
A Survey of Semantic Description Frameworks
for Programming Languages*

Yingzhou Zhang Baowen Xu

Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
Jiangsu Institute of Software Quality, Nanjing 210096, China

Abstract
Formal semantic description is significant

for design, reasoning and standardization of
programming languages, and it plays an
important part in the optimization of the
compiler. However, compared to the amount
of effort that has been made to the research of
various semantic frameworks over more than
forty years, their actual applications are
definitely frustrating. This survey reviews the
history of developments on semantic
description frame- works for programming
languages. It also illustrates features and actual
applications of the main frameworks (including
operational, deno- tational, axiomatic and
hybrid semantics). In some practical aspects,
such as comprehensibility, extensibility and
applicability, the qualitative comparisons of
these frameworks are given distinctly. It
suggests that a more popular formal semantic
description should behave more elegantly in
readability, modularity, abstractness,
comparability, reasonability, applicability and
tool-support.

Keywords: axiomatic semantics, denotational
semantics, formal semantics, hybrid semantics,
operational semantics, semantic description
frameworks

1 Introduction
As we know, the definition of a programming

language consists of at least two parts, the syntax and the
semantics. The syntax is concerned with the form of
expressions, which are allowed in the language. On the
other hand the semantic definition could describe the
effect of executing or evaluating any syntactically correct

expression or program or it could describe how to
execute or evaluate them [Hen1990]. Of course, the
syntax and the semantics are closely related, the former,
which decides the form and structure of programs, is the
pre-condition of describing the semantics of programs.
The syntax is the earlier of the two to be defined and
dealt with. In the definition of ALGOL 60, P.Naur
introduced the notation now known as Backus-Naur
Form (BNF). Descriptions are called formal when
written in a notation that already has a precise meaning.
The BNF is a formal notation for describing the syntax
of programming languages. It was widely recognised and
has become practically universal in its use, almost totally
supplanting other techniques for syntactic description.

In contrast, in over forty years of development,
there is still no universally accepted formal notation for
semantic description — on the contrary, a very large
number of formal notations (some of them are listed in
this paper) have been invented, and new formal notations
are introduced regularly. The reason for this lies in the
fact that program behaviour exhibits far greater
complexity than program structure [Wan1997].
Nevertheless, there are a number of advantages to such a
formal semantics approach. For instance, it gives a
completely unambiguous definition. In comparison,
programming language standards and manuals that are
written using only descriptive prose are bound to be
incomplete and/or ambiguous. A precise definition of the
behaviour of programs is of great value to compiler
writers (and to programmers if it sufficiently readable).
The essence of formal semantics is the treatment of
programs in a mathematically rigorous way [Cle2003].

Before we survey the main frameworks available
for describing the dynamic semantics of programming
languages, we should consider exactly what are the
demands made on a semantic notation. There are seven
areas in which a semantic description is of use, and they
are summarized below [Mos1992a, Wan1997, Rin1997,

* This work was supported in part by the National Natural Science Foundation of China (60073012), National Grand Fundamental
Research 973 Program of China (2002CB312000), National Research Foundation for the Doctoral Program of Higher Education of
China (20020286004), Cross-Century Excellent Scholar Plan of the Education Ministry of China, Opening Foundation of State Key
Laboratory of Software Engineering in Wuhan University, and Opening Foundation of Jiangsu Key Laboratory of Computer
Information Processing Technology in Soochow University.
Correspondence to: Baowen Xu, Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China.
E-mail: bwxu@seu.edu.cn

ACM SIGPLAN Notices 14 Vol. 39(3), Mar 2004

Mos2001a, Mos2002a, Cle2003].
· The semantics is the product of the programming

language design process, and contains and
communicates the decisions of the designers.
During this process, the designers need to record
decisions about particular language constructs, and
to be made aware of omissions and irregularities in
the overall design.

· During implementation of the language, the
semantics is of use in ensuring correct behaviour
of the implementation. The semantics must
communicate comprehensively and accurately to
the implementers the intentions of the designers.

· Standardization of the language is achieved by
publishing an unambiguous semantics. Programs
must be able to be transported between different
implementations conforming to the semantics
and exhibit the same behaviors.

· A programmer’s understanding of a language
requires learning its behaviors, i.e., its semantics.
The semantics must make clear the behaviors of the
programming language and its various constructs in
terms of familiar concepts, and must make apparent
the relationship between this language and others
with which the programmer is familiar.

· The semantics assists the programmer in reasoning
about a program: verifying it does what it should,
for example. This requires the semantics to allow
mathematical manipulation of programs and
meanings, and proof of assertions about programs
and their behaviors.

· The semantics allows theoreticians to obtain new
insight into programming concepts and open new
research areas. For this, the semantics must isolate
common properties of programming languages
and allow investigation of these properties.

· Finally, semantic descriptions may be used to
generate compilers and interpreters. Although
some interesting prototype systems have been
implemented, compilers and interpreters generated
from semantic descriptions are generally not
efficient enough to be practically useful—except
for allowing empirical testing of the semantic
description itself.

The remainder of this paper is organized as follows.
Section 2 overviews the history of semantic frameworks
of programming languages. Section 3 gives the syntax of
a simple imperative programming language While which
is used to illustrates the various forms of semantics in its
following sections. Section 4-7 illustrate features and
applications of the main semantic description frameworks:
operational, denotational, axiomatic, hybrid, respectively.
Section 8 gives the qualitative comparison of these
frameworks with respect to practical aspects, such as
readability, modularity, and applicability. The two good
candidates for greater popular framework are proposed in
section 9.

2 History of Semantic Frameworks
 Since the appearance of denotational semantics in

1960s, the development of formal semantics of
programming languages passes over forty years. The
formal semantic frameworks are gradually theoretic-perfect,
and consider practical aspects, such as readability,
modularity, and extensibility, which are especially
significant when describing full-scale languages. In most
literatures (such as [Cle2003, NN1992, Mos1998]), the
frameworks for formal semantics were classified as
operational, denotational, or axiomatic. In operational
frameworks, the semantics of a program is specified as a
sequence, or execution history, of state transitions, usually
as operations on some hypothetical abstract machine. A
denotational semantics is given by a mathematical
function which maps the syntax of the program to a
semantic value, a denotation 1 . Axiomatic semantics
involves rules for deducing assertions about the correctness
or equivalence of programs and corresponding parts.

Each of the above three frameworks have particular
properties, but the distinction between them is seldom
sharp: they frequently borrow features from each other.
These frameworks are however not complete substitutes
for each other. They can sometimes be used in correct to
describe different parts or aspects of a system. P.Mosses
let this framework be a new one, called hybrid, since it is
essentially hybrids of different kinds of frameworks
[Mos2001a, Mos2001b, Mos2002a]. Make a comprehensive
survey on the history of semantic frameworks, from their
original study for grounded theory to now actual
application with well readability and modularity, the
research related to frameworks can be roughly classified
into the following four phases.

Phase 1 (1960-1980) was mainly concerned with
the study on basic theory of frameworks. Denotational
and axiomatic frameworks were put forwarded in this
phase. The main approaches of denotational frameworks
include D.Scott and C.Strachey’s Scott-Strachey
Semantics [Ten1976, Sto1977, Sch1986], D.Bjørner and
C.Jones’ VDM semantics [BJ1978], and E.Dijkstra’s
predicate transformer semantics [Dij1975, DS1990].
Scott-Strachey Semantics is the original and classic style
of denotational semantics. Domains of denotations and
auxiliary entities are defined by domain equations. The
elements of domains are specified in typed l-notation.
VDM (the Vienna Development Method) is an approach
for studying large computer software systems, developed
by the Vienna workgroup in Vienna laboratory. In
predicate transformer semantics, the denotation of a
phrase is a predicate transformer that returns the weakest
condition which ensures termination of the phrase with
the argument condition holding. Since it involves

1 This function is usually a partial function (which is made total
by introducing the special member ^), since some syntactically
correct programs may not have a defined meaning, i.e. they may
contain semantic errors or be intentionally undefined.

ACM SIGPLAN Notices 15 Vol. 39(3), Mar 2004

assertions about the values of variables before and after
executing statements, it is often regarded as axiomatic.

In this phase, the main axiomatic semantics includes
C.Hoare’s Hoare logic (cf. [Hoa1969, Hoa1973]) and
J.Goguen’s initial algebra semantics [GTWW1977].
Hoare logic, which is the classic style of axiomatic, gives
rules for the relation between assertions about values of
variables before and after execution of each construct.

Phase 2 (1980-1990) introduced temporal feature
into semantic frameworks, i.e., considered the sequence
of executive process of a program. The new framework
appeared in this phase was operational, whose main
approaches include G.Plotkin’s structural operational
semantics (SOS) [Plo1981], G.Kahn’s natural semantics,
M.Fellesisen’s reduction semantics, and Y.Gurevich’s
abstract state machines (ASM) [Gur1993, SSB2001,
BS2003, Gle2003, AW2003]. The main aim of these
approaches was to provide a simple and direct method,
allowing concise and comprehensible semantic
descriptions based on simple mathematics. Inspired by
the idea of operational, D.Harel joined temporal feature
to axiomatic, and put forward dynamic logic [Har1984,
HKT2000], which can be described as a blend of three
complementary classical ingredients: first-order predicate
logic, modal logic, and the algebra of regular events.

In this phase, I.Guessarian formally put forward
algebraic semantics [Gue1981], and then Y.Gurevich
gave algebraic operational semantics (AOS) [Gur1987,
GM1988, TZ1988], which is a hybrid of algebraic and
operational semantics. Algebraic semantics can uniquely
interpret meanings of programs in the way of algebra.
AOS combines the notion of time with SOS in an
axiomatic fashion.

In the second half of this phase, the modularity of
semantic descriptions was being taken into account.
Mosses directly joined denotational together with
operational, and put forward a hybrid framework
—action semantics (AS) [Mos1986, Wat1986, MW1987,
Mos1989, Mos1992a, Mos1996a, Mos1996b], which
posses modularity and readability simultaneously.
Denotations in action semantics are so-called actions,
which encapsulated some basic and fixed programming
concepts, such as control and data flow, scopes of
bindings, and effects on storage. Another approach to
provide modularity is E.Moggi’s monadic semantics
[Mog1989, Mog1991]. He firstly introduced monads (cf.
[Mog1989, Mog1991, Wad1990, LHJ1995])into denotational.
Monadic semantics is based on category-theoretic
functor concepts. It is a parameterized semantics, and
can be instantiated using different underlying monads.

