type-checking and type-inference. For example, the 
semantics for an arithmetic expression is as follows 
[Lia1998]: 

E a1 + a2 = { v1  E a1 ; v2  E a2 ; 
              if ( isInt v1 and isInt v2 ) then  
               return ( inInt (outInt v1 + outInt v2 )) 
              else  err “type error” }  

inInt is the injection function from Int to the Value 
domain, whereas outInt is the projection function from 
the Value domain to Int. The kernel-level function err 
reports error conditions. In fact, domain function inInt 
and outInt, and type-checking function isInt belong to 
static semantics. For clarity, in this paper, we will omit 
static semantics such as domain injection/projection and 
type-checking, and focus entirely on dynamic semantics. 

4 Operational Frameworks 
In operational frameworks, the semantics of a 

program is specified as an abstract machine or transition 
system, the computations of which represent possible 
executions of the program [Mos2001b, Mos2001c]. In an 
operational semantics we are concerned with how to 
execute programs and not merely what the results of 
execution are. More precisely, we are interested in how 
the states are modified during the execution of the 
statement. There are various approaches to operational 
semantics of programming languages. Here, we shall 
consider mainly four different approaches: SOS, natural 
semantics, MSOS, and ASM. 

4.1 Conventional Operational Semantics  
Generally, conventional operational semantics refers 

to structural operational semantics (SOS, also called 
small-step semantics, 1981). Characteristic for SOS is that 
the transitions for a phase generally depend only on the 
transitions for (one or more of) its sub-phrases, and 
transition relations are specified by sets of axioms and 
inference rules (for instance, rules [asssos], [if tt

sos ] and [if ff
sos ] 

in Figure 2 from [NN1992]). In SOS, each transition 
modifies the syntax part of the state to reflect a step in the 
execution of some sub-phrase. When the execution of a 
sub-phrase is finished, it is replaced by its computed 
value.  

SOS has been widely used in program analysis (eg. 
[Lau1968, PDG1986, Plo1983, Rep1991, BG1994, PS1995, 
UP2002]) and formal verification (eg. [Blo1989, WBB1993, 

ABV1994, WF1994, CHT2002]).  

Figure 2  Structural Operational Semantics 

An alternative operational semantics is called 
natural semantics (or big-step semantics, 1987) and 
differs from SOS by hiding even more execution details. 
In fact, the big-step semantics (i.e. natural semantics) is 
actually just a special case of the small-step semantics 
(i.e. SOS). The purpose of natural semantics is to 
describe how the overall results of executions are 
obtained, in contrast to SOS whose purpose is to describe 
how the individual steps of the computations take place. 
Evaluations in natural semantics are also specified by 
axioms and inference rules (see Figure 3 from [NN1992]). 
However, the rules are not suitable for semantic descriptions 
of concurrent languages, or even of interleaved expression 
evaluation, just because of the lack of intermediate 
states.  

Natural semantics has been used extensively in the 
definition of programming languages, such as Standard-ML 
[MTH1990, MTHM1997], Eiffel [Att1996], and some 
object-oriented programming languages [GZ1998, Gle1999]. 
Natural semantics has also been used successfully to 
prove properties of programs (eg. [DE1999, Sym1999, 
vON1999]). 

 
Figure 3  Natural Semantics 

In terms of While language, since its programs are 
deterministic and expressions have no side-effects 
(called functional), its SOS and natural semantics are 
equivalent (cf. Theorem 1), for more details please see 
[NN1992]. 

Theorem 1   For every statement S of While we 
have Sns S = Ssos S . 
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4.2 Modular Operational Semantics (1998) 
Conventional operational semantic descriptions have 

rather poor modularity, since the semantic components of 
the transition relation (environments, stores, etc.) are 
made explicit in every rule, and a complete reformulation 
is needed when adding further components [Mos1998]. 
For solving this problem, Mosses put forward modular 
SOS (MSOS, [Mos1999, Mos2002b]), which is a variant 
of SOS where states are restricted to syntax and computed 
values, and all auxiliary entities2 are incorporated in labels 
on transitions (such as labels a , ß and  in Figure 4). Labels 
in modular SOS include, for example, environment, (pairs 
of) stores, and (sequences of) communication signals. The 
set of labels is generally infinite. It is straightforward to 
reduce a modular SOS to a conventional SOS, by moving 
the relevant components of the labels back to their usual 
places in the states. Similarly, modular natural semantics 
requires all auxiliary entities to be incorporated in labels 
on evaluations [Mos2001b]. The differences between 
modular SOS and modular natural semantics are similar to 
the ones between SOS and natural semantics, for more 
please see [Mos1998, Mos2001a, Mos2001b]. 