Phase 3 (1990-2000) is characterized by contemplation
of practical features of programs, such as reusability,
expansibility, and comprehensibility. Inspired by the
modularity that can be obtained in denotational
semantics by the use of monads, Mosses introduced
modularity into conventional operational frameworks,
and brought forward modular SOS (MSOS) and modular
natural semantics [Mos1998, Mos1999, Mos2002b]. In

order to enhance readability of denotational, A.Blass
joined interactive behaviour to denotational, and gave
game semantics [Bla1992, AM1998, Byu2003, McC1996,
HO2000, AJM2000], which models computation as
interaction between a system and its environment, and
models a program as a set of possible interactions.

Besides action semantics in phase 2, the main
approaches of hybrid frameworks include S.Liang,
P.Hudak and M.Jones’ modular monadic semantics
(MMS) (cf. [LHJ1995, Lia1998]) and K.Wansbrough’s
modular monadic action semantics (MMAS) [Wan1997,
WH1997]. These approaches adopt more disciplined
notations for avoiding any reference to irrelevant
semantic components when defining the semantics of
each construct, and all attempt to reduce the conceptual
distance that must be bridged when formally specifying a
high-level language (see Figure 1 (3)-(5)).

HLL

SOS

HLL

 ¦Ë-calculus

HLL

SOS

AS

HLL

¦Ë-calculus

 MMS

HLL

¦Ë-calculus

MMS

AS

£¨ 1£©SOS £¨ 2£©DS £¨ 3£©AS £¨ 4£©MMS £¨ 5£©MMAS

m m

m

m

m

m

 Figure 1 Semantic Description Techniques

 m : shows the transition is modular

We are now at the beginning of Phase 4, where
user-friendly semantic frameworks with mature supported
tools are developing. This phase will pay much attention
to well pragmatic aspects and quality tools for semantic
frameworks.

In next five sections, we shall illustrate the main
semantic frameworks with fragments involving the
description of a simple if-statement and an assignment
expression of While language.

3 The Example Language While
This paper illustrates the various forms of semantics

on a very simple imperative programming language
While [NN1992, LS2002, KLNS2002], whose BNF
syntax is as follows:

a ::= n | x | a1 + a2 | a1 * a2 | a1 - a2
b ::= true | false | a1 = a2 | a1 <= a2 | ¬ b | b1 L b2
S ::= x := a | if b then S1 else S2 | S1 ; S2 | skip | while b do S

The meta-variables (that will be used to range over
constructs of categories) a, b, S, n, x will range over
arithmetic expressions (category Aexp), boolean expressions
(Bexp), statements (Stm), numerals (Num), variables (Var),
respectively. The meta-variables can be primed or
subscripted. So, for example, a, a', a1, a2 all stand for
arithmetic expressions. For the limitation of paper space,
we will only give semantics of if-statement and assignment

ACM SIGPLAN Notices 16 Vol. 39(3), Mar 2004

expression of While language.
Programming language semantics is usually divided

into static and dynamic semantics. Static semantics
describes properties of a program that can be reasoned
about prior to the execution of the program, while
dynamic semantics describe properties of the program
during its execution. Static semantics especially concerns
with type-checking and type-inference. For example, the
semantics for an arithmetic expression is as follows
[Lia1998]:

E a1 + a2 = { v1 E a1 ; v2 E a2 ;
 if (isInt v1 and isInt v2) then
 return (inInt (outInt v1 + outInt v2))
 else err “type error” }

inInt is the injection function from Int to the Value
domain, whereas outInt is the projection function from
the Value domain to Int. The kernel-level function err
reports error conditions. In fact, domain function inInt
and outInt, and type-checking function isInt belong to
static semantics. For clarity, in this paper, we will omit
static semantics such as domain injection/projection and
type-checking, and focus entirely on dynamic semantics.

4 Operational Frameworks
In operational frameworks, the semantics of a

program is specified as an abstract machine or transition
system, the computations of which represent possible
executions of the program [Mos2001b, Mos2001c]. In an
operational semantics we are concerned with how to
execute programs and not merely what the results of
execution are. More precisely, we are interested in how
the states are modified during the execution of the
statement. There are various approaches to operational
semantics of programming languages. Here, we shall
consider mainly four different approaches: SOS, natural
semantics, MSOS, and ASM.

4.1 Conventional Operational Semantics
Generally, conventional operational semantics refers

to structural operational semantics (SOS, also called
small-step semantics, 1981). Characteristic for SOS is that
the transitions for a phase generally depend only on the
transitions for (one or more of) its sub-phrases, and
transition relations are specified by sets of axioms and
inference rules (for instance, rules [asssos], [if tt

sos] and [if ff
sos]

in Figure 2 from [NN1992]). In SOS, each transition
modifies the syntax part of the state to reflect a step in the
execution of some sub-phrase. When the execution of a
sub-phrase is finished, it is replaced by its computed
value.

SOS has been widely used in program analysis (eg.
[Lau1968, PDG1986, Plo1983, Rep1991, BG1994, PS1995,
UP2002]) and formal verification (eg. [Blo1989, WBB1993,

ABV1994, WF1994, CHT2002]).

Figure 2 Structural Operational Semantics

An alternative operational semantics is called
natural semantics (or big-step semantics, 1987) and
differs from SOS by hiding even more execution details.
In fact, the big-step semantics (i.e. natural semantics) is
actually just a special case of the small-step semantics
(i.e. SOS). The purpose of natural semantics is to
describe how the overall results of executions are
obtained, in contrast to SOS whose purpose is to describe
how the individual steps of the computations take place.
Evaluations in natural semantics are also specified by
axioms and inference rules (see Figure 3 from [NN1992]).
However, the rules are not suitable for semantic descriptions
of concurrent languages, or even of interleaved expression
evaluation, just because of the lack of intermediate
states.

Natural semantics has been used extensively in the
definition of programming languages, such as Standard-ML
[MTH1990, MTHM1997], Eiffel [Att1996], and some
object-oriented programming languages [GZ1998, Gle1999].
Natural semantics has also been used successfully to
prove properties of programs (eg. [DE1999, Sym1999,
vON1999]).

Figure 3 Natural Semantics

In terms of While language, since its programs are
deterministic and expressions have no side-effects
(called functional), its SOS and natural semantics are
equivalent (cf. Theorem 1), for more details please see
[NN1992].

Theorem 1 For every statement S of While we
have Sns S = Ssos S .

ACM SIGPLAN Notices 17 Vol. 39(3), Mar 2004

4.2 Modular Operational Semantics (1998)
Conventional operational semantic descriptions have

rather poor modularity, since the semantic components of
the transition relation (environments, stores, etc.) are
made explicit in every rule, and a complete reformulation
is needed when adding further components [Mos1998].
For solving this problem, Mosses put forward modular
SOS (MSOS, [Mos1999, Mos2002b]), which is a variant
of SOS where states are restricted to syntax and computed
values, and all auxiliary entities2 are incorporated in labels
on transitions (such as labels a , ß and in Figure 4). Labels
in modular SOS include, for example, environment, (pairs
of) stores, and (sequences of) communication signals. The
set of labels is generally infinite. It is straightforward to
reduce a modular SOS to a conventional SOS, by moving
the relevant components of the labels back to their usual
places in the states. Similarly, modular natural semantics
requires all auxiliary entities to be incorporated in labels
on evaluations [Mos2001b]. The differences between
modular SOS and modular natural semantics are similar to
the ones between SOS and natural semantics, for more
please see [Mos1998, Mos2001a, Mos2001b].

Figure 4 Modular Operational Semantics

4.3 Abstract State Machines (1988)
Conventional operational semantics lacks

mathematical precise notation of state. Natural semantics
can only define the semantics of strictly compositional
programming languages3. And SOS explicitly rewrites
the abstract syntax trees (AST) during execution
[Gle2003]. Gurevich’s abstract state machine (ASM,
1988, defined in [Gur1993, SSB2001]) can avoid these
problems. ASMs describe the semantics of programming
languages operationally as state transition systems based
on the AST. States are regarded as algebras over a given
signature, so ASMs are called “evolving algebras”. States

2 Auxiliary entitles in SOS often include stores such as s eS =
L -> V and environments such as r e Env = Var -> L, where L
is some set of locations (i.e. addresses in memory). [Mos2001a]
3 In a strictly compositional programming language, the
semantics of each part of the program, which we regard in form
of its abstract syntax tree, can be defined solely in terms of the
semantics of its direct parts, i.e. subtrees.

in ASM include control-flow graphs representing the
entire program. For instance, in Figure 5, the functions
fst, and nxt represent normal control flow between
phrases. However, flow of control need not follow the
structure of the program at all: in principle, the pointer
task, normally indicating the next part of the program to
be executed, can be set arbitrarily [Mos2001b]. In ASMs,
a program is regarded as an attributed AST whose
attributes specify the continuations (which is an approach
to define non-compositional semantics such as the
semantics of goto-statements). In [Gle2003], S.Glesner
showed that natural semantics could be transformed
automatically into an equivalent ASM semantics and
vice versa; and that each SOS can be transformed
automatically into an equivalent ASM.

Figure 5 Abstract State Machine

ASMs have got wide usages in semantic descriptions
of programming languages, such as C [GH1993], Java
[SSB2001], Prolog [BR1995], and SDL [GK1997,
GGP1999, ITU2000]; and in proving the correctness of
compilations (eg. [BR1994, BD1996, ZG1997, GZ1999]).
ASM was adopted by ISO for standard of Prolog
[BD1990], by IEEE for standard of VHDL’93 [BGM1994],
and by ITU for standard of SDL-2000 [ITU2000].

4.4 Other Operational Semantics
Other operational semantics include reduce

semantics [FF1986], enhanced operational semantics
(EOS) [DP1996, DP2001], the SECD abstract machine
[Lan1964, Lan1966], the VDL abstract machine [Weg1972],
and the SMoLCS framework [AR1987].