 
Figure 4  Modular Operational Semantics 

4.3 Abstract State Machines (1988) 
Conventional operational semantics lacks 

mathematical precise notation of state. Natural semantics 
can only define the semantics of strictly compositional 
programming languages3. And SOS explicitly rewrites 
the abstract syntax trees (AST) during execution 
[Gle2003]. Gurevich’s abstract state machine (ASM, 
1988, defined in [Gur1993, SSB2001]) can avoid these 
problems. ASMs describe the semantics of programming 
languages operationally as state transition systems based 
on the AST. States are regarded as algebras over a given 
signature, so ASMs are called “evolving algebras”. States 

                                                            
2 Auxiliary entitles in SOS often include stores such as s eS = 
L -> V and environments such as r e Env = Var  -> L, where L 
is some set of locations (i.e. addresses in memory). [Mos2001a] 
3  In a strictly compositional programming language, the 
semantics of each part of the program, which we regard in form 
of its abstract syntax tree, can be defined solely in terms of the 
semantics of its direct parts, i.e. subtrees. 

in ASM include control-flow graphs representing the 
entire program. For instance, in Figure 5, the functions 
fst,  and nxt represent normal control flow between 
phrases. However, flow of control need not follow the 
structure of the program at all: in principle, the pointer 
task, normally indicating the next part of the program to 
be executed, can be set arbitrarily [Mos2001b]. In ASMs, 
a program is regarded as an attributed AST whose 
attributes specify the continuations (which is an approach 
to define non-compositional semantics such as the 
semantics of goto-statements). In [Gle2003], S.Glesner 
showed that natural semantics could be transformed 
automatically into an equivalent ASM semantics and 
vice versa; and that each SOS can be transformed 
automatically into an equivalent ASM. 

 
Figure 5  Abstract State Machine 

ASMs have got wide usages in semantic descriptions 
of programming languages, such as C [GH1993], Java 
[SSB2001], Prolog [BR1995], and SDL [GK1997, 
GGP1999, ITU2000]; and in proving the correctness of 
compilations (eg. [BR1994, BD1996, ZG1997, GZ1999]). 
ASM was adopted by ISO for standard of Prolog 
[BD1990], by IEEE for standard of VHDL’93 [BGM1994], 
and by ITU for standard of SDL-2000 [ITU2000]. 

4.4 Other Operational Semantics 
Other operational semantics include reduce 

semantics [FF1986], enhanced operational semantics 
(EOS) [DP1996, DP2001], the SECD abstract machine 
[Lan1964, Lan1966], the VDL abstract machine [Weg1972], 
and the SMoLCS framework [AR1987]. 

5 Denotational Frameworks 
In denotational frameworks, the meaning of a 

program phrase is modeled by its so-called denotation 
(i.e. a mathematical object, generally a continuous 
function), which reflects the contribution of the phrase to 
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overall program behaviour. For example, the meaning of 
a program may be given as a function from Input to 
Output. The focus of denotational semantics is on either 
the effect (which means an association between initial states 
and final states) or result, but not how it is obtained.  

Here, we will consider three main approaches for 
operational: Scott-Strachey semantics, game semantics 
and monadic semantics. 