5 Denotational Frameworks
In denotational frameworks, the meaning of a

program phrase is modeled by its so-called denotation
(i.e. a mathematical object, generally a continuous
function), which reflects the contribution of the phrase to

ACM SIGPLAN Notices 18 Vol. 39(3), Mar 2004

overall program behaviour. For example, the meaning of
a program may be given as a function from Input to
Output. The focus of denotational semantics is on either
the effect (which means an association between initial states
and final states) or result, but not how it is obtained.

Here, we will consider three main approaches for
operational: Scott-Strachey semantics, game semantics
and monadic semantics.

5.1 Conventional Denotational Semantics
The original and classic denotational semantics is

generally Scott-Strachey semantics. It provides the purest
and most abstract way of modeling the semantics of
programs. It generally avoids representing computations
as sequences of steps. Instead, it determines for each
phrase its denotation. Denotations are generally
mathematical functions, taking current information and
returning computed values and updated information.
Typically, denotations are functions of environments,
continuations, and stores. They are specified in
l-notation4, and defining the domains of denotations for

parameterized procedures requires reflexive Scott-domain5.
The idea then is to define a semantic function for each
syntactic category. It maps each syntactic construct to its
denotation, which describes the effect of executing that
construct. The inherency of denotational semantics is
that semantic functions are defined compositionally
[Sto1977, Sch1986, NN1992, Mit1996]. Sequencing may
be represented either by composition of strict functions
(illustrated in Figure 6), or by use of continuations
(showed in Figure 7); the latter also called a continuation
style semantics. The denotational description of
nondeterminism, concurrency, and interleaving requires
the use of power domains.

Figure 6 General Denotational Semantics

The applications of denotational semantics include
aiding language design, establishing standards for
implementation, reasoning about programs and generating
compilers [e.g. Sto1977, Sch1995, KOC1991, CP1994,
DDR1997, Yeu1997, YZJ1995, BZ1992, LW1995, Pol1981,
BBKL1982].

4 l-notation is merely a notation for expressing mathematical
functions by listing their arguments and results, without having
to declare function names.
5 The Scott-domain is usually w-complete partial orders
(CPOs). Its equations always have “least” solutions (up to
isomorphism), e.g. D = N + [D -> D] defines a domain D
including both the natural numbers and all continuous functions
on D. [Mos2001b]

Figure 7 Continuation Style Semantics

 In fact, there are some relationships between
denotational semantics and operational semantics. For
example, the denotational semantics and operational one
of While language are fully equivalent (showed in
Theorem 2). Such denotational semantics is called fully
abstract [Mit1996]. A fully abstract denotational semantics
may be very useful, since reasoning about the denotational
semantics therefore allows us to reason about the
operational one. This is important since operational
semantics is generally difficult to reason about directly, yet
it is the most useful form of mathematical problem to
construct fully-abstract denotational semantics. The game
semantics introduced in next subsection can solve this
problem in terms of purely functional languages.

Theorem 2 For every statement S of While we
have Ssos S = Sds S .

5.2 Game Semantics (1992)
Game semantics (cf. [Bla1992]) was first studied in

the context of the fully abstract problem for functional
programming languages. The first syntax-independent
descriptions of fully abstract models for PCF
(simply-typed -calculus plus arithmetic and recursion,
see [Mit1996]) were achieved (in 1993) using game
semantics [HO2000, AJM2000]. As mentioned in Set.2,
game semantics is a sort of denotational semantics that
retains more information about what the program does. It
models computation as the playing of a certain kind of
game, with two participants, called Player (P) and
Opponent (O). P is to be thought of as representing the
system under consideration, while O represents the
environment. In the case of programming languages, the
system corresponds to a term (a piece of program text)
and the environment to the context in which the term is
used. This is a key point at which games models differ
from other process models: the distinction between the
actions of the system and those of its environment is
made explicit from the very beginning [McC1996,
AM1998, Byu2003]. In a game semantics, a computation
is modeled as interaction between P and O, and a
program as a set of possible interactions. O always
moves first — the environment sets the system going —
and thereafter the two players make moves alternately
(showed in Figure 8).

Games models have been built for higher-order
programming languages with a variety of computational
features: such as purely functional languages (PCF, FPC)

ACM SIGPLAN Notices 19 Vol. 39(3), Mar 2004

[HO2000, AJM2000, Nic1994, McC1996], mutable store
(Idealized Algol) [AM1997a, AM1999], control operators
(SPCF, exceptions) [Lai1997, MH1998], higher-order
store (pointers) [AHM1998, AM1997b], nondeterminism
and subtyping [HM1999, MH1999, Chr2000].

Figure 8 Game Semantics

5.3 Monadic Semantics (1989)
Just because of the unrestricted use of (typed)

-notation to specify semantic entities, conventional
denotational descriptions have as poor modularity as
conventional operational descriptions [LH1996,
Mog1991, Wan1997, Mos1998, Pow2000]. When the
described language is extended with unanticipated new
constructs, the domains of denotations may need to be
changed, and then the description of the old constructs
may have to be completely reformulated to adapt it to the
new domains. To avoid any reference to irrelevant
semantic components when defining the semantics of
each construct, a more disciplined notation should be
adopted to substitute for -notation. One of such notations
is monad6, which is a technique for encapsulating impure
features such as states, nondeterminism and I/O into a pure
functional language. Monads were discovered in category
theory in the 1950s and introduced to the semantics
community by Moggi in [Mog1989]. Intuitively, a
monad is transformation on types equipped with a
composition method for transformed values. To add a
new feature to a monadic semantics, we only need to add
a semantic description of the new feature, and change the
underlying monad, but not the semantic descriptions of
the existing features. Traditional denotational semantics
maps, say, a term, an environment and a continuation to
an answer. In contrast, monadic semantics maps terms to
computations, where the details of the environment, store,
etc. are “hidden” (see Figure 9). Moggi also realized that
some realistic semantics features had to be combined,
and so he presented monad constructors that could add
new notions of computation to a monad.

The monadic style in which the descriptions are
written is much easier to read than a typical denotational

6 Formally, a monad is a triple (M, return, bind), where M is a
type constructor (a map from each type a to a corresponding
type Ma), and return and bind are functions: return: a -> Ma,
bind: Ma -> (a M b) -> M b .

semantic description. The applications for monadic
semantics are included in those for modular monadic
semantics (in Section 7.3).

Figure 9 Monadic Semantics

5.4 Other Denotational Semantics
Other denotational semantics include VDM

semantics[BJ1978, LP1995], predicate transformer
semantics[Dij1975, DS1990, Nau2001], the naive
denotational semantics[BT1983], extensible denotational
semantics[CF1994], and partially-additive semantics
[MA1986].

6 Axiomatic Frameworks
Axiomatic semantics describes properties of

programs as sets of constraints (or called assertions), and
programs as transforming assertions. This is the most
abstract of the four families of description formalisms
(i.e. operational, denotational, axiomatic, hybrid).
Axiomatic descriptions are not particularly well-suited to
complete description of programming languages from
which it is possible to automatically generate compilers.
It is more suited to proving properties about programs
than for automatic generation of complete language
implementations.

6.1 Traditional Axiomatic Semantics
Axiomatic semantics was developed primarily by

Hoare in the late 1960s, and called Hoare logic, which
base on predicate logic. The main aim was initially to
provide a formal basis for the verification of abstract
algorithms [Hoa1969]. A Hoare logic gives rules for the
relation between assertions about values of variables
before and after execution of each construct. Expressions
are used in assertions, so their interpretation has to be
purely mathematical, without effects on storage,
exceptions, non-terminating function calls, etc.[Mos2001b,
Mos2002a]

A general form of so-called partical correctness
formula in Hoare logic is {P}S{R} (sometimes P{S}R),
which indicates that if the pre-condition P held before
executing the program S then the post-condition R will
hold afterwards (showed in Figure 10). P and R are
propositions and we can perform to usual logical
manipulations on them. This notation allows us to move
from expressions written in a programming language to
expressions written in a logic. Logic is a much better

ACM SIGPLAN Notices 20 Vol. 39(3), Mar 2004

place to reason than programing languages are, and so
this approach can be extended to provide a tool for
reasoning about program correctness, and well as
programming language semantics.

Figure 10 Hoare Logic

Some applications of axiomatic semantics:
documentation of programs and interfaces [HW1973,
Sou1984, FM2001]; guidance in design and coding
[HJ2000]; proving the correctness of algorithms (or
finding bugs) [Hoa1969, ILL1975, Kem1982, Dav1999];
proving the correctness of hardware descriptions (or
finding bugs); extended static checking, and proof-
carrying code [ON1999].

6.2 Dynamic Logic (1984)
Traditional axiomatic descriptions of programs

don’t possess such feature of sequence as operational
descriptions. This omission to temporal feature can bring
benefits (such as concision and high abstraction) for a
simple model language, but not suit for dealing with real
programming language [YR1998]. So, Harel joined the
temporal feature to axiomatic, and proposed dynamic
semantics [HKT1984], which can be described as a
blend of three complementary classical ingredients:
first-order predicate logic, modal logic, and the algebra
of regular events. Unlike classical predicate logic where
truth is static, dynamic logic has explicit syntactic
constructs called programs whose main role is to change
the values of variables, thereby changing the truth-values
of formulas. To discuss the effect of the execution of a
program a on the truth of a formula j, dynamic logic
uses a modal construct <a >j, which intuitively states, “It
is possible to execute a starting from the current state
and halt in a state satisfying j.” There is also the dual
construct [a] , which intuitively states, “If a halts when
started in the current state, then it does so in a state
satisfying j.”(see Figure 11) [HKT2000].

Applications of dynamic logic on formal language
and program verification can be found in [HKT2000,
CLR1996, EJ1996, ALP1998, Bec2001, MM2003].

Figure 11 Dynamic Semantics

6.3 Algebraic Semantics (1981)
In the logic approaches mentioned above, abstract

data types (ADTs) are not unique, since these approaches
only provide sets of axioms and inference rules, don’t

explain what the designer want or not. So, it is necessary
to find a new approach for describing ADTs. Algebra is a
suitable tool for it [Ru1992]. Algebraic semantics
[Gue1981, GD1992, SK1995, Zam1997], whose
foundations are based on abstract algebra, involves the
algebraic specification of data and language constructs.
The basic idea of the algebraic approach to semantics is
to name the sorts of objects and the operations on the
objects, and to use algebraic axioms to describe their
characteristic properties (illustrated in Figure 12). An
algebraic specification contains two parts: signature7 and
equations. The methodology of algebraic semantics is
customarily used to specify abstract data types. The basic
principle in specifying an ADT involves describing the
logical properties of data objects in terms of properties of
operations (some of which may be constants) that
manipulate the data.

Figure 12 Algebraic Semantics

Algebraic semantics has frequently been used to
study semantics of functional and imperative languages
[eg. Wil1982, BW1982, Ait1986, BWP1987, Acz1989,
CJO1994, GD1992, GH1995, Zam1997, JMK1998,
Fro2003]. It is also used in the field of abstract state
machines to formalize the machine model underlying an
operational semantics [cf. Gog1990, GH1993].

6.4 Other Axiomatic Semantics
Other axiomatic semantics include Kripke-Kleene

semantics [Fit1985a, GRS1991], fixpoint semantics
[Fit1985b, Fit2002], and fixpoint logic [Var1982, AVV1997].

7 A signature S of an algebraic specification is a pair <Sorts,
Operations> where Sorts is a set containing names of sorts;
Operations is a family of function symbols indexed by the
functionalities of the operations represented by the function
symbols.

ACM SIGPLAN Notices 21 Vol. 39(3), Mar 2004

7 Hybrid Frameworks
A hybrid approach to semantics involves more than

one framework in the same description. The various
semantic frameworks may have advantages for different
levels of complete semantic descriptions [Mos2001a,
Mos2001b]. Here, we will consider four approaches to
axiomatic: algebraic operational semantics, action
semantics, modular monadic semantics and modular
monadic action semantics.

7.1 Algebraic Operational Semantics (1987)
Algebraic operational semantics (AOS, see

[Gur1987, TZ1988, Ste1996]) is a hybrid framework.
Like dynamic logic, it is obtained by introducing
temporal feature to axiomatic. The difference is that
algebraic and operational are directly bonded together in
AOS. In AOS, a simple model of a clock is employed to
enumerate the sequence of states that are produced by
executing a program. The transition from one state in the
sequence to the next is given by some atomic program,
such as assigning the value of one variable to another.
The idea of AOS is to decompose a program into a
sequence of atomic programs (see functions First and
Rest in Figure 13), such that the sequential execution of
these atomic programs gives the behaviour of the whole
program. The operational semantics is algebraic because
the semantics of a language is defined as an algebra, and
thanks to the enumeration clock, this decomposition
process can be defined by using equations [Sem1997,
GM1990].

Figure 13 Algebraic Operational Semanitcs

The basis of AOS is a function Comp (showed in
Figure 13) such that Comp (S, s0, t) gives the state st that
results from executing the program S on the initial state
s0 for t cycles of time. In Figure 13, the function Act(a , s)

gives the behaviour of a basic or atomic program a on a
state s, and satisfies st = Act (a t-1, st-1) = Comp (S, s0, t).

The applications of AOS in the field of studying
programming languages and correctness are declared in
[GM1988, GM1990, Bor1990, TZ1988, Ste1997].

7.2 Action Semantics (1986)
The traditional frameworks for formal semantics,

including operational (Section 4), denotational (Section
5), and axiomatic semantics (Section 6), are widely
taught at university level; they are firmly based on solid
theoretical foundations, and they are quite adequate for
describing small-idealized fragments of programming
languages. However as Mosses pointed out (in
[Mos1996a]), when attempting to scale up to larger, and
practical programming languages, such as Pascal and C,
it turns out to be disproportionately difficult to write,
read, extend, modify, and reuse descriptions in the
conventional frameworks. Three attempts at solving
these problems are action semantics, modular monadic
semantics (Section 7.3) and modular monadic action
semantics (Section 7.4) [Mos1992a, WH1997].

Action semantics (cf. [Mos1986], [MW1987],
[Mos1996b]) improves the modularity of denotational
semantics by taking denotations to be so-called actions,
which are expressed using a fixed action notion
consisting of various primitives and combinators. The
foundations of action notation involve SOS and algebraic
specifications, which avoids the use of higher-order
functions expressed in lambda-notation, and are both
generally regarded as more accessible than domain
theory. Action notation provides direct support for
specifying control flow, data flow, scopes of bindings,
side-effects, procedural abstraction, and (asynchronous)
communication between concurrent process [Mos1989,
Mos1992a, Mos1996a, Mos1998].

In principle, the semantic description of each
construct is a separate module. This facilitates reuse of
complete modules in descriptions of different languages,
and allows new languages to be assembled simply by
combining different sets of modules [DM2003]. Action
semantics is readable and intelligible without prior
training (showed in Figure 14). It has an operational
semantics base, from which can be derived laws or
‘axioms’ that can be used to prove facts about programs;
and programs or fragments can be shown to be
equivalent (or not) directly by using the operational
semantics. Moreover it has a very flexible type system
that allows new types of data to be readily defined and
used.

Action semantic descriptions exist for a number of
real languages [Wat1988, MW1993, Tof1993, HT1994,
Mos1992b, Bun1996, Wat1999]. Various prototype
compiler generators based on action semantics have been
developed [Mos2001c, BMW1992, Pal1992a, Pal1992b,
Mou1993, Ørb1994, Bun1996], along with some tools
(cf. [Mos1992, Mos1996b, DM1996]) for assistance in
developing new action semantic descriptions.

ACM SIGPLAN Notices 22 Vol. 39(3), Mar 2004

Figure 14 Action Semantics

7.3 Modular Monadic Semantics (1996)
In section 5.7, we saw that the use of monads in

denotational semantics descriptions can also improve
their modularity. However, the monadic approach has the
problem that, in general, it is not possible to compose
two monads to obtain a new monad [LLCC2001,
LCLC2002]. A proposed solution was the use of monad
transformers (cf. [LHJ1995]), which transform a given
monad into a new one adding new operations. Monad
transformers are a form of abstraction for introducing a
wide range of computational behaviors, such as state, I/O,
continuations, exceptions, parsing and non-determinism.
This approach was called modular monadic semantics
(MMS, [LH1996, Lia1998]). MMS specifies the
semantics of a language by a mapping from terms to
computations performed within a monad. The monad
hides details of semantic features such as environments
and stores, and exposes operators allowing access to
these features. The semantic description consists of the
monad definition, defining the monad over which the
language is defined, and the semantic functions relating
the syntax of phrases in the language to their meaning or
semantics (see Figure 15).

Figure 15 Modular Monadic Semantics

In contrast to action semantics, MMS has the
advantage of being based directly on denotational
semantics, which is familiar and well-understood.
Compared with traditional denotational semantics, MMS
captures individual programming language features using
reusable building blocks, and specifies programming
languages by composing the necessary features. It
achieves a high level of modularity and extensibility, in
that the various notions of computation introduced are
defined entirely separately and can be mixed and
matched as required. Despite of this, it is still executable:
there is a clear operational interpretation of the semantics
[Wan1997, WH1997]. And MMS is to a large degree

independent of the type system used.
Because of its truly modularity, MMS has advantages

for reusing and modifying incrementally the semantic
descriptions of programming languages, showed in
[LCLC2001, LCLC2002, LLCC2001, Lab1998].

7.4 Modular Monadic Action Semantics (1997)
As mentioned above, action semantics possesses

modularity and readability simultaneously. However, it is
limited in scope: not all programming language concepts
(such as first-class continuations) can be represented
directly within action semantics—only those which
Mosses has chosen to build into the system. There is no
provision for the extension of action semantics. It is not
really modular internally: the operational semantics deals
with all facets together, and the apparent modularity
exists only at the top level (see Figure 1(3)). Additionally,
a number of operations do not in fact restrict their
operations to a single facet. Action semantics’ type
system is rather unconventional. Compared to action
semantics, modular monadic semantics is truly
modularity (see Figure 1(4)), but it does not have the
property of being intelligible without prior training. And
extensible union types, the type system chosen by Liang,
Hudak and Jones, are not as good as Mosses’s unified
algebras (which are difficult to fit within the modular
monadic framework) [Wan1997, WH1997].

It is apparent that MMS is both lower-level and
more general than action semantics, but that both
approaches have much to commend them. So,
Wansbrough naturally proposed their fusion— modular
monadic action semantics (MMAS, [Wan1997]). MMAS
is to define action semantics in terms of MMS, by using
MMS to give a modular denotational definition of action
notation—replacing its original SOS (which has rather
poor modularity). This replacement provides the
flexibility to modify or delete existing facets of action
semantics or to add entirely new ones, and will allow the
use of the theories of modular monadic semantics and of
denotational semantics to theorise about actions. In other
words, the human readability of action semantics is
maintained, but the mathematical understanding of what
is going on is greatly enhanced by the modular,
accessible and readable description given by the MMS.
Consequently, MMAS is modular and extensible, and
dialects of MMAS can be created that incorporate new or
modified notions of computation.

Figure 16 Modular Monadic Action Semantics

ACM SIGPLAN Notices 23 Vol. 39(3), Mar 2004

The MMAS notation differs slightly from that of
action semantics. All operators begin with a single
lowercase letter, a, c, or y, identifying whether the
operator is an action (such as aEvaluate in Figure 16),
combinator (cThen) or yielder (yIt), respectively. The
name of the operator follows, occasionally abbreviated,
in BiCapitalised form.

Base MMAS, the unmodified form of the MMAS
system [Wan1997], implements almost all of Mosses’s
action semantics: in most cases existing action semantic
descriptions can be used with MMAS with very little
modification. Such ASDs can be interpreted in an
MMAS system based over a Haskell interpreter, or made
into compilers using an optimising Haskell compiler.

7.5 Other Hybrid Semantics
Other hybrid semantics include algebraic

denotational semantics[GP1981],modular denotational
semantics [Esp1993, Esp1995] and type-theoretic
interpretation [HL1994, HS1998]. As mentioned in
[Mos2001b], various operational frameworks such as
VDL may be considered as hybrids.