5.1 Conventional Denotational Semantics 
The original and classic denotational semantics is 

generally Scott-Strachey semantics. It provides the purest 
and most abstract way of modeling the semantics of 
programs. It generally avoids representing computations 
as sequences of steps. Instead, it determines for each 
phrase its denotation. Denotations are generally 
mathematical functions, taking current information and 
returning computed values and updated information. 
Typically, denotations are functions of environments, 
continuations, and stores. They are specified in  
l-notation4, and defining the domains of denotations for 

parameterized procedures requires reflexive Scott-domain5. 
The idea then is to define a semantic function for each 
syntactic category. It maps each syntactic construct to its 
denotation, which describes the effect of executing that 
construct. The inherency of denotational semantics is 
that semantic functions are defined compositionally 
[Sto1977, Sch1986, NN1992, Mit1996]. Sequencing may 
be represented either by composition of strict functions 
(illustrated in Figure 6), or by use of continuations 
(showed in Figure 7); the latter also called a continuation 
style semantics. The denotational description of 
nondeterminism, concurrency, and interleaving requires 
the use of power domains. 

 
Figure 6  General Denotational Semantics 

The applications of denotational semantics include 
aiding language design, establishing standards for 
implementation, reasoning about programs and generating 
compilers [e.g. Sto1977, Sch1995, KOC1991, CP1994, 
DDR1997, Yeu1997, YZJ1995, BZ1992, LW1995, Pol1981, 
BBKL1982]. 
                                                            

4 l-notation is merely a notation for expressing mathematical 
functions by listing their arguments and results, without having 
to declare function names. 
5  The Scott-domain is usually w-complete partial orders 
(CPOs). Its equations always have “least” solutions (up to 
isomorphism), e.g. D = N + [D -> D] defines a domain D 
including both the natural numbers and all continuous functions 
on D. [Mos2001b] 

 
Figure 7  Continuation Style Semantics 

 In fact, there are some relationships between 
denotational semantics and operational semantics. For 
example, the denotational semantics and operational one 
of While language are fully equivalent (showed in 
Theorem 2). Such denotational semantics is called fully 
abstract [Mit1996]. A fully abstract denotational semantics 
may be very useful, since reasoning about the denotational 
semantics therefore allows us to reason about the 
operational one. This is important since operational 
semantics is generally difficult to reason about directly, yet 
it is the most useful form of mathematical problem to 
construct fully-abstract denotational semantics. The game 
semantics introduced in next subsection can solve this 
problem in terms of purely functional languages. 

Theorem 2   For every statement S of While we 
have Ssos S = Sds S . 

5.2 Game Semantics (1992) 
Game semantics (cf. [Bla1992]) was first studied in 

the context of the fully abstract problem for functional 
programming languages. The first syntax-independent 
descriptions of fully abstract models for PCF 
(simply-typed -calculus plus arithmetic and recursion, 
see [Mit1996]) were achieved (in 1993) using game 
semantics [HO2000, AJM2000]. As mentioned in Set.2, 
game semantics is a sort of denotational semantics that 
retains more information about what the program does. It 
models computation as the playing of a certain kind of 
game, with two participants, called Player (P) and 
Opponent (O). P is to be thought of as representing the 
system under consideration, while O represents the 
environment. In the case of programming languages, the 
system corresponds to a term (a piece of program text) 
and the environment to the context in which the term is 
used. This is a key point at which games models differ 
from other process models: the distinction between the 
actions of the system and those of its environment is 
made explicit from the very beginning [McC1996, 
AM1998, Byu2003]. In a game semantics, a computation 
is modeled as interaction between P and O, and a 
program as a set of possible interactions. O always 
moves first — the environment sets the system going — 
and thereafter the two players make moves alternately 
(showed in Figure 8). 

Games models have been built for higher-order 
programming languages with a variety of computational 
features: such as purely functional languages (PCF, FPC) 
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[HO2000, AJM2000, Nic1994, McC1996], mutable store 
(Idealized Algol) [AM1997a, AM1999], control operators 
(SPCF, exceptions) [Lai1997, MH1998], higher-order 
store (pointers) [AHM1998, AM1997b], nondeterminism 
and subtyping [HM1999, MH1999, Chr2000]. 