8 Comparisons
In sharp contrast to the popularity of formal syntax,

formal semantic descriptions have seldom been exploited
in practical applications concerning design and
implementation of programming languages. As showed
in Section 4-7, there is no shortage of semantic
frameworks to choose from, nor has there been a lack of
theoretical effort in establishing the foundations of the
various frameworks. In [Mos1996a, Mos1998,
Mos2001a, Mos2001b, Mos2001c, MW1987], Mossess
pointed out that the main hindrances to greater use of
formal semantics appear to be lack of user-friendliness,
and lack of tool support. Ideally, formal semantic
descriptions should provide a convenient way for
language designers to record their decisions, and to
communicate them to implementers and programmers. In
these literatures, we find a list of these properties a
programming language specification method should
have:
· Readability. This property makes the description

accessible to all people with interest in the language
(designers, implementers and programmers).

· Modularity. Modularity in formal descriptions
improves reusability and modifiability, also helps in
breaking large descriptions into smaller and
manageable components.

· Abstractness. The formalism should be abstract
enough to free the designer from biasing towards any
implementation alternative and to focus on important
design issues.

· Comparability. It should be easy to compare different
languages by looking into their formal descriptions.

· Reasonability. The formalism should facilitate

reasoning about programs written in the defined
language.

· Applicability. The formalism could describe nearly all
programming-language concepts, such as state, I/O,
(first-class) continuations, exceptions, parsing and
non-determinism.

· Tool-support. Quality tools are badly needed to assist
the writing, checking, and reading of semantic
descriptions. The wider use of formal semantics
depends on the availability of tools for generating
(reasonably efficient) implementations from semantic
descriptions.

From these aspects, we give the qualitative
comparisons of the semantic description methods of
current interest in Table 1. In addition, our conclusion
from this table is that ASM (Section 4.3) and MMAS
(Section 7.4) approaches are good candidates for such
ideal frameworks. ASM approach has already made a
considerable impact regarding practical applications.
MMAS approach is a new approach, but it has a large
and energetic following.

9 Summaries
The design and implementation of programming

languages is an importance topic in computer science.
There are two aspects to the specification of
programming languages: syntax and semantics. Formal
descriptions of program syntax (regular, context-free,
and context-sensitive grammars) have become accepted
as practically useful for documentation in reference
manuals and standards, as well as for generating efficient
parsers for use in compilers. In contrast, formal semantic
descriptions have seldom been exploited in practical
applications concerning design and implementation of
programming languages. Compared to the amount of
effort that has been made to the research of various
semantic frameworks (main of them were listed in
Section 4-7 in this paper) over more than forty years
(showed in Section 2), their actual applications are
definitely frustrating. Good pragmatic features, such as
readability, modularity, etc. (see Table 1), are strongly
demanded for efficient development and use of semantic
descriptions, but are sadly lacking in most frameworks.

According to Table 1, we know that the ideal formal
semantic descriptions should possess: 1) enough
readability; 2) well modularity; 3) high abstractness; 4)
strong comparability; 5) enough reasonability; 6) wide
application; 7) more tool-support. And we find that ASM
and MMAS are two good candidates for such a
framework.

Acknowledgments
Thanks to Yuan Liu and Jing Cao for their helpful

comments on this paper.

ACM SIGPLAN Notices 24 Vol. 39(3), Mar 2004

Table 1 Comparisons of the Semantic Description Methods

Readability Modularity Abstractness Comparability Reasonability Applicability Tool-support

SOS General Poor Low Strong Weak Wide More

Modular SOS General Well Middle General General Moderate Little

ASM Well General High General General Wide General

Scott-Strachey Poor Poor High General Strong Wide General

Game General Poor Middle Weak Weak Limited Little

Monadic Poor General Middle Weak Strong Moderate Few

Hoare Logic General Poor Low Strong General Limited More

Dynamic Logic Poor Poor Middle General Weak Limited Little

Algebra Poor General High Weak General Limited Little

Algebra Operational General Poor Middle Strong Weak Moderate Little

Action Well General High General General Limited General

Modular Monadic Poor Well High Weak Strong Moderate Little

MMAS Well Well High General General Moderate Little

Properties
Frameworks

References
[ABV1994] Aceto, L., Bloom, B. and Vaandrager, F., Turning SOS rules

into equations. Information and Computation, 1994, 111(1): 1-52.

[Acz1989] Aczel, P., Algebraic semantics for intensional logics. In:
Chierchia, G., Partee, B. and Turner, R. eds. Properties, Types and
Meaning, Volume I: Foundational Issues, Dordrecht, 1989. 17-45.

[AHM1998] Abramsky, S., Honda, K. and McCusker, G., A fully
abstract game semantics for general references. In: 13th
Annual IEEE Symposium on Logic in Computer Science,
New York: IEEE Computer Society Press, 1998. 334-344.

[Ait1986] Aït-Kaci, H., An algebraic semantics approach to the
effective resolution of type equations. Theoretical Computer
Science, 1986, 45:293-351.

[AJM2000] Abramsky, S., Jagadeesan, A.R. and Malacaria, P., Full
abstraction for PCF. Information and Computation, 2000,
163(2): 409-470.

[ALP1998] Alferes, J.J., Leite, J.A. Pereira, L.M., Przymusinska, H.
and Przymusinski, T.C., Dynamic logic programming. In: 6th
International Conference on Principles of Knowledge
Representation and Reasoning, KR’98, Morgan, 1998. 98-111.

[AM1997a] Abramsky, S. and McCusker, G., Linearity, sharing and
state: a fully abstract game semantics for Idealized Algol with
active expressions. In: O’Heam, P.W. and Tennent, R.D. eds.
Algol-like Languages, 1997, 2: 297-329.

[AM1997b] Abramsky, S. and McCusker, G., Call-by-value games. In:
Nielsen, M. and Thomas, W. eds. Computer Science Logic: 11th
International Workshop on Annual Conference of the EACSL,
CSL’97. LNCS 1414, Berlin: Springer-Verlag, 1997. 1-17.

[AM1998] Abramsky, S. and McCusker, G., Game semantics. In:
Schwichtenberg, H. and Berger, U., eds. Logic and
Computation: Proceedings of the 1997 Marktoberdorf Summer
School, Berlin: Springer-Verlag, 1998.

[AM1999] Abramsky, S. and McCusker, G., Full abstraction for
Idealized Algol with passive expressions. Theoretical
Computer Science, 1999, 227: 3-42.

[AR1987] Astesiano, E. and Reggio, G., SMoLCS-driven concurrent
calculi. In: Proceedings of International Joint Conference on
Theory and Practice of Software Development, TAPSOFT’87.
LNCS 249, Berlin: Springer-Verlag, 1987. 169-201.

[Att1996] Attali, I., A natural semantics for Eiffel dynamic binding.
ACM Transactions on Programming Language and Systems,
1996, 18(6):711-729.

[AVV1997] Abiteboul, S., Vardi, M.Y. and Vianu, V., Fixpoint
logics, relational machines, and computational complexity.
Journal of ACM, 1997, 44(1):30-56.

[AW2003] ASM-Website, 2003. http://www.eecs.umich.edu/gasm/.

[BBKL1982] Bodwin, J., Bradley, L., Kanda, K., Litle, D. and
Pleban, U.F., Experience with an experimental compiler
generator based on denotational semantics. In: Proceeding of
the SIGPLAN’82 Symposium on Compiler construction,
Boston, 1982. 216-229.

[BD1990] Börger, E. and Dässler, K., Prolog: DIN papers for
discussion. ISO/IEC JTCI SC22 WG17 Proglog
Standardization Document 58, Middlesex, England: National
Physical Laboratory, 1990.

[BD1996] Börger, E. and Durdanovic, I., Correctness of compiling
Occam to transputer code. Computer Journal, 1996, 39(1): 52-92.

[Bec2001] Beckert, B., A dynamic logic for the formal verification of
Jave card programs. In: 1st International Workshop of JavaCard
2000 Cannes. LNCS 2041, Berlin: Springer-Verlag, 2001. 6-25.

[BG1994] Borba, P. and Goguen, J.A., An operational semantics for
FOOPS. Technical Report PRG-16-94, Programming Research
Group, University of Oxford, 1994.
http://web.comlab.ox.ac.uk/oucl/publications/tr/tr-16-94.html.

[BGM1994] Börger, E., Glässer, U. and Müller, W., The semantics
of behavioral VHDL’93 descriptions. In: European Design
Automation Conference with EURO-VHDL’94, EURO-DAC’94,
New York: IEEE Computer Society Press, 1994. 500-505.

[BJ1978] Bjørner, D. and Jones, C.B., The Vinenna Development
Method: the meta-language. LNCS 61, Berlin: Springer-Verlag, 1978.

[Bla1992] Blass, A., A game semantics for linear logic. Annals of

ACM SIGPLAN Notices 25 Vol. 39(3), Mar 2004

Pure and Applied Logic. 1992, 56(1-3): 183-220.

[Blo1989] Bloom, B., Ready simulation, bisimulation, and the
semantics of CCS-like language [Ph.D. thesis]. Department of
Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, 1989.

[BMW1992] Brown, D.F., Moura, H. and Watt, D.A., Actress: an
action semantics directed compiler generator. In: 4th
International Conference on Compiler Construction, CC’92.
LNCS 641, Berlin: Springer-Verlag, 1992. 95-109.

[Bor1990] Börger, E., A logical operational semantics for full
Prolog. In: 3rd Workshop on Computer Science Logic, CSL’89.
LNCS 440, Berlin: Springer-Verlag, 1990. 36-64.

[BR1994] Börger, E. and Rosenzweig, D., The WAM – definition
and compiler correctness. In: Logic Programming: Formal
Methods and Practical Applications. North-Holland: Computer
Science and Art. Int., 1994.

[BR1995] Börger, E. and Rosenzweig, D., A mathematical definition of
full Prolog. Science of Computer Programming, 1995, 24: 249-286.

[BS2003] Börger, E. and Stärk, R., Abstract state machine: a
method for high-level system design and analysis. Berlin:
Springer-Verlag, 2003.

[BT1983] Blikle, A. and Tarlecki, A., Naïve denotational semantics.
In: Proceedings of IFIP Congress on Information Processing,
North-Holland, 1983.

[Bun1996] Bundgaard, J., An ANDF based Ada 95 compiler
system. In: Toussaint, M. ed. 2nd International Ada- Europe
Symposium on Reliable Software Technologies,. LNCS 1031,
Berlin: Springer-Verlag, 1996. 81-91.

[BW1982] Broy, M. and Wirsing, M., Algebraic definition of a
functional programming language. IEEE Transactions on
Information Theory, 1982, 17(2):137-161.

[BWP1987] Broy, M., Wirsing, M. and Pepper, P., On the algebraic
definition of programming languages. ACM Transactions on
Programming Languages and Systems, 1987, 9(1):54-99.

[Byu2003] Byun, S., Introduction to linear logic and game
semantics. Lecture Notes, University of Kyungsung, 2003.
http://licomr.org/2003_1/.

[BZ1992] Bakker, J.W., and Zucker, J.I., Denotational semantics of
concurrency. In: Proceeding of the 14th Annual ACM Symposium
on Theory of Computing, San Francisco, 1982. 153-158.

[CF1994] Cartwright, R. and Felleisen, M., Extensible denotational
semantics specifications. In: Proceedings of Symposium on
Theoretical Aspects of Computer Software, TACS’94. LNCS
789, Berlin: Springer-Verlag, 1994. 244-272.

[Chr2000] Chroboczek, J., Game semantics and subtyping. In: 15th
Annual IEEE Symposium on Logic in Computer Science,
New York: IEEE Computer Society Press, 2000. 192-204.

[CHT2002] Calcagno, C., Helsen, S. and Thiemann, P., Syntactic
type soundness results for the region calculus. Information and
Computation, 173 (2): 199-221.

[CJO1994] Clerici, S., Jimenez, R. and Orejas, F., Semantic
constructions in the specification language Glider. In: Ehrich, H.D.
and Orejas, F. eds. Recent Trends in Data Type Specification.
LNCS 785, Berlin: Springer-Verlag, 1994. 144-157.

[Cle2003] Clem, B., Principles of programming languages: the
semantics of programming languages. Lecture Notes: COMP3610,
Department of Computer Science, Australian National University,

2003. http://cs.anu.edu.au/Student/comp3610/.

[CLR1996] Carles, S., Lluis, G., Ramon, L.M. and Mara, M.,
Descriptive dynamic logic and its application to reflective
architectures. Future Generation Computer Systems, 1996,
12(2-3): 157-171.

[CP1994] Cook, W. and Palsberg, J., A denotational semantics of
inheritance and its correctness. Information and Computation,
1994, 114(2): 329-350.

[Dav1999] David von O., Hoare logic for mutual recursion and
local variables. In: Rangan, C.P., Raman, V. and Ramanujam,
R. eds. 19th Conference on Formal Software Theory and
Theoretical Computer Science, FST&TCS'99. LNCS 1738,
Berlin: Springer-Verlag, 1999. 168~180.

[DDR1997] Dong, J.S., Duke, R. and Rose, G., An object-oriented
denotational semantics of a small programming language.
Object-Oriented Systems journal, 1997, 4(1): 29-52.

[DE1999] Drossopoulou, S. and Eisenbach, S., Describing the
semantics of Java and proving type soundness. In: Foss, A. ed.
Formal Syntax and Semantics of Java. LNCS 1523, Berlin:
Springer-Verlag, 1999. 41-82.

[Dij1975] Dijkstra, E.W., Guarded commands, non-determinacy,
and formal derivations of programs. Communications of ACM,
1975, 18: 453-457.

[DM1996] Deursen, A. and Mosses, P.D., ASD: The action semantic
description tools. In: Proceeding of 5th International Conference on
Algebraic Methodology and Software Technology, AMAST’96.
LNCS 1101, Berlin: Springer-Verlag, 1996. 579-582.

[DM2003] Doh, K and Mosses, P.D., Composing programming
languages by combining action semantics modules. Science of
Computer Programming, 2003, 47(1): 3-36.

[DP1996] Degano, P. and Priami, C., Enhanced operational
semantics. ACM Computing Survey, 1996, 28 (2): 352-354.

[DP2001] Degano, P. and Priami, C., Enhanced operational
semantics: a tool for describing and analyzing concurrent
systems. ACM Computing Survey, 2001, 33 (2): 135-176.

[DS1990] Dijkstra, E.W. and Scholten, C.S., Predicate calculus and
program semantics. New York: Springer Press, 1990.

[EJ1996] van Eijck. J. and Jaspars, J., Ambiguity and reasoning.
Technical Report CS-9616, Nertherlands: Centrum voor Wiskunde
en Informatica (CWI), 1996. http://ftp.cwi.nl/CWIreports/INDEX.

[Esp1993] Espinosa, D.A., Modular Denotational semantics.
Unpublished manuscript, 1993.

[Esp1995] Espinosa, D.A., Semantic Lego [Ph.D. thesis]. Graduate
School of Arts and Sciences, Columbia University, 1995.

[FF1986] Fellesisen, M. and Friedman, D.P., Control operators, the
SECD machine, and the l -calculus. In: Proceedings of IFIP TC2
Working Conference, Formal Description of Programming
Concepts III, North-Holland, 1986. 193-217.

[Fit1985a] Fitting, M., A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 1985, 2(4): 295-312.

[Fit1985b] Fitting, M., A deterministic Prolog fixpoint semantics.
Journal of Logic Programming, 1985, 2(2): 111-118.

[Fit2002] Fitting, M., Fixpoint semantics for logic programming a
survey. Theoretical Computer Science, 2002, 278(1-2):25-51.

[FM2001] Fikes, R. and McGuinness, D.L., An axiomatic
semantics for RDF, RDF-Schema, and DAML+OIL. Technical

ACM SIGPLAN Notices 26 Vol. 39(3), Mar 2004

Report KSL-01-01, University of Stanford, 2001.
http://www.ksl.stanford.edu/people/dlm/daml-semantics/.

[Fro2003] Fronk, A., An approach to algebraic semantics of
object-oriented languages. In: 7th Brazilian Symposium on
Programming language, 2003. 195-209.

[GD1992] Goguen, J.A. and Diaconescu, R., Towards an algebraic
semantics for the object paradigm. In: Ehrig, H. and Orejas, F.
eds. Recent Trends in Data Type Specification. LNCS 785,
Berlin: Springer-Verlag, 1992. 1-59.

[GGP1999] Glässer, U., Gotzhein, R. and Prinz, A., Towards a new
formal SDL semantics based on abstract state machines. In: von
Bochmann, G., Dssouli, R. and Lahav, Y. eds. Proceeding of the
9th SDL Forum, SDL’99, Elsevier Science B.V., 1999. 171-190.

[GH1993] Gurevich, Y. and Huggins, J.K., The semantics of the C
programming language. In: Selected papers from CSL’92
(Computer Science Logic). LNCS 702, Berlin: Springer-Verlag,
1993. 274-308.

[GH1995] Gogolla, M. and Herzig, R., An algebraic semantics for the
object specification language TROLL light. In: Astesiano, E.,
Reggio, G. and Tarlecki, A. eds. Recent Trends in Data Type
Specification. LNCS 906, Berlin: Springer-Verlag, 1995. 290-306.

[GK1997] Glässer, U. and Karges, R., Abstract state machine
semantics of SDL. Journal of Universal Computer Science,
1997, 3(12): 1382-1414.

[Gle1999] Glesner, S., Natural semantics for imperative and object-
oriented programming language. GI Jahrestagung, 1999. 370-379.

[Gle2003] Glesner, S., ASMs versus natural semantics: a
comparison with new insights. Abstract State Machines –
Advances in Theory and Apllications, ASM 2003, Berlin:
Springer-Verlag, 2003. 293-308.

[GM1988] Gurevich, Y. and Moss, L.S., Algebraic operational
semantics and Modula-2. 1st Workshop on Computer Science
Logic, CSL’87. LNCS 329, Berlin: Springer-Verlag, 1988. 81-101.

[GM1990] Gurevich, Y. and Moss, L.S., Algebraic operational
semantics and Occam. In: 3rd Workshop on Computer Science
Logic, CSL’89. LNCS 440, Berlin: Springer-Verlag, 1990. 176-192.

[GM1996] Goguen, J.A. and Malcolm, G., Algebraic semantics of
imperative programs. USA: MIT Press, 1996.

[Gog1990] Goguen, J., A algebraic approach to refinement. In:
Bjorner, D., Hoare, C.A.R. and Langmaack, H. eds. Proceedings
of VDM and Z: Formal Methods in Software Development,
VDM’90. LNCS 428, Berlin: Springer-Verlag, 1990. 12-28.

[GP1981] Goguen, J.A. and Parsaye, K.G., Algebraic denotational
semantics using parameterized abstract modules. In: Diaz, J.
and Ramos, I. Eds. Proceedings of International Colloquium
on Formalization of Programming Concepts. LNCS 107,
Berlin: Springer-Verlag, 1981. 292-309.

[GRS1991] Gelder A.V., Ross, K.A. and Schlipf, J.S., The
well-founded semantics for general logic programs. Journal of
ACM, 1991, 38: 620-650.

[GTWW1977] Goguen, J.A., Thatcher, J.W., Wagner, E.G., and
Wright, J.B. Initial algebra semantics and continuous algebras.
Journal of the ACM, 1977, 24:68-95.

[Gue1981] Guessarian, I., Algebraic semantics. LNCS 99, Berlin:
Springer Press, 1981.

[Gur1987] Gurevich, Y., Algebraic operational semantics. In: Nori,
K.V. ed. Foundations of Software Technology and Theoretical

Computer Science, FSTTCS’87. LNCS 287, Berlin:
Springer-Verlag, 1987.

[Gur1993] Gurevich, Y., Evolving algebras 1993: Lipari guide. In:
Börger, E., ed. Specification and Validation Methods. USA:
Oxford University Press, 1995. 9-36.

[GZ1998] Glesner, S. and Zimmermann, W., Using many-sorted
natural semantics to specify and generate semantics analysis.
In: Proceeding of Systems Implementation Conference, IFIP
WG 2.4, Chapman & Hall, 1998.

[GZ1999] Goos, G. and Zimmermann, W., Verification of
Compilers. In: Correct System Design. LNCS 1710, Berlin:
Springer-Verlag, 1999. 201-230.

[Har1984] Harel, D., Dynamic logic. In: Gabbay, D. and Guenther,
F. eds. Handbook of Philosophical Logic Volume II -
Extensions of Classical Logic. Netherlands: Reidel Publishing
Company, 1984. 497-604.