 
Figure 8  Game Semantics 

5.3 Monadic Semantics (1989) 
Just because of the unrestricted use of (typed) 

-notation to specify semantic entities, conventional 
denotational descriptions have as poor modularity as 
conventional operational descriptions [LH1996, 
Mog1991, Wan1997, Mos1998, Pow2000]. When the 
described language is extended with unanticipated new 
constructs, the domains of denotations may need to be 
changed, and then the description of the old constructs 
may have to be completely reformulated to adapt it to the 
new domains. To avoid any reference to irrelevant 
semantic components when defining the semantics of 
each construct, a more disciplined notation should be 
adopted to substitute for -notation. One of such notations 
is monad6, which is a technique for encapsulating impure 
features such as states, nondeterminism and I/O into a pure 
functional language. Monads were discovered in category 
theory in the 1950s and introduced to the semantics 
community by Moggi in [Mog1989]. Intuitively, a 
monad is transformation on types equipped with a 
composition method for transformed values. To add a 
new feature to a monadic semantics, we only need to add 
a semantic description of the new feature, and change the 
underlying monad, but not the semantic descriptions of 
the existing features. Traditional denotational semantics 
maps, say, a term, an environment and a continuation to 
an answer. In contrast, monadic semantics maps terms to 
computations, where the details of the environment, store, 
etc. are “hidden” (see Figure 9). Moggi also realized that 
some realistic semantics features had to be combined, 
and so he presented monad constructors that could add 
new notions of computation to a monad. 

The monadic style in which the descriptions are 
written is much easier to read than a typical denotational 
                                                            

6 Formally, a monad is a triple (M, return, bind), where M is a 
type constructor (a map from each type a to a corresponding 
type Ma), and return and bind are functions: return: a -> Ma, 
bind: Ma -> (a  M   b) -> M b . 

semantic description. The applications for monadic 
semantics are included in those for modular monadic 
semantics (in Section 7.3). 

 
Figure 9  Monadic Semantics 

5.4 Other Denotational Semantics 
Other denotational semantics include VDM 

semantics[BJ1978, LP1995], predicate transformer 
semantics[Dij1975, DS1990, Nau2001], the naive 
denotational semantics[BT1983], extensible denotational 
semantics[CF1994], and partially-additive semantics 
[MA1986]. 

6 Axiomatic Frameworks 
Axiomatic semantics describes properties of 

programs as sets of constraints (or called assertions), and 
programs as transforming assertions. This is the most 
abstract of the four families of description formalisms 
(i.e. operational, denotational, axiomatic, hybrid). 
Axiomatic descriptions are not particularly well-suited to 
complete description of programming languages from 
which it is possible to automatically generate compilers. 
It is more suited to proving properties about programs 
than for automatic generation of complete language 
implementations. 

6.1 Traditional Axiomatic Semantics 
Axiomatic semantics was developed primarily by 

Hoare in the late 1960s, and called Hoare logic, which 
base on predicate logic. The main aim was initially to 
provide a formal basis for the verification of abstract 
algorithms [Hoa1969]. A Hoare logic gives rules for the 
relation between assertions about values of variables 
before and after execution of each construct. Expressions 
are used in assertions, so their interpretation has to be 
purely mathematical, without effects on storage, 
exceptions, non-terminating function calls, etc.[Mos2001b, 
Mos2002a] 

A general form of so-called partical correctness 
formula in Hoare logic is {P}S{R} (sometimes P{S}R), 
which indicates that if the pre-condition P held before 
executing the program S then the post-condition R will 
hold afterwards (showed in Figure 10). P and R are 
propositions and we can perform to usual logical 
manipulations on them. This notation allows us to move 
from expressions written in a programming language to 
expressions written in a logic. Logic is a much better 
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place to reason than programing languages are, and so 
this approach can be extended to provide a tool for 
reasoning about program correctness, and well as 
programming language semantics. 

 
Figure 10  Hoare Logic 

Some applications of axiomatic semantics: 
documentation of programs and interfaces [HW1973, 
Sou1984, FM2001]; guidance in design and coding 
[HJ2000]; proving the correctness of algorithms (or 
finding bugs) [Hoa1969, ILL1975, Kem1982, Dav1999]; 
proving the correctness of hardware descriptions (or 
finding bugs); extended static checking, and proof- 
carrying code [ON1999]. 

6.2 Dynamic Logic (1984) 
Traditional axiomatic descriptions of programs 

don’t possess such feature of sequence as operational 
descriptions. This omission to temporal feature can bring 
benefits (such as concision and high abstraction) for a 
simple model language, but not suit for dealing with real 
programming language [YR1998]. So, Harel joined the 
temporal feature to axiomatic, and proposed dynamic 
semantics [HKT1984], which can be described as a 
blend of three complementary classical ingredients: 
first-order predicate logic, modal logic, and the algebra 
of regular events. Unlike classical predicate logic where 
truth is static, dynamic logic has explicit syntactic 
constructs called programs whose main role is to change 
the values of variables, thereby changing the truth-values 
of formulas. To discuss the effect of the execution of a 
program a  on the truth of a formula j, dynamic logic 
uses a modal construct <a >j, which intuitively states, “It 
is possible to execute a  starting from the current state 
and halt in a state satisfying j.” There is also the dual 
construct [a ] , which intuitively states, “If a  halts when 
started in the current state, then it does so in a state 
satisfying j.”(see Figure 11) [HKT2000]. 

Applications of dynamic logic on formal language 
and program verification can be found in [HKT2000, 
CLR1996, EJ1996, ALP1998, Bec2001, MM2003]. 

 
Figure 11  Dynamic Semantics 

6.3 Algebraic Semantics (1981) 
In the logic approaches mentioned above, abstract 

data types (ADTs) are not unique, since these approaches 
only provide sets of axioms and inference rules, don’t 

explain what the designer want or not. So, it is necessary 
to find a new approach for describing ADTs. Algebra is a 
suitable tool for it [Ru1992]. Algebraic semantics 
[Gue1981, GD1992, SK1995, Zam1997], whose 
foundations are based on abstract algebra, involves the 
algebraic specification of data and language constructs. 
The basic idea of the algebraic approach to semantics is 
to name the sorts of objects and the operations on the 
objects, and to use algebraic axioms to describe their 
characteristic properties (illustrated in Figure 12). An 
algebraic specification contains two parts: signature7 and 
equations. The methodology of algebraic semantics is 
customarily used to specify abstract data types. The basic 
principle in specifying an ADT involves describing the 
logical properties of data objects in terms of properties of 
operations (some of which may be constants) that 
manipulate the data.  

 
Figure 12  Algebraic Semantics 

Algebraic semantics has frequently been used to 
study semantics of functional and imperative languages 
[eg. Wil1982, BW1982, Ait1986, BWP1987, Acz1989, 
CJO1994, GD1992, GH1995, Zam1997, JMK1998, 
Fro2003]. It is also used in the field of abstract state 
machines to formalize the machine model underlying an 
operational semantics [cf. Gog1990, GH1993]. 

6.4 Other Axiomatic Semantics 
Other axiomatic semantics include Kripke-Kleene 

semantics [Fit1985a, GRS1991], fixpoint semantics 
[Fit1985b, Fit2002], and fixpoint logic [Var1982, AVV1997]. 

                                                            
7 A signature S of an algebraic specification is a pair <Sorts, 
Operations> where Sorts is a set containing names of sorts; 
Operations is a family of function symbols indexed by the 
functionalities of the operations represented by the function 
symbols. 
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7 Hybrid Frameworks 
A hybrid approach to semantics involves more than 

one framework in the same description. The various 
semantic frameworks may have advantages for different 
levels of complete semantic descriptions [Mos2001a, 
Mos2001b]. Here, we will consider four approaches to 
axiomatic: algebraic operational semantics, action 
semantics, modular monadic semantics and modular 
monadic action semantics. 

7.1 Algebraic Operational Semantics (1987) 
Algebraic operational semantics (AOS, see 

[Gur1987, TZ1988, Ste1996]) is a hybrid framework. 
Like dynamic logic, it is obtained by introducing 
temporal feature to axiomatic. The difference is that 
algebraic and operational are directly bonded together in 
AOS. In AOS, a simple model of a clock is employed to 
enumerate the sequence of states that are produced by 
executing a program. The transition from one state in the 
sequence to the next is given by some atomic program, 
such as assigning the value of one variable to another. 
The idea of AOS is to decompose a program into a 
sequence of atomic programs (see functions First and 
Rest in Figure 13), such that the sequential execution of 
these atomic programs gives the behaviour of the whole 
program. The operational semantics is algebraic because 
the semantics of a language is defined as an algebra, and 
thanks to the enumeration clock, this decomposition 
process can be defined by using equations [Sem1997, 
GM1990].  