[Hen1990] Hennessy, M., The semantics of programming
languages: an elementary introduction using structural
operational semantics. New York: John Wiley & Sons, 1990.

[HJ2000] Huisman, M. and Jacobs, B., Java program verification
via a Hoare logic with abrupt termination. In: Maibaum, T. ed.
3rd International Conference on Fundamental Approaches to
Software Engineering, FASE'00, LNCS 1783. Springer-Verlag,
2000. 284-303.

[HKT2000] Harel, D., Kozen, D. and Tiuryn, J., Dynamic logic.
USA: The MIT Press, 2000.

[HL1994] Harper, R. and Lillibridge, M., A type-theoretic approach
to higer-order modules with sharing. In: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL’94, Portland, 1994. 123-137.

[HM1999] Harmer, R. and McCusker, G., A fully abstract game
semantics for finite nondeterminism. In: 14th Annual IEEE
Symposium on Logic in Computer Science, New York: IEEE
Computer Society Press, 1999. 422-430.

[HO2000] Hyland, M. and Ong, L., On full abstraction for PCF: I, II
and III. Information and Computation, 2000, 163(2): 285-408.

[Hoa1969] Hoare, C.A.R., An axiomatic basis for computer
programming. Communications of the ACM, 1969, 12(10):576-583.

[HS1998] Harper, R. and Stone, C., A type-theoretic interpretation
of Standard ML. In: Plotkin, G., Stirling, C. and Tofte, M. eds.
Proof, Language and Interaction: Essays in Honour of Robin
Milner. USA: MIT Press, 1998.

[HT1994] Hansen, B.S. and Toft, T.U., The formal specification of
ANDF, An application of action semantics. In: Mosses, P.D. ed.
1st International Workshop on Action Semantics, Edinburgh:
University of Aarhus, 1994. 34-42.

[HW1973] Hoare, C.A.R. and Wirth, N., An axiomatic definition of the
programming language Pascal. Acta Informatica, 1973, 2:335-355.

[ILL1975] Igarashi, S., London, R.L. and Luckham, D.C.,
Automatic program verification I: a logic basis and its
implementation. Acta Information, 1975, 4:145-182.

[ITU2000] ITU-T., SDL formal semantics definition. ITU-T
Recommendation Z.100 Annex F, International
Telecommunication Union, 2000.

[JMK1998] Joxan, J., Michael, M., Kim, M. and Peter, S., The
semantics of constraint logic programs. The Journal of Logic
Programming, 1998, 37(1-3): 1-46.

ACM SIGPLAN Notices 27 Vol. 39(3), Mar 2004

[Kem1982] Kemmerer, R.A., Formal verification of an operating
system security kernel. Michigan: UMI Research Press, 1982.

[KLNS2002] Klein, G., Loetzbeyer, H., Nipkow, T. and Sandner, R.,
A WHILE-language and its semantics, Technical Report, 2002.
http://isabelle.in.tum.de/PSV2000/library/HOL/IMP/README.html

[KOC1991] Kurtz, B.L., Oliver, R.L. and Collins, M., The design,
implementation, and use of DSTutor: a tutoring system for
denotational semantics. ACM SIGCSE Bulletin, 1991, 23(1): 169-177.

[Lab1998] Labra, J., An implementation of modular monadic
semantics using folds and monadic folds. In: 3rd International
Summer School on Advanced Functional Programming,
Portugal, 1998.

[Lai1997] Laird, J., Full abstraction for functional languages with
control. In: 12th Annual IEEE Symposium on Logic in
Computer Science, New York: IEEE Computer Society Press,
1997. 58-67.

[Lan1964] Landin, P.J., The mechanical evaluation of expressions.
Computer Journal, 1964, 6(4):308-320.

[Lan1966] Landin, P.J., A formal description of Algol60. In:
Proceedings of IFIP TC2 Working Conference, Formal
Language Description Languages for Computer Programming,
North-Holland, 1966. 266-294.

[Lau1968] Lauer, L., Formal definition of Algol 60, Technical
Report TR. 25.088, IBM Lab. Vienna, 1968.

[LCLC2001] Labra Gayo, J.E., Cueva Lovelle, J.M., Luengo Diez,
M.C. and Cernuda del Rio, A., Reusable monadic semantics of
logic programs with arithmetic predicates. In: Proceedings
2001 APPIA-GULP-PRODE Joint Conference on Declarative
Programming, AGP’01, Portugal: University of Evora
Publisher, 2001. 31-45.

[LCLC2002] Labra Gayo, J.E., Cueva Lovelle, J.M., Luengo Diez,
M.C. and Cernuda del Rio, A., Reusable monadic semantics of
object oriented programming languages. In: 6th Brazilian
Symposium on Programming Languages, SBLP’02, Brazil:
PUC-Rio University, 2002.

[LH1996] Liang, L. and Hudak, P., Modular denotational semantics
for compiler construction. In: 6th European Synposium on
Programming Languages and Systems, ESOP’96. LNCS 1058,
Berlin: Springer-Verlag, 1996. 219-234.

[LHJ1995] Liang, S., Hudak, P. and Jones, M., Monad transformers
and modular interpreters. In: 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’95,
New York: ACM Press,1995. 333-343.

[Lia1998] Liang, S., Modular monadic semantics and compilation
[Ph.D. thesis]. Yale: University of Yale, 1998.

[LLCC2001] Labra Gayo, J.E., Luengo Diez, M.C., Cueva Lovelle,
J.M. and Cernuda del Rio, A., A language prototyping system
using modular monadic semantics. In: Workshop on Language
Definitions, Tools and Applications, LDTA’01. ENTCS 44,
Netherlands: Elesvier, 2001.

[LP1995] Larsen, P.G. and Pawlowski, W., The formal semantics of
ISO VDM-SL. Computer Standards and Interfaces, 1995,
17(5-6): 585-602.

[LS2002] Loetzbeyer, H. and Sandner, R., A WHILE-language and
two Semantics, Technical Report, 2002.
http://wwwbroy.informatik.tu-muenchen.de/~isabelle/library/Z
F/IMP/README.html.

[LW1995] Li, Z. and Wang, B., On denotational semantics of
Smalltalk-80. Chinese Science Abstracts Series Part A, 1995,
A14(5): 50-50.

[MA1986] Manes, E.G. and Arbib, M.A., Algebraic Approaches to
Program Semantics. Berlin: Springer Press, 1986.

[McC1996] McCusker, G., Games and full abstraction for FPC. In: 11th
Annual IEEE Symposium on Logic in Computer Science, LICS’96,
New York: IEEE Computer Society Press, 1996. 174-183.

[MH1998] Malacaria, P. and Hankin, C., A new approach to
control flow analysis. In: 7th International Conference on
Compiler Construction, CC’98, Lisbon, 1998. 95-108.

[MH1999] Malacaria, P. and Hankin, C., Non-deterministic games
and program analysis: an application to security. In: 14th
Annual IEEE Symposium on Logic in Computer Science,
New York: IEEE Computer Society Press, 1999. 443-452.

[Mit1996] Mitchell, J.C., Foundations for programming languages.
USA: MIT Press, 1996.

[MM2003] Maarten, M. and Michael, M., Regular equivalence and
dynamic logic. Social Networks, 2003, 25(1):51-65.

[Mog1989] Moggi, E., An abstract view of programming languages.
LFCS Report, ECS-LFCS-90-113, University of Edinburgh, 1989.
http://www.lfcs.informatics.ed.ac.uk/reports/90/ECS-LFCS-90-113/.

[Mog1991] Moggi, E., Notions of computation and monads.
Information and Computation, 1991, 93:55-92.

[Mos1986] Mosses, P.D., Action semantics. In: 4th Workshop on
Abstract Data Type, ADT’86, University of Braunschweig, 1986.

[Mos1989] Mosses, P.D., Unified algebras and action semantics. In:
6th Annual Symposium on Theoretical Aspects of Computer
Science, STACS’89, 1989. 17-35.

[Mos1992a] Mosses, P.D., Action semantics. Cambridge,
UK:Cambridge University Press, 1992.

[Mos1992b] Mosses, P.D., On the action semantics of concurrent
programming languages. In: Semantics: Foundations and
Applications, Proceeding of REX Workshop. LNCS 666,
Berlin: Springer-Verlag, 1992. 398-424.

[Mos1996a] Mosses, P.D., Theory and practice of action semantics.
In: Penczek, W., Szalas, A. and Wierzbicki, T. eds. 21th
International Symposium on Mathematical Foundations of
Computer Science, MFCS’96. LNCS 1113, Berlin:
Springer-Verlag, 1996. 37-61.

[Mos1996b] Mosses, P.D., A tutorial on action semantics. Tutorial
notes for FME’96: Formal Methods Europe, Oxford, 1996.

[Mos1998] Mosses, P.D., Semantics, modularity, and rewriting
logic. In: Kirchner, C. and Kirchner, H., eds. 2nd International
Workshop on Rewriting Logic and its Applications, ENTCS 15.
Netherlands: Elesvier, 1998.

[Mos1999] Mosses, P.D., Foundations of modular SOS (extended
abstract). In: Kutylowski, M., Pacholski, L. and Wierzbicki, T.
eds. 24th International Symposium on Mathematical
Foundations of Computer Science, MFCS’99. LNCS 1672,
Berlin: Springer-Verlag, 1999. 70-80.

[Mos2001a] Mosses, P.D., What use is formal semantics. PSI
Report, Perspective of System Informatics 2001, Russia, 2001.
http://www.iis.nsk.su/psi01/reports/mosses_e.shtml.

[Mos2001b] Mosses, P.D., The varieties of programming language
semantics and their uses. In: Bjørner, D., Broy, M. and

ACM SIGPLAN Notices 28 Vol. 39(3), Mar 2004

Zamulin, A.V, eds. 4th International Andrei Ershov Memorial
Conference on Perspective of System Informatics, PSI’01,
LNCS 2244. Berlin: Springer-Verlag, 2001. 165-190.

[Mos2001c] Mosses, P.D., Action semantics and compiler generation.
Course Lecture, Department of Computer Science, University of
Aarhus, 2001. http://wiki.daimi.au.dk:8000/ascg-01/.