 
Figure 13  Algebraic Operational Semanitcs 

The basis of AOS is a function Comp (showed in 
Figure 13) such that Comp (S, s0, t) gives the state st that 
results from executing the program S on the initial state 
s0 for t cycles of time. In Figure 13, the function Act(a , s) 

gives the behaviour of a basic or atomic program a  on a 
state s, and satisfies st = Act (a t-1, st-1 ) = Comp (S, s0, t). 

The applications of AOS in the field of studying 
programming languages and correctness are declared in 
[GM1988, GM1990, Bor1990, TZ1988, Ste1997]. 

7.2 Action Semantics (1986) 
The traditional frameworks for formal semantics, 

including operational (Section 4), denotational (Section 
5), and axiomatic semantics (Section 6), are widely 
taught at university level; they are firmly based on solid 
theoretical foundations, and they are quite adequate for 
describing small-idealized fragments of programming 
languages. However as Mosses pointed out (in 
[Mos1996a]), when attempting to scale up to larger, and 
practical programming languages, such as Pascal and C, 
it turns out to be disproportionately difficult to write, 
read, extend, modify, and reuse descriptions in the 
conventional frameworks. Three attempts at solving 
these problems are action semantics, modular monadic 
semantics (Section 7.3) and modular monadic action 
semantics (Section 7.4) [Mos1992a, WH1997]. 

Action semantics (cf. [Mos1986], [MW1987], 
[Mos1996b]) improves the modularity of denotational 
semantics by taking denotations to be so-called actions, 
which are expressed using a fixed action notion 
consisting of various primitives and combinators. The 
foundations of action notation involve SOS and algebraic 
specifications, which avoids the use of higher-order 
functions expressed in lambda-notation, and are both 
generally regarded as more accessible than domain 
theory. Action notation provides direct support for 
specifying control flow, data flow, scopes of bindings, 
side-effects, procedural abstraction, and (asynchronous) 
communication between concurrent process [Mos1989, 
Mos1992a, Mos1996a, Mos1998].  

In principle, the semantic description of each 
construct is a separate module. This facilitates reuse of 
complete modules in descriptions of different languages, 
and allows new languages to be assembled simply by 
combining different sets of modules [DM2003]. Action 
semantics is readable and intelligible without prior 
training (showed in Figure 14). It has an operational 
semantics base, from which can be derived laws or 
‘axioms’ that can be used to prove facts about programs; 
and programs or fragments can be shown to be 
equivalent (or not) directly by using the operational 
semantics. Moreover it has a very flexible type system 
that allows new types of data to be readily defined and 
used.  

Action semantic descriptions exist for a number of 
real languages [Wat1988, MW1993, Tof1993, HT1994, 
Mos1992b, Bun1996, Wat1999]. Various prototype 
compiler generators based on action semantics have been 
developed [Mos2001c, BMW1992, Pal1992a, Pal1992b, 
Mou1993, Ørb1994, Bun1996], along with some tools 
(cf. [Mos1992, Mos1996b, DM1996]) for assistance in 
developing new action semantic descriptions. 
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Figure 14  Action Semantics            

7.3 Modular Monadic Semantics (1996) 
In section 5.7, we saw that the use of monads in 

denotational semantics descriptions can also improve 
their modularity. However, the monadic approach has the 
problem that, in general, it is not possible to compose 
two monads to obtain a new monad [LLCC2001, 
LCLC2002]. A proposed solution was the use of monad 
transformers (cf. [LHJ1995]), which transform a given 
monad into a new one adding new operations. Monad 
transformers are a form of abstraction for introducing a 
wide range of computational behaviors, such as state, I/O, 
continuations, exceptions, parsing and non-determinism. 
This approach was called modular monadic semantics 
(MMS, [LH1996, Lia1998]). MMS specifies the 
semantics of a language by a mapping from terms to 
computations performed within a monad. The monad 
hides details of semantic features such as environments 
and stores, and exposes operators allowing access to 
these features. The semantic description consists of the 
monad definition, defining the monad over which the 
language is defined, and the semantic functions relating 
the syntax of phrases in the language to their meaning or 
semantics (see Figure 15).  

 
Figure 15  Modular Monadic Semantics 

In contrast to action semantics, MMS has the 
advantage of being based directly on denotational 
semantics, which is familiar and well-understood. 
Compared with traditional denotational semantics, MMS 
captures individual programming language features using 
reusable building blocks, and specifies programming 
languages by composing the necessary features. It 
achieves a high level of modularity and extensibility, in 
that the various notions of computation introduced are 
defined entirely separately and can be mixed and 
matched as required. Despite of this, it is still executable: 
there is a clear operational interpretation of the semantics 
[Wan1997, WH1997]. And MMS is to a large degree 

independent of the type system used.  
Because of its truly modularity, MMS has advantages 

for reusing and modifying incrementally the semantic 
descriptions of programming languages, showed in 
[LCLC2001, LCLC2002, LLCC2001, Lab1998]. 

7.4 Modular Monadic Action Semantics (1997) 
As mentioned above, action semantics possesses 

modularity and readability simultaneously. However, it is 
limited in scope: not all programming language concepts 
(such as first-class continuations) can be represented 
directly within action semantics—only those which 
Mosses has chosen to build into the system. There is no 
provision for the extension of action semantics. It is not 
really modular internally: the operational semantics deals 
with all facets together, and the apparent modularity 
exists only at the top level (see Figure 1(3)). Additionally, 
a number of operations do not in fact restrict their 
operations to a single facet. Action semantics’ type 
system is rather unconventional. Compared to action 
semantics, modular monadic semantics is truly 
modularity (see Figure 1(4)), but it does not have the 
property of being intelligible without prior training. And 
extensible union types, the type system chosen by Liang, 
Hudak and Jones, are not as good as Mosses’s unified 
algebras (which are difficult to fit within the modular 
monadic framework) [Wan1997, WH1997]. 

It is apparent that MMS is both lower-level and 
more general than action semantics, but that both 
approaches have much to commend them. So, 
Wansbrough naturally proposed their fusion— modular 
monadic action semantics (MMAS, [Wan1997]). MMAS 
is to define action semantics in terms of MMS, by using 
MMS to give a modular denotational definition of action 
notation—replacing its original SOS (which has rather 
poor modularity). This replacement provides the 
flexibility to modify or delete existing facets of action 
semantics or to add entirely new ones, and will allow the 
use of the theories of modular monadic semantics and of 
denotational semantics to theorise about actions. In other 
words, the human readability of action semantics is 
maintained, but the mathematical understanding of what 
is going on is greatly enhanced by the modular, 
accessible and readable description given by the MMS. 
Consequently, MMAS is modular and extensible, and 
dialects of MMAS can be created that incorporate new or 
modified notions of computation. 

 
Figure 16  Modular Monadic Action Semantics 
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The MMAS notation differs slightly from that of 
action semantics. All operators begin with a single 
lowercase letter, a, c, or y, identifying whether the 
operator is an action (such as aEvaluate in Figure 16), 
combinator (cThen) or yielder (yIt), respectively. The 
name of the operator follows, occasionally abbreviated, 
in BiCapitalised form. 

Base MMAS, the unmodified form of the MMAS 
system [Wan1997], implements almost all of Mosses’s 
action semantics: in most cases existing action semantic 
descriptions can be used with MMAS with very little 
modification. Such ASDs can be interpreted in an 
MMAS system based over a Haskell interpreter, or made 
into compilers using an optimising Haskell compiler. 

7.5 Other Hybrid Semantics 
Other hybrid semantics include algebraic 

denotational semantics[GP1981],modular denotational 
semantics [Esp1993, Esp1995] and type-theoretic 
interpretation [HL1994, HS1998]. As mentioned in 
[Mos2001b], various operational frameworks such as 
VDL may be considered as hybrids. 