[Mos2002a] Mosses, P.D., Fundamental concepts and formal
semantics of programming language. Lecture Notes, BRICS &
Department of Computer Science, University of Aarhus, 2002.
http://wiki.daimi.au.dk:8000/dSprogSem-02/.

[Mos2002b] Mosses, P.D., Pragmatics of Modular SOS. In:
Kirchner, H. and Ringeissen, C. eds. 9th International
Conference on Algebraic Methodology and Software
Technology, AMAST’02. LNCS 2422, Berlin: Springer-Verlag,
2002. 21-40.

[Mou1993] Moura, H.P., Action notation transformations [Ph.D.
thesis]. Department of Computer Science, University of
Glasgow, 1993.

[MTH1990] Milner, R., Tofte, M. and Harper, R., The definition of
standard ML. USA: MIT Press, 1990.

[MTHM1997] Milner, R., Tofte, M., Harper, R. and MacQueen, D.,
The Definition of standard ML (revised). USA: MIT Press, 1997.

[MW1987] Mosses, P.D. and Watt, D.A., The use of action
semantics. In: Formal Description of Programming Concepts
III, Proceedings of IFIP TC2 Working Conference,
North-Holland, 1987. 135-166.

[MW1993] Mosses, P.D. and Watt, D.A., Pascal action semantics.
Technical Report 17.08, University of Aarhus, 1993.
http://www.brics.dk/Projects/AS/action-semantics/93/.

[Nau2001] Naumann, D.A., Predicate transformer semantics of a
higher-order imperative language with record subtyping.
Science of Computer Programming, 2001, 41(1): 1-51.

[Nic1994] Nickau, H., Hereditarily sequential functionals. In:
Proceedings of the Symposium on Logical Foundations of
Computer Science, LFCS’94, Berlin: Springer, 1994. 240-252.

[NN1992] Nielson, H.R. and Nielson, F., Semantics with applications:
a formal introduction. Wiley Professional Computing Series,
Chichester, England: John Wiley & Sons, 1992.

[ON1999] von Oheimb, D. and Nipkow, T., Machine-cheking and
Jave specification: proving type-safety. In: Alves-Foss, J. ed.
Formal Syntax and Semantics of Java. LNCS 1523, Berlin:
Springer-Verlag, 1999.

[Ørb1994] Ørbæk, P., OASIS: an optimizing action-based compiler
generator. In: 5th International Conference on Compiler Construction,
CC’94. LNCS 786, Berlin: Springer-Verlag, 1994. 1-15.

[Pal1992a] Palsberg, J., An automatically generated and provably
correct compiler for a subset of ada. In: 4th IEEE
International Conference on Computer Languages, ICCL’92,
New York: IEEE Press, 1992. 117-126.

[Pal1992b] Palsberg, J., A provably correct compiler generator. In:
Proceedings of European Symposium on Programming,
ESOP’92. LNCS 582, Berlin: Springer-Verlag, 1992. 418-434.

[PDG1986] PL/I Definition Group. Formal definition of PL/I version 1,
Report TR 25.071, American: Nat. Standards Institute, 1986.

[Plo1981] Plotkin, G.D., A structural approach to operational
semantics. Technical Report, DAIMI FN–19, Department of
Computer Science, University of Aarhus, 1981.

[Plo1983] Plotkin, G.D., An operational semantics for CSP. In:
Bjørner, D. ed. Proceeding IFIP TC2 Working Conference on
Formal Description of Programming Concepts- II,
North-Holland, 1983. 199-225.

[Pol1981] Polak, W., Program verification based on denotation
semantics. In: Proceedings of the 8th ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Language, Williamsburg, 1981. 149-158.

[Pow2000] Power, J., Modularity in denotational semantics. In: 13th
Annual Conference on Mathematical Foundations of Programming
Semantics, MFPS XIII (6), New York: Elsevier Press, 2000.

[PS1995] Palsberg, J. and Schwartzbach, M.I., Safety analysis
versus type inference. Information and Computation, 1995,
118 (1): 128-141.

[Rep1991] Reppy, J., CML: a higher-order concurrent language. In:
Programming Language Design and Implementation, ACM
SIGPLAN, 1991. 293-259.

[Rin1997] Ringström, J., Compiler generation for data-parallel
programming languages from two-level semantics specifications
[Ph.D. Thesis]. Sweden: University of Linköping, 1997.

[Ru1992] Ru-zhan, L., Formal semantics of programming
languages. Beijing: Science Press, 1992 (in Chinese).

[Sch1986] Schmidt, D.A., Denotational semantics: a methodology
for language development. Boston, Massachusetts: Allyn and
Bacon, 1986.

[Sch1995] Schellekens, M., The Smyth completion: a common
foundation for denotational semantics and complexity analysis.
In: Proceeding of Electronic Notes in Theoretical Computer
Science, MFPS 11, 1995, 1: 211-232.

[SK1995] Slonneger, K. and Kurtz, B., Formal syntax and
semantics of programming languages: a laboratory based
approach. Iowa, USA: Addison & Wesley, 1995.

[Sou1984] Soundararajan, N., Axiomatic semantics of
Communicating sequential processes. ACM Transaction on
Programming Language and System, 1984, 6(4): 647-662.

[SSB2001] Stärk, R., Schmid, J., and Börger, E., Java and the Java
virtual machine: definition, verification, validation. Berlin:
Springer-Verlag, 2001.

[Ste1996] Stephenson, K., An algebraic approach to syntax,
semantics and compilation [Ph.D. thesis]. Department of
Computer Science, University of Wales Swansea, 1996.

[Ste1997] Stephenson, K., Compiler correctness using algebraic
operational semantics. Technical Report CSR 1-97, University
of Wales Swansea, 1997.
http://www-compsci.swan.ac.uk/reports/yr1997/CSR1-97.pdf.

[Sto1977] Stoy, J., Denotational semantics: the Scott-Strachey approach
to programming language theory. USA: MIT Press, 1977.

[Sym1999] Syme, D., Proving Java type soundness. In: Foss, A. ed.
Formal Syntax and Semantics of Java. LNCS 1523, Berlin:
Springer-Verlag, 1999. 83-118.

[Ten1976] Tennent, R.D., The denotational semantics of programming
languages. Communications of the ACM, 1976, 19 (8): 437-453.

[Tof1993] Toft, J.U., Feasibility of using RSL as the specification
language for the ANDF formal specification. Technical Report
202104-RPT-12, Denmark, 1993.

[TZ1988] Tucker, J.V. and Zucker, J.I., Program correctness over

ACM SIGPLAN Notices 29 Vol. 39(3), Mar 2004

abstract data types, with error-state semantics. New York:
Elsevier Science Inc., 1988.

[UP2002] Ulidowski, L. and Phillips, L., Ordered SOS process
languages for branching and eager bisimulations. Information
and Computation, 2002, 178 (1): 180-213.

[Var1982] Vardi, M.Y., The complexity of relational query
languages. In: 14th ACM Symposium on Theory of
Computing, 1982. 137-146.

[vON1999] von Oheimb, D. and Nipkov, T., Machine-checking the
Java specification: proving type-safety. In: Foss, A. ed. Formal
Syntax and Semantics of Java. LNCS 1523, Berlin:
Springer-Verlag, 1999. 83-118.

[Wad1990] Wadler, P.L., Comprehending monads. In: proceedings
of the 1990 ACM Conference on Lisp and Functional
Programming. New York: ACM Press, 1990. 61-78.

[Wan1997] Wansbrough, K., A modular monadic action semantics
[MS Thesis]. Department of Computer Science, University of
Auckland, 1997.

[Wat1986] Watt, D.A., Executable semantic descriptions. Software:
Practice and Experience, 1986, 16: 13-43.

[Wat1988] Watt, D.A., An action semantics of Standard ML. In:
Proceeding of 3rd Workshop on Mathematics Foundations of
Programming Language Semantics. LNCS 298, Berlin:
Springer-Verlag, 1988. 572-598.

[Wat1999] Watt, D.A., JAS: a Java action semantics. In: Mosses, P.D. and
Watt, D.A. eds. 2nd International Workshop on Action Semantics,
University of Aarhus, Denmark: BRICS NS, 1999,3: 43-56.

[WBB1993] Weber, S., Bloom, B. and Brown, G., Compiling Joy
into silicon: an exercise in applied structural operational

semantics. In: Bakker, J., Roever, W. and Rozenberg, G. eds.
Proceedings REX Workshop on Semantics: Foundations and
Applications. LNCS 666, Berlin: Springer-Verlag, 1993. 639-659.

[Weg1972] Wegner, P., The Vienna definition language. ACM
Computer Survey, 1972, 4(1): 5-63.

[WF1994] Wright, A. and Felleisen, M., A syntactic approach to type
soundness. Information and Computation, 1994, 115 (1): 38-94.

[WH1997] Wansbrough, K. and Hamer, J., A modular monadic
action semantics. In: Proceeding of the Conference on
Domain-Specific Language, Santa Barbara, California: The
USENIX Association, 1997. 157-170.

[Wil1982] Williams, J.H., On the development of the algebra of
funtcional programs. ACM Transactions on Programming
Languages and Systems, 1982, 4(4):733-757.

[Yeu1997] Yeung, W.L., Denotational semantics for JSD. In: 4th
Asia-Pacific Software Engineering and International Computer
Science Conference, APSEC’97, Hong Kong, 1997.72-82.

[YR1998] Yan-bing, W. and Ru-zhan, L., Semantics of program
base on trace part I: trace and semantics objects. Journal of
Software, 1998, 9 (5): 366-370 (in Chinese).

[YZJ1995] Yuzhong, Q., Zhijian, W. and Jiafu, X., Denotational
Semanitcs of a simple model Eiffel. Journal of Computer
Science of Technology, 1995, 10(3): 214-226.

[Zam1997] Zamulin, A.V., Algebraic semantics of object-oriented
data models. In: Technology of Object-oriented languages and
System-Tools-24, Beijing, 1997. 43-53.

[ZG1997] Zimmermann, W. and Gaul, T., On the construction of
correct compiler backends: an ASM approach. Journal of
Universal Computer Science, 1997, 3(5): 504-567.

ACM SIGPLAN Notices 30 Vol. 39(3), Mar 2004