8 Comparisons 
In sharp contrast to the popularity of formal syntax, 

formal semantic descriptions have seldom been exploited 
in practical applications concerning design and 
implementation of programming languages. As showed 
in Section 4-7, there is no shortage of semantic 
frameworks to choose from, nor has there been a lack of 
theoretical effort in establishing the foundations of the 
various frameworks. In [Mos1996a, Mos1998, 
Mos2001a, Mos2001b, Mos2001c, MW1987], Mossess 
pointed out that the main hindrances to greater use of 
formal semantics appear to be lack of user-friendliness, 
and lack of tool support. Ideally, formal semantic 
descriptions should provide a convenient way for 
language designers to record their decisions, and to 
communicate them to implementers and programmers. In 
these literatures, we find a list of these properties a 
programming language specification method should 
have: 
· Readability. This property makes the description 

accessible to all people with interest in the language 
(designers, implementers and programmers). 

· Modularity. Modularity in formal descriptions 
improves reusability and modifiability, also helps in 
breaking large descriptions into smaller and 
manageable components.  

· Abstractness. The formalism should be abstract 
enough to free the designer from biasing towards any 
implementation alternative and to focus on important 
design issues.  

· Comparability. It should be easy to compare different 
languages by looking into their formal descriptions.  

· Reasonability. The formalism should facilitate 

reasoning about programs written in the defined 
language.  

· Applicability. The formalism could describe nearly all 
programming-language concepts, such as state, I/O, 
(first-class) continuations, exceptions, parsing and 
non-determinism.  

· Tool-support.  Quality tools are badly needed to assist 
the writing, checking, and reading of semantic 
descriptions. The wider use of formal semantics 
depends on the availability of tools for generating 
(reasonably efficient) implementations from semantic 
descriptions. 

From these aspects, we give the qualitative 
comparisons of the semantic description methods of 
current interest in Table 1. In addition, our conclusion 
from this table is that ASM (Section 4.3) and MMAS 
(Section 7.4) approaches are good candidates for such 
ideal frameworks. ASM approach has already made a 
considerable impact regarding practical applications. 
MMAS approach is a new approach, but it has a large 
and energetic following. 

9 Summaries 
The design and implementation of programming 

languages is an importance topic in computer science. 
There are two aspects to the specification of 
programming languages: syntax and semantics. Formal 
descriptions of program syntax (regular, context-free, 
and context-sensitive grammars) have become accepted 
as practically useful for documentation in reference 
manuals and standards, as well as for generating efficient 
parsers for use in compilers. In contrast, formal semantic 
descriptions have seldom been exploited in practical 
applications concerning design and implementation of 
programming languages. Compared to the amount of 
effort that has been made to the research of various 
semantic frameworks (main of them were listed in 
Section 4-7 in this paper) over more than forty years 
(showed in Section 2), their actual applications are 
definitely frustrating. Good pragmatic features, such as 
readability, modularity, etc. (see Table 1), are strongly 
demanded for efficient development and use of semantic 
descriptions, but are sadly lacking in most frameworks. 

According to Table 1, we know that the ideal formal 
semantic descriptions should possess: 1) enough 
readability; 2) well modularity; 3) high abstractness; 4) 
strong comparability; 5) enough reasonability; 6) wide 
application; 7) more tool-support. And we find that ASM 
and MMAS are two good candidates for such a 
framework. 
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Table 1  Comparisons of the Semantic Description Methods 

Readability Modularity Abstractness Comparability Reasonability Applicability Tool-support

SOS General Poor Low Strong Weak Wide More

Modular SOS General Well Middle General General Moderate Little

ASM Well General High General General Wide General

Scott-Strachey Poor Poor High General Strong Wide General

Game General Poor Middle Weak Weak Limited Little

Monadic Poor General Middle Weak Strong Moderate Few

Hoare Logic General Poor Low Strong General Limited More

Dynamic Logic Poor Poor Middle General Weak Limited Little

Algebra Poor General High Weak General Limited Little

Algebra Operational General Poor Middle Strong Weak Moderate Little

Action Well General High General General Limited General

Modular Monadic Poor Well High Weak Strong Moderate Little

MMAS Well Well High General General Moderate Little

Properties
Frameworks
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